
a

ADSP-CM40x
Mixed-Signal Control Processor

with ARM Cortex-M4
 Hardware Reference

Preliminary Revision 0.2, September 2013

Part Number
82-100120-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2013 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be repro-
duced in any form without prior, express written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without prior notice. Infor-
mation furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use; nor for any infringement of patents
or other rights of third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, Blackfin, EZ-KIT Lite, SHARC, TigerSHARC, VisualDSP++, and
CrossCore Embedded Studio are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of their respective
owners.

CONTENTS
Contents

Contents

Preface

Purpose of This Manual ... lxvii

Intended Audience .. lxvii

Manual Contents ... lxvii

What's New in This Manual .. lxx

Technical or Customer Support .. lxx

Supported Processors ... lxxi

Product Information ... lxxi

Analog Devices Web Site ... lxxi

 EngineerZone .. lxxii

Notation Conventions ... lxxii

Register Documentation Conventions .. lxxiii

Introduction

ARM Cortex-M4 Core .. 1-3

Cortex-M4 Core Block Diagram ... 1-3

Cortex-M4 Core Components ... 1-4

Cortex-M4 Core Nested Vectored Interrupt Controller (NVIC) ... 1-4

Cortex-M4 Core System Control Block (SCB) ... 1-5

Cortex-M4 Core System Timer (SysTick) ... 1-5

Cortex-M4 Core Memory Protection Unit (MPU) .. 1-6

Cortex-M4 Core Floating Point Unit (FPU) .. 1-6
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE iii

CONTENTS
Processor Infrastructure .. 1-6

System Crossbar (SCB) ... 1-6

Clock Generation ... 1-7

Crystal Oscillator (SYS_XTAL) .. 1-7

Clock Out/External Clock ... 1-7

System Protection Unit (SPU) ... 1-8

Dynamic Power Management (DPM) ... 1-8

System Event Controller (SEC) .. 1-8

Pin Interrupts ... 1-8

Memory Architecture .. 1-9

Static Memory Controller (SMC) .. 1-9

Cyclic Redundancy Check (CRC) ... 1-9

Direct Memory Access (DMA) ... 1-10

On Chip Peripherals .. 1-11

General-Purpose I/O (GPIO) ... 1-12

General-Purpose Timers .. 1-12

Watchdog Timers ... 1-12

General-Purpose Counters ... 1-13

Pulsewidth Modulator (PWM) ... 1-13

Universal Asynchronous Receiver/Transmitter (UART) .. 1-14

2-Wire Interface (TWI) .. 1-15

Controller Area Network (CAN) ... 1-15

Universal Serial Bus (USB) ... 1-16

Ethernet Media Access Controller (MAC) .. 1-16

Serial Peripheral Interface (SPI) .. 1-18

Serial Port (SPORT) .. 1-18

ADC Controller (ADCC) ... 1-18

DAC Controller (DACC) ... 1-19

Harmonic Analysis Engine (HAE) .. 1-19

Sinus Cardinalis Filter Unit (SINC) ... 1-20
 iv ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Reset Control Unit (RCU) ... 1-20

Booting .. 1-21

System Watchpoint Unit ... 1-21

ARM Cortex-M4 Core Memory Sub-System

Cortex-M4 Memory Features ... 2-2

Cortex-M4 Memory Functional Description .. 2-2

ADSP-CM40x M4P Register List ... 2-3

ADSP-CM40x M4P Interrupt List ... 2-4

Cortex-M4 Memory Internal Buses Block Diagram ... 2-4

Cortex-M4 Memory Map ... 2-5

Cortex-M4 Memory for the ADSP-CM40x ... 2-6

Cortex-M4 Memory Map - Code and Data Regions .. 2-7

Cortex-M4 Memory Accessibility - Cortex Core Perspective .. 2-7

Cortex-M4 Memory Accessibility - User/Application Perspective (Read Access) 2-8

Cortex-M4 Memory Accessibility - User/Application Perspective (Write Access) 2-9

Cortex-M4 Memory - Bit Banding .. 2-10

Cortex-M4 Memory - Translation Memory Blocks (MEMX and MEMY) .. 2-11

Cortex-M4 Memory - Synchronization Sequence ... 2-12

Cortex-M4 Cache .. 2-12

Cache Controller Features ... 2-13

Cache Structural Organization ... 2-13

Clearing the Cache ... 2-15

Bypassing the Cache .. 2-15

Using the Cache Counters .. 2-16

Using Cache Parity Control ... 2-16

Cortex-M4 Code and Data SRAM .. 2-18

SRAM Features .. 2-18

SRAM Block Diagram ... 2-19

SRAM Bank Organization on ADSP-CM40x ... 2-19

SRAM Partitioning using ConfigBanks .. 2-21
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE v

CONTENTS
Main SRAM Memory Attributes ... 2-23

SRAM Interface Coherence Specification ... 2-24

Using Synchronization to Achieve SRAM Coherency .. 2-25

SRAM Write Buffers ... 2-25

SRAM Write Collisions and Write Priority ... 2-25

SRAM Access Collisions, Priority, and Stalling ... 2-26

SRAM Exclusive Accesses, Global Exclusive Monitor .. 2-27

SRAM Parity Protection .. 2-28

SRAM Posted System Writes (NormSysWrite versus PostSysWrite) .. 2-28

ADSP-CM40x M4P Register Descriptions ... 2-29

Code Cache Configuration and Status Register .. 2-30

Code Cache Parity Error Address Register ... 2-35

MEMX Space Configuration Register .. 2-36

MEMY Space Configuration Register .. 2-38

SRAM Configuration Register ... 2-39

SRAM Parity Error Address (Core) Register ... 2-40

SRAM Parity Error Address (DMA) Register .. 2-42

Bus Fault Error Information Register ... 2-43

SysTick Calibration Register .. 2-44

Cache Counter Control Register ... 2-45

Cache ICODE Reference Counter Register .. 2-48

Cache DCODE Reference Counter Register .. 2-48

Cache ICODE Miss Counter Register .. 2-49

Cache DCODE Miss Counter Register ... 2-50

Cache ICODE Line Fill Counter Register .. 2-50

Cache DCODE Line Fill Counter Register ... 2-51

System Crossbars (SCB)

SCB Features .. 3-1

SCB Functional Description ... 3-1

ADSP-CM40x SCB Register List .. 3-1
 vi ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
SCB Definitions ... 3-4

SCB Block Diagram .. 3-4

SCB Hierarchy Block Diagram ... 3-5

ADSP-CM40x SCB Block Diagram ... 3-5

ADSP-CM40x SCB Bus Master IDs ... 3-7

ADSP-CM40x SCB Arbitration .. 3-8

ADSP-CM40x SCB Programming Model .. 3-9

FIFO Synchronization .. 3-9

ADSP-CM40x SCB Programming Concepts .. 3-10

ADSP-CM40x SCB Register Descriptions .. 3-10

Master 0 IB Sync Mode .. 3-13

Master 0 Read Quality of Service ... 3-14

Master 0 Write Quality of Service .. 3-14

Master 1 IB Sync Mode .. 3-15

Master 1 Read Quality of Service ... 3-15

Master 1 Write Quality of Service .. 3-16

Master 2 Read Quality of Service ... 3-17

Master 2 Write Quality of Service .. 3-17

Master 3 Read Quality of Service ... 3-18

Master 3 Write Quality of Service .. 3-19

Master 4 Read Quality of Service ... 3-19

Master 4 Write Quality of Service .. 3-20

Master 5 Read Quality of Service ... 3-21

Master 5 Write Quality of Service .. 3-21

Master 6 Read Quality of Service ... 3-22

Master 6 Write Quality of Service .. 3-23

Master 7 Read Quality of Service ... 3-23

Master 7 Write Quality of Service .. 3-24

Master 8 Read Quality of Service ... 3-25

Master 8 Write Quality of Service .. 3-25
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE vii

CONTENTS
Master 9 Read Quality of Service ... 3-26

Master 9 Write Quality of Service .. 3-27

Master 10 Read Quality of Service ... 3-27

Master 10 Write Quality of Service .. 3-28

Master 11 Read Quality of Service ... 3-29

Master 11 Write Quality of Service .. 3-29

Master 12 Read Quality of Service ... 3-30

Master 12 Write Quality of Service .. 3-31

Master 13 Read Quality of Service ... 3-31

Master 13 Write Quality of Service .. 3-32

Master 14 Read Quality of Service ... 3-33

Master 14 Write Quality of Service .. 3-33

Master 15 Read Quality of Service ... 3-34

Master 15 Write Quality of Service .. 3-35

Master 16 Read Quality of Service ... 3-35

Master 16 Write Quality of Service .. 3-36

Master 17 Read Quality of Service ... 3-37

Master 17 Write Quality of Service .. 3-37

Master 18 Read Quality of Service ... 3-38

Master 18 Write Quality of Service .. 3-39

Master 19 Read Quality of Service ... 3-39

Master 19 Write Quality of Service .. 3-40

Master20 Read Quality of Service .. 3-41

Master 20 Write Quality of Service .. 3-41

Master 21 Read Quality of Service ... 3-42

Master 21 Write Quality of Service .. 3-43

Master 22 Read Quality of Service ... 3-43

Master 22 Write Quality of Service .. 3-44

Master 23 Read Quality of Service ... 3-45

Master 23 Write Quality of Service .. 3-45
 viii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Master 24 Read Quality of Service ... 3-46

Master 24 Write Quality of Service .. 3-47

Master 25 Read Quality of Service ... 3-47

Master 25 Write Quality of Service .. 3-48

Master 26 Read Quality of Service ... 3-49

Master 26 Write Quality of Service .. 3-49

Clock Generation Unit (CGU)

CGU Features ... 4-1

CGU Functional Description .. 4-1

ADSP-CM40x CGU Register List ... 4-2

ADSP-CM40x CGU Interrupt List .. 4-2

ADSP-CM40x CGU Trigger List .. 4-3

CGU Definitions .. 4-3

CGU PLL Block Diagram ... 4-4

CGU Operating Modes ... 4-5

CGU Event Control ... 4-5

CGU Events ... 4-6

CGU Error .. 4-6

CGU Generated Bus Errors ... 4-6

Oscillator Watchdog ... 4-6

CGU Programming Model .. 4-8

Configuring CGU Modes ... 4-8

Changing the PLL Clock Frequency .. 4-8

Changing the CCLKn or SYSCLK Frequency Without Modifying the PLLCLK Frequency 4-9

Changing the OUTCLK Frequency .. 4-9

Aligning All Clocks .. 4-10

ADSP-CM40x CGU Register Descriptions ... 4-10

Control Register .. 4-11

Status Register .. 4-12

Clocks Divisor Register .. 4-15
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE ix

CONTENTS
CLKOUT Select Register ... 4-17

Oscillator Watchdog Register ... 4-18

Timestamp Control Register ... 4-20

Timestamp Counter Initial 32 l.s.b. Value Register ... 4-20

Timestamp Counter Initial m.s.b. Value Register .. 4-21

Timestamp Counter 32 l.s.b. ... 4-22

Timestamp Counter 32 m.s.b. Register ... 4-22

System Protection Unit (SPU)

SPU Features ... 5-1

SPU Functional Description ... 5-1

ADSP-CM40x SPU Register List .. 5-4

SPU Definitions .. 5-4

SPU Block Diagram ... 5-4

SPU Architectural Concepts .. 5-5

SPU Event Control .. 5-5

SPU Programming Model ... 5-6

SPU Mode Configuration .. 5-6

Locking Write-Protect Registers ... 5-6

Protecting a Peripheral ... 5-7

ADSP-CM40x SPU Register Descriptions .. 5-7

Control Register .. 5-7

Status Register .. 5-8

Write Protect Register n .. 5-9

ADSP-CM40x SPU_WPn Register Bits ... 5-10

Dynamic Power Management (DPM)

DPM Features ... 6-1

DPM Functional Description .. 6-1

ADSP-CM40x DPM Register List .. 6-1

ADSP-CM40x DPM Interrupt List .. 6-2
 x ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
DPM Definitions .. 6-2

DPM Operating Modes ... 6-3

Reset State .. 6-4

Full-on Mode ... 6-4

Active Mode .. 6-5

ACTIVE with PLL Disabled ... 6-5

Deep Sleep Mode ... 6-5

DPM Event Control .. 6-6

DPM Events .. 6-6

DPM Errors .. 6-6

DPM Programming Model ... 6-6

Configuring Deep Sleep Mode .. 6-7

ADSP-CM40x Wake-Up Sources ... 6-7

ADSP-CM40x Clock Buffer Disable Bit Assignments ... 6-8

ADSP-CM40x DPM Register Descriptions .. 6-8

Control Register .. 6-9

Status Register .. 6-10

Core Clock Buffer Disable Register ... 6-12

Core Clock Buffer Enable Register .. 6-13

Core Clock Buffer Status Register .. 6-14

Core Clock Buffer Status Sticky Register .. 6-14

System Clock Buffer Disable Register ... 6-15

Wakeup Enable Register ... 6-16

Wakeup Polarity Register ... 6-17

Wakeup Status Register .. 6-18

System Event Controller (SEC)

SEC Features ... 7-1

SEC Functional Description ... 7-1

ADSP-CM40x SEC Register List .. 7-1

ADSP-CM40x Interrupt List ... 7-2
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xi

CONTENTS
ADSP-CM40x SEC Trigger List ... 7-7

SEC Definitions ... 7-7

SEC Block Diagram ... 7-8

SFI Block Diagram ... 7-9

SEC Architectural Concepts .. 7-10

System Interrupt Acknowledge .. 7-10

Nested Vectored Interrupt Controller (NVIC) .. 7-10

NVIC Registers with ADSP-CM40x Specifications .. 7-12

System Fault Interface (SFI) and NVIC ... 7-12

SEC Error .. 7-14

SEC Programming Model ... 7-14

Programming Concepts .. 7-14

Programming Examples ... 7-14

Configuring a System Interrupt with NVIC ... 7-14

Configuring FMU as Fault Pin ... 7-15

Managing Faults Inside a Triggered ISR .. 7-15

Configuring and Managing Faults (that are also Interrupts) .. 7-15

ADSP-CM40x SEC Register Descriptions .. 7-16

Global Control Register .. 7-17

Global Status Register .. 7-18

Global Raise Register ... 7-19

Fault Control Register ... 7-20

Fault Status Register ... 7-22

Fault Source ID Register ... 7-23

Fault End Register .. 7-24

Fault Delay Register ... 7-25

Fault Delay Current Register .. 7-26

Fault System Reset Delay Register ... 7-27

Fault System Reset Delay Current Register ... 7-27

Fault COP Period Register .. 7-28
 xii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Fault COP Period Current Register .. 7-29

Source Control Register n ... 7-29

Source Status Register n ... 7-30

Trigger Routing Unit (TRU)

TRU Features .. 8-1

TRU Functional Description ... 8-1

ADSP-CM40x TRU Register List ... 8-1

ADSP-CM40x TRU Interrupt List .. 8-2

ADSP-CM40x Trigger List ... 8-2

TRU Definitions .. 8-6

TRU Block Diagram .. 8-7

TRU Architectural Concepts ... 8-7

TRU Programming Model .. 8-7

Programming Concepts .. 8-8

Programming Example .. 8-8

TRU Event Control ... 8-9

TRU Status and Error Signals .. 8-9

ADSP-CM40x TRU Register Descriptions ... 8-9

Slave Select Register .. 8-9

Master Trigger Register .. 8-10

Error Address Register .. 8-11

Status Information Register .. 8-12

Global Control Register .. 8-12

Static Memory Controller (SMC)

SMC Features ... 9-1

SMC Functional Description .. 9-1

ADSP-CM40x SMC Register List ... 9-2

SMC Definitions .. 9-3

SMC Architectural Concepts ... 9-4
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xiii

CONTENTS
Avoiding Bus Contention ... 9-4

ARDY Input Control .. 9-5

SMC Operating Modes ... 9-6

Asynchronous Flash Mode .. 9-6

Asynchronous Page Mode ... 9-6

SMC Event Control .. 9-7

SMC Programmable Timing Characteristics .. 9-7

Asynchronous SRAM Reads and Writes ... 9-7

Asynchronous SRAM Reads with IDLE Transition Cycles Inserted .. 9-8

High Speed Asynchronous SRAM Read Burst ... 9-9

High Speed Asynchronous SRAM Writes ... 9-10

Asynchronous SRAM Reads with ARDY ... 9-11

Asynchronous Flash Reads .. 9-13

Asynchronous Flash Writes ... 9-14

Asynchronous Flash Page Mode Reads ... 9-15

Asynchronous FIFO Reads and Writes .. 9-16

SMC Programming Model .. 9-18

ADSP-CM40x SMC Register Descriptions ... 9-19

Bank 0 Control Register ... 9-19

Bank 0 Timing Register .. 9-21

Bank 0 Extended Timing Register .. 9-23

Bank 1 Control Register ... 9-25

Bank 1 Timing Register .. 9-27

Bank 1 Extended Timing Register .. 9-29

Bank 2 Control Register ... 9-31

Bank 2 Timing Register .. 9-33

Bank 2 Extended Timing Register .. 9-35

Bank 3 Control Register ... 9-37

Bank 3 Timing Register .. 9-39

Bank 3 Extended Timing Register .. 9-41
 xiv ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Cyclic Redundancy Check (CRC)

CRC Features .. 10-1

CRC Functional Description ... 10-2

ADSP-CM40x CRC Register List ... 10-3

ADSP-CM40x CRC Interrupt List .. 10-3

CRC Definitions .. 10-4

CRC Block Diagram .. 10-4

Peripheral DMA Bus .. 10-5

MMR Access Bus ... 10-5

Mirror Block ... 10-6

Data FIFO ... 10-6

DMA Request Generator .. 10-6

CRC Engine .. 10-6

Compare Logic ... 10-6

CRC Architectural Concepts ... 10-6

Lookup Table .. 10-7

Data Mirroring .. 10-7

FIFO Status and Data Requests .. 10-8

CRC Operating Modes .. 10-9

Data Transfer Modes .. 10-9

Memory Scan Compute and Compare .. 10-10

Memory Scan Data Verify .. 10-11

Memory Transfer Compute and Compare .. 10-11

Memory Transfer Data Fill Mode ... 10-11

CRC Event Control ... 10-12

Interrupt Signals ... 10-12

CRC Programming Model .. 10-13

CRC Mode Configuration .. 10-13

Look-Up Table Generation ... 10-13

Core Driven Memory Scan Compute Compare Mode ... 10-14
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xv

CONTENTS
DMA Driven Memory Scan Compute Compare Mode .. 10-15

Core Driven Memory Scan Data Verify Mode ... 10-17

DMA Driven Memory Scan Data Verify Mode ... 10-19

Core Driven Memory Transfer Compute Compare Mode .. 10-20

DMA Driven Memory Transfer Compute Compare Mode .. 10-22

DMA Driven Memory Transfer Data Fill Mode .. 10-24

ADSP-CM40x CRC Peripheral and DMA Channel List .. 10-25

ADSP-CM40x CRC Register Descriptions ... 10-26

Control Register .. 10-26

Data Word Count Register .. 10-29

Data Word Count Reload Register ... 10-30

Data Compare Register ... 10-31

Fill Value Register .. 10-31

Data FIFO Register ... 10-32

Interrupt Enable Register .. 10-33

Interrupt Enable Set Register .. 10-34

Interrupt Enable Clear Register .. 10-34

Polynomial Register .. 10-35

Status Register .. 10-36

Data Count Capture Register .. 10-38

CRC Final Result Register .. 10-38

CRC Current Result Register .. 10-39

Direct Memory Access (DMA)

DMA Channel Features .. 11-1

DMA Channel Functional Description ... 11-3

ADSP-CM40x DMA Register List .. 11-3

DMA Definitions ... 11-4

Block Diagram ... 11-5

SCB Interface Signals .. 11-7

DMA Channel Peripheral DMA Bus .. 11-7
 xvi ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
DMA Channel MMR Access Bus .. 11-8

Event Signals .. 11-8

Architectural Concepts .. 11-8

DMA Channel SCB Interface ... 11-8

SCB Interface Signals ... 11-9

SCB Burst Transfers ... 11-9

Data Address Alignment .. 11-10

Descriptor Set Address Alignment ... 11-10

DMA Channel Peripheral DMA Bus .. 11-11

Peripheral Control Commands ... 11-11

Peripheral Control Command Restrictions .. 11-14

Memory DMA and Triggering ... 11-15

DMA Channel MMR Access Bus .. 11-17

DMA Channel Operation Flow ... 11-17

Startup .. 11-17

Refresh ... 11-19

Work Unit Transitions ... 11-20

Transfer Termination and Shutdown ... 11-22

DMA Channel Errors .. 11-24

Status and Debug ... 11-24

DMA Configuration Register Errors .. 11-25

Illegal Register Write During Run ... 11-25

Address Alignment Error ... 11-25

Memory Access Error ... 11-25

Trigger Overrun Error ... 11-25

Bandwidth Monitor Error ... 11-26

Control Interface Error .. 11-26

DMA Operating Modes .. 11-26

Register Based Flow Modes ... 11-26

Stop Mode ... 11-27
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xvii

CONTENTS
Autobuffer Mode .. 11-27

Descriptor Based Flow Modes .. 11-27

Descriptor Array Mode ... 11-28

Descriptor List Mode .. 11-28

Descriptor Sets ... 11-28

Minimum Startup Requirements .. 11-29

Descriptor On-Demand Modes ... 11-29

Data Transfer Modes .. 11-30

Two-Dimensional DMA ... 11-30

DMA Channel Event Control ... 11-31

Event Signals ... 11-32

Work Unit State Events .. 11-32

Peripheral Interrupt Request Events ... 11-33

Peripheral Data Request Events ... 11-33

DMA Channel Triggers .. 11-33

Issuing Triggers .. 11-34

Waiting For Triggers .. 11-34

DMA Channel Programming Model .. 11-35

Mode Configuration ... 11-35

Register Based Linear Buffer Stop Flow Mode ... 11-36

Register Based Autobuffer Flow Mode ... 11-37

Descriptor Array Flow Mode .. 11-38

Descriptor List Flow Mode ... 11-39

Register Based Memory-to-Memory Transfer in Stop Flow Mode .. 11-40

Programming Concepts .. 11-41

Synchronization of Software and DMA ... 11-41

Interrupt and Trigger Event Based Synchronization ... 11-42

Register Polling Based Synchronization .. 11-42

Descriptor Queues ... 11-42

Queues Using Event Generation for Every Descriptor Set .. 11-43
 xviii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Queues Using Minimal Events .. 11-44

ADSP-CM40x DMA Register Descriptions .. 11-45

Pointer to Next Initial Descriptor .. 11-46

Start Address of Current Buffer .. 11-47

Configuration Register .. 11-47

Inner Loop Count Start Value ... 11-54

Inner Loop Address Increment ... 11-54

Outer Loop Count Start Value (2D only) ... 11-55

Outer Loop Address Increment (2D only) .. 11-56

Current Descriptor Pointer .. 11-56

Previous Initial Descriptor Pointer ... 11-57

Current Address .. 11-58

Status Register .. 11-59

Current Count(1D) or intra-row XCNT (2D) ... 11-62

Current Row Count (2D only) .. 11-63

Bandwidth Limit Count .. 11-63

Bandwidth Limit Count Current ... 11-64

Bandwidth Monitor Count .. 11-65

Bandwidth Monitor Count Current ... 11-65

General-Purpose Ports (PORT)

PORT Features .. 12-2

PORT Functional Description .. 12-2

ADSP-CM40x PORT Register List ... 12-2

ADSP-CM40x PORT 120-PIN LQFP_EP GP I/O Multiplexing .. 12-3

ADSP-CM40x PORT 176-PIN LQFP_EP GP I/O Multiplexing .. 12-6

ADSP-CM40x PINT Register List .. 12-10

ADSP-CM40x PINT Interrupt List .. 12-11

ADSP-CM40x PINT Trigger List .. 12-11

ADSP-CM40x PADS Register List ... 12-11

PORT Definitions .. 12-12
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xix

CONTENTS
PORT Architectural Concepts ... 12-12

Internal Interfaces .. 12-12

External Interfaces .. 12-12

GPIO Functionality ... 12-12

Input Mode ... 12-12

Output Mode ... 12-13

Open-Drain Mode ... 12-13

Port Multiplexing Control ... 12-13

PORT Event Control ... 12-14

PORT Interrupt Signals ... 12-14

PORT Programming Model .. 12-16

ADSP-CM40x PORT Register Descriptions ... 12-19

Port x Function Enable Register ... 12-20

Port x Function Enable Set Register ... 12-23

Port x Function Enable Clear Register ... 12-25

Port x GPIO Data Register .. 12-28

Port x GPIO Data Set Register ... 12-31

Port x GPIO Data Clear Register .. 12-34

Port x GPIO Direction Register .. 12-38

Port x GPIO Direction Set Register .. 12-42

Port x GPIO Direction Clear Register .. 12-44

Port x GPIO Input Enable Register ... 12-47

Port x GPIO Input Enable Set Register .. 12-50

Port x GPIO Input Enable Clear Register ... 12-53

Port x Multiplexer Control Register ... 12-56

Port x GPIO Input Enable Toggle Register .. 12-58

Port x GPIO Polarity Invert Register .. 12-61

Port x GPIO Polarity Invert Set Register .. 12-65

Port x GPIO Polarity Invert Clear Register .. 12-67

Port x GPIO Lock Register ... 12-70
 xx ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
ADSP-CM40x PINT Register Descriptions .. 12-72

Pint Mask Set Register .. 12-73

Pint Mask Clear Register .. 12-76

Pint Request Register .. 12-79

Pint Assign Register .. 12-82

Pint Edge Set Register .. 12-83

Pint Edge Clear Register ... 12-86

Pint Invert Set Register ... 12-89

Pint Invert Clear Register ... 12-92

Pint Pinstate Register .. 12-95

Pint Latch Register .. 12-98

ADSP-CM40x PADS Register Descriptions ... 12-102

Peripheral Configuration0 Register .. 12-103

General-Purpose Timer (TIMER)

GP Timer Features .. 13-1

ADSP-CM40x TIMER Register List .. 13-2

ADSP-CM40x TIMER Interrupt List ... 13-3

ADSP-CM40x TIMER Trigger List ... 13-3

GP Timer Internal Interface ... 13-4

GP Timer External Interface .. 13-4

GP Timer General Operation .. 13-5

Period, Width and Delay Register Interaction .. 13-5

GP Timer Operating Modes .. 13-6

Single-Pulse PWMOUT Mode ... 13-6

Continuous PWMOUT Mode .. 13-7

Width Capture (WIDCAP) Mode .. 13-8

Width Capture Mode Overflow .. 13-12

Windowed Watchdog (WATCHDOG) Modes ... 13-14

Windowed Watchdog Width Mode ... 13-15

Windowed Watchdog Period Mode .. 13-16
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xxi

CONTENTS
Pin Interrupt (PININT) Mode .. 13-18

External Clock (EXTCLK) Mode ... 13-18

GP Timer Programming Concepts .. 13-19

Setting Up Constantly Changing Timer Conditions ... 13-20

Configuring, Enabling and Disabling One or More Timers .. 13-20

Configuring Timer Data and Status Interrupts ... 13-20

Using the Timer Broadcast Feature .. 13-21

Timer Illegal States .. 13-21

Continuous PWMOUT Mode .. 13-22

Single Pulse PWMOUT Mode .. 13-23

WID CAP Mode .. 13-23

EXTCLK Mode ... 13-24

WATCHDOG Events .. 13-24

ADSP-CM40x TIMER Register Descriptions ... 13-25

Run Register ... 13-26

Run Set Register ... 13-27

Run Clear Register .. 13-28

Stop Configuration Register ... 13-29

Stop Configuration Set Register ... 13-30

Stop Configuration Clear Register .. 13-31

Data Interrupt Mask Register .. 13-31

Status Interrupt Mask Register ... 13-32

Trigger Master Mask Register .. 13-33

Trigger Slave Enable Register .. 13-34

Data Interrupt Latch Register .. 13-34

Status Interrupt Latch Register ... 13-35

Error Type Status Register .. 13-36

Broadcast Period Register ... 13-38

Broadcast Width Register ... 13-39

Broadcast Delay Register .. 13-40
 xxii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Timer n Configuration Register .. 13-40

Timer n Counter Register ... 13-44

Timer n Period Register .. 13-45

Timer n Width Register .. 13-45

Timer n Delay Register ... 13-46

Watchdog Timer (WDOG)

WDOG Features ... 14-1

Watchdog Timer Functional Description ... 14-1

ADSP-CM40x WDOG Register List ... 14-1

ADSP-CM40x WDOG Interrupt List .. 14-2

WDOG Block Diagram ... 14-2

Internal Interface ... 14-2

External Interface .. 14-3

WDOG Configuration ... 14-3

ADSP-CM40x WDOG Register Descriptions ... 14-3

Control Register .. 14-4

Count Register .. 14-5

Watchdog Timer Status Register .. 14-5

General-Purpose Counter (CNT)

GP Counter Features ... 15-1

GP Counter Functional Description .. 15-1

ADSP-CM40x CNT Register List ... 15-2

ADSP-CM40x CNT Interrupt List .. 15-3

ADSP-CM40x CNT Trigger List .. 15-3

GP Counter Operating Modes ... 15-4

Quadrature Encoder Mode ... 15-4

Binary Encoder Mode .. 15-5

Up/Down Counter Mode ... 15-5

Direction Counter Mode .. 15-6
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xxiii

CONTENTS
Timed Direction Mode ... 15-6

M/N Scaling ... 15-6

M/N Stop Detection .. 15-9

M/N Error Condition .. 15-10

M/N Restrictions ... 15-10

GP Counter Event Control .. 15-11

Illegal Gray/Binary Code Events ... 15-11

Up/Down Count Events ... 15-11

Zero-Count Events ... 15-12

Overflow Events ... 15-12

Boundary Match Events ... 15-12

Zero Marker Events ... 15-12

GP Counter Programming Model ... 15-12

GP Counter General Programming Flow ... 15-13

M/N Scaling Programming Guidelines .. 15-13

GP Counter Mode Configuration ... 15-13

Configuring GP Counter Push-Button Operation ... 15-13

Configuring Zero-Marker-Zeros-Counter Mode .. 15-14

Configuring Zero-Marker-Error Mode ... 15-14

Configuring Zero-Once Mode .. 15-14

Configuring Boundary Auto-Extend Mode .. 15-15

Configuring Boundary Capture Mode .. 15-15

Configuring Boundary Compare and Boundary Zero Modes ... 15-16

Configuring GP Counter Push-Button Operation ... 15-16

GP Counter Programming Concepts .. 15-17

CNT Input Noise Filtering ... 15-17

Capturing Counter Interval and CNT_CNTR Read Timing ... 15-17

Capturing Time Interval Between Successive Counter Events .. 15-19

ADSP-CM40x CNT Register Descriptions ... 15-20

Configuration Register .. 15-20
 xxiv ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Interrupt Mask Register .. 15-23

Status Register .. 15-26

Command Register ... 15-29

Debounce Register .. 15-31

Counter Register ... 15-32

Maximum Count Register ... 15-33

Minimum Count Register ... 15-34

M Value for Divider ... 15-34

N Value for Divider .. 15-35

Pulse-Width Modulator (PWM)

PWM Features ... 16-1

Functional Description ... 16-1

ADSP-CM40x PWM Register List .. 16-1

ADSP-CM40x PWM Interrupt List ... 16-5

ADSP-CM40x PWM Trigger List ... 16-5

Architectural Concepts ... 16-6

Block Diagram ... 16-6

Timer Units .. 16-7

PWM Timer Period (PWM_TM) Registers .. 16-7

Timer Unit Operation .. 16-8

Phase Offset Control ... 16-9

Channel Timing Control Unit .. 16-13

Channel Control .. 16-13

Pulse Positioning and Duty Cycle Registers ... 16-14

Duty Cycle and Pulse Positioning Control ... 16-14

Channel Low Side Output Dependent Operation Mode and Dead-Time ... 16-15

Channel High Side and Low Side Outputs, Independent Operation Mode .. 16-19

Switched Reluctance Motors Application ... 16-21

Switching Dead Time (PWM_DT) Register .. 16-22

Duty Cycle with Dead-Time Control: Calculations for PULSEMODE 00 .. 16-23
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xxv

CONTENTS
Special Consideration for PWM Operation in Over-Modulation ... 16-24

Output Disable and Cross-Over Functions .. 16-26

Brush-less DC Motor (Electronically Commutated Motor) Control .. 16-27

Emulation Mode Operation ... 16-28

Heightened-Precision Edge Placement ... 16-29

Sample Waveforms for High- and Low-Side with Precision Placement ... 16-32

Gate Drive Unit ... 16-34

Output Control Feature Precedence ... 16-35

Sync Operation ... 16-36

Internal PWM SYNC Generation ... 16-36

External PWM SYNC Generation ... 16-36

Event Control ... 16-37

Trip Control Unit .. 16-38

Programming Model .. 16-40

Programming Model for 3-Phase AC Motor Control .. 16-40

System Parameters ... 16-41

System State Sequencing ... 16-42

PWM Initialization for Motor Control .. 16-42

PWM Enable for Motor Control ... 16-44

PWM Response to Sync Interrupt for Motor Control ... 16-45

PWM Disable (and Stop the Motor) for Motor Control ... 16-45

ADSP-CM40x PWM Register Descriptions .. 16-46

Control Register .. 16-49

Channel Config Register ... 16-52

Trip Config Register ... 16-58

Status Register .. 16-61

Interrupt Mask Register .. 16-66

Interrupt Latch Register .. 16-67

Chop Configuration Register .. 16-69

Dead Time Register .. 16-70
 xxvi ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Sync Pulse Width Register ... 16-71

Timer 0 Period Register .. 16-72

Timer 1 Period Register .. 16-72

Timer 2 Period Register .. 16-73

Timer 3 Period Register .. 16-74

Timer 4 Period Register .. 16-75

Channel A Delay Register .. 16-76

Channel B Delay Register ... 16-76

Channel C Delay Register ... 16-77

Channel D Delay Register .. 16-78

Channel A Control Register .. 16-78

Channel A-High Duty-0 Register ... 16-80

Channel A-High Duty-1 Register ... 16-81

Channel A-High Heightened-Precision Duty-0 Register .. 16-82

Channel A-High Heightened-Precision Duty-1 Register .. 16-83

Channel A-Low Duty-0 Register .. 16-83

Channel A-Low Duty-1 Register .. 16-85

Channel A-Low Heightened-Precision Duty-0 Register .. 16-85

Channel A-Low Heightened-Precision Duty-1 Register .. 16-86

Channel B Control Register .. 16-86

Channel B-High Duty-0 Register ... 16-88

Channel B-High Duty-1 Register ... 16-89

Channel B-High Heightened-Precision Duty-0 Register .. 16-90

Channel B-High Heightened-Precision Duty-1 Register .. 16-91

Channel B-Low Duty-0 Register .. 16-91

Channel B-Low Duty-1 Register .. 16-93

Channel B-Low Heightened-Precision Duty-0 Register ... 16-93

Channel B-Low Heightened-Precision Duty-1 Register ... 16-94

Channel C Control Register .. 16-95

Channel C-High Pulse Duty Register 0 .. 16-97
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xxvii

CONTENTS
Channel C-High Pulse Duty Register 1 .. 16-98

Channel C-High Pulse Heightened-Precision Duty Register 0 .. 16-99

Channel C-High Pulse Heightened-Precision Duty Register 1 .. 16-99

Channel C-Low Pulse Duty Register 0 ... 16-100

Channel C-Low Duty-1 Register .. 16-101

Channel C-Low Pulse Duty Register 1 ... 16-102

Channel C-Low Heightened-Precision Duty-1 Register ... 16-102

Channel D Control Register .. 16-103

Channel D-High Duty-0 Register ... 16-105

Channel D-High Pulse Duty Register 1 .. 16-106

Channel D-High Pulse Heightened-Precision Duty Register 0 .. 16-107

Channel D High Pulse Heightened-Precision Duty Register 1 ... 16-107

Channel D-Low Pulse Duty Register 0 ... 16-108

Channel D-Low Pulse Duty Register 1 ... 16-109

Channel D-Low Heightened-Precision Duty-0 Register .. 16-110

Channel D-Low Heightened-Precision Duty-1 Register .. 16-110

Channel A-High Full Duty0 Register ... 16-111

Channel A-High Full Duty1 Register ... 16-112

Channel A-Low Full Duty0 Register .. 16-113

Channel A-Low Full Duty1 Register .. 16-114

Channel B-High Full Duty0 Register ... 16-115

Channel B-High Full Duty1 Register ... 16-116

Channel B-Low Full Duty0 Register .. 16-117

Channel B-Low Full Duty1 Register .. 16-118

Channel C-High Full Duty0 Register ... 16-119

Channel C-High Full Duty1 Register ... 16-120

Channel C-Low Full Duty0 Register .. 16-121

Channel C-Low Full Duty1 Register .. 16-122

Channel D-High Full Duty0 Register ... 16-123

Channel D-High Full Duty1 Register ... 16-124
 xxviii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Channel D-Low Full Duty0 Register .. 16-125

Channel D-Low Full Duty1 Register .. 16-126

Universal Asynchronous Receiver/Transmitter (UART)

UART Features ... 17-1

UART Functional Description .. 17-2

ADSP-CM40x UART Register List .. 17-2

ADSP-CM40x UART Interrupt List .. 17-3

ADSP-CM40x UART Trigger List .. 17-4

ADSP-CM40x UART DMA List .. 17-4

UART Block Diagram ... 17-5

UART Architectural Concepts ... 17-5

Internal Interface ... 17-5

External Interface .. 17-6

Hardware Flow Control .. 17-6

UART Bit Rate Generation ... 17-7

ADSP-CM40x Processor Example .. 17-7

Autobaud Detection .. 17-8

UART Debug Features ... 17-9

UART Operating Modes ... 17-10

UART Mode .. 17-10

IrDA SIR Mode ... 17-11

Multi-Drop Bus Mode ... 17-11

UART Data Transfer Modes .. 17-13

UART Mode Transmit Operation (Core) ... 17-13

UART Mode LIN Break Command ... 17-13

UART Mode Receive Operation (Core) ... 17-14

IrDA Transmit Operation .. 17-15

IrDA Receive Operation ... 17-15

MDB Transmit Operation ... 17-17

MDB Receive Operation .. 17-17
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xxix

CONTENTS
DMA Mode ... 17-17

Mixing DMA and Core Modes ... 17-18

Setting Up Hardware Flow Control .. 17-19

UART Event Control .. 17-19

Interrupt Masks .. 17-19

Interrupt Servicing ... 17-20

Transmit Interrupts .. 17-20

Receive Interrupts .. 17-21

Status Interrupts ... 17-23

Multi-Drop Bus Events .. 17-23

UART Programming Model ... 17-24

Detecting Autobaud ... 17-24

Using Common Initialization Steps ... 17-24

Using Core Transfers ... 17-25

Using DMA Transfers ... 17-25

Using Interrupts ... 17-25

Setting Up Hardware Flow Control ... 17-25

ADSP-CM40x UART Register Descriptions .. 17-25

Control Register .. 17-26

Status Register .. 17-31

Scratch Register .. 17-36

Clock Rate Register .. 17-36

Interrupt Mask Register .. 17-37

Interrupt Mask Set Register .. 17-40

Interrupt Mask Clear Register ... 17-42

Receive Buffer Register .. 17-44

Transmit Hold Register ... 17-45

Transmit Address/Insert Pulse Register .. 17-45

Transmit Shift Register ... 17-46

Receive Shift Register .. 17-47
 xxx ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Transmit Counter Register .. 17-48

Receive Counter Register ... 17-48

2-Wire Interface (TWI)

TWI Features .. 18-1

TWI Functional Description ... 18-2

ADSP-CM40x TWI Register List .. 18-2

ADSP-CM40x TWI Interrupt List ... 18-3

TWI Block Diagram .. 18-3

External Interface ... 18-3

Serial Clock Signal (SCL) .. 18-4

Serial Data Signal (SDA) .. 18-4

Internal Interface .. 18-5

TWI Architectural Concepts .. 18-5

TWI Protocol .. 18-5

Clock Generation and Synchronization ... 18-6

Bus Arbitration ... 18-6

Start and Stop Conditions ... 18-7

General Call Support .. 18-8

Fast Mode ... 18-8

TWI Operating Modes .. 18-8

Repeated Start .. 18-8

Transmit Receive Repeated Start ... 18-9

Receive Transmit Repeated Start ... 18-9

Clock Stretching .. 18-10

Clock Stretching During FIFO Underflow ... 18-10

Clock Stretching During FIFO Overflow ... 18-11

Clock Stretching During Repeated Start ... 18-12

TWI Programming Model .. 18-13

General Setup ... 18-13

Slave Mode .. 18-14
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xxxi

CONTENTS
Master Mode Program Flow .. 18-15

Master Mode Clock Setup ... 18-16

Master Mode Transmit ... 18-17

Master Mode Receive .. 18-18

ADSP-CM40x TWI Register Descriptions .. 18-18

SCL Clock Divider Register ... 18-19

Control Register .. 18-20

Slave Mode Control Register .. 18-21

Slave Mode Status Register .. 18-23

Slave Mode Address Register ... 18-23

Master Mode Control Registers .. 18-24

Master Mode Status Register .. 18-26

Master Mode Address Register ... 18-29

Interrupt Status Register ... 18-29

Interrupt Mask Register .. 18-32

FIFO Control Register .. 18-34

FIFO Status Register ... 18-35

Tx Data Single-Byte Register ... 18-37

Tx Data Double-Byte Register ... 18-37

Rx Data Single-Byte Register ... 18-38

Rx Data Double-Byte Register ... 18-39

Controller Area Network (CAN)

CAN Features ... 19-1

CAN Functional Description .. 19-2

ADSP-CM40x CAN Register List ... 19-2

ADSP-CM40x CAN Interrupt List .. 19-4

External Interface ... 19-4

Architectural Concepts .. 19-5

Block Diagram .. 19-6

Mailbox Control .. 19-7
 xxxii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Protocol Fundamentals ... 19-8

Data Transfer Modes .. 19-9

Transmit Operations ... 19-9

Retransmission ... 19-11

Single-Shot Transmission .. 19-11

Auto-Transmission ... 19-11

Receive Operation .. 19-12

Data Acceptance Filtering ... 19-14

Watchdog Mode ... 19-15

Time Stamps ... 19-15

Remote Frame Handling .. 19-16

Temporarily Disabling CAN Mailbox ... 19-16

CAN Operating Modes ... 19-17

Bit Timing .. 19-17

CAN Low Power Features .. 19-19

Built-In Suspend Mode .. 19-19

Built-In Sleep Mode ... 19-19

Soft Reset ... 19-20

CAN Event Control .. 19-20

CAN Interrupt Signals ... 19-20

Mailbox Interrupts .. 19-20

Global Interrupt ... 19-21

Event Counter .. 19-22

CAN Warnings and Errors ... 19-23

Programmable Warning Limits .. 19-23

Error Handling .. 19-23

Error Frames ... 19-24

Error Levels .. 19-25

CAN Debug and Test Modes ... 19-26

ADSP-CM40x CAN Register Descriptions ... 19-28
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xxxiii

CONTENTS
Mailbox Configuration 1 Register .. 19-31

Mailbox Direction 1 Register ... 19-32

Transmission Request Set 1 Register .. 19-32

Transmission Request Reset 1 Register .. 19-33

Transmission Acknowledge 1 Register .. 19-34

Abort Acknowledge 1 Register ... 19-35

Receive Message Pending 1 Register ... 19-36

Receive Message Lost 1 Register ... 19-37

Mailbox Transmit Interrupt Flag 1 Register ... 19-38

Mailbox Receive Interrupt Flag 1 Register ... 19-39

Mailbox Interrupt Mask 1 Register ... 19-40

Remote Frame Handling 1 Register .. 19-41

Overwrite Protection/Single Shot Transmission 1 Register ... 19-42

Mailbox Configuration 2 Register .. 19-43

Mailbox Direction 2 Register ... 19-44

Transmission Request Set 2 Register .. 19-45

Transmission Request Reset 2 Register .. 19-46

Transmission Acknowledge 2 Register .. 19-47

Abort Acknowledge 2 Register ... 19-48

Receive Message Pending 2 Register ... 19-49

Receive Message Lost 2 Register ... 19-50

Mailbox Transmit Interrupt Flag 2 Register ... 19-51

Mailbox Receive Interrupt Flag 2 Register ... 19-52

Mailbox Interrupt Mask 2 Register ... 19-53

Remote Frame Handling 2 Register .. 19-54

Overwrite Protection/Single Shot Transmission 2 Register ... 19-55

Clock Register ... 19-56

Timing Register .. 19-57

Debug Register ... 19-58

Status Register .. 19-60
 xxxiv ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Error Counter Register .. 19-62

Global CAN Interrupt Status Register .. 19-63

Global CAN Interrupt Mask Register ... 19-65

Global CAN Interrupt Flag Register ... 19-67

CAN Master Control Register .. 19-69

Interrupt Pending Register .. 19-71

Temporary Mailbox Disable Register ... 19-72

Error Counter Warning Level Register ... 19-73

Error Status Register ... 19-74

Universal Counter Register ... 19-76

Universal Counter Reload/Capture Register ... 19-76

Universal Counter Configuration Mode Register ... 19-77

Acceptance Mask (L) Register .. 19-78

Acceptance Mask (H) Register ... 19-79

Mailbox Word 0 Register ... 19-80

Mailbox Word 1 Register ... 19-80

Mailbox Word 2 Register ... 19-81

Mailbox Word 3 Register ... 19-81

Mailbox Length Register .. 19-82

Mailbox Timestamp Register .. 19-83

Mailbox ID 0 Register .. 19-83

Mailbox ID 1 Register .. 19-84

Universal Serial Bus (USB)

USB Features .. 20-1

USB Functional Description ... 20-2

USB Architectural Concepts .. 20-2

Multi-Point Support .. 20-3

On-Chip Bus Interfaces .. 20-3

FIFO Configuration .. 20-4

Clocking .. 20-4
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xxxv

CONTENTS
UTMI Interface ... 20-5

ADSP-CM40x USB Register List ... 20-5

ADSP-CM40x USB Interrupt List ... 20-8

ADSP-CM40x USB Trigger List ... 20-8

USB Block Diagram .. 20-9

USB Definitions ... 20-9

USB References ... 20-11

USB Operating Modes .. 20-11

Peripheral Mode ... 20-12

Endpoint Setup .. 20-12

IN Transactions as a Peripheral ... 20-13

OUT Transactions as a Peripheral .. 20-14

Peripheral Transfer Work Flows ... 20-15

Control Transactions as a Peripheral ... 20-15

Write Requests ... 20-16

Read Requests .. 20-16

Zero Data Requests .. 20-17

ENDPOINT 0 States .. 20-18

Endpoint 0 Service Routine as Peripheral ... 20-19

Peripheral Mode, Bulk IN, Transfer Size Known .. 20-24

Peripheral Mode, Bulk IN, Transfer Size Unknown .. 20-25

Peripheral Mode, ISO IN, Small MaxPktSize ... 20-25

Peripheral Mode, ISO IN, Large MaxPktSize .. 20-26

Peripheral Mode, Bulk OUT, Transfer Size Known .. 20-26

Peripheral Mode, Bulk OUT, Transfer Size Unknown .. 20-27

Peripheral Mode, ISO OUT, Small MaxPktSize ... 20-27

Peripheral Mode, ISO OUT, Large MaxPktSize ... 20-28

Peripheral Mode Suspend ... 20-28

Start-of-frame (SOF) Packets ... 20-29

Soft Connect/Soft Disconnect ... 20-29
 xxxvi ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Error Handling As a Peripheral ... 20-29

Stalls Issued to Control Transfers ... 20-30

Zero Length OUT Data Packets in Control Transfers .. 20-30

Host Mode .. 20-31

Transaction Scheduling ... 20-31

Endpoint Setup and Data Transfer .. 20-31

Control Transaction as a Host ... 20-32

Setup Phase as a Host ... 20-32

IN Data Phase as a Host .. 20-33

OUT Data as a Host (Control) .. 20-34

IN Status Phase as a Host (Following SETUP Phase or OUT Data Phase) ... 20-34

OUT Status Phase as a Host (Following IN Data Phase) ... 20-35

Host IN Transactions .. 20-36

Host OUT Transactions .. 20-36

Multi-Point Support ... 20-37

Allocating Devices to Endpoints ... 20-37

Multi-Point Operation ... 20-38

Multi-Point Bandwidth Considerations ... 20-38

Babble Interrupt .. 20-39

VBUS Events .. 20-39

Actions as an “A” Device .. 20-39

Actions as a “B” Device .. 20-40

Host Mode Reset ... 20-40

Host Mode Suspend .. 20-41

Suspending and Resuming the Controller .. 20-41

Suspend/Resume by Inactivity on the USB Bus (L0 to L2 State) in Peripheral Mode 20-42

Suspend/Resume By Inactivity On The USB Bus (L0 To L2 State) In Host Mode 20-42

Suspend/Resume By an LPM Transaction (L0 To L1 State) In Peripheral Mode 20-43

Suspend/Resume by an LPM Transaction (L0 to L1 State) in Host Mode 20-44

USB Event Control ... 20-45
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xxxvii

CONTENTS
Interrupt Signals .. 20-45

Interrupt Handling .. 20-47

Reset Signals .. 20-49

Reset in Peripheral Mode .. 20-49

USB Reset in Host Mode .. 20-49

USB Programming Model .. 20-49

Peripheral Mode Flow Charts .. 20-50

Host Mode Flow Charts ... 20-58

DMA Mode Flow Charts ... 20-67

OTG Session Request .. 20-72

Starting a Session .. 20-73

Detecting Activity ... 20-73

Host Negotiation Protocol ... 20-74

Data Transfer ... 20-74

Loading/Unloading Packets from Endpoints ... 20-75

DMA Master Channels .. 20-75

DMA Bus Cycles ... 20-76

Transferring Packets Using DMA ... 20-77

Individual RX Endpoint Packet .. 20-78

Individual TX Endpoint Packet ... 20-78

Multiple RX Endpoint Packets ... 20-79

Multiple TX Endpoint Packets ... 20-79

ADSP-CM40x USB Register Descriptions ... 20-80

Function Address Register .. 20-83

Power and Device Control Register .. 20-83

Transmit Interrupt Register ... 20-86

Receive Interrupt Register .. 20-87

Transmit Interrupt Enable Register ... 20-88

Receive Interrupt Enable Register .. 20-89

Common Interrupts Register ... 20-90
 xxxviii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Common Interrupts Enable Register ... 20-92

Frame Number Register .. 20-93

Index Register ... 20-94

Testmode Register .. 20-95

FIFO Byte (8-Bit) Register ... 20-95

FIFO Half-Word (16-Bit) Register ... 20-96

FIFO Word (32-Bit) Register ... 20-97

Device Control Register .. 20-98

Endpoint Information Register ... 20-99

RAM Information Register ... 20-100

Link Information Register .. 20-100

VBUS Pulse Length Register ... 20-101

Full-Speed EOF 1 Register ... 20-102

Low-Speed EOF 1 Register .. 20-102

Software Reset Register .. 20-103

MPn Transmit Function Address Register .. 20-104

MPn Transmit Hub Address Register ... 20-105

MPn Transmit Hub Port Register ... 20-105

MPn Receive Function Address Register ... 20-106

MPn Receive Hub Address Register .. 20-106

MPn Receive Hub Port Register ... 20-107

EPn Transmit Maximum Packet Length Register .. 20-108

EP0 Configuration and Status (Host) Register ... 20-108

EPn Transmit Configuration and Status (Host) Register .. 20-111

EP0 Configuration and Status (Peripheral) Register .. 20-114

EPn Transmit Configuration and Status (Peripheral) Register ... 20-117

EPn Receive Maximum Packet Length Register .. 20-120

EPn Receive Configuration and Status (Host) Register ... 20-121

EPn Receive Configuration and Status (Peripheral) Register ... 20-125

EP0 Number of Received Bytes Register ... 20-128
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xxxix

CONTENTS
EPn Number of Bytes Received Register ... 20-129

EP0 Connection Type Register ... 20-129

EPn Transmit Type Register ... 20-130

EP0 NAK Limit Register .. 20-132

EPn Transmit Polling Interval Register .. 20-133

EPn Receive Type Register .. 20-134

EPn Receive Polling Interval Register .. 20-135

EP0 Configuration Information Register .. 20-136

FIFO Size .. 20-138

DMA Interrupt Register .. 20-139

DMA Channel n Control Register .. 20-140

DMA Channel n Address Register ... 20-143

DMA Channel n Count Register ... 20-143

EPn Request Packet Count Register ... 20-144

RX Double Packet Buffer Disable for Endpoints 1 to 3 ... 20-145

TX Double Packet Buffer Disable for Endpoints 1 to 3 ... 20-146

LPM Attribute Register .. 20-147

LPM Control Register ... 20-148

LPM Interrupt Enable Register ... 20-150

LPM Interrupt Status Register .. 20-151

LPM Function Address Register ... 20-153

VBUS Control Register .. 20-154

ID Control ... 20-154

FS PHY Control .. 20-155

FS PHY Status .. 20-156

Ethernet Media Access Controller (EMAC)

EMAC Features .. 21-1

EMAC Functional Description ... 21-2

ADSP-CM40x EMAC Register List .. 21-2

ADSP-CM40x EMAC Interrupt List ... 21-8
 xl ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
ADSP-CM40x EMAC Trigger List ... 21-8

EMAC Definitions ... 21-9

EMAC Block Diagram and Interfaces ... 21-9

EMAC CORE Sub-Blocks .. 21-11

EMAC PHY Interface ... 21-13

Clock Sources ... 21-13

EMAC Architectural Concepts .. 21-14

EMAC System Crossbar Interface (EMAC SCB) .. 21-14

Priority of SCB Requests .. 21-15

SCB Interface Programming Options ... 21-16

DMA Bursts Using the SCB Interface .. 21-17

SCB Bus Transaction Status .. 21-18

Fatal Bus Error ... 21-18

DMA Controller (EMAC DMA) .. 21-18

DMA Related Registers ... 21-20

DMA Descriptors ... 21-21

OWN Bit (Ownership) Semaphore ... 21-35

Application Data Buffer Alignment .. 21-36

Buffer Size Calculations ... 21-36

EMAC FIFO Layer (EMAC MFL) .. 21-37

FIFO Size ... 21-37

FIFO Layer Transmit Path ... 21-37

FIFO Layer Receive Path .. 21-38

EMAC CORE .. 21-39

EMAC CORE Transmission Engine ... 21-41

EMAC CORE Reception Engine ... 21-45

EMAC Station Management Interface (SMI) ... 21-51

MDC Clock Frequency .. 21-52

SMI Write Operation ... 21-53

SMI Read Operation .. 21-54
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xli

CONTENTS
EMAC Management Counters (MMC) .. 21-54

MMC Receive Interrupt Register ... 21-56

MMC Transmit Interrupt Register .. 21-56

MMC Receive Checksum Offload Interrupt Register .. 21-56

EMAC Precision Time Protocol (PTP) Engine .. 21-56

IEEE1588 and the PTP Engine .. 21-56

Block Diagram .. 21-61

PTP Module Clock ... 21-62

Timestamp Module .. 21-62

System Time .. 21-69

Target Time Trigger (Alarm) ... 21-72

Pulse-Per-Second (PPS) ... 21-72

PTP Interrupts .. 21-75

EMAC Event Control ... 21-76

EMAC Interrupt Signals .. 21-76

PHYINT Interrupt Signal ... 21-78

EMAC Programming Model .. 21-79

EMAC Programming Steps ... 21-79

DMA Initialization .. 21-79

EMAC CORE Initialization .. 21-80

Performing Normal Transmit and Receive Operations .. 21-81

Stopping and Starting Transfers ... 21-81

Interrupts and Interrupt Service Routines .. 21-82

Enabling Checksum for Transmit and Receive ... 21-83

Programming the System Time Module ... 21-84

Programming The PTP for Frame Detection and Timestamping ... 21-85

Programming for Auxiliary Timestamps ... 21-85

Programming Fixed Pulse-Per-Second Output ... 21-86

Programming Flexible Pulse-Per-Second Output ... 21-86

EMAC Programming Concepts .. 21-87
 xlii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
IEEE 802.3 Ethernet Packet Structure ... 21-87

Frame Size Statistics for Application Software ... 21-88

Software Visualization of Programmable Packet Size .. 21-88

Ethernet Packet Structure in C ... 21-89

DMA Descriptor Implementation in C .. 21-89

PTP Header Structure in C ... 21-90

ADSP-CM40x EMAC Register Descriptions .. 21-90

MAC Configuration Register .. 21-96

MAC Rx Frame Filter Register .. 21-99

Hash Table High Register ... 21-102

Hash Table Low Register ... 21-102

SMI Address Register ... 21-103

SMI Data Register .. 21-105

FLow Control Register ... 21-105

VLAN Tag Register .. 21-107

Debug Register ... 21-108

Interrupt Status Register ... 21-110

Interrupt Mask Register .. 21-112

MAC Address 0 High Register ... 21-112

MAC Address 0 Low Register .. 21-113

MMC Control Register ... 21-114

MMC Rx Interrupt Register .. 21-115

MMC Tx Interrupt Register .. 21-118

MMC Rx Interrupt Mask Register .. 21-121

MMC TX Interrupt Mask Register ... 21-124

Tx OCT Count (Good/Bad) Register .. 21-127

Tx Frame Count (Good/Bad) Register .. 21-128

Tx Broadcast Frames (Good) Register ... 21-129

Tx Multicast Frames (Good) Register .. 21-129

Tx 64-Byte Frames (Good/Bad) Register ... 21-130
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xliii

CONTENTS
Tx 65- to 127-Byte Frames (Good/Bad) Register .. 21-130

Tx 128- to 255-Byte Frames (Good/Bad) Register .. 21-131

Tx 256- to 511-Byte Frames (Good/Bad) Register .. 21-132

Tx 512- to 1023-Byte Frames (Good/Bad) Register .. 21-132

Tx 1024- to Max-Byte Frames (Good/Bad) Register ... 21-133

Tx Unicast Frames (Good/Bad) Register .. 21-133

Tx Multicast Frames (Good/Bad) Register ... 21-134

Tx Broadcast Frames (Good/Bad) Register .. 21-135

Tx Underflow Error Register .. 21-135

Tx Single Collision (Good) Register .. 21-136

Tx Multiple Collision (Good) Register ... 21-136

Tx Deferred Register ... 21-137

Tx Late Collision Register .. 21-138

Tx Excess Collision Register .. 21-138

Tx Carrier Error Register .. 21-139

Tx Octet Count (Good) Register ... 21-139

Tx Frame Count (Good) Register ... 21-140

Tx Excess Deferral Register ... 21-141

Tx Pause Frame Register .. 21-141

Tx VLAN Frames (Good) Register .. 21-142

Rx Frame Count (Good/Bad) Register ... 21-142

Rx Octet Count (Good/Bad) Register ... 21-143

Rx Octet Count (Good) Register .. 21-144

Rx Broadcast Frames (Good) Register ... 21-144

Rx Multicast Frames (Good) Register .. 21-145

Rx CRC Error Register ... 21-145

Rx alignment Error Register ... 21-146

Rx Runt Error Register ... 21-147

Rx Jab Error Register .. 21-147

Rx Undersize (Good) Register .. 21-148
 xliv ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Rx Oversize (Good) Register .. 21-148

Rx 64-Byte Frames (Good/Bad) Register ... 21-149

Rx 65- to 127-Byte Frames (Good/Bad) Register .. 21-150

Rx 128- to 255-Byte Frames (Good/Bad) Register .. 21-150

Rx 256- to 511-Byte Frames (Good/Bad) Register .. 21-151

Rx 512- to 1023-Byte Frames (Good/Bad) Register .. 21-151

Rx 1024- to Max-Byte Frames (Good/Bad) Register ... 21-152

Rx Unicast Frames (Good) Register ... 21-153

Rx Length Error Register .. 21-153

Rx Out Of Range Type Register ... 21-154

Rx Pause Frames Register .. 21-154

Rx FIFO Overflow Register ... 21-155

Rx VLAN Frames (Good/Bad) Register .. 21-156

Rx Watch Dog Error Register ... 21-156

MMC IPC Rx Interrupt Mask Register ... 21-157

MMC IPC Rx Interrupt Register .. 21-161

Rx IPv4 Datagrams (Good) Register .. 21-165

Rx IPv4 Datagrams Header Errors Register ... 21-166

Rx IPv4 Datagrams No Payload Frame Register .. 21-167

Rx IPv4 Datagrams Fragmented Frames Register .. 21-167

Rx IPv4 UDP Disabled Frames Register .. 21-168

Rx IPv6 Datagrams Good Frames Register .. 21-168

Rx IPv6 Datagrams Header Error Frames Register .. 21-169

Rx IPv6 Datagrams No Payload Frames Register .. 21-170

Rx UDP Good Frames Register .. 21-170

Rx UDP Error Frames Register .. 21-171

Rx TCP Good Frames Register .. 21-171

Rx TCP Error Frames Register ... 21-172

Rx ICMP Good Frames Register .. 21-173

Rx ICMP Error Frames Register .. 21-173
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xlv

CONTENTS
Rx IPv4 Datagrams Good Octets Register ... 21-174

Rx IPv4 Datagrams Header Errors Register ... 21-174

Rx IPv4 Datagrams No Payload Octets Register .. 21-175

Rx IPv4 Datagrams Fragmented Octets Register ... 21-176

Rx IPv4 UDP Disabled Octets Register ... 21-176

Rx IPv6 Good Octets Register .. 21-177

Rx IPv6 Header Errors Register ... 21-178

Rx IPv6 No Payload Octets Register .. 21-178

Rx UDP Good Octets Register ... 21-179

Rx UDP Error Octets Register .. 21-179

Rx TCP Good Octets Register .. 21-180

Rx TCP Error Octets Register .. 21-181

Rx ICMP Good Octets Register .. 21-181

Rx ICMP Error Octets Register .. 21-182

Time Stamp Control Register ... 21-182

Time Stamp Sub Second Increment Register ... 21-186

Time Stamp Low Seconds Register .. 21-187

Time Stamp Nanoseconds Register .. 21-187

Time Stamp Seconds Update Register .. 21-188

Time Stamp Nanoseconds Update Register .. 21-189

Time Stamp Addend Register ... 21-189

Time Stamp Target Time Seconds Register ... 21-190

Time Stamp Target Time Nanoseconds Register ... 21-191

Time Stamp High Second Register ... 21-192

Time Stamp Status Register .. 21-192

PPS Control Register .. 21-194

Time Stamp Auxiliary TS Nano Seconds Register .. 21-196

Time Stamp Auxiliary TM Seconds Register ... 21-197

Time Stamp PPS Interval Register ... 21-198

PPS Width Register .. 21-198
 xlvi ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
DMA Bus Mode Register ... 21-199

DMA Tx Poll Demand Register ... 21-201

DMA Rx Poll Demand register .. 21-202

DMA Rx Descriptor List Address Register .. 21-203

DMA Tx Descriptor List Address Register .. 21-204

DMA Status Register .. 21-204

DMA Operation Mode Register ... 21-208

DMA Interrupt Enable Register .. 21-212

DMA Missed Frame Register ... 21-215

DMA Rx Interrupt Watch Dog Register ... 21-216

DMA SCB Bus Mode Register ... 21-216

DMA SCB Status Register ... 21-218

DMA Tx Descriptor Current Register .. 21-218

DMA Rx Descriptor Current Register .. 21-219

DMA Tx Buffer Current Register ... 21-220

DMA Rx Buffer Current Register .. 21-220

Serial Peripheral Interface (SPI)

SPI Features .. 22-1

SPI Functional Description ... 22-2

ADSP-CM40x SPI Register List ... 22-2

ADSP-CM40x SPI Interrupt List ... 22-4

ADSP-CM40x SPI Trigger List ... 22-4

SPI Block Diagram .. 22-5

Transfer Protocol ... 22-5

Clock Considerations .. 22-7

Controlling Delay Between Frames ... 22-7

Flow Control ... 22-9

Slave Select Operation .. 22-10

Beginning and Ending a Non-DMA SPI Transfer .. 22-11

Transmit Operation in Non-DMA Mode .. 22-12
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xlvii

CONTENTS
Receive Operation in Non-DMA Mode .. 22-12

Dual I/O Mode ... 22-13

Quad I/O Mode ... 22-14

Fast Mode ... 22-15

SPI Memory-Mapped Mode .. 22-16

Memory-Mapped Description of Operation ... 22-18

Memory-Mapped Architectural Concepts .. 22-20

Memory-Mapped Read Accesses ... 22-24

Memory-Mapped High-Performance Features ... 22-28

Merged Read Accesses .. 22-28

Wrap Around Accesses .. 22-29

Execute-In-Place (XIP) .. 22-30

Memory-Mapped Mode Error Status Bits .. 22-31

Memory-Mapped Programming Guidelines ... 22-31

Programming Example for Configuring SPI Memory Mapped Mode ... 22-34

SPI Interrupt Signals ... 22-38

Data Interrupts ... 22-38

Status Interrupts ... 22-38

Error Conditions .. 22-39

SPI Programming Concepts .. 22-40

Programming Guidelines ... 22-40

Master Operation in Non-DMA Modes ... 22-41

Slave Operation in Non-DMA Modes ... 22-41

Configuring DMA Master Mode ... 22-42

Configuring DMA Slave Mode Operation .. 22-43

ADSP-CM40x SPI Register Descriptions ... 22-45

Control Register .. 22-46

Receive Control Register .. 22-52

Transmit Control Register .. 22-54

Clock Rate Register .. 22-57
 xlviii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Delay Register ... 22-57

Slave Select Register .. 22-58

Received Word Count Register .. 22-61

Received Word Count Reload Register .. 22-62

Transmitted Word Count Register .. 22-63

Transmitted Word Count Reload Register .. 22-63

Interrupt Mask Register .. 22-64

Interrupt Mask Clear Register ... 22-66

Interrupt Mask Set Register .. 22-67

Status Register .. 22-68

Masked Interrupt Condition Register ... 22-72

Masked Interrupt Clear Register ... 22-74

Receive FIFO Data Register ... 22-76

Transmit FIFO Data Register ... 22-77

Memory Mapped Read Header ... 22-77

SPI Memory Top Address .. 22-81

Serial Port (SPORT)

Features ... 23-2

Signal Descriptions ... 23-3

Serial Clock .. 23-4

Frame Sync .. 23-5

Data Signals ... 23-6

Transmit Data Valid Signal ... 23-6

Functional Description .. 23-7

ADSP-CM40x SPORT Register List ... 23-7

ADSP-CM40x SPORT Interrupt List .. 23-8

ADSP-CM40x SPORT Trigger List .. 23-9

ADSP-CM40x SPORT DMA List ... 23-9

Block Diagram ... 23-9

Architectural Concepts .. 23-11
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE xlix

CONTENTS
Multiplexer Logic ... 23-12

Data Types and Companding ... 23-14

Companding as a Function ... 23-15

Transmit Path ... 23-15

Receive Path .. 23-16

Sampling Edge .. 23-17

Premature Frame Sync Error Detection .. 23-18

Support for Edge-Detected and Level-Sensitive Frame Syncs ... 23-19

Serial Word Length ... 23-20

Operating Modes ... 23-20

Mode Selection .. 23-22

Standard Serial Mode ... 23-22

Timing Control Bits .. 23-23

Clocking Options .. 23-23

Frame Sync Options .. 23-24

Data-Dependent Versus Data-Independent Frame Sync ... 23-24

Early Versus Late Frame Syncs ... 23-24

Framed Versus Unframed Frame Syncs .. 23-25

Logic Level .. 23-26

Stereo Modes ... 23-26

Channel Order First .. 23-26

I2S Mode ... 23-26

Protocol Configuration Options ... 23-27

Serial Clock and Frame Sync Rates ... 23-27

Left-Justified Mode ... 23-28

Protocol Configuration Options ... 23-28

Serial Clock and Frame Sync Rates ... 23-28

Right-Justified Mode .. 23-29

Timing Control Bits ... 23-30

Serial Clock and Frame Sync Rates ... 23-31
 l ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Multichannel Mode .. 23-31

Protocol Configuration Options .. 23-32

Clocking Options .. 23-32

Frame Sync Options .. 23-32

Transmit Data Valid (TDV) .. 23-33

Active Channel Selection Registers (SPORT_CS0_A) ... 23-34

Multichannel Frame Delay (MFD) ... 23-34

Number of Multichannel Slots (WSIZE) .. 23-35

Window Offset (WOFFSET) .. 23-35

Companding Selection .. 23-35

Multichannel DMA Data Packing (MCPDE) ... 23-35

Multichannel Frame .. 23-36

Packed I2S Mode ... 23-36

Protocol Configuration Options .. 23-37

Clocking Options .. 23-38

Frame Sync Options .. 23-38

Gated Clock Mode .. 23-38

Data Transfers ... 23-39

Data Buffers ... 23-39

Transmit Data Buffers (SPORT_TXPRI_A and SPORT_TXSEC_A) ... 23-40

Receive Data Buffers (SPORT_RXPRI_A and SPORT_RXSEC_A) ... 23-40

Data Buffer Status ... 23-40

Data Buffer Packing ... 23-41

Single Word (Core) Transfers .. 23-41

DMA Transfers .. 23-42

Error Detection .. 23-43

Interrupts .. 23-44

Internal Transfer Completion .. 23-44

Transfer Finish Interrupt (TFI) ... 23-45

ADSP-CM40x SPORT Register Descriptions ... 23-45
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE li

CONTENTS
Half SPORT 'A' Control Register ... 23-46

Half SPORT 'A' Divisor Register ... 23-54

Half SPORT 'A' Multi-channel Control Register ... 23-55

Half SPORT 'A' Multi-channel 0-31 Select Register .. 23-57

Half SPORT 'A' Multi-channel 32-63 Select Register .. 23-58

Half SPORT 'A' Multi-channel 64-95 Select Register .. 23-58

Half SPORT 'A' Multi-channel 96-127 Select Register .. 23-59

Half SPORT 'A' Error Register ... 23-60

Half SPORT 'A' Multi-channel Status Register .. 23-61

Half SPORT 'A' Control 2 Register .. 23-62

Half SPORT 'A' Tx Buffer (Primary) Register ... 23-63

Half SPORT 'A' Rx Buffer (Primary) Register ... 23-64

Half SPORT 'A' Tx Buffer (Secondary) Register ... 23-65

Half SPORT 'A' Rx Buffer (Secondary) Register ... 23-66

Half SPORT 'B' Control Register ... 23-67

Half SPORT 'B' Divisor Register ... 23-74

Half SPORT 'B' Multi-channel Control Register .. 23-75

Half SPORT 'B' Multi-channel 0-31 Select Register .. 23-77

Half SPORT 'B' Multi-channel 32-63 Select Register .. 23-78

Half SPORT 'B' Multichannel 64-95 Select Register ... 23-78

Half SPORT 'B' Multichannel 96-127 Select Register ... 23-79

Half SPORT 'B' Error Register ... 23-80

Half SPORT 'B' Multi-channel Status Register .. 23-81

Half SPORT 'B' Control 2 Register .. 23-82

Half SPORT 'B' Tx Buffer (Primary) Register ... 23-83

Half SPORT 'B' Rx Buffer (Primary) Register ... 23-84

Half SPORT 'B' Tx Buffer (Secondary) Register ... 23-85

Half SPORT 'B' Rx Buffer (Secondary) Register ... 23-86

Analog-to-Digital Converter Controller (ADCC)

ADCC Features ... 24-2
 lii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
ADCC Functional Description .. 24-3

ADSP-CM40x ADCC Register List .. 24-9

ADSP-CM40x ADCC Interrupt List ... 24-11

ADSP-CM40x ADCC Trigger List ... 24-11

ADCC Signal Descriptions .. 24-11

ADCC Block Diagram ... 24-15

ADCC Architectural Concepts .. 24-16

Core and DMA Interfaces ... 24-16

Trigger Inputs ... 24-16

Timers ... 24-17

Event Register Banks .. 24-18

Event Comparators ... 24-19

Pending Event FIFO ... 24-19

Timing and Control Unit ... 24-19

ADCC Operating Modes .. 24-20

Data Transfer Modes .. 24-20

Core-Driven Data Read Mode .. 24-21

DMA-Driven Data Read Mode ... 24-21

DMA Bandwidth Monitoring ... 24-23

Dual-Bit (Two Signal Line) Interface Mode ... 24-23

Dual-Bit Interface Data Swap Mode .. 24-23

Clock Modes .. 24-24

Chip Select Modes ... 24-26

Simultaneous Sampling Mode ... 24-28

ADCC Event Control (SEC/TRU Related) ... 24-30

Interrupt Status ... 24-31

Error Status .. 24-31

Pending, Frame, and Delay Status ... 24-35

Event Handling Latency .. 24-36

ADCC Programming Model ... 24-36
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE liii

CONTENTS
ADCC Programming Concepts ... 24-37

ADCC Programming Guidelines (ADSP-CM40x Specific) ... 24-38

ADSP-CM40x ADCC Register Descriptions .. 24-40

Control Register .. 24-42

Error Status Register ... 24-47

Error Mask Register .. 24-49

Error Mask Set Register .. 24-51

Error Mask Clear Register .. 24-52

Event Interrupt Status Register ... 24-54

Event Interrupt Mask Register .. 24-55

Event Interrupt Mask Set Register .. 24-57

Event Interrupt Mask Clear Register .. 24-58

Frame Interrupt Status Register .. 24-60

Frame Interrupt Mask Register ... 24-60

Frame Interrupt Mask Set Register ... 24-61

Frame Interrupt Mask Clear Register ... 24-62

Event Enable Register ... 24-63

Event Enable Set Register ... 24-65

Event Enable Clear Register ... 24-66

Event Collision Status Register .. 24-68

Event Miss Status Register ... 24-69

Base Pointer 0 Register ... 24-71

Frame Increment 0 Register .. 24-71

Circular Buffer Size 0 Register ... 24-72

Timing Control A (ADC0) Register ... 24-73

Timing Control B (ADC0) Register ... 24-74

Bandwidth Monitor 0 Register ... 24-74

ADC Configuration Register .. 24-75

DMA Base Pointer 1 Register .. 24-76

Frame Increment 1 Register .. 24-77
 liv ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Circular Buffer Size 1 Register ... 24-78

Timing Control A (ADC1) Register ... 24-78

Timing Control B (ADC1) Register ... 24-79

Bandwidth Monitor 1 Register ... 24-80

Event n Time Register .. 24-81

Event n Control Register ... 24-82

Pending Events Status Register .. 24-83

Timer 0 Status Register ... 24-85

Timer 0 Current Count Register ... 24-85

Timer 1 Status Register ... 24-86

Timer 1 Current Count Register ... 24-87

Event n Data Register ... 24-88

Event n Status Register ... 24-88

Digital-to-Analog Converter Controller (DACC)

DACC Features ... 25-1

DACC Functional Description .. 25-3

ADSP-CM40x DACC Register List .. 25-3

ADSP-CM40x DACC Interrupt List ... 25-4

DACC Block Diagram ... 25-4

DACC Signal Descriptions .. 25-5

DACC Architectural Concepts .. 25-7

Core and DMA Interfaces ... 25-8

Pending Data FIFO ... 25-8

DACC Operating Modes .. 25-9

Data Transfer Modes .. 25-9

Core-Driven Data Write Mode ... 25-9

DMA-Driven Data Write Mode .. 25-10

Data Length and Update Options ... 25-11

Clock Modes .. 25-11

Frame Sync Modes .. 25-13
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE lv

CONTENTS
Broadcast Control Option .. 25-13

DACC Event Control .. 25-13

Interrupt Status ... 25-14

Error Status .. 25-14

Pending Status .. 25-15

DACC Programming Model ... 25-15

Core Mode Operation Flow ... 25-15

DMA Mode Operation Flow .. 25-16

DACC Programming Concepts ... 25-16

DACC Programming Guidelines (ADSP-CM40x Specific) ... 25-17

ADSP-CM40x DACC Register Descriptions .. 25-17

Control 0 Register ... 25-18

Control 1 Register ... 25-20

Error Status Register ... 25-22

Error Mask Register .. 25-24

Error Mask Set Register .. 25-25

Error Mask Clear Register .. 25-26

Interrupt Status Register ... 25-27

Interrupt Mask Register .. 25-29

Interrupt Mask Set Register .. 25-30

Interrupt Mask Clear Register ... 25-30

Timing Control 0 Register .. 25-31

Base Pointer 0 Register ... 25-32

Modify 0 Register ... 25-33

Count 0 Register ... 25-34

Data FIFO 0 Register .. 25-35

Timing Control 1 Register .. 25-35

Base Pointer 1 Register ... 25-36

Modify 1 Register ... 25-37

Count 1 Register ... 25-38
 lvi ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Data FIFO 1 Register .. 25-39

Broadcast (Write) Control Register .. 25-39

Current Count 0 Register .. 25-41

Current Count 1 Register .. 25-42

Status Register .. 25-42

Harmonic Analysis Engine (HAE)

HAE Features .. 26-1

HAE Functional Description .. 26-2

ADSP-CM40z HAE Register List ... 26-2

ADSP-CM40z HAE Interrupt List .. 26-3

ADSP-CM40z HAE Trigger List .. 26-3

HAE Block Diagram .. 26-4

HAE Architectural Concepts ... 26-5

Harmonic Engine .. 26-5

Harmonic Analyzer ... 26-6

Data Transfer Module ... 26-8

Results Memory .. 26-10

HAE Results Upper Byte ID .. 26-10

HAE Result Ranges and Formats .. 26-11

HAE Operating Modes ... 26-12

HAE Data Transfer Modes .. 26-12

HAE Event Control ... 26-12

HAE Interrupt Signals ... 26-12

HAE Status and Error Signals ... 26-13

HAE Programming Model .. 26-13

HAE Programming Concepts .. 26-13

Theory of Operation .. 26-13

Initialization .. 26-15

Harmonic Calculations ... 26-17

Configuring Harmonic Calculations Update Rate .. 26-18
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE lvii

CONTENTS
ADSP-CM40z HAE Register Descriptions ... 26-18

Run Register ... 26-19

Coefficient RAM Register .. 26-20

Configuration 0 Register ... 26-20

Configuration 1 Register ... 26-21

Configuration 2 Register ... 26-22

Configuration 3 Register ... 26-23

Status Register .. 26-24

I (Current) Sample Register .. 26-25

V (Voltage) Sample Register .. 26-26

I (Current) Waveform Register ... 26-26

V (Voltage) Waveform Register ... 26-27

Results RAM Register .. 26-28

Data (Configuration) RAM Register .. 26-28

Configuration 4 Register ... 26-29

DIDT Gain Register .. 26-29

DIDT Coefficient Register .. 26-30

Voltage Level Register ... 26-31

Harmonic n Index Register ... 26-31

SINC Filter

SINC Filter Features ... 27-1

SINC Functional Description .. 27-2

ADSP-CM40x SINC Register List .. 27-2

ADSP-CM40x SINC Interrupt List ... 27-3

ADSP-CM40x SINC Trigger List ... 27-3

SINC Definitions ... 27-4

SINC Block Diagram ... 27-4

SINC Architectural Concepts .. 27-6

Digital Filter .. 27-6

DC Gain and Data Resolution .. 27-7
 lviii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Frequency Response ... 27-8

Output Scaling .. 27-9

SINC Operating Modes .. 27-10

SINC Data Transfer Modes ... 27-10

SINC Signal Modes ... 27-10

SINC Event Control .. 27-12

SINC Interrupt Signals ... 27-12

SINC Status and Error Signals ... 27-12

SINC Programming Model ... 27-13

SINC Programming Concepts ... 27-14

Channel Configuration .. 27-14

Trigger Masking ... 27-14

Interrupt Masking ... 27-15

Modulator Clock ... 27-15

Filter Configuration .. 27-15

Primary Filter Parameters ... 27-16

Primary DMA Configuration and Data Interrupts .. 27-16

Secondary Filter Parameters ... 27-17

Overload Detection ... 27-17

ADSP-CM40x SINC Register Descriptions .. 27-18

Control Register .. 27-19

Status Register .. 27-22

Clock Control Register ... 27-29

Rate Control for Group 0 Register .. 27-31

Rate Control for Group 1 Register .. 27-32

Level Control for Group 0 Register .. 27-34

Level Control for Group 1 Register .. 27-36

(Amplitude) Limits for Secondary Filter 0 Register ... 27-38

(Amplitude) Limits for Secondary Filter 1 Register ... 27-39

(Amplitude) Limits for Secondary Filter 2 Register ... 27-39
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE lix

CONTENTS
(Amplitude) Limits for Secondary Filter 3 Register ... 27-40

Bias for Group 0 Register ... 27-41

Bias for Group 1 Register ... 27-42

Primary (Filters) Pointer for Group 0 Register ... 27-42

Primary (Filters) Pointer for Group 1 Register ... 27-43

Primary (Filters) Head for Group 0 Register .. 27-44

Primary (Filters) Head for Group 1 Register .. 27-45

Primary (Filters) Tail for Group 0 Register .. 27-45

Primary (Filters) Tail for Group 1 Register .. 27-46

History Status Register ... 27-46

Pair 0 Secondary (Filter) History n Register .. 27-48

Pair 1 Secondary (Filter) History n Register .. 27-49

Pair 2 Secondary (Filter) History n Register .. 27-50

Pair 3 Secondary (Filter) History n Register .. 27-51

Reset Control Unit (RCU)

RCU Features .. 28-1

RCU Functional Description .. 28-1

ADSP-CM40x RCU Register List ... 28-2

ADSP-CM40x RCU Trigger List .. 28-2

RCU Definitions .. 28-3

RCU Architectural Concepts ... 28-3

RCU Status and Error Signals .. 28-4

ADSP-CM40x Specific Information .. 28-4

ADSP-CM40x RCU Register Descriptions ... 28-4

Control Register .. 28-5

Status Register .. 28-6

SVECT Lock Register .. 28-8

Boot Code Register ... 28-9

Software Vector Register 0 ... 28-10

Message Register .. 28-10
 lx ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
Message Set Bits Register ... 28-12

Message Clear Bits Register ... 28-14

 Boot ROM and Booting the Processor

 Boot Loader Stream .. 29-1

 Block Structure .. 29-3

 Block Code .. 29-3

 TARGET_ADDRESS ... 29-4

 BYTE_COUNT ... 29-4

 ARGUMENT ... 29-4

 Block Types ... 29-5

 Normal Block .. 29-5

 First Block ... 29-5

 Final Block .. 29-6

 Indirect Block ... 29-6

 Ignore Block ... 29-7

 Init Block .. 29-7

 Callback Block .. 29-8

 Callback Block Used in Conjunction with Indirect Block ... 29-9

 Quick Boot Block ... 29-9

 Save Block .. 29-10

 Conditional Processing of Boot Stream Blocks .. 29-10

 Single-Block Boot Streams .. 29-11

 Direct Code Execution ... 29-11

 Boot Termination and Application Execution ... 29-12

 Multi-Application Boot Streams .. 29-13

 Boot Modes ... 29-15

 No-Boot Mode ... 29-16

 SPI Master Boot Mode .. 29-17

 SPI Device Detection Routine .. 29-18

 Run-time API .. 29-20
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE lxi

CONTENTS
 SPI Master Boot with MEMMAP Support .. 29-21

 SPI Slave Boot Mode ... 29-22

 Run-Time API ... 29-26

 UART Slave Boot Mode .. 29-27

 Autobaud Detection .. 29-28

 Run-time API .. 29-28

 Boot Programming Model .. 29-29

 Page Mode ... 29-29

 Changing Settings at Run Time .. 29-30

 CRC32 Protection .. 29-31

 Error Handler ... 29-31

 Fault Management .. 29-31

 Callable API Overview .. 29-32

 Boot Kernel ... 29-33

 Boot Routine ... 29-33

 dFlags Description ... 29-34

 Example ... 29-34

 CRC 32 Polynomial .. 29-35

 CRC Initcode .. 29-35

 ECC Protection ... 29-36

 Get Address ... 29-36

 Functional Description ... 29-37

 Mem Compare .. 29-37

 Memory Copy ... 29-38

 Memory CRC .. 29-38

 Memory Fill .. 29-39

 Booting Data Structures ... 29-40

 STRUCT_ROM_BOOT_BUFFER .. 29-40

 STRUCT_ROM_BOOT_CONFIG .. 29-40

 STRUCT_ROM_BOOT_HEADER ... 29-42
 lxii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
 STRUCT_ROM_BOOT_SPI ... 29-42

 System Reset and Power Up ... 29-43

 Boot ROM Vector Table .. 29-43

 Base Address ... 29-43

 Number of Entries ... 29-43

 Table Layout ... 29-44

 Boot ROM Jump Table .. 29-44

 Base Address ... 29-44

 Number of Entries ... 29-45

 Memory Initialization ... 29-45

 Main Routine .. 29-45

 Privileged Mode Configuration ... 29-45

 Code and Data Memory Configuration ... 29-46

 Memory Initialization .. 29-46

 Cache Initialization .. 29-47

 Interrupt and Fault Configuration .. 29-47

 Reset Vector .. 29-47

 NMI Vector ... 29-48

 Hard Fault Vector ... 29-48

 MemManage Vector ... 29-48

 BusFault Vector .. 29-48

 UsageFault Vector .. 29-48

 DebugMonitor Vector ... 29-48

 SVCall Vector ... 29-49

 PendSV Vector ... 29-49

 SysTick Vector ... 29-49

 Code Cache Parity Error Vector ... 29-49

 SRAM Parity Error Vector ... 29-49

 SRAM DMA Parity Error Vector ... 29-49

 Pre-Boot ... 29-49
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE lxiii

CONTENTS
 Wakeup From Deep Sleep ... 29-50

 RESOUT Handling .. 29-50

 Boot Mode Entry ... 29-50

 Boot ROM Revision Control .. 29-50

 Boot ROM Revision Control ... 29-50

System Watchpoint Unit (SWU)

SWU Features ... 30-1

SWU Functional Description .. 30-1

ADSP-CM40x SWU Register List .. 30-1

ADSP-CM40x SWU Interrupt List .. 30-2

ADSP-CM40x SWU Trigger List .. 30-2

SWU Definitions ... 30-3

SWU Architectural Concepts ... 30-3

SWU Flow Diagram ... 30-3

SCB Interface .. 30-4

SWU Block Diagram ... 30-4

System Crossbar Block .. 30-5

MMR Block ... 30-5

SWU Operating Modes ... 30-5

Bandwidth Mode .. 30-5

Watchpoint Mode .. 30-6

Match Block .. 30-6

SWU Event Control .. 30-6

SWU Interrupts .. 30-6

SWU Status and Errors .. 30-6

Triggers .. 30-7

SWU Programming Model ... 30-7

SWU Mode Configuration ... 30-7

Configuring the SWU for Bandwidth Mode ... 30-7

Configuring the SWU for Watchpoint Mode .. 30-8
 lxiv ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CONTENTS
ADSP-CM40x SWU Register Descriptions .. 30-9

Global Control Register .. 30-9

Global Status Register .. 30-10

Control Register n ... 30-13

Lower Address Register n ... 30-17

Upper Address Register n ... 30-18

ID Register n ... 30-19

Count Register n ... 30-19

Target Register n ... 30-20

Bandwidth History Register n ... 30-21

Current Register n ... 30-21

JTAG debug and Serial Wire Debug Port (SWJ-DP)

Embedded Trace Macrocell (ETM) and Instrumentation Trace Macrocell (ITM) 31-1

ADSP-CM40x JTAG Register Descriptions ... 31-1

IDCODE Register ... 31-1

User Code Register ... 31-2

Index
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE lxv

CONTENTS
 lxvi ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE –lxvii

 Preface

Thank you for purchasing and developing systems using an ADSP-CM40x processor from Analog
Devices, Inc.

Purpose of This Manual

The ADSP-CM40x Processor Hardware Reference provides architectural information about the ADSP-
CM40x processors. This hardware reference provides the main architectural information about these
processors. The architectural descriptions cover functional blocks, buses, and ports, including all features
and processes that they support. For information about programming the ARM core in the ADSP-CM40x
processor, visit the ARM Information Center at:

http://infocenter.arm.com/help/

For timing, electrical, and package specifications, see the ADSP-CM40x Processor Data Sheet.

Intended Audience

The primary audience for this manual is a programmer who is familiar with Analog Devices processors.
The manual assumes the audience has a working knowledge of the appropriate processor architecture and
instruction set. Programmers who are unfamiliar with Analog Devices processors can use this manual, but
should supplement it with other texts, such as programming reference books and data sheets, that describe
their target architecture.

Manual Contents

This manual consists of the following chapters:

• Preface

• Introduction — Provides a high level overview of the processor, including peripherals, power manage-
ment, and development tools.

• ARM Cortex-M4 Memory Sub-System — Describes core peripherals and memory interface to the
ARM Cortex-M4 core.

• System Cross Bar (SCB) — Describes on-chip buses, including how data moves through the system.

http://infocenter.arm.com/help/

PREFACE
MANUAL CONTENTS

 –lxviii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Clock Generation Unit (CGU) — Describes the phase locked loop (PLL), PLL control unit (PCU), and
CGU, which generate on-chip clocks.

• System Protection Unit (SPU) — Describes the system protection and how the SPU protects system
resources from errant writes.

• Dynamic Power Management (DPM) — Describes the clocking, including the PLL, and the dynamic
power management controller.

• System Event Controller (SEC) — Describes the system peripheral interrupts, including setup and
clearing of interrupt requests.

• Trigger Routing Unit (TRU) — Describes TRU operations providing system-level sequence control
without core intervention.

• Static Memory Controller (SMC) — Describes the static (SRAM) memory controller of the processor
and the asynchronous memory interface.

• Cyclic Redundancy Check (CRC) — Describes the CRC operations on blocks of data presented to the
peripheral.

• DMA Channel (DMA) — Describes the peripheral DMA and Memory DMA controllers, including
topics such as performance, software management of DMA, and DMA errors.

• General-Purpose Ports (PORTS) — Describes the general-purpose I/O ports, including the structure
of each port, multiplexing, configuring the pins, and generating interrupts.

• General-Purpose Timer (TIMER) — Describes the general-purpose timers that can be configured in
any of three modes; the core timer that can generate periodic interrupts for a variety of timing func-
tions; and the watchdog timer that can implement software watchdog functions, such as generating
events to the processor core.

• Watchdog Timer (WDOG) — Describes the watchdog timer.

• General-Purpose Counter (CNT) — Describes the Rotary (up/down) Counter. This counter provides
support for manually controlled rotary controllers, such as the volume wheel on a radio device. This
unit also supports industrial or motor-control type of wheels.

• Pulsewidth Modulator (PWM) — Describes the The PWM controller—a flexible, programmable,
three-phase PWM waveform generator that can be programmed to generate the required switching
patterns to drive a three-phase voltage source inverter for ac induction motor (ACIM) or permanent
magnet synchronous motor (PMSM) control.

• Universal Async Rx/Tx (UART) — Describes the Universal Asynchronous Receiver/Transmitter port
that converts data between serial and parallel formats. The UART supports the half-duplex IrDA SIR
protocol as a mode-enabled feature.

• Two Wire Interface (TWI) — Describes the Two Wire Interface (TWI) controller, which allows a
device to interface to an Inter IC bus as specified by the Philips I2C Bus Specification version 2.1 dated
January 2000.

PREFACE
MANUAL CONTENTS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE –lxix

• Controller Area Network (CAN) — Describes the CAN module, a low bit rate serial interface intended
for use in applications where bit rates are typically up to 1Mbit/s.

• Universal Serial Bus (USB) — Describes the USB OTG interface of the processor. This interface
provides a low-cost connectivity solution for consumer mobile devices such as cell phones, digital still
cameras and MP3 players, allowing these devices to transfer data via a point-to-point USB connection
without the need for a PC host.

• 10/100 Ethernet MAC (EMAC) — Describes the Ethernet Media Access Controller (MAC) peripheral
that provides a 10/100M bit/s Ethernet interface, compliant to IEEE Std. 802.3-2002, between an MII
(Media Independent Interface) and the processor peripheral subsystem. Also, describes the IEEE 1588
engine module and the module’s operation.

• Serial Peripheral Interface (SPI) — Describes the Serial Peripheral Interface (SPI) port that provides an
I/O interface to a variety of SPI compatible peripheral devices.

• Serial Port (SPORT) — Describes the independent, synchronous Serial Port Controller which provides
an I/O interface to a variety of serial peripheral devices.

• ADC Controller (ADCC) — Describes the ADC controller.

• DAC Controller (DACC) — Describes the DAC controller.

• Harmonic Analysis Engine (HAE) — Describes the HAE.

• Sinus Cardinalis Filter Unit (SINC) — Describes the SINC.

• Reset Control Unit (RCU)

• Booting — Describes the booting methods, booting process and specific boot modes for the processor.

• Test Features — Describes test features for the processor, discusses the JTAG standard, boundary-scan
architecture, instruction and boundary registers, and public instructions.

– System Watchpoint Unit (SWU)

– Joint Test Action Group (JTAG) Interface

– Serial Wire Trace Output (SWO)

PREFACE
WHAT'S NEW IN THIS MANUAL

 –lxx ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

What's New in This Manual

This revision (0.2) is a preliminary revision of the ADSP-CM40x Processor Hardware Reference. This initial
revision does not include complete content for all chapters. The following are major differences between
this revision and the previous revision of this book

• Added missing content (or corrected content) in the following chapters: HAE, SINC, ADCC, DACC,
JTAG, and SCB.

• Added missing register description information to the following chapters: CGU, PORTs, CNT, PWM,
USB, SPI, and RCU

• Applied other minor corrections/additions throughout the document

Technical or Customer Support

You can reach customer and technical support for processors from Analog Devices in the following ways:

• Post your questions in the processors and DSP support community at EngineerZone:

http://ez.analog.com/community/dsp

• Submit your questions to technical support at Connect with ADI Specialists:

http://www.analog.com/support

• E-mail your questions about software/hardware development tools to:

processor.tools.support@analog.com

• E-mail your questions about processors and DSPs to:

processor.support@analog.com (world wide support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD (USA only)

• Contact your Analog Devices sales office or authorized distributor. Locate one at:

http://www.analog.com/adi-sales

• Send questions by mail to:

Analog Devices, Inc.
Three Technology Way
P.O. Box 9106
Norwood, MA 02062-9106 USA

http://ez.analog.com/community/dsp
http://www.analog.com/support
http://mailto:processor.tools.support@analog.com
http://mailto:processor.support@analog.com
http://mailto:processor.china@analog.com
http://www.analog.com/adi-sales

PREFACE
SUPPORTED PROCESSORS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE –lxxi

Supported Processors

The following is the list of Analog Devices, Inc. processors supported in CrossCore Embedded Studio®
development tools.

Blackfin (ADSP-BFxxx) Processors
The name Blackfin refers to a family of 16-bit, embedded processors. CrossCore Embedded Studio currently
supports the following Blackfin families ADSP-BF50x, ADSP-BF51x, ADSP-BF52x, ADSP-BF53x, ADSP-
BF54x, ADSP-BF59x, ADSP-BF561, and ADSP-BF60x processors.

SHARC® (ADSP-21xxx) Processors
The name SHARC refers to a family of high-performance, 32-bit, floating-point processors that can be used
in speech, sound, graphics, and imaging applications. CrossCore Embedded Studio currently supports the
following SHARC families: ADSP-2106x, ADSP-2116x, ADSP-2126x, ADSP-2136x, and ADSP-214xx.

The following is the list of Analog Devices, Inc. processors supported in IAR Embedded WorkBench®
development tools. For information about the IAR Embedded WorkBench product and software down-
load, go to http://www.iar.com/en/Products/IAR-Embedded-Workbench

ADSP-CM40x Processors
The ADSP-CM40x processor is based on the ARM® Cortex®-M4 core and is designed for motor control and
industrial applications.

Product Information

Product information can be obtained from the Analog Devices Web site and CrossCore Embedded Studio
online Help system.

Analog Devices Web Site

The Analog Devices Web site, http://www.analog.com, provides information about a broad range of prod-
ucts—analog integrated circuits, amplifiers, converters, and digital signal processors.

To access a complete technical library for each processor family, go to: http://www.analog.com/proces-
sors/technical_library The manuals selection opens a list of current manuals related to the product as well
as a link to the previous revisions of the manuals. When locating your manual title, note a possible errata
check mark next to the title that leads to the current correction report against the manual.

Also note, MyAnalog.com is a free feature of the Analog Devices Web site that allows customization of a
Web page to display only the latest information about products you are interested in. You can choose to
receive weekly e-mail notifications containing updates to the Web pages that meet your interests,
including documentation errata against all manuals. MyAnalog.com provides access to books, application
notes, data sheets, code examples, and more.

http://www.iar.com/en/Products/IAR-Embedded-Workbench
http://www.analog.com
http://www.analog.com/processors/technical_library
http://www.analog.com/processors/technical_library
https://registration.analog.com/Registration/login/login.aspx
https://registration.analog.com/Registration/login/login.aspx

PREFACE
NOTATION CONVENTIONS

 –lxxii ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Visit MyAnalog.com to sign up. If you are a registered user, just log on. Your user name is your e-mail
address.

 EngineerZone

EngineerZone is a technical support forum from Analog Devices. It allows you direct access to ADI tech-
nical support engineers. You can search FAQs and technical information to get quick answers to your
embedded processing and DSP design questions.

Use EngineerZone to connect with other DSP developers who face similar design challenges. You can also
use this open forum to share knowledge and collaborate with the ADI support team and your peers. Visit
http://ez.analog.com to sign up.

Notation Conventions

Text conventions used in this manual are identified and described as follows. Additional conventions,
which apply only to specific chapters, may appear throughout this document.

Example Description

Close command (File menu) Titles in reference sections indicate the location of an item within
the CrossCore Embedded Studio IDE's menu system (for example,
the Close command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within
curly brackets and separated by vertical bars; read the example as
this or that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and
separated by vertical bars; read the example as an optional this
or that.

[this,] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the
example as an optional comma-separated list of this.

. SECTION Commands, directives, keywords, and feature names are in text
with Letter Gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ... A Note provides supplementary
information on a related topic. In the online version of this book,
the word Note appears instead of this symbol.

Caution: Incorrect device operation may result if ... Caution:
Device damage may result if ... A Caution identifies conditions or
inappropriate usage of the product that could lead to undesirable
results or product damage. In the online version of this book, the
word Caution appears instead of this symbol.

https://registration.analog.com/Registration/login/login.aspx
http://ez.analog.com/welcome
http://ez.analog.com

PREFACE
NOTATION CONVENTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE –lxxiii

Register Documentation Conventions

Register diagrams use the following conventions:

• The descriptive name of the register appears at the top with the short form of the name.

• If a bit has a short name, the short name appears first in the bit description, followed by the long name.

• The reset value appears in binary in the individual bits and in hexadecimal to the left of the register.

• Bits marked X have an unknown reset value. Consequently, the reset value of registers that contain such
bits is undefined or dependent on pin values at reset.

• Shaded bits are reserved.

NOTE: To ensure upward compatibility with future implementations, write back the value that is read for
reserved bits in a register, unless otherwise specified.

Register description tables use the following conventions:

• Each bit's or bit field's access type appears beneath the bit number in the table in the form (read-access/
write-access). The access types include:

– R = read, RC = read clear, RS = read set, R0 = read zero, R1 = read one, Rx = read undefined

– W = write, NW = no write, W1C = write one to clear, W1S = write one to set, W0C = write zero to
clear, W0S = write zero to set, WS = write to set, WC = write to clear, W1A = write one action

• Many bit and bit field descriptions include enumerations, identifying bit values and related function-
ality. Unless otherwise indicated (with a prefix), these enumerations are decimal values.

Danger: Injury to device users may result if ... A Danger identifies
conditions or inappropriate usage of the product that could lead to
conditions that are potentially hazardous for the devices users. In
the online version of this book, the word Danger appears instead
of this symbol.

Example Description

PREFACE
NOTATION CONVENTIONS

 –lxxiv ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 1–1

1 Introduction

The ADSP-CM40x family of processors are based on the ARM® Cortex®-M4 core with floating-point unit
and integrated SRAM memory, flash memory, accelerators, and peripherals.1 The ADSP-CM40x contains
up to 384K bytes of SRAM memory, flash memory, accelerators and peripherals optimized for motor
control and photo-voltaic (PV) inverter control and an analog module consisting of two 16-bit SAR-type
ADCs and 2 DACs. The ADSP-CM40x family operates from a single voltage supply (VDD_EXT/VDD_
ANA), generating its own internal voltage supplies using internal voltage regulators and an external pass
transistor. This family of processor offers low static power consumption and is produced with a low-power
and low-voltage design methodology, delivering world class processor and ADC performance with lower
power consumption.

As shown in the ADSP-CM40x Processor Functional Block Diagram, by integrating a rich set of
industry-leading system peripherals and memory, the ADSP-CM40x processors are the platform of choice
for next-generation applications that require RISC programmability, advanced communications and
leading-edge signal processing in one integrated package. These applications span a wide array of markets
including power/motor control, embedded industrial, instrumentation, medical and consumer.

1.ARM® and Cortex® are registered trademarks of ARM Limited. Where noted, portions of this chapter have been reproduced with permission
from ARM Limited. These indicated sections are © 2007-2010 ARM Limited.

INTRODUCTION

1–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 1-1: ADSP-CM40x Processor Functional Block Diagram

Note the following terms, which are used in this chapter:

• Cortex core refers to the ARM Cortex-M4 processor core with floating-point support and core periph-
erals.

• Cortex memory refers to the portions of the Cortex memory map that are part of the memory model for
the Cortex core (for example, SRAM and Cache), but are not part of the system memory (memory
mapped registers) or external memory.

• ADSP-CM40x processor or processor refers to the combination of the Cortex core, Cortex memory,
system peripherals (for example, UART, SPI, and SPORT), and system memories.

INTRODUCTION
ARM CORTEX-M4 CORE

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 1–3

This document describes the ARM Cortex-M4 processor core and memory architecture used on the
ADSP-CM40x processor, but does not provide detailed programming information for the ARM core. For
more information about programming the ARM core, visit the ARM Information Center:

• http://infocenter.arm.com/help/

The applicable documentation for programming the ARM Cortex-M4 core include:

• Cortex®-M4 Devices Generic User Guide

• CoreSight™ ETM™-M4 Technical Reference Manual

• Cortex®-M4 Technical Reference Manual

ARM Cortex-M4 Core

The ADSP-CM40x family of processors are based on the ARM Cortex-M4 core with floating-point unit
and integrated SRAM memory, flash memory, accelerators, and peripherals. The processor is built on a
high-performance core, with a 3-stage pipeline Harvard architecture. The Cortex core supports IEEE 754-
compliant single-precision floating-point computation, a range of single-cycle and SIMD multiplication
and multiply-with-accumulate capabilities, saturating arithmetic and dedicated hardware division. The
Cortex-M4 core implements a version of the Thumb® instruction set1 based on Thumb-2 technology,
ensuring high code density and reduced program memory requirements.

Cortex-M4 Core Block Diagram

The ARM Cortex-M4 processor implemented on the ADSP-CM40x includes the Cortex-M4 core and core
peripherals, such as the floating point unit (FPU), the memory protection unit (MPU), and the nested-
vectored interrupt controller (NVIC). The Cortex core also includes integrated debug modules from ARM,
such as the flash and breakpoint unit (FPB), the integrated trace macro (ITM), the embedded trace macro
(ETM), and the data watchpoint and trace (DWT).

The ARM Cortex-M4 Core and Core Peripherals Block Diagram shows the functional blocks within the
Cortex core.

1.Thumb® instruction set is a registered trademark of ARM Limited.

http://infocenter.arm.com/help/

INTRODUCTION
ARM CORTEX-M4 CORE

1–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 1-2: ARM Cortex-M4 Core and Core Peripherals Block Diagram

As shown in the Introduction, the Cortex core uses a single 32-bit bus for instruction and data. The length
of the instruction word is 16 or 32 bits. The length of the data can be eight bits, 16 bits, or 32 bits.

Cortex-M4 Core Components

There are a number of modules integrated within the ARM Cortex-M4 core. These are typically referred
to as core peripherals. These Cortex core peripherals, which extend the functionality of the Cortex core,
include:

• Nested Vectored Interrupt Controller (NVIC)

• System Control Block (SCB)

• System Timer (SysTick)

• Memory Protection Unit (MPU)

• Floating Point Unit (FPU)

Cortex-M4 Core Nested Vectored Interrupt Controller (NVIC)

The Cortex core is closely integrated with a configurable nested vectored interrupt controller (NVIC). The
NVIC includes a non-maskable interrupt (NMI) and can provide up to 16 preemptive interrupt priority

INTRODUCTION
ARM CORTEX-M4 CORE

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 1–5

levels. The tight integration of the processor core and NVIC provides fast execution of interrupt service
routines (ISRs), dramatically reducing the interrupt latency.

• Cortex System Exceptions

There are a a number of exceptions that may be triggered from within the Cortex core and core periph-
erals. In the ADSP-CM40x interrupts list, each of these exceptions has an M4_SCS0_ prefix. Reset,
HardFault, and NMI exceptions have fixed negative priority values, and they have higher priority than
any other exception.

• Cortex Core External Interrupts

There are a number of external interrupts supported in ADSP-CM40x. Almost all of these interrupts
are generated from several peripheral interrupt sources. The maximum number of preemptive priority
levels is 16. Interrupts can be enabled or disabled individually through interrupt set/clear registers, and
the priority level (priority + sub-priority) can be defined by programming the interrupt priority regis-
ters. For a list of all ADSP-CM40x interrupts (including external interrupts), see the System Event
Controller (SEC) chapter.

NOTE: In the ADSP-CM40x processor, the NVIC is part of the system event controller (SEC), but the
NVIC works as an independent entity closely tied to the Cortex-M4 processor. For more informa-
tion about the NVIC on the ADSP-CM40x (including the vector table) and SEC, refer to the SEC
chapter.

Cortex-M4 Core System Control Block (SCB)

The system control block (SCB) provides system implementation information and system control. This
includes configuration, control, and reporting of the system exceptions.

NOTE: The term SCB used in the Cortex-M4 core context refers to the system control block core peripheral.

Do not confuse this with the term SCB (system crossbar) used in the context of the ADSP-CM40x
processor's interconnect bus architecture.

Cortex-M4 Core System Timer (SysTick)

The Cortex core has a 24-bit system timer, typically termed as SysTick. This timer counts down from the
reload value to zero, reloads on the next clock edge, and then counts down on subsequent clocks.

NOTE: SYST_CALIB in the Cortex-M4 is a read-only register. The ADSP-CM40x has a programmable
version of this called the M4P0_STCALIB register. Users must program this register with appro-
priate values if SysTick has to be calibrated. The written data is reflected in the SYST_CALIB
register.

INTRODUCTION
PROCESSOR INFRASTRUCTURE

1–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Cortex-M4 Core Memory Protection Unit (MPU)

The MPU divides the memory map into a number of regions, and defines the location, size, access permis-
sions, and memory attributes of each region. It supports:

• Independent attribute settings for each region

• Overlapping regions

• Export of memory attributes to the system

The memory attributes affect the behavior of memory accesses to the region:

• Eight separate memory regions, 0-7

• A background region

NOTE: On the ADSP-CM40x processor, the MPU in the Cortex-M4 cannot be used to define cache-
related attributes. These are defined separately using the cache controller.

Cortex-M4 Core Floating Point Unit (FPU)

The FPU provides single-precision floating-point computation functionality that is compliant with the
ANSI/IEEE Standard 754-2008, IEEE Standard for Binary Floating-Point Arithmetic, referred to as the
IEEE 754 standard. The FPU fully supports single-precision add, subtract, multiply, divide, multiply and
accumulate, and square root operations. It also provides conversions between fixed-point and floating-
point data formats, and floating-point constant instructions. The FPU contains 32 single-precision exten-
sion registers, which can also be accessed as 16 double-word registers for load, store, and move operations.

Processor Infrastructure

The ADSP-CM40x Processor Functional Block Diagram in the Introduction shows the relationships
among the processor's functional units outside the ARM Cortex-M4 core. These units provide an infra-
structure that begins with the system crossbar (SCB), which provides a programmable communication
fabric connecting all the units in the processor. Next, this infrastructure provides units, which control the
fundamental processing environment: dynamic power management (DPM), reset control unit (RCU), and
the clock source (system oscillator and CGU). The processor also provides a set of sub-units for managing
events and faults in concert with the Cortex core. These sub-units include the system event controller
(SEC), which complements the Cortex-M4 NVIC; the trigger routing unit (TRU), and the fault manage-
ment unit (FMU).

System Crossbar (SCB)

The system crossbars (SCB) appear in the ADSP-CM40x Processor Functional Block Diagram in the
Introduction as a hierarchy of buses, which constitute a switch fabric. This fabric provides concurrent data

INTRODUCTION
PROCESSOR INFRASTRUCTURE

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 1–7

access between on-chip masters and slave memory spaces. In each crossbar in the hierarchy, there are a
number of master interfaces and one or more slave memory interfaces. Arbitration in each crossbar may
be managed in a programmable round-robin system.

Clock Generation

The clock generation unit (CGU) includes the phase-locked loop (PLL) and the PLL control unit (PCU).
The PLL generates a clock that runs at a frequency that is an integer multiple of the CLKIN input clock
frequency. It also generates all on-chip clocks and synchronization signals. The PCU allows the application
software to control the PLL module operation.

Multiplication factors are programmed to the PLLs to define the PLLCLK frequency. Programmable
values divide the PLLCLK frequency to generate the core clock (CCLK), the system clocks (SYSCLK or
SCLK), and the output clock (OCLK). This is illustrated in the Clock Relationships and Divider Values
figure.

A SYS_CLKOUT output pin has programmable options to output divided-down versions of the on-chip
clocks. By default, the SYS_CLKOUT pin drives a buffered version of the SYS_CLKIN input. Clock generation
faults (for example PLL unlock) may trigger a reset by hardware.

Crystal Oscillator (SYS_XTAL)

The processor can be clocked by an external crystal, a sine wave input, or a buffered, shaped clock derived
from an external clock oscillator. If an external clock is used, it should be a TTL compatible signal and must
not be halted, changed, or operated below the specified frequency during normal operation. This signal is
connected to the processor's SYS_CLKIN pin. When an external clock is used, the SYS_XTAL pin must be
left unconnected. Alternatively, because the processor includes an on-chip oscillator circuit, an external
crystal may be used.

Clock Out/External Clock

The SYS_CLKOUT pin can be used to output one of several different clocks used on the processor. The clocks
shown in Clock Sources and Dividers can be outputs from SYS_CLKOUT.

Table 1-1: Clock Sources and Dividers

Clock Source Divider

CCLK (core clock) By 4

SYSCLK (System clock, equivalent to SCLK) By 2

OCLK (output clock) Programmable

CLKBUF None, direct from SYS_CLKIN

C:/Users/dskolni/My Docs in Repositories/easyDITA/CM40x_hwr_rev_0-2/Front_Matter/introduction/c_dpm_Overview_ADSP-CM40x.dita

INTRODUCTION
SYSTEM EVENT CONTROLLER (SEC)

1–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

System Protection Unit (SPU)

The system protection unit (SPU) provides features for configuration management of system resources.
These features allow the programmer to select which individual memory masters in the system will be
allowed to modify the control registers in the system, as described either on a unit-by-unit basis or down
to a granularity of single registers. This unit can be used to protect the critical elements of the configuration
of the system from accidental modification.

Dynamic Power Management (DPM)

The dynamic power management (DPM) feature of the processor controls the processor's core clock
frequency (fCCLK) dynamically.

The processor supports a number of different power domains, which maximizes flexibility while main-
taining compliance with industry standards and conventions. By isolating the internal logic of the
processor into its own power domain, separate from other I/O, the processor can take advantage of
dynamic power management without affecting the other I/O devices.

There are no sequencing requirements for the various power domains, but all domains must be powered
for processor operating conditions; even if the feature/peripheral is not used.

For more information about power domains on the processor, see the product data sheet.

System Event Controller (SEC)

The SEC works in concert with the ARM Cortex-M4 core's internal NVIC unit, routing events from each
system interrupt or fault source. Both the SEC and NVIC units receive substantially the same list of event
signals, with the same numbering scheme. The NVIC enables and prioritizes events for generating Cortex
core interrupts. The SEC enables and monitors events (which should cause system faults), and the SEC
selects the type of fault response required.

Pin Interrupts

Every port pin on the processor can generate interrupts based on either edge-sensitive or a level-sensitive
inputs with programmable polarity. Interrupt functionality is decoupled from GPIO operation. The
PINTx system interrupt channels are reserved for this purpose. Each of these interrupt channels can
manage up to 32 interrupt pins. The assignment from pin to interrupt is not performed on a pin-by-pin
basis. Rather, groups of eight pins (half ports) can be flexibly assigned to interrupt channels.

Every pin interrupt channel features a special set of 32-bit memory-mapped registers that enable half-port
assignment and interrupt management. This includes masking, identification, and clearing of requests.
These registers also enable access to the respective pin states and use of the interrupt latches, regardless of

INTRODUCTION
MEMORY ARCHITECTURE

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 1–9

whether the interrupt is masked or not. Most control registers feature multiple MMR address entries to
write-one-to-set or write-one-to-clear them individually.

Memory Architecture

 The ADSP-CM40x processor provides sufficient memory to support processor based applications. It
includes 384K bytes of internal SRAM that can be partitioned in to blocks of code and data (64K bytes of
configurable memory blocks). It also includes a static memory controller for interface to external devices
or memories. Apart from the above, there is support for two SPI-based flash memories (one inside the
package and the other externally supported) that can be memory-mapped for high performance code
execution through SPI Quad/Dual I/O read modes. Further inclusion of an internal 16K byte code cache
improves the execute-in-place (XiP) functionality of flash memories significantly.

The ADSP-CM40x Processor Functional Block Diagram in the Introduction shows a number of system
control blocks. Some of these blocks provide system control operations, such as event handling and
managing the memory sub-system interface. The following sections provide information on managing the
memory sub-system interface of the ADSP-CM40x processor.

See the product-specific data sheet for the proper external and internal memory configurations.

Static Memory Controller (SMC)

The static memory controller (SMC) is a protocol converter and data transfer interface between the
internal processor bus and the external L3 memory.

The SMC can be programmed to control up to four banks of external memories or memory-mapped
devices, with very flexible timing parameters. Each bank occupies a 32M byte segment regardless of the
size of the device used, so that these banks are only contiguous if each is fully populated with 32M bytes of
memory.

The SMC acts as an SCB slave and accesses to SMC are arbitrated by the processor SCB interconnect fabric.
On the chip boundary, the SMC is connected to an external memory address bus, a data bus and memory
control signal pins (read, write) including chip selects.

Cyclic Redundancy Check (CRC)

The cyclic redundancy check (CRC) peripheral performs the CRC operation on the block of data that is
presented to the peripheral. The peripheral provides a means to periodically verify the integrity of the
system memory, the contents of memory-mapped registers (MMRs), or communication message objects.

The CRC is a hardware module based on a CRC32 engine that computes the CRC value of the 32-bit data
words presented to it. Data is provided by the source channel of the memory-to-memory DMA (in

INTRODUCTION
MEMORY ARCHITECTURE

1–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

memory scan mode) and is optionally forwarded to the destination channel (memory transfer mode). The
main features of the CRC peripheral are:

• Memory scan, memory transfer, data verify, and data fill modes

• User-programmable CRC32 polynomial

• Bit/byte mirroring option (endianness)

• Fault/error interrupt mechanisms

• 1D and 2D fill block to initialize array with constants.

• 32-bit CRC signature of a block of a memory or MMR block.

The dedicated hardware compares the calculated signature of the operation to a pre-loaded expected
signature and if the two fail to match, the peripheral generates an error.

Data may be provided by the source channel of the memory-to-memory DMA channels and optionally
forwarded to memory via the destination DMA channel. Alternatively, the peripheral also supports data
presented by core write transactions.

The CRC peripheral implements a reduced table look-up algorithm to compute the signature of the data.
A programmable 32-bit CRC polynomial is used to automatically generate the look up table (LUT)
contents.

Additional CRC peripheral modes allow for initializing large memory sections with a constant value, or
for verifying that sections of memory are equal to a constant value.

The two CRC protection modules allow system software to periodically calculate the signature of code
and/or data in memory, the content of memory-mapped registers, or communication message objects.
Dedicated hardware circuitry compares the signature with pre-calculated values and triggers appropriate
fault events.

Direct Memory Access (DMA)

The direct memory access (DMA) channels are dispersed throughout the infrastructure and provide stan-
dardized memory access features for diverse memory clients (peripherals). The DMA channels are
grouped into a number of first-level system crossbars (SCBs), each of which presents a single interface to
the top-level main system crossbar.

The processor uses DMA to transfer data within memory spaces or between a memory space and a periph-
eral. The processor can specify data transfer operations and return to normal processing while the fully
integrated DMA controller carries out the data transfers independent of processor activity.

The DMA channels can perform transfers between memory and a peripheral or between one memory and
another memory. Two DMA channels are required for memory to memory DMA transfers (MDMA). One
channel is the source channel, and the second, the destination channel.

INTRODUCTION
ON CHIP PERIPHERALS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 1–11

The DMA channel does not connect external memories and devices directly. Rather, data is passed
through an external memory interface port. Any kind of device that is supported by the external memory
interface can also be accessed by DMA operation. This is typically flash memory, SRAM, FIFOs, or
memory-mapped peripheral devices.

All DMAs can transport data to and from all on-chip and off-chip memories. Programs can use two types
of DMA transfers, descriptor-based or register-based. Register-based DMA allows the processor to directly
program DMA control registers to initiate a DMA transfer. On completion, the control registers may be
automatically updated with their original setup values for continuous transfer. Descriptor-based DMA
transfers require a set of parameters stored within memory to initiate a DMA sequence. Descriptor-based
DMA transfers allow multiple DMA sequences to be chained together and a DMA channel can be
programmed to automatically set up and start another DMA transfer after the current sequence completes.

The DMA controller supports the following DMA operations.

• A single linear buffer that stops on completion.

• A linear buffer with negative, positive or zero stride length.

• A circular, auto-refreshing buffer that interrupts when each buffer becomes full.

• A similar buffer that interrupts on fractional buffers (for example, 1/2, 1/4).

• 1D DMA - uses a set of identical ping-pong buffers defined by a linked ring of two-word descriptor sets,
each containing a link pointer and an address.

• 1D DMA - uses a linked list of 4 word descriptor sets containing a link pointer, an address, a length,
and a configuration.

• 2D DMA - uses an array of one-word descriptor sets, specifying only the base DMA address.

• 2D DMA - uses a linked list of multi-word descriptor sets, specifying everything.

On Chip Peripherals

The processor contains a set of on chip peripherals connected to the core over several high-bandwidth
buses. These system interface peripherals provide flexibility in system configuration and system perfor-
mance.

See the ADSP-CM40x Processor Functional Block Diagram in the Introduction.

The following sections describe the on chip peripherals that provide the system interface.

INTRODUCTION
ON CHIP PERIPHERALS

1–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

General-Purpose I/O (GPIO)

The general-purpose I/O (GPIO) ports provide the following functions.

• Pin multiplexing scheme

• GPIO functionality

• Pin interrupts

The GPIO port pins can be individually controlled using the port control, status, and interrupt registers.
These register let you:

• Specify the direction of each individual GPIO pin as input or output

• Use the "write one to modify" mechanism modify any combination of individual GPIO pins in a single
instruction, without affecting the level of any other GPIO pins.

• Treat each individual GPIO pin as an interrupt to the processor; GPIO pins defined as inputs can be
configured to generate hardware interrupts, while output pins can be triggered by software interrupts

• Specify whether individual pins are level- or edge-sensitive and specify (if edge-sensitive) whether just
the rising edge or both the rising and falling edges of the signal are significant

General-Purpose Timers

The processor provides a number of general-purpose programmable timers. Each timer has an external
pin that can be configured either as a pulse width modulator (PWM) or timer output, as an input to clock
the timer, or as a mechanism for measuring pulse widths and periods of external events. These timers can
be synchronized to an external clock input on the TMRx pins, an external clock TMRCLK input pin, or to the
internal SCLK.

Additionally, a variety of interrupts can be generated upon completion of timer events. Moreover, GP
timers can act both as trigger masters and trigger slaves.

The timer units can be used in conjunction with UART and CAN controllers to measure the width of the
pulses in the data stream to provide a software auto-baud detect function for the respective serial channels.

Watchdog Timers

Each core includes a 32-bit timer that may be used to implement a software watchdog function. A software
watchdog can improve system availability by forcing the processor to a known state, via generation of a
hardware reset, non maskable interrupt (NMI), or general-purpose interrupt, if the timer expires before
being reset by software. The programmer initializes the count value of the timer, enables the appropriate
interrupt, then enables the timer. Thereafter, the software must reload the counter before it counts to zero
from the programmed value. This protects the system from remaining in an unknown state where soft-

INTRODUCTION
ON CHIP PERIPHERALS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 1–13

ware, which would normally reset the timer, has stopped running due to an external noise condition or
software error.

After a reset, software can determine if the watchdog was the source of the hardware reset by interrogating
a status bit in the timer control register, which is set only upon a watchdog-generated reset.

General-Purpose Counters

A 32-bit counter is provided that can operate in general-purpose up/down count modes and can sense 2-
bit quadrature or binary codes as typically emitted by industrial drives or manual thumbwheels. Count
direction is either controlled by a level-sensitive input pin or by two edge detectors.

A third counter input can provide flexible zero marker support and can alternatively be used to input the
push-button signal of thumb wheels. All three pins have a programmable debouncing circuit.

Internal signals forwarded to each general-purpose timer enable these timers to measure the intervals
between count events. Boundary registers enable auto-zero operation or simple system warning by inter-
rupts when programmable count values are exceeded.

Using this feature, one can convert pulses from incremental position encoders into data that is represen-
tative of the actual position by integrating (counting) pulses on one or two inputs. Because integration
provides relative position, some devices also feature a zero-position input (zero marker) that can be used
to establish a reference point to verify that the acquired position does not drift over time. The incremental
position information also can be used to determine speed, if the time intervals are measured. The GP
counter provides flexible ways to establish position information. When used in conjunction with the GP
timer block, the GP counter lets you acquire coherent position and time-stamp information that enables
speed calculation.

Each counter unit also supports a frequency-ratio output synthesizer, which is capable of automatically
generating quadrature output signals in a programmable N:M ratio to the input quadrature signal. This
facilitates glueless connection between a high-resolution quadrature encoder and an external controller or
monitor that operates at lower resolution.

Pulsewidth Modulator (PWM)

Each pulsewidth modulator (PWM) block integrates a flexible and programmable 3-phase PWM wave-
form generator that can be programmed to generate the required switching patterns to drive a 3-phase
voltage source inverter for ac induction motor (ACIM) or permanent magnet synchronous motor
(PMSM) control. In addition, the PWM block contains special functions that considerably simplify the
generation of the required PWM switching patterns for control of the electronically commutated motor
(ECM) or brushless dc motor (BDCM). Software can enable a special mode for switched reluctance motors
(SRM). The two 3-phase PWM generation units each feature:

• 16-bit center-based PWM generation unit

• Programmable PWM pulse width

INTRODUCTION
ON CHIP PERIPHERALS

1–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Single/double update modes

• Programmable dead time and switching frequency

• Twos-complement implementation which permits smooth transition to full ON and full OFF states

• Dedicated asynchronous PWM shutdown signal

The eight PWM output signals (per PWM unit) consist of four high-side drive signals and four low-side
drive signals. The polarity of a generated PWM signal can be set with software, so that either active HI or
active LO PWM patterns can be produced.

Pulses synchronous to the switching frequency can be generated internally and output on the PWM_SYNC
pin. The PWM unit can also accept externally generated synchronization pulses through the PWM_SYNC
pin.

Each PWM unit features a dedicated asynchronous shutdown pin which (when brought low) instanta-
neously places all six PWM outputs in the OFF state.

Universal Asynchronous Receiver/Transmitter (UART)

The processors provide two full-duplex universal asynchronous receiver/transmitter (UART) ports, which
are fully compatible with PC-standard UARTs. Each UART port provides a simplified UART interface to
other peripherals or hosts, supporting full-duplex, DMA-supported, asynchronous transfers of serial data.

A UART port includes support for five to eight data bits, and none, even, or odd parity. Optionally, an
additional address bit can be transferred to interrupt only addressed nodes in multi-drop bus (MDB)
systems. A frame is terminates by one, one and a half, two or two and a half stop bits. The UARTs also
include interrupt-handling hardware. Interrupts can be generated from multiple events.

The UARTs are logically compliant to EIA-232E, EIA-422, EIA-485 and LIN standards, but usually require
external transceiver devices to meet electrical requirements. In IrDA (Infrared Data Association) mode,
the UARTs meet the half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol. In multi-drop bus mode, the
UARTs meet the full-duplex MDB/ICP v2.0 protocol.

Partial modem status and control functionality is supported by the UART module to allow for hardware
flow control. The UART ports support automatic hardware flow control through the Clear To Send (CTS)
input and Request To Send (RTS) output with programmable assertion FIFO levels.

To help support the Local Interconnect Network (LIN) protocols, a special command causes the trans-
mitter to queue a break command of programmable bit length into the transmit buffer. Similarly, the
number of stop bits can be extended by a programmable inter-frame space.

The capabilities of the UARTs are further extended with support for the Infrared Data Association (IrDA)
serial infrared physical layer link specification (SIR) protocol.

The UARTs are DMA-capable peripherals with support for separate transmit and receive DMA master
channels. They can be used in either DMA or programmed core mode of operation. The core mode

INTRODUCTION
ON CHIP PERIPHERALS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 1–15

requires software management of the data flow using either interrupts or polling. The DMA method
requires minimal software intervention as the DMA engine itself moves the data. Each UART has its own
separate transmit and receive DMA channels.

One of the peripheral timers can be used to provide a hardware-assisted auto-baud detection mechanism
for use with the UART. The timers are external to the UART.

2-Wire Interface (TWI)

The processors include a 2-wire interface (TWI), providing a simple exchange method of control data
between multiple devices. The TWI module is compatible with the widely used I2C bus standard. The TWI
module offers the capabilities of simultaneous master and slave operation and support for both 7-bit
addressing and multimedia data arbitration. The TWI interface utilizes two pins for transferring clock
(TWI_SCL) and data (TWI_SDA) and supports the protocol at speeds up to 400k bits/sec. The TWI inter-
face pins are compatible with 5 V logic levels.

Additionally, the TWI module is fully compatible with serial camera control bus (SCCB) functionality for
easier control of various CMOS camera sensor devices.

To preserve processor bandwidth, the TWI module can be set up with transfer initiated interrupts only to
service FIFO buffer data reads and writes. Protocol related interrupts are optional. The TWI externally
moves 8-bit data while maintaining compliance with the I2C bus protocol.

Controller Area Network (CAN)

The processor includes a controller area network (CAN) module, which implements the CAN 2.0B
(active) protocol. This protocol is an asynchronous communications protocol used in both industrial and
automotive control systems. The CAN protocol is well suited for control applications due to its capability
to communicate reliably over a network. This is because the protocol incorporates CRC checking, message
error tracking, and fault node confinement.

NOTE: This document assumes reader familiarity with the CAN standard. For more information, refer to
Version 2.0 of the CAN Specification from Robert Bosch GmbH.

The CAN module provides the following features:

• 32 mailboxes (8 receive only, 8 transmit only, 16 configurable for receive or transmit)

• Dedicated acceptance masks for each mailbox

• Additional data filtering on first two bytes.

• Support for both the standard (11-bit) and extended (29-bit) identifier (ID) message formats

• Support for remote frames

• Active or passive network support

INTRODUCTION
ON CHIP PERIPHERALS

1–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• CAN wakeup from hibernation mode (lowest static power consumption mode)

• Interrupts, including: TX complete, RX complete, error and global

NOTE: An additional crystal is not required to supply the CAN clock, as the CAN clock is derived from a
system clock through a programmable divider.

Universal Serial Bus (USB)

The processor’s universal serial bus (USB) module is a USB 2.0 compliant, dual-role device controller. This
interface provides a low-cost connectivity solution for the growing adoption of this bus standard in indus-
trial applications and consumer mobile devices, such as cell phones, digital still cameras, and MP3 players.
The USB module lets these devices transfer data using a point-to-point USB connection without the need
for a PC host. The USB controller can operate in a traditional USB peripheral-only mode as well as the host
mode presented in the on-the-go (OTG) supplement1to the USB 2.0 Specification2.

In host mode, the USB module supports transfers at full-speed (12Mbps) and low-speed (1.5Mbps) rates.
Peripheral mode supports the full-speed transfer rate.

The USB controller uses a slave bus interface to access its control and status registers as well as read and
write to the endpoint packet buffers. Data is transferred to and from the USB controller through any of the
transmit and receive endpoint FIFOs. A DMA bus master interface provides numerous DMA channels to
provide a more efficient means of transferring large amounts of data between the controller and the
processor's memory map.

The USB clock (USB_CLKIN) is provided through a dedicated external crystal or crystal oscillator. Using
an included phase locked loop with programmable multipliers, the USB on-the-go dual-role device
controller generates the necessary internal clocking frequency for USB.

Ethernet Media Access Controller (MAC)

The processor can directly connect to a network by way of an embedded fast Ethernet media access
controller (MAC) that supports both 10-BaseT (10M bits/sec) and 100-BaseT (100M bits/sec) operation.
The 10/100 Ethernet MAC peripheral on the processor is fully compliant to the IEEE 802.3-2002 standard
and it provides programmable features designed to minimize supervision, bus use, or message processing
by the rest of the processor system.

Some standard Ethernet MAC features are:

• Support and RMII protocols for external PHYs

• Full duplex and half duplex modes

• Media access management (in half-duplex operation)

1.On-The-Go Supplement to the USB 2.0 Specification, Rev 1.0a; June 24, 2003; USB-IF
2.Universal Serial Bus Specification 2.0

INTRODUCTION
ON CHIP PERIPHERALS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 1–17

• Flow control

• Station management: generation of MDC/MDIO frames for read-write access to PHY registers

Some advanced Ethernet MAC features are:

• Automatic checksum computation of IP header and IP payload fields of Rx frames

• Independent 32-bit descriptor-driven receive and transmit DMA channels

• Frame status delivery to memory through DMA, including frame completion semaphores for efficient
buffer queue management in software

• Tx DMA support for separate descriptors for MAC header and payload to eliminate buffer copy oper-
ations

• Convenient frame alignment modes

• 47 MAC management statistics counters with selectable clear-on-read behavior and programmable
interrupts on half maximum value

• Advanced power management

• Magic packet detection and wakeup frame filtering

• Support for 802.3Q tagged VLAN frames

• Programmable MDC clock rate and preamble suppression

The Ethernet MAC includes support for the IEEE 1588 standard. This standard is a precision clock
synchronization protocol for networked measurement and control systems. The processor includes hard-
ware support for IEEE 1588 with an integrated precision time protocol synchronization engine (PTP_
TSYNC). This engine provides hardware assisted time stamping to improve the accuracy of clock synchro-
nization between PTP nodes.

The main IEEE 1588 standard features of the engine are:

• Support for both IEEE 1588-2002 and IEEE 1588-2008 protocol standards

• Hardware assisted time stamping capable of up to 12.5 ns resolution

• Lock adjustment

• Automatic detection of IPv4 and IPv6 packets, as well as PTP messages

• Multiple input clock sources (SCLK, RMII clock, external clock)

• Programmable pulse per second (PPS) output

• Auxiliary snapshot to time stamp external events

INTRODUCTION
ON CHIP PERIPHERALS

1–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Serial Peripheral Interface (SPI)

The processors has serial peripheral interface (SPI) compatible ports that allow the processor to commu-
nicate with multiple SPI compatible devices.

In its simplest mode, the SPI interface uses three pins for transferring data: two data pins (Master Output-
Slave Input, MOSI, and Master Input-Slave Output, MISO) and a clock pin (serial clock, SCK). An SPI chip
select input pin (SPISS) lets other SPI devices select the processor, and SPI chip select output pins
(SPISELx) let the processor select other SPI devices. The SPI select pins are reconfigured general-purpose
I/O pins. Using these pins, the SPI port provides a full-duplex, synchronous serial interface, which
supports both master/slave modes and multi master environments.

The SPI port's baud rate and clock phase/polarities are programmable, and it has integrated DMA chan-
nels for both transmit and receive data streams.

Serial Port (SPORT)

The processor includes synchronous serial ports (SPORTs) that provide an inexpensive interface to a wide
variety of digital and mixed-signal peripheral devices such as the AD183x family of audio CODECs, ADCs,
and DACs from Analog Devices. The SPORTs consist of two data lines, a clock, and frame sync. The data
lines can be programmed to either transmit or receive and each data line has a dedicated DMA channel.

SPORT data can be automatically transferred to and from on-chip memory/external memory over dedi-
cated DMA channels. Each of the SPORTs can work in conjunction with another SPORT to provide TDM
support. In this configuration, one SPORT provides two transmit signals while the other SPORT provides
the two receive signals. The frame sync and clock are shared.

Serial ports may operate in any of the following modes:

• Standard DSP serial mode

• Multichannel (TDM) mode

• I2S mode

• Packed I2S mode

• Left-justified mode

ADC Controller (ADCC)

The analog front end (AFE) includes a powerful ADC controller (ADCC) to automate the ADC sampling
process to simplify the ADC accesses. The ADCC provides an interface that synchronizes the controls
between the processor and an analog-to-digital converter (ADC). The analog-to-digital conversions are
initiated by the processor or its peripheral infrastructure, based on either external or internal events, by
giving the triggers to ADCC module.

INTRODUCTION
ON CHIP PERIPHERALS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 1–19

The ADCC provides two independent timebases to provide a cadence for up to two independent groups
of events. Each may be used to observe an independent process, such as one axis of a multi-axis motor. The
start time for each group of events can be defined by an event such as a TRU trigger event or a PWM SYNC
signal. Each timer is further associated with its own DMA output stream.

The ADCC allows the user to describe a series of measurement events through event registers, each of
which associates a designated analog input channel number of an ADC with both a precise time for the
input acquisition, and with an output memory offset for delivery of the sampled data. Each event time is
specified as an offset from the timer's start time, at SYSCLK resolution. The event registers are completely
symmetric with one another, and may represent events in any order. The events may designate any analog
input, and a given timer's sequence may include a mixture of multiple samples of the same channel at
different delta-time offsets, as well as samples of individual or paired signals. There is no need for the
programmer to sort the events into a specific sequence; the ADCC automatically detects the time sequence
of the programmed events.

The ADCC allows data samples to be taken individually or in simultaneously-sampled pairs, with ultra-
low time offset between analog input acquisition events. Individual events on either timer may schedule
acquisitions on either ADC core with no restriction.

The high sample rate of the ADC cores permits positioning of ADC samples at very short intervals, within
limits. The ADCC can automatically ensure that minimum spacing rules are followed. It automatically
adjusts the delays of events that collide (are scheduled for the same time), so that no samples are dropped.
The deviation of intended versus actual sample time is made available if a collision occurs, so the value of
the signal may be estimated from the value of the delayed sample. This automated, schedule-tolerant
behavior is especially important when the two independent timer event streams may interact.

DAC Controller (DACC)

The analog front end (AFE) includes a powerful DAC controller (DACC), which automates DAC data
conversion and simplifies DAC accesses. The DACC provides an interface that synchronizes the controls
between the processor and an digital-to-analog converter (DAC).

Harmonic Analysis Engine (HAE)

The HAE is a high-resolution accelerator provided to analyze and monitor of multiphase 50/60Hz AC
mains V/I signals and to test for harmonic distortion power levels. This unit supports construction of
systems for AC power generation with integral monitoring for flexible, soft-upgradeable regulatory
compliance.

The HAE accepts 8 kHz signal streams written to its input registers from any ADC source in the system.
The HAE control registers select a set of harmonics (by nth harmonic number) to be monitored. After its
operation is initiated, the HAE autonomously measures the precise frequency and phase of the input wave-
form fundamental to high resolution and calculates V/I phase angles and power factors. The power level
that the HAE detects in each selected harmonic is also reported with high accuracy.

INTRODUCTION
ON CHIP PERIPHERALS

1–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Sinus Cardinalis Filter Unit (SINC)

The SINC filter unit is an accelerator which provides glueless connection to multiple Sigma-Delta voltage-
isolated ADCs. Each SINC data channel provides a pair of filter engines, a primary and a secondary filter.
The primary filter is used to integrate and differentiate the bitstream, decimating its sample rate by a rate
up to 256:1 as required for the desired SNR, to scale and additively offset the data, and to deliver the
resulting 16-bit samples directly to any memory space on- or off-chip. The secondary filter is used to
provide low-latency limit comparison to rapidly detect over-range conditions on the same channel
without compromising SNR on the primary data stream.

The SINC filter provides two timebase generators to which the four available data channels may be
assigned as a group, in any combination. Each timebase generator produces a modulator clock (MCLK)
for driving the external ISO-ADCs in the channel group, where the MCLK derived from the system clock
by a programmable divisor.

The SINC filter provides a set of interrupts and TRU trigger event signals for flexible system control.

Reset Control Unit (RCU)

Reset is the initial state of the whole processor or one of the cores and is the result of a hardware or software
triggered event. In this state, all control registers are set to their default values and functional units are idle.
Exiting a full system reset starts with the core only being ready to boot. Exiting a core-only reset starts with
the core being ready to boot.

The reset control unit (RCU) controls how all the functional units enter and exit reset. Differences in func-
tional requirements and clocking constraints define how reset signals are generated. Programs must guar-
antee that none of the reset functions puts the system into an undefined state or causes resources to stall.
This is particularly important when only one of the cores is reset (programs must ensure that there is no
pending system activity involving the core that is being reset).

From a system perspective reset is defined by both the reset target and the reset source as described below.

Target defined:

• Hardware Reset - All functional units are set to their default states without exception. History is lost.

• System Reset - All functional units except the RCU are set to their default states.

• Core only Reset - Affects Core only. The system software should guarantee that the core in reset state
is not accessed by any bus master.

Source defined:

• Hardware Reset - The SYS_HWRST input signal is asserted active (pulled down).

• System Reset - May be triggered by software (writing to the RCU_CTL register) or by another functional
unit such as any of the system event controller (SEC), trigger routing unit (TRU), or emulator. inputs.

• Core-only reset - Triggered by software.

INTRODUCTION
BOOTING

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 1–21

• Trigger request (peripheral).

Booting

The processor has several mechanisms for automatically loading internal and external memory after a
reset. The boot mode is defined by the SYS_BMODE input pins dedicated for this purpose. There are two
categories of boot modes. In master boot modes, the processor actively loads data from a serial memory.
In slave boot modes, the processor receives data from external host devices.

The boot modes are shown in the SYS_BMODE Selections and Boot Modes table. These modes are imple-
mented by the SYS_BMODE bits of the RCU_CTL register and are sampled during power-on resets and
software-initiated resets.

System Watchpoint Unit

The System Watchpoint Unit (SWU) is a single module which connects to a single system bus and
provides for transaction monitoring. One SWU is attached to the bus going to each system slave. The SWU
provides ports for all system bus address channel signals. Each SWU contains match groups of registers
with associated hardware. These SWU match groups operate independently, but share common event
(interrupt, trigger, etc.) outputs.

Table 1-2: SYS_BMODE Selections and Boot Modes

SYS_BMODE[1:0] Setting Description

 00 No boot/Idle. The processor does not boot. Rather the boot kernel
executes an IDLE instruction.

 01 Flash Boot. Boot from integrated Flash memory. For derivatives with
no flash, the processor boots through the SPI0 peripheral configured
as a master.

 10 SPI Slave Boot. Boot through the SPI0 peripheral configured as a
slave.

 11 UART Boot. Boot through the UART0 peripheral configured as a
slave.

INTRODUCTION
SYSTEM WATCHPOINT UNIT

1–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–1

2 ARM Cortex-M4 Core Memory Sub-System

The ADSP-CM40x family of processors are based on the ARM® Cortex®-M4 processor core with floating-
point unit and integrated SRAM memory, flash memory, accelerators, and peripherals.1 The ADSP-
CM40x provides sufficient memory to support micro-controller based applications. This memory includes
384K bytes of internal SRAM that can be partitioned in to blocks of code and data (64K bytes of configu-
rable memory blocks). The processor also includes a static memory controller for interface to external
devices or memories. The Cortex memory interface includes support for two SPI based flash memories
(one within the ADSP-CM40x and another external SPI flash) that can be memory-mapped for high
performance code execution through SPI quad/dual I/O read modes. An included internal 16K byte code
cache improves the execute-in-place functionality of flash memories significantly.

Note the following terms, which are used in this chapter:

• Cortex core refers to the ARM Cortex-M4 core with floating-point support and core peripherals.

• Cortex memory refers to the portions of the Cortex memory map that are part of the memory model for
the Cortex core (for example, SRAM and Cache), but are not part of the system memory (memory
mapped registers) or external memory.

• ADSP-CM40x processor or processor refers to the combination of the Cortex core, Cortex memory,
system peripherals (for example, UART, SPI, and SPORT), and system memories.

This document describes the ARM Cortex-M4 core and memory architecture used on the ADSP-CM40x
processor, but does not provide detailed programming information for the ARM processor. For more
information about programming the ARM processor, visit the ARM Information Center:

• http://infocenter.arm.com/help/

The applicable documentation for programming the ARM Cortex-M4 processor include:

• Cortex®-M4 Devices Generic User Guide

• CoreSight™ ETM™-M4 Technical Reference Manual

• Cortex®-M4 Technical Reference Manual

1.ARM® and Cortex® are registered trademarks of ARM Limited. Where noted, portions of this chapter have been reproduced with permission
from ARM Limited. These indicated sections are © 2007-2010 ARM Limited.

http://infocenter.arm.com/help/

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 MEMORY FEATURES

2–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Cortex-M4 Memory Features

The ARM Cortex-M4 core memory architecture includes the following features:

• An internal memory sub-system supporting:

– Up to 384K bytes of zero waitstate and configurable SRAM

– 16K bytes of zero waitstate code cache

– 32K bytes of boot ROM

• A high performance bus architecture involving:

– Cortex core internal bus matrix

– Memory bus matrix that connects to the Cortex core over the I-Code, D-Code, and SYS buses

• Cacheable external-memory interfaces, which support:

– 32M byte x up to 4 banks of static memory control connected to asynchronous memories (SRAM,
flash, FPGA)

– 2M bytes of internal SPI flash (within ADSP-CM40x package)

– Up to 16M bytes of external SPI flash

Cortex-M4 Memory Functional Description

The following sections provide the functional description for the Cortex-M4 core memory sub-system:

• ADSP-CM40x M4P Register List

• ADSP-CM40x M4P Interrupt List

• Cortex-M4 Memory Internal Buses Block Diagram

• Cortex-M4 Memory Map

• Cortex-M4 Memory for the ADSP-CM40x

• Cortex-M4 Memory - Bit Banding

• Cortex-M4 Memory - Translation Memory Blocks (MEMX and MEMY)

• Cortex-M4 Memory - Synchronization Sequence

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 MEMORY FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–3

ADSP-CM40x M4P Register List

The ARM Cortex-M4 platform (M4P) module provides the interface to the L1 code cache and the main
SRAM. A set of registers govern M4P operations. For more information on M4P functionality, see the M4P
register descriptions.

Table 2-1: ADSP-CM40x M4P Register List

Name Description

M4P_CACHE_CFG Code Cache Configuration and Status Register

M4P_CACHE_PEADDR Code Cache Parity Error Address Register

M4P_CACHE_MEMX MEMX Space Configuration Register

M4P_CACHE_MEMY MEMY Space Configuration Register

M4P_SRAM_CFG SRAM Configuration Register

M4P_SRAM_PEADDR_CORE SRAM Parity Error Address (Core) Register

M4P_SRAM_PEADDR_DMA SRAM Parity Error Address (DMA) Register

M4P_BUSFLT Bus Fault Error Information Register

M4P_STCALIB SysTick Calibration Register

M4P_CACHE_CNTCTL Cache Counter Control Register

M4P_CACHE_IREF Cache ICODE Reference Counter Register

M4P_CACHE_DREF Cache DCODE Reference Counter Register

M4P_CACHE_IMISS Cache ICODE Miss Counter Register

M4P_CACHE_DMISS Cache DCODE Miss Counter Register

M4P_CACHE_IFILL Cache ICODE Line Fill Counter Register

M4P_CACHE_DFILL Cache DCODE Line Fill Counter Register

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 MEMORY FUNCTIONAL DESCRIPTION

2–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x M4P Interrupt List

Cortex-M4 Memory Internal Buses Block Diagram

The ARM Cortex-M4 core and memory architecture has two types of buses for instruction access: I-Code
and D-Code. I-Code is for accessing instructions, and D-Code is typically meant for literals used in the
instruction assembly language. The SYS bus is used to access the data. These buses are further distributed
to the internal memories (cache, SRAM, boot ROM) through a bus matrix. MEM buses (MEM_ICODE,
MEM_DCODE, MEM_SYS) are the memory buses that connect to the user-configurable internal SRAM
space. Depending on the configuration (partitioning between CODE and DATA), these buses are inter-
faced to code blocks (over the D-Code, I-Code buses) or to data blocks (through the SYS bus) The cache
memory only has code buses involved, because it resides in the memory region and is meant for acceler-
ating execution speed when executing instructions from flash memories. Accesses to memories in the
SYSCLK domain must be through the system fabric interface, and these can incur additional latencies.

The ARM Cortex-M4 core and memory architecture does not have a strict memory space definition for
code and data access, within each other’s memory space. In other words, the Cortex core permits placing
data in code regions and vice versa; this may not be optimal because it causes bus contention. Because the
internal SRAM supports user partitions between code and data (up to 6 partitions), there is typically no
need to inter-mix the placements. Similarly, code cache can be used to cache raw user data (such as arrays
or buffers) through the D-Code interface to the cache memory.

Table 2-2: ADSP-CM40x M4P Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

2 M4P0_L1CC_PERR M4P0 L1 Cache Code Parity Error PULSE/EDGE

3 M4P0_CORE_SRAM_PERR M4P0 SRAM Core Parity Error PULSE/EDGE

4 M4P0_DMA_SRAM_PERR M4P0 SRAM DMA Parity Error PULSE/EDGE

5 M4P0_BUS_FAULT M4P0 Bus Fault PULSE/EDGE

6 M4P0_LOCKUP M4P0 Lockup Error (Fault only; not an
interrupt)

7 M4P0_SRAM_PERR_FLT M4P0 SRAM Parity Error (Fault only; not an
interrupt)

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 MEMORY FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–5

Figure 2-1: Internal Buses of the ARM Cortex-M4 Core and Memory Architecture

Cortex-M4 Memory Map

The ADSP-CM40x processor uses the standard memory map/model, which is documented for the ARM
Cortex-M4 core. By retaining the standardized memory mapping, it becomes easier to port applications
across ARM Cortex-M4 based products. Only the physical implementation of memories inside the ADSP-
CM40x memory model differs from other vendors. The ADSP-CM40x processor has a fixed default
memory map that provides up to 4GB of addressable memory. For the ADSP-CM40x processor memory
map, see the product data sheet.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 MEMORY FUNCTIONAL DESCRIPTION

2–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Cortex-M4 Memory for the ADSP-CM40x

The ARM Cortex-M4 core memory sub-system of the ADSP-CM40x processor provides a number of
memory types:

• Code RAM and Data RAM

The processor has in-built SRAM support that can be configured as blocks of 64K bytes between code
and data memory spaces. Up to 6 such blocks are available for configuration. The total space is always
limited by the maximum size of SRAM (see data sheet). The code space typically contains instructions
and literal (constant) data. It supports read/write access by the Cortex core and read/write DMA access
by system devices. Data SRAM space can contain read/write data and can also be accessed by the Cortex
core and DMA.

• Boot ROM

The processor has several mechanisms for automatically loading internal and external memory after a
reset. A 32K byte boot ROM is executed at system reset in order to perform all boot-related function-
ality. This space supports read-only access by the Cortex core only. Refer to the Boot ROM and Booting
the Processor chapter for more information on how the ROM operates and how booting is performed.

• Internal Quad SPI Flash (within package)

The processor contains a 2M byte flash memory space that is memory mapped for the Cortex core to
access directly. This space can contain instructions and literal (constant) data. The space supports read-
only access by the Cortex core. Write accesses to this space are ignored. Programming of the flash
device is performed using the register access interface on the SPI2 peripheral. Code access from SPI2
flash is cacheable through MEMX space.

• External SPI Flash

The processor optionally may be connected to up to 16M bytes of external flash memory through the
SPI0 peripheral, which is memory mapped for the Cortex core to access directly. The external flash is
similar to the integrated SPI flash code space: Read-only, cacheable, and programmed using the SPI0
register interface. Code access from SPI0 flash is cacheable through MEMY space.

• External Asynchronous Memory Banks

The static memory controller (SMC) may be programmed to control up to four banks of external
memories or memory-mapped devices, with very flexible timing parameters. Each bank occupies a
32M byte segment regardless of the size of the device used, so that these banks are only contiguous if
each is fully populated with 32M bytes of memory. Typical use of SMC memory banks is to use an
external SRAM for extending the memory availability in the system. Refer to the Static Memory
Controller chapter for more information. Code access from SMC is cacheable through MEMY space.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 MEMORY FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–7

Cortex-M4 Memory Map - Code and Data Regions

The Cortex memory code region has the following features:

• Performs accesses on I-Code (read) and D-Code (read/write) interfaces

• Contains the following:

– 4K byte boot ROM

– SRAM ConfigBanks, as configured

– Internal Flash

The SRAM region has the following features:

• The Cortex core performs accesses on the SYS (read/write) interface

• In the ADSP-CM40x Cortex-M4 Platform, this region contains

– SRAM ConfigBanks, as configured

The Cortex memory provides a bit-banding alias region for the address region containing the main SRAM,
mapping each 32-bit word in SRAM to 32 1-bit words in the alias region.

Cortex-M4 Memory Accessibility - Cortex Core Perspective

Table 2-3: Memory Accessibility – Cortex Core Perspective

Address Range Range Size Type, Attributes, Access Description

CODE region (I-CODE, D-CODE buses)

0x0000_0000 –0x0000_7FFF 32KB Normal, R/O Boot ROM

0x1000_0000 –0x1005_FFFF Up to 384KB Normal, Non-shareable, R/W Main SRAM, code partition

0x1800_0000 –0x181F_FFFF 2 MB Normal, Non-shareable,
Cacheable, R/O

Cacheable region (MEMX)

0x1900_0000 –0x19FF_FFFF 4 MB Normal, Non-shareable,
Cacheable, R/O

Cacheable region (MEMY)

SRAM region and above (SYS bus)

0x2000_0000 –0x2005_FFFF Up to 384KB Normal, Shareable, Non-
cacheable, R/W

Main SRAM, data partition

0x4000_0000 – 0x401F_FFFF Execute-never (XN), Non-
cacheable

System Space. (interfaced to
CORTEX_SYS bus)

0x5000_0000 – 0x50FF_FFFF Normal, Non-shareable, Non-
Cacheable, R/O

System Space. (interfaced to
CORTEX_SYS bus)

0x6000_0000 – 0x6DFF_FFFF 128 MB Normal, Non-shareable, R/W System Space. Forwarded to
external system (on CORTEX_
SYS port).

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 MEMORY FUNCTIONAL DESCRIPTION

2–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Cortex-M4 Memory Accessibility - User/Application Perspective (Read Access)

In the Memory accessibility – User / Application Perspective (Read access) table, note that:

• Yes – indicates access is allowed.

• No – indicates access is not allowed.

0xE000_0000-0xE00F_FFFF Execute-never (XN), Non-
cacheable

ARM Private Peripheral Bus
(PPB) space

0xF000_0000–0xF000_FFFF Execute-never (XN), Non-
cacheable

Cortex-M4 processor and
memory architecture control
register space

0xF800_0000–0xFFFF_FFFF Execute-never (XN), Non-
cacheable

System registers, forwarded to
external system (on CORTEX_
SYS port)

Table 2-4: Memory accessibility – User / Application Perspective (Read Access)

Access Path/Type Slave Memory Space

Internal
SRAM (Code,

Data)
Peripheral

MMRs
SPI0 Interfaced
External Flash

SPI2 interfaced
Internal Flash

SMC
Interfaced
External
MemoryPath Read Access

Core Core read
(instruction fetch)

Yes No - (‘Device’ space
has Execute-Never
attribute, per ARM)

Yes - (only in
Memory-Mapped
Mode)

Yes - (only in
Memory-Mapped
Mode)

Yes

Core read (memory
load)

Yes Yes Yes - (only in
Memory-Mapped
Mode)

Yes - (only in
Memory-Mapped
Mode)

Yes

Core read from
Device using
peripheral MMRs

Not applicable Not applicable Yes – (Not applicable
in Memory-Mapped
Mode)

Yes – (Not applicable
in Memory-Mapped
Mode)

Not applicable

PDMA Device read using
peripheral’s own
PDMA channel

Not applicable Not applicable Yes – (SPI0 can do
PDMA read from
flash (to SRAM or
SMC)) (Not
applicable in
Memory-Mapped
Mode)

No – SPI2 PDMA
not provided

Not applicable

Slave memory read
by another
peripheral’s DMA

Yes No No – (other
peripherals can’t
DMA from SPI0
slave memory)

No– (other
peripherals can’t
DMA from SPI2
slave memory)

Yes

Table 2-3: Memory Accessibility – Cortex Core Perspective (Continued)

Address Range Range Size Type, Attributes, Access Description

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 MEMORY FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–9

Cortex-M4 Memory Accessibility - User/Application Perspective (Write Access)

In the Memory Accessibility – User / Application Perspective (Write Access) table, note that:

• Yes – indicates access is allowed.

• No – indicates access is not allowed.

MDMA MDMA read from
slave memory space

Yes Yes - (can MDMA
from peripheral
MMRs of only-
CANx, GPIO, TRU,
SEC, USB)

Yes – (only in
Memory-Mapped
Mode)

Yes – (only in
Memory-Mapped
Mode)

Yes

Table 2-5: Memory accessibility – User / Application Perspective (Write Access)

Access Path/Type Slave Memory Space

Internal
SRAM (Code,

Data)
Peripheral

MMRs
SPI0 Interfaced
External Flash

SPI2 interfaced
Internal Flash

SMC
Interfaced
External
memoryPath Write Access

Core Core write (memory
store)

Yes Yes No - (Cache is read-
only)

No - (Cache is read-
only)

Yes

Core write to device
using peripheral
MMRs

Not applicable Not applicable Yes – (Not applicable
in Memory-Mapped
Mode)

Yes – (Not applicable
in Memory-Mapped
Mode)

Not applicable

PDMA Device write - using
peripheral’s own
PDMA channel

Not applicable Not applicable Yes – (SPI0 can do
PDMA write to flash
(from SRAM or
SMC)) (Not
applicable in
Memory-Mapped
Mode)

No – (SPI2 PDMA
not provided)

Not applicable

Slave memory write -
by another
peripheral’s DMA

Yes No No – (other
peripherals can’t
DMA to SPI0 slave
memory)

No – (other
peripherals can’t
DMA to SPI2 slave
memory)

Yes

MDMA MDMA write to
slave memory space

Yes Yes - (can MDMA to
peripheral MMRs of
only- CANx, GPIO,
TRU, SEC, USB)

No – (SPI0 slave
memory port does
not support writes)

No – (SPI2 slave
memory port does
not support writes)

Yes

Table 2-4: Memory accessibility – User / Application Perspective (Read Access) (Continued)

Access Path/Type Slave Memory Space

Internal
SRAM (Code,

Data)
Peripheral

MMRs
SPI0 Interfaced
External Flash

SPI2 interfaced
Internal Flash

SMC
Interfaced
External
MemoryPath Read Access

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 MEMORY FUNCTIONAL DESCRIPTION

2–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Cortex-M4 Memory - Bit Banding

In the Cortex memory, a bit-band region maps each word in a bit-band alias region to a single bit in the
bit-band region. The bit-band regions occupy the lowest 1M byte of the SRAM and peripheral memory
regions. This feature supports the following:

• Bit banding allows physical representation of a stream of bit data.

• Bit banding provides atomic read-modify-write operations to bit data (locked access).

• Bit banding usage typically includes user can access of a bit in an memory mapped register address OR
user toggling a flag in a variable, both in a locked manner.

• Bit banding works with a combination of region and alias, where alias word access is mapped to bit
access in region.

• A word access to the SRAM or peripheral bit-band alias regions maps to a single bit in the SRAM or
peripheral bit-band region

• Bit band accesses can use byte, half-word, or word transfers. The bit band transfer size matches the
transfer size of the instruction making the bit band access.

• Typically, users must write their own macros to access the bit banding regions.
Figure 2-2: 1Bit Band Mapping

1.Figure is from the Cortex®-M4 Devices Generic User Guide. Copyright © 2007-2010 ARM Limited.; included with permission from ARM Limited.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 MEMORY FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–11

Cortex-M4 Memory - Translation Memory Blocks (MEMX and MEMY)

The cache memory resides in the code region of Cortex-M4 memory. The SPI2 interfaced flash available
in the package is also mapped to the code region of Cortex-M4 memory. To improve performance, the
memory accessed through SPI0 and the SMC must also be cached, but these blocks reside outside the code
region. This architecture makes it preferable to have a direct address translation inside the ADSP-CM40x
package. This translation makes sure that all accesses are initiated through D-Code / I-Code, achieving
efficient throughput. Otherwise, the instruction fetches would contend with data accesses on the same SYS
(data) bus. These translation memory blocks are called memory X (MEMX) and memory Y (MEMY).
Noted that the cache controller can only access these memory blocks while making a memory mapped
access from SPI0, SPI2, or SMC interfaced memory.

The translator is assigned for a specific memory space (SPI0 or SPI2 or SMC SRAM) by programming the
MEMX and MEMY registers. The System (Physical), Application (Virtual), and Cache Memory figure
illustrates the flow of a cacheable access as performed by the application. The user only has to ensure that
MEMX and MEMY registers are appropriately programmed and has to build/compile the application code
(using the cache) against these regions.

Figure 2-3: System (Physical), Application (Virtual), and Cache Memory

As shown, data is read from system memory blocks through MEMX or MEMY. When using DMA, the
access must be directly from SPI system memory space. It is possible to directly access the SMC connected
to asynchronous memory without using the MEMX/MEMY locations. Although direct core accesses are
possible, you must still access the memory through MEMX/MEMY if caching is preferred for better
performance.

The control access permission field in the MEMX and MEMY registers set access permissions for accesses
by the core that bypass cache and attempt to access the physical device directly. (Writes might lead to cache
incoherence.)

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CACHE

2–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Note that:

• The physical and logical space of SPI2 internal flash is the same.

• The System (Physical), Application (Virtual), and Cache Memory figure only depicts the most
common use case, involving the internal flash as a device always in use. The MEMX region is typically
always assigned to SPI2 internal flash. The ADSP-CM40x processor allows the application to assign any
memory block (SPI0 flash, SPI2 flash, or SMC SRAM) to either MEMX or MEMY.

Cortex-M4 Memory - Synchronization Sequence

The ADSP-CM40x processor includes multiple bus interfaces, which operate independently. Fetch, load,
and store operations on any of these interfaces may cause side effects to be visible on the other interfaces
(for example, reading I-Code after writing D-Code) or visible by the processor instruction sequence (for
example, interrupts). When the precise order of these operations is important, synchronization barriers
must be used.

For synchronization between accesses within Main SRAM (I-Code versus D-Code), a barrier instruction
by itself is sufficient: ISB, DSB, or DMB as appropriate. For details, see the ARMv7-M Architecture Refer-
ence Manual.

To synchronize an access to D-Code or System space with context-altering side effects, so that the side
effects are ensured to be visible by a subsequent instruction, a Cortex core system event synchronization
sequence must be used, as follows:

STR xxx; /* instruction with side effects */
SEV; /* Send Event instruction */
xSB; /* ISB (Instruction Sync Barrier) or DSB (Data Sync Barrier)*/
LDR xxx; /* side effects visible */

Cortex-M4 Cache

The ARM Cortex-M4 processor core and memory architecture of the ADSP-CM40x processor includes a
cache controller, accelerating execution-in-place (XiP) from SPI flash. The cache controller features a 16K
byte zero-wait-state cache to store recently used code, without any manual overlay management.

The cache controller and cache memory are intended for program storage (I-Code for instructions and D-
Code for literals). However, the cache also may be employed to store raw user data (such as data buffers).
The cache does not have a write port, so it works only when reading from a cacheable space.

The cache can store code/data from either MEMX or MEMY regions, and these are the actual cacheable
regions. These virtual translation blocks in turn read from SPI0, SPI2, or SMC async banks, based on how
the MEMX/MEMY registers are configured.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CACHE

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–13

Cache Controller Features

The cache controller features include:

• Up to 16K bytes of internal cache space, that can be used to store code or data.

• Support for split or shared cache between I-Code and D-Code space.

• Efficient organization through 8 x 2 KB SRAM banks.

• Way configurations of 4 Ways, 2 Ways, 1 Way

• Line configurations of 32-bits, 64-bits, 128-bits and 256-bits.

• Parity error detection and management.

• Option to bypass cache completely or partially.

• Performance features to improve throughput:

– Linear access

– Wrap-based critical word access

– Merging of continuous linear accesses.

– Preemptive access

Cache Structural Organization

The cache memory is composed of 8 x 2K byte SRAM banks. The cache can be split between I-Code and
D-Code access, although shared cache is preferred in most applications.

The Cache Way Configurations table lists the supported way configurations.

Table 2-6: Cache Way Configurations

M4P_CACHE_CFG.CORG Bit
Field Organization Cache Segregation D-CODE Cache Size, Ways I-CODE Cache Size, Ways

000 Shared 16kB, 4 way 3

001 Shared 16kB, 2 way 2

010 Shared 16kB, 1 way 1

011 Reserved

100 Independent 4 kB, 1 Way 12 kB, 3 Way

101 Independent 8 kB, 2 Way 8 kB, 2 Way

110 Independent 12 kB, 3 Way 4 kB, 1 Way

111 Reserved

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CACHE

2–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The Cache Line Configurations table lists the support line configurations across all way configurations:

A cache line is composed of one or more 32-bit data words, as selected by the CACHE_CFG line size field
(M4P_CACHE_CFG.ILINE or M4P_CACHE_CFG.DLINE). Line sizes from 4 to 32 bytes are supported. Each
word is stored along with an address tag, so processor core accesses can be matched to cache contents (hit
or miss).

A cache set refers to a group of memory words which share the same low-order part of the address, but may
reside in different high-order address locations. The low order address part is called the set address, and
the high order is the tag address. The cache can only hold a limited number of members of the same set.
This is the number of ways. A round robin scheme is used for cache line replacement among the ways in
a cache set.

Each Way is composed of multiple 8K byte SRAM memory banks and the banks are accessed alternately
for efficient access of odd and even addresses. Inside each bank, there are a total of 512 rows of 32-bit
words.

The cache is enabled by default and the default settings in the cache configuration register are typically
optimal to run most applications. Only special cases, such as wrap mode or command skip modes, must
be configured in conjunction with similar settings in the SPI controller and flash memory. In the default
use case, even the MEMX is assigned to internal flash. This means the user need not worry about setting
up the cache controller or MEMX.

Table 2-7: Cache Line Configurations

 Line Configuration

32-bit

64-bit

128-bit

256-bit

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CACHE

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–15

Figure 2-4: Cache Ways and Lines in default configurations

Clearing the Cache

The cache and its associated state machine (TAG, valid, parity, and others) are cleared by hardware in any
of the following situations:

• De-assertion of reset

• Writing a 1 to the cache clear request bit (M4P_CACHE_CFG.CLEAR)

• A change to cache configuration selected by the cache organization bits (M4P_CACHE_CFG.CORG)

CAUTION: Hardware clearing of cache after the de-assertion of reset is required to avoid false parity errors.

Bypassing the Cache

Cache access can be bypassed by setting the configuration as partial bypass (cache miss bypass) or full
bypass (both cache miss and cache hit bypass). The application may bypass the cache any time during
execution, thus preserving the contents of cache when the banks are full (a cache miss can update cache

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CACHE

2–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

memory), but at the cost of additional cycles for execution. Bypassing is available in both CMODE (cache
mode without parity error) and PEMODE (cache mode with parity error) operation.

Using the Cache Counters

Counters are provided for application diagnostic purposes:

• Reference counters (M4P_CACHE_IREF and M4P_CACHE_DREF) count references (read accesses) through
ICODE and DCODE

• Miss Counts (M4P_CACHE_IMISS and M4P_CACHE_DMISS) count references that were misses (so hits =
references - misses)

• Line Fill Counters (M4P_CACHE_IFILL and M4P_CACHE_DFILL) count line fills first triggered by each
ICODE, DCODE interface

• Each of the six counter registers has 24 bits (max range 16M counts) plus a sticky overflow bit.

The counter enable bit (M4P_CACHE_CNTCTL.ENCNT) enables counting and if this bit is zero, counters stop
counting but they still hold their value at that instance. The user can also specify whether to count only
committed accesses, or speculative accesses. User can zero all the counters at one shot by setting the M4P_
CACHE_CNTCTL.CNTZERO bit. When used in combination with the M4P_CACHE_CNTCTL.SAMPLE bit, it saves
the counts to the shadow registers and then clears the live counts, so no event gets dropped or double
counted.

When the M4P_CACHE_CNTCTL.SAMPLE bit is set to 1, all the counters are sampled at once to a shadow set
of registers for later inspection, while the real counters continue to count. The M4P_CACHE_CNTCTL.
SAMPLE bit must be written back to 0 to see the live, up-to-date counters. This can be used to take a snap-
shot of the counters at an instant in time, so that combinations of register values (for example, references-
misses) are legal and meaningful. Otherwise, if you sampled the live counters and read the number of refer-
ences followed by the number of misses, there might be some new misses that came in between the two
reads which would not be in the references count, so the number of hits would be calculated incorrectly.

Using Cache Parity Control

Cache line data and attributes are parity protected (this encompasses all internal SRAM usage by cache).
Parity errors may be ignored, until they are associated with a cache set being returned to the processor.
Any parity errors encountered during normal cache fetching (Code/Data FETCH asserted) trigger data
reacquisition from backing memory, but only if data is immediately required by the processor. Data is not
be automatically re-acquired if a parity error is associated with a way which does not tag match.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CACHE

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–17

Figure 2-5: Parity Error Interrupt Generation

The Parity Error Interrupt Generation figure shows the cache parity control logic. Whenever a parity
error interrupt is requested, status bit PIRQ will be asserted. Writing a “1” to this status bit clears the inter-
rupt request. Status bit PERR (Parity Error) will be asserted if any cache Way of a cache Set associated with
a fetch return to the processor has a parity error. Whenever PERR is asserted, PIRQ bit will also be asserted
if PMSK bit (Parity Error Mask) isn’t asserted. PERR is cleared whenever PIRQ is cleared.

On a rising edge of PIRQ, the location of the triggering parity error will be copied into the Parity Error
Address register. The cache state machine memory also provides parity error indication and contributes
to parity error (PERR). This internal memory does not provide corrective mechanism as are found in the
cache memory banks. Parity errors of the Cache State Machine memory do not increment PCNT.

The M4P_CACHE_CFG.PLIM bit field represents a user specified limit for PCNT[2:0]. PCNT[2:0] is incre-
mented each time a word is fetched from backing memory due to a cache miss with an associated parity
error and is cleared whenever PIRQ is cleared (whenever a 1 is written to bit PIRQ). Because fills prefer-
entially overwrite cache ways which have parity errors, PCNT[2:0] does not over count the number of
words in cache which were corrupted and resulted in hardware correction.

The a user may prefer to allow hardware to service a number of parity errors without the processor being
notified. Multiple parity errors in multiple ways cause a single hardware correction fetch. PCNT only
increments by 1.

On PIRQ being asserted, cache mode immediately switches from that specified by the M4P_CACHE_CFG.
CMODE bits to that specified by the M4P_CACHE_CFG.PEMODE bits. Switching cache mode on parity error
allows cache forwarding and updating behavior to be immediately modified according to user specifica-
tions.

• If in cache mode 00 (M4P_CACHE_CFG.PEMODE), cache is fully operational:

– Cache contents are returned to the processor upon fetches with cache hits (TAG matches)

– Cache contents are updated from backing memory upon fetches with cache misses

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CODE AND DATA SRAM

2–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• If in cache mode 01 (M4P_CACHE_CFG.PEMODE), cache forwards but does not update:

– Cache contents are returned to the processor upon fetches with cache hits (TAG matches)

– Cache contents are not updated from backing memory upon fetches with cache misses (return from
backing memory provided only to processor)

• In cache mode 11 (M4P_CACHE_CFG.PEMODE), cache forwarding and updating are both disabled (or
known as “Fully bypassed”)

– This allows direct access of backing memory rather than forwarding from cache, and preserves state
of cache

Cortex-M4 Code and Data SRAM

The unified internal SRAM space provides both code and data memory for the ARM Cortex-M4 processor
core, allowing a configurable partition between code and data space. In addition, the SRAM features a
DMA access port for read/write access by other master devices on the system fabric. The SRAM and all its
interfaces operate in the ARM Cortex-M4 core clock domain (CCLK). The SRAM supports exclusive
accesses. The SRAM can be accessed at the maximum CCLK speed in zero-wait-state. For access timing
information, see the product data sheet.

SRAM Features

The SRAM has the following features:

• Up to 384K byte SRAM Capacity

• Zero wait-state performance at maximum CCLK speed

• Dynamically configurable between code space and data SRAM space partitions

• Byte parity protection

• Exclusive access support

• Two 32-bit buses for ARM Cortex-M4 core access to code space (MEM_ICODE, MEM_DCODE)

• One 32-bit bus for ARM Cortex-M4 core access to SRAM space (MEM_SYS)

• One 32-bit bus for system DMA access to code and SRAM spaces (SRAM_DMA)

– Supports one DMA access, read or write, per core clock at maximum CCLK speed

• Defined maximum DMA response latency due to collisions with core activity (8 cycles maximum)

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CODE AND DATA SRAM

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–19

SRAM Block Diagram

The ARM Cortex-M4 SRAM Block Diagram figure shows the structure of the SRAM and associated
buses.

Figure 2-6: ARM Cortex-M4 SRAM Block Diagram

SRAM Bank Organization on ADSP-CM40x

The SRAM resources are divided into banks for efficiency (as shown in the SRAM Address Fields And
Mapping figure), reducing the conflicts between accesses from various sources. These sources include:
core fetch versus core load/store versus DMA. Usually, a user does not need to worry about the internal
SRAM organization, other than the conflict management case:

• MSB Striping (banking) divides memory by 64K byte regions into separate ConfigBanks

Accesses to different ConfigBanks never cause conflict.

• LSB striping divides memory into four 32-bit lanes, so that accesses in different lanes do not conflict.

Effect is that randomly distributed memory accesses within the same 64K byte ConfigBanks only cause
stalls 25% of the time.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CODE AND DATA SRAM

2–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 2-7: SRAM Address Fields And Mapping

NOTE: Some ADSP-CM40x processors have only 128K bytes of SRAM space. (For information regarding
SRAM sizes for specific products, see the product data sheet.) For these processor, only the highest
data bank and lowest code bank are valid out of the 64K byte x 6 regions.

You can choose any of the configuration (available ones are: 1 CODE and 1 DATA, 2 CODE, or 2
DATA), as long as only these two bank regions are accessed.

Table 2-8: SRAM Address Fields And Mapping

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 MSB (CfgBank) Word Address (12 bit, 4K) LSB
(ArrayBank

)

 W (x32)
(Byte)

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CODE AND DATA SRAM

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–21

SRAM Partitioning using ConfigBanks

The address range of main SRAM depends on the configuration settings in the M4P_SRAM_CFG.CDBANKS
register field (see SRAM Bank Configuration figure).

The memory resources in the ARM Cortex-M4 memory main SRAM are divided into two or more Config-
Banks. Each ConfigBank may appear in either the code or the SRAM region, but may not appear in both.
The settings in the supervisor-only M4P_SRAM_CFG.CDBANKS register field specify how many contiguous
ConfigBanks appear in the code segment, starting at the lowest address. The remaining ConfigBanks
appear in a continuous address range in the data segment, starting at the highest populated address.

Figure 2-8: Memory Map Configuration, Code and SRAM Regions

NOTE: When the value of M4P_SRAM_CFG.CDBANKS is changed, resulting in changes to the populated
regions in the memory map, the contents of newly-accessible memory ranges are UNSPECIFIED.
The user should not assume that the contents of any specific memory range are transferable
between the code region to the SRAM region when M4P_SRAM_CFG.CDBANKS is changed.

It is important to manage the M4P_SRAM_CFG.CDBANKS field when booting or initializing an application,
so that the memory map intended by the user is configured before the application is copied from the boot

Table 2-9: SRAM Bank Configuration Base Addresses

Config 31 30 29 28 27 26 25 24 23 22 21 20 Description

CODE 0 0 0 1 0 0 0 0 0 0 0 0 CODE at 0x1000_0000

DATA 0 0 1 0 0 0 0 0 0 0 0 0 DATA at 0x2000_0000

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CODE AND DATA SRAM

2–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

source into the active locations in the code or SRAM regions. For example, the user may choose a linker
control file which specifies 256K bytes of code and 128K bytes of data SRAM. The linker may automatically
support copying read-only sections of the application from nonvolatile (flash) memory regions to the
SRAM regions at start up time in an initialization function. It is important that the M4P_SRAM_CFG.
CDBANKS field is initialized to the intended value before initialization is called. This might be performed in
the reset handler.

Note that the initial SP (stack pointer) recorded in the vector table should be set to point to the top of popu-
lated data SRAM. This address is always populated as long as there is at least one ConfigBank allocated to
data.

The following code and SRAM partition figures show code and SRAM partitions for implementations with
6 configured banks. These demonstrate the difference in partition configuration, comparing SRAM_
CODE =1 versus SRAM_CODE =5.

Figure 2-9: SRAM Code and SRAM Partitions for SRAM_CODE =1

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CODE AND DATA SRAM

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–23

Figure 2-10: SRAM Code and SRAM Partitions for SRAM_CODE =5

Main SRAM Memory Attributes

The memory attributes of main SRAM include its memory type, ordering, share features, cached features,
and access rights. For more information on the ARM architecture memory model, see the ARM v7-M
Architecture Reference Manual (A3 ‘ARM Architecture Memory Model’ section).

• Normal - The main SRAM is a normal type memory, as distinguished from device and strongly-
ordered memory. This means it does not have side effects from reads or writes, that repeated reads and
writes have no additional effect, and accesses may be merged by the ARM Cortex-M4 core or the DMA
system without changing behavior. (It does not consist of memory-mapped control registers or FIFOs.)

• Little-Endian

• Shareable - The main SRAM is shareable, which means the SRAM may be accessed by multiple masters
in the system (for example, the ARM Cortex-M4 core and DMA channels). The main SRAM imple-
ments a global exclusive monitor, permitting synchronization semaphore operations (such as LDREX
and STREX) to work properly.

• Cacheability - The main SRAM is not itself a cache and is not supported by any other cache; its cache-
ability attribute is unspecified.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CODE AND DATA SRAM

2–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Ordering - Because the main SRAM is a normal type memory, it has a weakly consistent memory
access ordering model. In general, memory barrier operations are required to control the order of
memory operations when multiple masters (observers) are involved.

• Access Rights - The main SRAM access rights are defined by the programming of the MPU. There is
no inherent restriction on privilege level or on suitability for execution. The Cortex memory main
SRAM hardware disregards the protection and attribute signals from the Cortex core interfaces.

SRAM Interface Coherence Specification

The SRAM coherence relations are defined among the four data interfaces on the main SRAM. Note that
this is a definition of the ordering relationships of interface transactions, which is not necessarily the same
as the ordering model of instructions at the software programmer’s application level. For more informa-
tion on the ARM architecture memory ordering model, see the ARM v7-M Architecture Reference Manual
(‘Memory access order’ section).

The Coherence Relations for SRAM Data Interfaces table summarizes the coherence relations among the
four data interfaces on the main SRAM.

Some important points to keep in mind regarding the coherence relations include:

• Each of the four interfaces is coherent with itself. For example, any successful (non-error) write on an
interface is visible to all subsequent reads on the same interface.

• All ARM Cortex-M4 core ports must be coherent with one another. Because the MEM_SYS port’s
address map does not overlap with the other two, no coherence relationship between them is defined.
The overall relation reduces to the statement that the MEM_ICODE port is coherent with the MEM_
DCODE port. A write on the MEM_DCODE interface is visible by all subsequent non-simultaneous
read transactions on MEM_ICODE.

• The MEM_xCODE and MEM_SYS interfaces are not coherent with SRAM_DMA. A write on the
SRAM_DMA interface is not necessarily visible by subsequent reads on MEM_xCODE or MEM_SYS
(and vice versa), unless a Cortex memory system synchronization barrier sequence is used.

Table 2-10: Coherence Relations for SRAM Data Interfaces

Cortex-M4 Port Reads System Reads

MEM_ICODE MEM_DCODE MEM_SYS SRAM_DMA

Cortex-M4 Port
Writes

MEM_ICODE n/a n/a n/a Non-Coherent

MEM_DCODE Coherent Coherent n/a Non-Coherent

MEM_SYS n/a n/a Coherent Non-Coherent

System Writes SRAM_DMA n/a n/a Non-Coherent Coherent

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CODE AND DATA SRAM

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–25

Using Synchronization to Achieve SRAM Coherency

System Synchronization assures that a forced coherency can be achieved with otherwise non-coherent
ports. There are basically two cases that can arrive at user level, when it comes to non-coherency, as consis-
tent with the above table. The following sequences show the scenarios to insert a synchronization sequence
between core and DMA accesses.

The order of operations to achieve SRAM coherency for a core write followed by a DMA read are:

1. Core Write

2. System Synchronization

3. DMA read

The order of operations to achieve SRAM coherency for a prioritized DMA write (automatically done in
hardware when DMA is held off for 8 clock cycles) followed by a core read are:

1. Core Write

2. System Synchronization

3. DMA write

4. Core read

SRAM Write Buffers

The SRAM implements write buffers for temporarily storing a write transaction received on an interface
that has not yet been physically written into the memory array. Subsequent reads which match the address
stored in a write buffer will be forwarded to the interface performing the read, to the extent required to
satisfy the requirements of interface coherence. The following write buffers are defined:

• DCODE interface write buffer – one 32-bit transaction

• CSYS interface write buffer– one 32-bit transaction

• SRAM_DMA interface write buffer– one 32-bit transaction

If an interface receives another write transaction while the corresponding write buffer is occupied, the
interface is stalled.

SRAM Write Collisions and Write Priority

If two interfaces receive simultaneous, non-exclusive write transactions targeting one or more bytes with
matching system memory addresses, then a write collision is said to have occurred. A priority scheme is
used to determine which data will be stored in the memory. Write collisions are not errors. Instead, the

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CODE AND DATA SRAM

2–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

collisions are handled as if the two transactions had occurred one after another, with the highest priority
access occurring last (and thus storing the final value in the memory).

Write priority is determined in the following order:

• DCODE and CSYS interfaces have the highest priority. Because these interfaces target disjoint memory
spaces, the priority between them is neither significant nor defined.

• SRAM_DMA has lower priority.

SRAM Access Collisions, Priority, and Stalling

Each ArrayBank is a single-ported SRAM unit. It can only perform one transaction in each CCLK cycle,
whether read or write. Access collisions are possible when more than one access is attempted to the same
ArrayBank, due to the following considerations:

• Read transactions on up to three interfaces may target a given ArrayBank at the same time (depending
on partitioning).

• Write transactions stored in write buffers may also compete to access an ArrayBank. Due to the pipe-
lined nature of writes, a write may collide with a read on the same interface (for example, a write
followed by a read, if not colliding at a matching address so as to permit forwarding.)

• Write buffers have variable priority depending on whether a write is stalled due to the write buffer
being full.

DMA transactions also have variable priority, in order to guarantee a maximum response latency to the
system fabric.

For ConfigBanks assigned to the CODE region, the possible competing access sources are: DCODE read,
ICODE read, DCODE write buffer, and SRAM_DMA. For ConfigBanks assigned to the SRAM (data)
region, the possible competing access sources are: CSYS read, CSYS write buffer, and SRAM_DMA. The
priority in which conflicting sub-transaction accesses to the same LSB-striped ArrayBank are resolved is
as follows:

1. High-Priority DMA has highest priority. This is a transaction on the SRAM_DMA interface which has
been stalled and whose stall counter has reached its maximum value (8-1). On the 8’th cycle, the
priority of the DMA access is elevated to the highest level and completes immediately.

2. DCODE-READ has next highest priority.

3. High-Priority Write is next. This is a transaction in either the DCODE or CSYS write buffer (but not
both) as appropriate to the partition assignment of the containing ConfigBank, where (a) the write
buffer is full and (b) another write transaction is being attempted on the corresponding DCODE or
CSYS interface, causing a stall of that interface. In this event, the priority of that write buffer is elevated.

4. ICODE-READ has next highest priority.

5. Normal-Priority Write is next.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CODE AND DATA SRAM

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–27

6. Normal-Priority DMA has the lowest priority.

SRAM Exclusive Accesses, Global Exclusive Monitor

The SRAM memory has the ARM memory model attributes of normal, shareable memory. Exclusive
accesses to this memory space are supported, thus providing semaphores between two software tasks. The
main SRAM thus provides a global monitor for exclusive operations, as specified in the ARMv7-M Archi-
tecture Manual.

The ARM Cortex-M4 instruction set includes pairs of synchronization primitives. These provide a non-
blocking mechanism that a thread or process can use to obtain exclusive access to a memory location. Soft-
ware can use them to perform a guaranteed read-modify-write memory update sequence, or for a sema-
phore mechanism.

A pair of synchronization primitives comprises:

• A load-exclusive instruction

Used to read the value of a memory location, requesting exclusive access to that location.

• A store-exclusive instruction

Used to attempt to write to the same memory location, returning a status bit to a register. If this bit is:

– 0 - It indicates that the thread or process gained exclusive access to the memory, and the write
succeeds.

– 1 - It indicates that the thread or process did not gain exclusive access to the memory, and no write
was performed.

The pairs of load-exclusive and store-exclusive instructions are:

• the word instructions LDREX and STREX,

• the halfword instructions LDREXH and STREXH, and

• the byte instructions LDREXB and STREXB.

NOTE: The effect of the CLREX instruction on the global monitor is UNDEFINED.

If the configuration of the SRAM banks is changed (by modifying the M4P_SRAM_CFG register),
the states of all active exclusive memory monitors are unspecified.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
CORTEX-M4 CODE AND DATA SRAM

2–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SRAM Parity Protection

Parity protection is available for all banks of SRAM. Features include:

• Works for both code and data (the entire SRAM is parity protected)

• Error detection can be enabled separately for core and DMA

• Dedicated interrupt to inform user about parity errors

• Status registers to show what interface triggered the error (I-Code, D-Code, SYS)

The M4P_CACHE_CFG register configures core and DMA parity error generation. The M4P_SRAM_PEADDR_
CORE register displays the status of parity errors detected in main SRAM resulting from transactions initi-
ated by the Cortex-M4 core.

• The register captures the address and byte mask of the first parity error(s) detected in any aligned 32-
bit word since the last time the corresponding parity error status was cleared in M4P_SRAM_CFG.
PERRCORE.

• If core parity error interrupts are enabled in M4P_SRAM_CFG.PERRCORE and a parity error is detected on
a core interface, an M4P0_L1CC_PERR SRAM (parity error in code space) interrupt is asserted.

The M4P_SRAM_PEADDR_DMA register displays the status of parity errors detected in main SRAM resulting
from transactions initiated by the DMA interface.

• The register captures the address and byte mask of the first parity error(s) detected in any aligned 32-
bit word since the last time the corresponding parity error status was cleared in M4P_SRAM_PEADDR_
DMA.STAT.

• If DMA parity error interrupts are enabled by M4P_SRAM_CFG.PERRDMA and a parity error is detected
on the DMA interface, an M4P0_L1CC_PERR SRAM (parity error in code space) interrupt is asserted.

SRAM Posted System Writes (NormSysWrite versus PostSysWrite)

The M4P_SRAM_CFG.POSTWR bit controls the behavior of nonexclusive writes by the ARM Cortex-M4 core
to system space (outside the ARM Cortex-M4 memory). This allows control of the trade off between
performance and precise error detection.

In NORMSYSWRITE mode (M4P_SRAM_CFG.POSTWR =0), non-exclusive ARM Cortex-M4 core writes to
system space are performed with normal system fabric (bus interconnect) write transactions. The Cortex
core must wait several core clock cycles for the target peripheral or device to return a bus response (OKAY
or ERROR) before proceeding with further instructions. If an ERROR response is returned, the Cortex
core generates a precise HardFault exception at the instruction that caused the error. Typically, an ERROR
response results from an invalid address, an invalid data size, or a protection violation such as writing to a
read-only location or accessing a privileged resource in non-privileged mode.

In POSTSYSWRITE mode (M4P_SRAM_CFG.POSTWR =1), non-exclusive ARM Cortex-M4 core writes to
system space are posted, meaning that the Cortex memory interface accepts the write transaction from the

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–29

Cortex core and immediately returns an OKAY response. The Cortex core proceeds with subsequent
instructions, while independently, the Cortex memory interface forwards the posted write to the system
fabric (bus interconnect). Only one write may be posted at any time, so if a subsequent write arrives while
the first is pending, the Cortex core is stalled until the Cortex memory interface can accept the new trans-
action.

If a system fabric (bus interconnect) ERROR response is returned from a posted write, the Cortex core
cannot signal an exact HardFault exception because it has already gone on to execute further instructions.
IN this case, the Cortex memory captures the address of the erroneous transaction in the M4P_BUSFLT.
ADDR field, sets the M4P_BUSFLT.STAT bit to 1, and asserts the interrupt. The handler for this interrupt can
determine the offending address using the M4P_BUSFLT register and take appropriate action. The interrupt
is cleared by writing a 1 to the M4P_BUSFLT.STAT bit.

ADSP-CM40x M4P Register Descriptions

ARM Cortex-M4 Platform (M4P) contains the following registers.

Table 2-11: ADSP-CM40x M4P Register List

Name Description

M4P_CACHE_CFG Code Cache Configuration and Status Register

M4P_CACHE_PEADDR Code Cache Parity Error Address Register

M4P_CACHE_MEMX MEMX Space Configuration Register

M4P_CACHE_MEMY MEMY Space Configuration Register

M4P_SRAM_CFG SRAM Configuration Register

M4P_SRAM_PEADDR_CORE SRAM Parity Error Address (Core) Register

M4P_SRAM_PEADDR_DMA SRAM Parity Error Address (DMA) Register

M4P_BUSFLT Bus Fault Error Information Register

M4P_STCALIB SysTick Calibration Register

M4P_CACHE_CNTCTL Cache Counter Control Register

M4P_CACHE_IREF Cache ICODE Reference Counter Register

M4P_CACHE_DREF Cache DCODE Reference Counter Register

M4P_CACHE_IMISS Cache ICODE Miss Counter Register

M4P_CACHE_DMISS Cache DCODE Miss Counter Register

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

2–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Code Cache Configuration and Status Register

The M4P_CACHE_CFG register controls cache configuration and reports cache status. There are no restric-
tions limiting when any of the bits in this register may be changed.

Figure 2-11: M4P_CACHE_CFG Register Diagram

M4P_CACHE_IFILL Cache ICODE Line Fill Counter Register

M4P_CACHE_DFILL Cache DCODE Line Fill Counter Register

Table 2-11: ADSP-CM40x M4P Register List (Continued)

Name Description

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–31

Table 2-12: M4P_CACHE_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29:27
(R/W)

PF Cache Prefetch Control.
The M4P_CACHE_CFG.PF bits control the cache prefetcher. A setting of =000
disables the cache prefetch. Settings of =001 to =111 increase the cache prefetch
prediction interval, where 111 is the most aggressive prediction.

26
(R/NW)

FPEND Cache Line Fill Pending.
The M4P_CACHE_CFG.FPEND bit indicates if any cache line fills are pending in the
system fabric. The bit is set to 1 when a fill is initiated by an ICODE or DCODE cache
miss, or when a speculative ICODE or DCODE cache fill is initiated (if speculative
fills are enabled). The bit is cleared to 0 when all SCB read responses have been
received by the cache and associated data has been drained into the cache tag and
data arrays.

25
(R/W)

NOSPEC Speculative Fetch Control.
The M4P_CACHE_CFG.NOSPEC bit controls speculative fetching.

0 Enable Speculative Fetching

1 Disable Speculative Fetching

24
(R/W1C)

PIRQ Parity Error Interrupt request.
The M4P_CACHE_CFG.PIRQ bit reflects the state of the Parity Error interrupt
request signal provided to the processor. This signal, and this bit, are set if either
PCNT[2:0] (Parity Error Count) is greater than PLIM[2:0] (Parity Error Limit), or if
PERR is asserted while not masked by PMSK (i.e., PERR and !PMSK). This bit is
cleared if a 1 is written to it, unless currently being set. The location of the parity
error which causes this bit to transition from LOW to HIGH is stored in the Parity
Error Address Reporting register.

23
(R/W1C)

PERR Parity Error Indicator.
The M4P_CACHE_CFG.PERR bit is asserted if a fetch return provided to the
processor from cache, prior to corrective action possibly being taken by hardware,
was found to contain a parity error anywhere within the associated cache Set. This bit
is cleared if a 1 is written to it. Unlike PCNT[2:0] which reports parity errors only as
corrective action is necessitated for immediate processor fetch return, this bit reports
all parity errors directly or indirectly associated with return provided to the
processor.

22:20
(R/NW)

PCNT Parity Error Count.
Until saturated at b#111, the M4P_CACHE_CFG.PCNT bits are incremented by
hardware each time a word must be fetched from backing memory due to a cache
miss with an associated parity error. Since hardware never allows Ways with parity
errors to hit, and Ways with parity errors are preferentially chosen for cache
replacement, these bits count the number of parity errors repaired or overwritten.
These bits are cleared whenever a parity error interrupt is cleared, that is, when a 1 is
written to bit PIRQ.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

2–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

19
(R/W)

PMSK Parity Error Mask.
The M4P_CACHE_CFG.PMSK bit selects whether or not a Parity error interrupt is
requested if bit PERR is asserted.

0 Parity error interrupt is requested if bit PERR is
asserted

1 Parity error interrupt is not requested based on state of
bit PERR

18:16
(R/W)

PLIM Parity Error Limit Prior to Interrupt Request.
A Parity Error Interrupt will be requested any time PCNT[2:0] exceeds the limit
specified by the M4P_CACHE_CFG.PLIM bits. These bits therefore specify the
number of parity errors which may be repaired by hardware (through updates
retrieved from backing memory) prior to a Parity Error interrupt being requested.
But, interrupting the processor upon each discovered parity error might not always
be desirable. Note that parity errors do not trigger fetches from backing memory
(increment of PCNT[2:0]) if a cache hit is simultaneously found in a uncorrupted
cache Way.

0 Generate a Parity Error interrupt request if PCNT[2:0]
is 1 or greater

1 Generate a Parity Error interrupt request if PCNT[2:0]
is 2 or greater

2 Generate a Parity Error interrupt request if PCNT[2:0]
is 3 or greater

3 Generate a Parity Error interrupt request if PCNT[2:0]
is 4 or greater

4 Generate a Parity Error interrupt request if PCNT[2:0]
is 5 or greater

5 Generate a Parity Error interrupt request if PCNT[2:0]
is 6 or greater

6 Generate a Parity Error interrupt request if PCNT[2:0]
is 7 or greater

7 Never Generate a Parity Error interrupt request

Table 2-12: M4P_CACHE_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–33

15
(R/W)

DLBF DCODE Cache Line Base First.
The M4P_CACHE_CFG.DLBF bit specifies the first word to be fetched from backing
memory during line fills initiated by DCODE cache misses. Either the critical word,
which is the word requested by the processor which initiated the fill, or the cache line
base may be specified. Critical-word-first fetch has the advantage of reducing the
latency of delivering the word which caused the cache line miss (and thus shortening
the processor stall), but at a potential efficiency cost. Memory systems such as SPI
which support line-wrap accesses may impose an overhead per burst which might be
avoided for linearly incrementing accesses which span multiple cache lines. Line-
base-first mode may offer higher efficiency in such cases.

0 Commence cache fills with critical word (Quicker
critical word return to cache, slower full line retrieval
from SPI memory)

1 Commence cache fills with line base word (Slower
critical word return to cache, quicker full line retrieval
from SPI memory)

14
(R/W)

ILBF ICODE Cache Line Base First.
The M4P_CACHE_CFG.ILBF bit specifies the first word to be fetched from backing
memory during line fills initiated by ICODE cache misses. Either the critical word,
which is the word requested by the processor which initiated the fill, or the cache line
base may be specified. Critical-word-first fetch has the advantage of reducing the
latency of delivering the word which caused the cache line miss (and thus shortening
the processor stall), but at a potential efficiency cost. Memory systems such as SPI
which support line-wrap accesses may impose an overhead per burst which might be
avoided for linearly incrementing accesses which span multiple cache lines. Line-
base-first mode may offer higher efficiency in such cases.

0 Commence cache fills with critical word (Quicker
critical word return to cache, slower full line retrieval
from SPI memory)

1 Commence cache fills with line base word (Slower
critical word return to cache, quicker full line retrieval
from SPI memory)

13:12
(R/W)

DLINE DCODE Cache Fill Line Size.
The M4P_CACHE_CFG.DLINE bits specify the size of a cache fill initiated upon a
DCODE fetch miss.

0 32 bits (1 word, 4 bytes)

1 64 bits (2 words, 8 bytes)

2 128 bits (4 words, 16 bytes)

3 256 bits (8 words, 32 bytes)

Table 2-12: M4P_CACHE_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

2–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

11:10
(R/W)

ILINE ICODE Cache Fill Line Size.
The M4P_CACHE_CFG.ILINE bits specify the size of a cache fill initiated upon an
ICODE fetch miss.

0 32 bits (1 word, 4 bytes)

1 64 bits (2 words, 8 bytes)

2 128 bits (4 words, 16 bytes)

3 256 bits (8 words, 32 bytes)

9:7
(R/W)

CORG Cache Organization.
Cache is comprised of eight independent 2kB banks of SRAM providing a total of
16kB. By default these banks are organized into a four way, set associative cache
shared by the ICODE and DCODE ports. Each cache Way is constructed from two
banks of SRAM which are address striped such that even and odd 32 bit words may
be accessed simultaneously. Striping reduces the likelihood of processor stalls by
reducing the likelihood that simultaneous demands of cache memory (Fill writes,
DCODE fetches, and ICODE fetches) collide within a particular bank, and need to be
sequenced by hardware. The M4P_CACHE_CFG.CORG bits may be used to select
alternate cache organization so that cache organization is best optimized for the
nature of code being executed. Cache Ways may be sacrificed from the default to
either increase address striping, or create two independent smaller caches with one
dedicated to each processors code port (ICODE and DCODE). Cache organization
may be changed at any time, however since previously cached data may become
inaccessible, increased cache missing immediately after a cache configuration
changes should be anticipated.

0 Single 16 kB four way cache LS striped by 2 shared by
ICODE and DCODE

1 Single 16 kB two way cache LS striped by 4 shared by
ICODE and DCODE

2 Single 16 kB one way cache LS striped by 8 shared by
ICODE and DCODE

3 Reserved

4 4 kB one Way DCODE Cache and 12 kB three Way
ICODE Cache

5 8 kB two Way DCODE Cache and 8 kB two Way
ICODE Cache

6 12 kB three Way DCODE Cache and 4 kB one Way
ICODE Cache

7 Reserved

Table 2-12: M4P_CACHE_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–35

Code Cache Parity Error Address Register

The M4P_CACHE_PEADDR register is loaded each rising edge of M4P_CACHE_CFG.PIRQ. It can report two
different kinds of parity error: an error in the cache data/attribute banks, indicated by M4P_CACHE_
PEADDR.BNKERR, or an error in the state machine memory, indicated by M4P_CACHE_PEADDR.REPERR.

6
(R/W)

NOPRE ICODE Preemptive Fetching Disable.
By default, cache banks seek to preemptively acquire data immediately sequential to
the current ICODE address. The M4P_CACHE_CFG.NOPRE bit (preemptive
acquisition) improves SRAM pseudo-porting, but may result in greater power
consumption if the processor never requires data preemptively acquired.

0 ICODE preemptive fetching from cache enabled

1 ICODE preemptive fetching from cache disabled

4
(R/W1S)

CLEAR Cache Clear Request.
When a 1 is written to the M4P_CACHE_CFG.CLEAR bit, hardware will initiate a
process of erasing all cache line data and attributes. Approximately 512 processor
clocks will be required. While clearing is in progress, this bit will return a 1 when
read. Hardware will clear this bit to 0 when cache clearing has completed and all
outstanding fill operations started prior to the clear have ended. Access to backing
memory will be possible while cache is being cleared, but fetches from this backing
memory will not be stored in cache.

3:2
(R/W)

PEMODE Cache Mode with Parity Error.
The M4P_CACHE_CFG.PEMODE bits specify the level of cache servicing provided
when a Parity Error interrupt (see bit M4P_CACHE_CFG.PIRQ) is being requested
by cache.

0 Full Operation: Cache provides data upon hit; cache
contents updated upon miss

1 Partial Bypass: Cache provides data upon hit; cache
bypassed upon miss (cache content not updated)

2 Reserved

3 Full Bypass: Cache state preserved and inaccessible
except through backdoor access (see bit CBEN)

1:0
(R/W)

CMODE Cache Mode without Parity Error.
The M4P_CACHE_CFG.CMODE bits specify the level of cache servicing provided
when a Parity Error interrupt (see bit PIRQ) is not being requested by cache.

0 Full Operation: Cache provides data upon hit; cache
contents updated upon miss

1 Partial Bypass: Cache provides data upon hit; cache
bypassed upon miss (cache content not updated)

2 Reserved

3 Full Bypass: Cache state preserved and inaccessible

Table 2-12: M4P_CACHE_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

2–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 2-12: M4P_CACHE_PEADDR Register Diagram

MEMX Space Configuration Register

The M4P_CACHE_MEMX register selects the MEMX space configuration.

Table 2-13: M4P_CACHE_PEADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24:16
(R/NW)

REPSET Cache Set of State Machine Memory Error.
The M4P_CACHE_PEADDR.REPSET bits ...

13:5
(R/NW)

PESET Cache Set of Bank Parity Error.
The M4P_CACHE_PEADDR.PESET bits ...

4:2
(R/NW)

PEBNK Cache Bank of Parity Error.
The M4P_CACHE_PEADDR.PEBNK bits ...

1
(R/NW)

BNKERR Cache Bank Parity Error.
The M4P_CACHE_PEADDR.BNKERR bit indicates that a parity error has occurred
in a cache data/attribute bank. If M4P_CACHE_PEADDR.BNKERR is 1, then the set
number of the error (the array address) is available in M4P_CACHE_PEADDR.
PESET and the bank number of the error is available in M4P_CACHE_PEADDR.
PEBNK.

0
(R/NW)

REPERR Line Replacement Parity Error.
The M4P_CACHE_PEADDR.REPERR bit indicates if a parity error has been
detected in the cache Line Replacement array (REP). If M4P_CACHE_PEADDR.
REPERR is 1, then the M4P_CACHE_PEADDR.REPSET field indicates the address
in the array (the cache set number) of the error.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–37

Figure 2-13: M4P_CACHE_MEMX Register Diagram

Table 2-14: M4P_CACHE_MEMX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R/W)

BASE MEMX Space Physical Base Address.
The M4P_CACHE_MEMX.BASE bits specify the 8 physical (bus) address MSBs to be
used for serving code cache line fills to the MEMX region in application address
space.

3
(R/W)

XNVR MEMX_ExecuteNever permission.
The M4P_CACHE_MEMX.XNVR bits specify the core instruction fetch access
permissions to the 16MB region of physical memory specified by M4P_CACHE_
MEMX.BASE. This uses the same access codes as the ARM MPU; see the ARM v7M
Architecture Reference Manual sec. B3.5.7.

0 Execution of fetched instructions permitted

1 Execution of fetched instructions not permitted

2:0
(R/W)

AP MEMX Access permissions.
The M4P_CACHE_MEMX.AP bits specify the core access permissions to the 16MB
region of physical memory specified by M4P_CACHE_MEMX.BASE. This uses the
same access codes as the ARM MPU; see the ARM v7M Architecture Reference
Manual sec. B3.5.7.

0 Any access generates a permission fault

1 Privileged access only

2 Privileged access and non-privileged Read access only

3 Full access

5 Privileged Read-Only

6 Privileged and unprivileged Read-Only

7 Privileged and unprivileged Read-Only

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

2–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

MEMY Space Configuration Register

The M4P_CACHE_MEMY register selects the MEMY space configuration.

Figure 2-14: M4P_CACHE_MEMY Register Diagram

Table 2-15: M4P_CACHE_MEMY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R/W)

BASE MEMY Space Physical Base Address.
The M4P_CACHE_MEMY.BASE bits specify the 8 physical (bus) address MSBs to be
used for serving code cache line fills to the MEMY region in application address
space.

3
(R/W)

XNVR MEMY_ExecuteNever permission.
The M4P_CACHE_MEMY.XNVR bits specify the core instruction fetch access
permissions to the 16MB region of physical memory specified by M4P_CACHE_
MEMY.BASE. This uses the same access codes as the ARM MPU; see the ARM v7M
Architecture Reference Manual sec. B3.5.7.

0 Execution of fetched instructions permitted

1 Execution of fetched instructions not permitted

2:0
(R/W)

AP MEMY Access permissions.
The M4P_CACHE_MEMY.AP bits specify the core access permissions to the 16MB
region of physical memory specified by M4P_CACHE_MEMY.BASE. This uses the
same access codes as the ARM MPU; see the ARM v7M Architecture Reference
Manual sec. B3.5.7.

0 Any access generates a permission fault

1 Privileged access only

2 Privileged access and non-privileged Read access only

3 Full access

5 Privileged Read-Only

6 Privileged and unprivileged Read-Only

7 Privileged and unprivileged Read-Only

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–39

SRAM Configuration Register

The M4P_SRAM_CFG register selects the SRAM configuration.

Figure 2-15: M4P_SRAM_CFG Register Diagram

Table 2-16: M4P_SRAM_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12
(R/W)

POSTWR Enable Posted System Writes.
The M4P_SRAM_CFG.POSTWR bit controls the behavior of non-exclusive writes by
the Cortex to System space (outside the M4P platform). This allows control of the
trade off between performance and precise error detection. For more information,
see the "SRAM Posted System Writes (NormSysWrite versus PostSysWrite)" section.

0 Normal System Writes
Non-exclusive Cortex writes to System space are
performed with normal system fabric (bus
interconnect) write transactions

1 Posted System Writes
Non-exclusive Cortex writes to System space are posted

9
(R/W)

PERRDMA Enable Parity Error, DMA.
Enables the Parity Error Core Interrupt. If M4P_SRAM_CFG.PERRDMA is 1 and a
parity error is detected in the Main SRAM due to a transaction initiated on one the
DMA interface (as indicated by the M4P_SRAM_PEADDR_DMA.STAT bit, then the
SRAM_PE_IRQ_DMA interrupt is asserted. If M4P_SRAM_CFG.PERRDMA is 0,
then the SRAM_PE_IRQ_DMA interrupt will be deasserted.

8
(R/W)

PERRCORE Enable Parity Error, Core.
Enables the Parity Error Core Interrupt. If M4P_SRAM_CFG.PERRCORE is 1 and a
parity error is detected in the Main SRAM due to a transaction initiated on one of the
three M4- Cortex interfaces (as indicated by the M4P_SRAM_PEADDR_CORE.
STAT bit, then the SRAM_PE_IRQ_CORE interrupt is asserted. If M4P_SRAM_
CFG.PERRCORE is 0, then the SRAM_PE_IRQ_CORE interrupt will be deasserted.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

2–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SRAM Parity Error Address (Core) Register

The M4P_SRAM_PEADDR_CORE register displays the status of parity errors detected in Main SRAM resulting
from transactions initiated by the Cortex M4 Core. The register captures the address and byte mask of the
first parity error(s) detected in any aligned 32-bit word since the last time the corresponding parity error
status was cleared (by writing a 1 to M4P_SRAM_PEADDR_CORE.STAT.) If core parity error interrupts are
enabled by M4P_SRAM_CFG.PERRCORE, and a parity error is detected on a core interface, then an SRAM_
PEIRQ_CODE interrupt will be asserted. If another core parity error is detected while a first core parity
error is still pending, then the M4P_SRAM_PEADDR_CORE.MSTAT bit is asserted, and the SRAM Parity Error
Non-Maskable Interrupt (NMI) is asserted.

3:0
(R/W)

CDBANKS Code/Data Banks Partition.
The M4P_SRAM_CFG.CDBANKS field controls the partitioning of Main SRAM
resources between the CODE address range and the SRAM (DATA) address range.
The M4P_SRAM_CFG.CDBANKS field indicates how many of the 32KByte Config
Banks of SRAM are allocated to the CODE region; the remaining available banks are
allocated to the SRAM (DATA) region.
When the M4P_SRAM_CFG.CDBANKS field is changed, the contents of any banks
which are deducted from a given region are lost. The contents of any banks which are
added to a given region are undefined, but should be zeroed immediately for security
purposes.

0 No CODE Config Banks: all assigned to Data

1 1 CODE bank, 3 DATA banks

2 2 CODE banks, 2 DATA Banks

3 3 CODE banks, 1 DATA banks

4 4 CODE banks, 0 DATA banks

Table 2-16: M4P_SRAM_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–41

Figure 2-16: M4P_SRAM_PEADDR_CORE Register Diagram

Table 2-17: M4P_SRAM_PEADDR_CORE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

STAT Parity Error Status.
The M4P_SRAM_PEADDR_CORE.STAT bit indicates either: 0 = no parity error
detected on this interface. 1 = one or more parity errors detected. Cleared by writing
a 1. If M4P_SRAM_PEADDR_CORE.STAT is 1 and M4P_SRAM_CFG.PERRCORE
is set, then the SRAM_PEIRQ_CORE interrupt is asserted to the M4 Cortex. If M4P_
SRAM_PEADDR_CORE.STAT is 1 and another parity error is detected on the same
interface, then M4P_SRAM_PEADDR_CORE.MSTAT is set to 1, and the SRAM_
NMI Non-Maskable Interrupt is asserted to the Cortex-M4.

30
(R/W1C)

MSTAT Multiple Parity Error Status.
The M4P_SRAM_PEADDR_CORE.MSTAT bit indicates (when =1) that multiple
parity errors have been detected in the Main SRAM on transactions initiated by any
of the M4 Cortex interfaces, since the time that the last such parity error (if any) was
cleared by writing a 1 to M4P_SRAM_PEADDR_CORE.STAT.
The M4P_SRAM_PEADDR_CORE.MSTAT bit will also be set if, on the same core
clock cycle, two or more transactions initiated on the M4 Cortex interfaces detect
parity errors. In that event, the M4P_SRAM_PEADDR_CORE.BUS field indicate
which interface transaction is captured in the M4P_SRAM_PEADDR_CORE register.

29:28
(R/NW)

BUS Party Error Bus Interface.
The M4P_SRAM_PEADDR_CORE.BUS bits indicates which M4 Cortex bus
interface initiated the transaction which detected a parity error.

0 Parity Error From I-CODE interface

1 Parity Error From D-Code Interface

2 Parity Error from SYS interface

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

2–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SRAM Parity Error Address (DMA) Register

The M4P_SRAM_PEADDR_DMA register displays the status of parity errors detected in Main SRAM resulting
from transactions initiated by the DMA interface. The register captures the address and byte mask of the
first parity error(s) detected in any aligned 32-bit word since the last time the corresponding parity error
status was cleared (by writing a 1 to M4P_SRAM_PEADDR_DMA.STAT.) If DMA parity error interrupts are
enabled by M4P_SRAM_CFG.PERRDMA, and a parity error is detected on the DMA interface, then an SRAM_
PEIRQ_CODE interrupt will be asserted. If another DMA parity error is detected while a first DMA parity
error is still pending, then the M4P_SRAM_PEADDR_DMA.MSTAT bit is asserted, and the SRAM Parity Error
Non-Maskable Interrupt (NMI) is asserted.

Figure 2-17: M4P_SRAM_PEADDR_DMA Register Diagram

27:24
(R/NW)

BMSK Parity Error Byte Mask.
The M4P_SRAM_PEADDR_CORE.BMSK bits are a 4-bit mask of the bytes with
parity errors in the 32-bit location at the address in M4P_SRAM_PEADDR_CORE.
ADDR. For each bit, 1= parity error detected, 0 = no parity error detected.

19:2
(R/NW)

ADDR Parity Error Address.
The M4P_SRAM_PEADDR_CORE.ADDR bits are address bits [19:2] of the location
in Main SRAM containing the byte(s) with detected parity errors.

Table 2-17: M4P_SRAM_PEADDR_CORE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–43

Bus Fault Error Information Register

The M4P_BUSFLT register captures the status and address of bus fault errors resulting from inexact posted
writes by the Cortex to System space. Posted writes are enabled by the M4P_SRAM_CFG.POSTWR bit. The
M4P_BUSFLT.STAT bit drives the M4P_BUS_FAULT interrupt, and is set on the detection of a posted write
bus fault, and is cleared if written with a 1.

Figure 2-18: M4P_BUSFLT Register Diagram

Table 2-18: M4P_SRAM_PEADDR_DMA Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

STAT Parity Error Status.
The M4P_SRAM_PEADDR_DMA.STAT bit indicates either: 0 = no parity error
detected on this interface. 1 = one or more parity errors detected. Cleared by writing
a 1. If M4P_SRAM_PEADDR_DMA.STAT is 1 and M4P_SRAM_CFG.PERRDMA is
set, then the SRAM_PEIRQ_DMA interrupt is asserted to the M4 Cortex. If M4P_
SRAM_PEADDR_DMA.STAT is 1 and another parity error is detected on the same
interface, then M4P_SRAM_PEADDR_DMA.MSTAT is set to 1, and the SRAM_NMI
Non-Maskable Interrupt is asserted to the M4 Cortex.

30
(R/W1C)

MSTAT Multiple Parity Error Status.
The M4P_SRAM_PEADDR_DMA.MSTAT bit indicates (when =1) that multiple
parity errors have been detected in the Main SRAM on transactions initiated by the
DMA interface, since the time that the last such parity error (if any) was cleared by
writing a 1 to M4P_SRAM_PEADDR_DMA.STAT.

27:24
(R/NW)

BMSK Parity Error Byte Mask.
The M4P_SRAM_PEADDR_DMA.BMSK bits are a 4-bit mask of the bytes with parity
errors in the 32-bit location at the address in M4P_SRAM_PEADDR_DMA.ADDR.
For each bit, 1= parity error detected, 0 = no parity error detected.

19:2
(R/NW)

ADDR Parity Error Address.
The M4P_SRAM_PEADDR_DMA.ADDR bits are address bits [19:2] of the location in
Main SRAM containing the byte(s) with detected parity errors.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

2–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SysTick Calibration Register

The M4P_STCALIB register allows the programmer to define the calibration value for the ARM Processor's
SysTick timer, according to the frequency of the installed crystal and the divisor settings of the CGU and
PLL. The value programmed into this register will appear in the ARM SYST_CALIB Read-Only register.

Figure 2-19: M4P_STCALIB Register Diagram

Table 2-19: M4P_BUSFLT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:2
(R/NW)

ADDR Bus Fault Address.
The M4P_BUSFLT.ADDR bits ...

0
(R/W1C)

STAT Bus Fault Status.
The M4P_BUSFLT.STAT bit ...

Table 2-20: M4P_STCALIB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/NW)

NOREF SysTick Ref Clock Implementation.
The M4P_STCALIB.NOREF indicates whether an external SysTick reference clock
is implemented. In the ADI M4 Platform, no SysTick external reference clock is
implemented. The processor internal reference clock is used for SYSTICK.

0 SYSTICK External Reference Clock Is Implemented

1 SYSTICK External Reference Clock is Not
Implemented

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–45

Cache Counter Control Register

The M4P_CACHE_CNTCTL register controls operation of the cache profiling counters, which support
measuring cache activity during code execution. These counters include M4P_CACHE_IREF, M4P_CACHE_
DREF, M4P_CACHE_IMISS, M4P_CACHE_DMISS, M4P_CACHE_IFILL, and M4P_CACHE_DFILL.

Each counter is 24 bits plus 1 (sticky) overflow bit. The sticky status can be cleared by clearing the counter
or by writing zero to the count register. Each counter consists of a main and shadow register.

All counters may be sampled simultaneously from the main registers into the shadow registers to collect a
consistent set of data. To enable consistent counting without doubled or missed counts, the main counters
may be zeroed just after sampling. The main counters continue counting cache activity after sampling to
the shadow registers.

When working with the cache counters, it is important to understand the difference between committed
and speculative cache activity. Cache activity may be initiated either by a committed cache access from the
M4 core over the I-code or D-code buses or may be initiated by speculative accesses by the M4 core. A
committed access is an address issued in a bus cycle, which is acknowledged by HREADY. A speculative
cache access is initiated by the M4P cache observing the address bus prior to HREADY (for example,
during a wait state). For more information, see the cache structure/operation description.

30
(R/W)

SKEW SysTick Inexact.
The M4P_STCALIB.SKEW bit is set to 1 if the calibration value specified by M4P_
STCALIB.TENMS does not provide an exact multiple of 10ms. Otherwise, set this
bit to 0. For example, the frequency of a 166.66 (6 repeating). MHz core clock
corresponds to a TENMS value of 1,666,666.66, which is not an exact integer, so in
that case M4P_STCALIB.SKEW should be set to 1.

23:0
(R/W)

TENMS SysTick 10ms Calibration.
The M4P_STCALIB.TENMS bit is set to an integer 24-bit value usable to compute a
10ms delay from the user-programmed frequency of the M4P core clock. For
example, for a 200MHz core clock, set this value to (200MHz * 10ms) = 24'd2_000_
000 = 24'h1e_8480.

Table 2-20: M4P_STCALIB Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

2–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 2-20: M4P_CACHE_CNTCTL Register Diagram

Table 2-21: M4P_CACHE_CNTCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

21
(R0/W1A)

TST_DFILL Test DFILL Counter.
The M4P_CACHE_CNTCTL.TST_DFILL bit enables increment of the associated
counter, M4P_CACHE_DFILL.

0 No Count

1 Count

20
(R0/W1A)

TST_IFILL Test IFILL Counter.
The M4P_CACHE_CNTCTL.TST_IFILL bit enables increment of the associated
counter, M4P_CACHE_IFILL.

0 No Count

1 Count

19
(R0/W1A)

TST_DMISS Test DMISS Counter.
The M4P_CACHE_CNTCTL.TST_DMISS bit enables increment of the associated
counter, M4P_CACHE_DMISS.

0 No Count

1 Count

18
(R0/W1A)

TST_IMISS Test IMISS Counter.
The M4P_CACHE_CNTCTL.TST_IMISS bit enables increment of the associated
counter, M4P_CACHE_IMISS.

0 No Count

1 Count

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–47

17
(R0/W1A)

TST_DREF Test DREF Counter.
The M4P_CACHE_CNTCTL.TST_DREF bit enables increment of the associated
counter, M4P_CACHE_DREF.

0 No Count

1 Count

16
(R0/W1A)

TST_IREF Test IREF Counter.
The M4P_CACHE_CNTCTL.TST_IREF bit enables increment of the associated
counter, M4P_CACHE_IREF.

0 No Count

1 Count

3
(R/W)

SAMPLE Sample to Shadow Counters.
The M4P_CACHE_CNTCTL.SAMPLE bit controls both the update of the shadow
registers and the read access to these registers. When this bit is zero, the main (free-
running) counters are returned by an memory-mapped register read. When this bit is
written 0-to-1, the main counter values are transferred to the shadow registers; if the
count zero bit is also written from 0-to-1 at that time, the main registers are zeroed
after the sample is taken. While the M4P_CACHE_CNTCTL.SAMPLE bit's value is 1,
reads to any of the count registers return the sampled value held in the shadow
registers. When the bit is written to 0 again, the values that are in the main registers
are again visible.

0 Show Main Counters

1 Show Shadow Counters

2
(R0/W1A)

CNTZERO Reset Counters to Zero.
The M4P_CACHE_CNTCTL.CNTZERO bit resets all cache counters.

0 No Action

1 Reset Cache Counters

1
(R/W)

ENSPEC Enable Speculative Fill Count.
The M4P_CACHE_CNTCTL.ENSPEC bit selects whether the cache counters count
only committed cache activity (if =0) or whether the cache counters count all cache
activity (include both committed and speculative accesses).

0 Disable Speculative Count

1 Enable Speculative Count

0
(R/W)

ENCNT Enable Cache Counters.
The M4P_CACHE_CNTCTL.ENCNT bit enables cache counter increment
operations.

0 Disable Cache Counters

1 Enable Cache Counters

Table 2-21: M4P_CACHE_CNTCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

2–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Cache ICODE Reference Counter Register

The M4P_CACHE_IREF register records references to the cache memory region on the I-code bus, which
includes code fetches and vector table reads. Counts include all hits plus all misses and indicates count
overflow (MSB).

Figure 2-21: M4P_CACHE_IREF Register Diagram

Cache DCODE Reference Counter Register

The M4P_CACHE_DREF register records references to the cache memory region on the D-code bus, which
includes literal fetches from data embedded in code space. Counts include all hits plus all misses and indi-
cates count overflow (MSB).

Table 2-22: M4P_CACHE_IREF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24
(R/W)

OVF Count Overflow.
The M4P_CACHE_IREF.OVF bit (if set) indicates an overflow of the counter. This
bit is a sticky status bit, remaining set until cleared with a write.

23:0
(R/W)

VALUE ICODE Cache References Counter.
The M4P_CACHE_IREF.VALUE bits hold the count for cache accesses (references)
to I-code.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–49

Figure 2-22: M4P_CACHE_DREF Register Diagram

Cache ICODE Miss Counter Register

The M4P_CACHE_IMISS register records cache misses in the cache memory region on the I-code bus and
indicates count overflow (MSB). Counts include misses only. The hit count can be calculated from the
reference count minus the miss count.

Figure 2-23: M4P_CACHE_IMISS Register Diagram

Table 2-23: M4P_CACHE_DREF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24
(R/W)

OVF Count Overflow.
The M4P_CACHE_DREF.OVF bit (if set) indicates an overflow of the counter. This
bit is a sticky status bit, remaining set until cleared with a write.

23:0
(R/W)

VALUE DCODE Cache References Counter.
The M4P_CACHE_DREF.VALUE bits hold the count for cache accesses (references)
to D-code.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

2–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Cache DCODE Miss Counter Register

The M4P_CACHE_DMISS register records cache misses in the cache memory region on the D-code bus and
indicates count overflow (MSB). Counts include misses only. The hit count can be calculated from the
reference count minus the miss count.

Figure 2-24: M4P_CACHE_DMISS Register Diagram

Cache ICODE Line Fill Counter Register

The M4P_CACHE_IFILL register records cache misses in the cache line fills initiated by cache misses on the
I-code bus and indicates count overflow (MSB). As each line fill operation takes a discrete length of time

Table 2-24: M4P_CACHE_IMISS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24
(R/W)

OVF Count Overflow.
The M4P_CACHE_IMISS.OVF bit (if set) indicates an overflow of the counter. This
bit is a sticky status bit, remaining set until cleared with a write.

23:0
(R/W)

VALUE ICODE Cache Miss Counter.
The M4P_CACHE_IMISS.VALUE bits hold the count for cache misses to I-code.

Table 2-25: M4P_CACHE_DMISS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24
(R/W)

OVF Count Overflow.
The M4P_CACHE_DMISS.OVF bit (if set) indicates an overflow of the counter. This
bit is a sticky status bit, remaining set until cleared with a write.

23:0
(R/W)

VALUE DCODE Cache Miss Counter.
The M4P_CACHE_DMISS.VALUE bits hold the count for cache misses to D-code.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 2–51

on the interface to the cache memory backing store, the rate of line fills is an indication of efficiency. If the
number of line fills time the duration per line fills (in SysTicks), this may indicate that code performance
is not limited by cache activity.

Figure 2-25: M4P_CACHE_IFILL Register Diagram

Cache DCODE Line Fill Counter Register

The M4P_CACHE_DFILL register records cache misses in the cache line fills initiated by cache misses on the
D-code bus and indicates count overflow (MSB). As each line fill operation takes a discrete length of time
on the interface to the cache memory backing store, the rate of line fills is an indication of efficiency. If the
number of line fills time the duration per line fills (in SysTicks), this may indicate that code performance
is not limited by cache activity.

Table 2-26: M4P_CACHE_IFILL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24
(R/W)

OVF Count Overflow.
The M4P_CACHE_IFILL.OVF bit (if set) indicates an overflow of the counter. This
bit is a sticky status bit, remaining set until cleared with a write.

23:0
(R/W)

VALUE ICODE Cache Line Fill Counter.
The M4P_CACHE_IFILL.VALUE bits hold the count for cache line fills for
accesses to I-code.

ARM CORTEX-M4 CORE MEMORY SUB-SYSTEM
ADSP-CM40X M4P REGISTER DESCRIPTIONS

2–52 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 2-26: M4P_CACHE_DFILL Register Diagram

Table 2-27: M4P_CACHE_DFILL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24
(R/W)

OVF Count Overflow.
The M4P_CACHE_DFILL.OVF bit (if set) indicates an overflow of the counter. This
bit is a sticky status bit, remaining set until cleared with a write.

23:0
(R/W)

VALUE DCODE Cache Line Fill Counter.
The M4P_CACHE_DFILL.VALUE bits hold the count for cache line fills for
accesses to D-code.

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–1

3 System Crossbars (SCB)

The System Crossbars (SCB) are the fundamental building blocks of a switch-fabric style for (on-chip)
system bus interconnection. The SCBs connect system bus masters to system bus slaves, providing concur-
rent data transfer between multiple bus masters and multiple bus slaves. A hierarchical model ---built from
multiple SCBs--- provides a power and area efficient system interconnect, which satisfies the performance
and flexibility requirements of a specific system.

SCB Features

The SCBs provide the following features:

• Highly efficient, pipelined bus transfer protocol for sustained throughput

• Full-duplex bus operation for flexibility and reduced latency

• Concurrent bus transfer support to allow multiple bus masters to access bus slaves simultaneously

• Protection model (privileged/secure) support for selective bus interconnect protection

• Fixed bus arbitration model

SCB Functional Description

The following sections provide a functional description of the SCB:

• ADSP-CM40x SCB Register List

• SCB Definitions

• SCB Block Diagram

ADSP-CM40x SCB Register List

The system cross bar (SCB), which is often referred to as the system interconnect fabric, is a collection of
interconnection units connecting system masters to slave memory spaces. Each unit in the fabric consists
of a matrix of master interfaces (MSTn). Each of these matrices has a controls for read quality of service,
write quality of service, and functional mode. A subset of these matrices include controls for IB sync mode
and bus functional mode. A set of registers govern SCB operations. For more information on SCB func-
tionality, see the SCB register descriptions.

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

3–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 3-1: ADSP-CM40x SCB Register List

Name Description

SCB_MST00_IB_SYNC Master 0 IB Sync Mode

SCB_MST00_IB_RQOS Master 0 Read Quality of Service

SCB_MST00_IB_WQOS Master 0 Write Quality of Service

SCB_MST01_IB_SYNC Master 1 IB Sync Mode

SCB_MST01_IB_RQOS Master 1 Read Quality of Service

SCB_MST01_IB_WQOS Master 1 Write Quality of Service

SCB_MST02_RQOS Master 2 Read Quality of Service

SCB_MST02_WQOS Master 2 Write Quality of Service

SCB_MST03_RQOS Master 3 Read Quality of Service

SCB_MST03_WQOS Master 3 Write Quality of Service

SCB_MST04_RQOS Master 4 Read Quality of Service

SCB_MST04_WQOS Master 4 Write Quality of Service

SCB_MST05_RQOS Master 5 Read Quality of Service

SCB_MST05_WQOS Master 5 Write Quality of Service

SCB_MST06_RQOS Master 6 Read Quality of Service

SCB_MST06_WQOS Master 6 Write Quality of Service

SCB_MST07_RQOS Master 7 Read Quality of Service

SCB_MST07_WQOS Master 7 Write Quality of Service

SCB_MST08_RQOS Master 8 Read Quality of Service

SCB_MST08_WQOS Master 8 Write Quality of Service

SCB_MST09_RQOS Master 9 Read Quality of Service

SCB_MST09_WQOS Master 9 Write Quality of Service

SCB_MST10_RQOS Master 10 Read Quality of Service

SCB_MST10_WQOS Master 10 Write Quality of Service

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–3

SCB_MST11_RQOS Master 11 Read Quality of Service

SCB_MST11_WQOS Master 11 Write Quality of Service

SCB_MST12_RQOS Master 12 Read Quality of Service

SCB_MST12_WQOS Master 12 Write Quality of Service

SCB_MST13_RQOS Master 13 Read Quality of Service

SCB_MST13_WQOS Master 13 Write Quality of Service

SCB_MST14_RQOS Master 14 Read Quality of Service

SCB_MST14_WQOS Master 14 Write Quality of Service

SCB_MST15_RQOS Master 15 Read Quality of Service

SCB_MST15_WQOS Master 15 Write Quality of Service

SCB_MST16_RQOS Master 16 Read Quality of Service

SCB_MST16_WQOS Master 16 Write Quality of Service

SCB_MST17_RQOS Master 17 Read Quality of Service

SCB_MST17_WQOS Master 17 Write Quality of Service

SCB_MST18_RQOS Master 18 Read Quality of Service

SCB_MST18_WQOS Master 18 Write Quality of Service

SCB_MST19_RQOS Master 19 Read Quality of Service

SCB_MST19_WQOS Master 19 Write Quality of Service

SCB_MST20_RQOS Master20 Read Quality of Service

SCB_MST20_WQOS Master 20 Write Quality of Service

SCB_MST21_RQOS Master 21 Read Quality of Service

SCB_MST21_WQOS Master 21 Write Quality of Service

SCB_MST22_RQOS Master 22 Read Quality of Service

SCB_MST22_WQOS Master 22 Write Quality of Service

Table 3-1: ADSP-CM40x SCB Register List (Continued)

Name Description

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

3–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SCB Definitions

To make the best use of the SCB, it is useful to understand the following terms.

MI (Master Interface)

SCB master interface connected to system bus interconnect slave (for example, L2, sMMR, SCB, and
others).

SI (Slave Interface)

SCB slave interface connected to system bus interconnect master (for example, Core, DDE, SCB, and
others).

SCB Block Diagram

The SCB architectural model is illustrated in the following figure. This figure shows a high-level overview
of the SCB and associated connections to system masters and slaves. A variable number of masters may be
connected to a variable number of slaves in each SCB. In this example, all SIs are connected to all MIs as
indicated by the lines connecting them.

SCB_MST23_RQOS Master 23 Read Quality of Service

SCB_MST23_WQOS Master 23 Write Quality of Service

SCB_MST24_RQOS Master 24 Read Quality of Service

SCB_MST24_WQOS Master 24 Write Quality of Service

SCB_MST25_RQOS Master 25 Read Quality of Service

SCB_MST25_WQOS Master 25 Write Quality of Service

SCB_MST26_RQOS Master 26 Read Quality of Service

SCB_MST26_WQOS Master 26 Write Quality of Service

Table 3-1: ADSP-CM40x SCB Register List (Continued)

Name Description

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–5

Figure 3-1: SCB Overview

NOTE: For an overall diagram of all SCB interconnections, see the ADSP-CM40x SCB Block Diagram.

SCB Hierarchy Block Diagram

A system interconnect built from multiple SCBs in a hierarchical model is illustrated in the following
figure. The system master node level SCBs master multiple SIs to a single MI, which in turn connects to an
SI of the system slave level node SCB. In this example, all SIs are connected to all MIs.

Figure 3-2: SCB Hierarchy Overview

NOTE: For an overall diagram of all SCB interconnections, see the ADSP-CM40x SCB Block Diagram.

ADSP-CM40x SCB Block Diagram

The following figure shows the SCB block diagram for the ADSP-CM40x processors.

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

3–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-3: ADSP-CM40x SCB Block Diagram

While this figure is useful just for the overview it provides, it is also useful to observe the following rela-
tionships that are highlighted.

• The hierarchy of SCBs manages system bus interconnections, multiplexing, and arbitration among the
cores and peripherals on the processor.

• The SCBs connections support DMA channels for some peripherals, support dedicated connections for
others (such as USB), and support memory mapped register access for internal memory (L1) and for
external memory (FLASH and others).

• The peripherals (and their SCBs) are in the SCLK clock domain. SCB0 is in the SYSCLK domain. The
processor core is the CCLK clock domain. Synchronization across clock domains affect SCB perfor-
mance.

• Each peripheral has a latency for access across the SCB. The latency varies with the nature of the periph-
eral. Also, the number of active peripherals (especially for cases where multiple peripherals are active
on a shared SCB) affects SCB performance.

The following definitions of acronyms (appearing in the figure) may be helpful:

DMA0-DMA20
These indicate DMA channels for peripherals supporting DMA transfers.

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–7

SCB0-SCB4
These indicate SCB interfaces, connecting the system bus masters and slaves.

SCLK, SYSCLK, CCLK
These indicate clock domains in which the specific SCBs operate. For more information on clock domains,
see the Clock Generation Unit chapter and the product data sheet.

L1
This indicates on-core (L1) internal memory.

C0
This indicates processor core 0 (C0).

SMC
This indicates the static memory controller (SMC) interface.

SPORT0, SPORT1, SPORT2 - Half A/B
These indicate the serial port interfaces and their full-duplex halves.

SPI0, SPI1 - RX/TX
These indicate the serial peripheral interfaces ports with receive or transmit paths.

EMAC
This indicates the Ethernet MAC interface.

MDMA0, MDMA1, MDMA2, MDMA3
These indicate memory DMA 0 through 3 interfaces.

CRC0
This indicates the cyclic redundancy check (CRC) interface.

USB
This indicates the universal serial bus (USB) interface.

SMMR
This indicates the system memory-mapped register interface.

ADSP-CM40x SCB Bus Master IDs

The SCB bus master ID tables indicate which masters are connected to each of the slave ports of SCB0 and
the precise value of the ID as seen by the slave. These values are useful for SWU programming.

NOTE: For an overall diagram of all SCB interconnections, see the ADSP-CM40x SCB Block Diagram.

SYSTEM CROSSBARS (SCB)
SCB FUNCTIONAL DESCRIPTION

3–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x SCB Arbitration

The SCB uses fixed arbitration to prioritize each slave’s interface to masters (Master Interface) and each
master’s interface to slaves (Slave Interface). But, each slave does have a quality of service (QoS) program-
mable feature that affects arbitration.

Table 3-2: ADSP-CM40x Bus Master IDs at SRAM, SMC, SPI1, SPI0, and SMMR

Master SRAM ASYNC SPI MMR

L1CODE_FILL 8'b000xx000 8'b000xx000 8'b000xx000 n/a

CORTEX_SYS n/a 8'b00000001 n/a 8'b00000001

USB 8'b00000010 8'b00000010 n/a n/a

DMA0 (SP0A) 8'b0010x000 8'b0010x000 n/a n/a

DMA1 (SP0B) 8'b0010x001 8'b0010x001 n/a n/a

DMA6 (SP1A) 8'b0100x010 8'b0100x010 n/a n/a

DMA7 (SP1B) 8'b0100x011 8'b0100x011 n/a n/a

DMA2 (SPI0_TX) 8'b0010x010 8'b0010x010 n/a n/a

DMA3 (SPI0_RX) 8'b0010x011 8'b0010x011 n/a n/a

DMA8 (SPI1_TX) 8'b0100x100 8'b0100x100 n/a n/a

DMA9 (SPI1_RX) 8'b0100x101 8'b0100x101 n/a n/a

DMA4 (UART0_TX) 8'b0010x100 8'b0010x100 n/a n/a

DMA5 (UART0_RX) 8'b0010x101 8'b0010x101 n/a n/a

DMA10 (UART1_TX) 8'b0100x000 8'b0100x000 n/a n/a

DMA11 (UART1_RX) 8'b0100x001 8'b0100x001 n/a n/a

DMA12 (UART2_TX) 8'b0110x101 8'b0110x101 n/a n/a

DMA13 (UART2_RX) 8'b0110x110 8'b0110x110 n/a n/a

SINC 8'b0010x110 8'b0010x110 n/a n/a

EMAC 8'b0110x000 8'b0110x000 n/a n/a

ADCC 8'b0110x010 8'b0110x010 n/a n/a

DMA14 (HAE_IN0) 8'b0110x001 8'b0110x001 n/a n/a

DMA15 (HAE_IN1) 8'b0110x011 8'b0110x011 n/a n/a

DMA16 (HAE_OUT) 8'b0110x100 8'b0110x100 n/a n/a

DMA17 (MDMA0_RD) 8'b1000x001 8'b1000x001 8'b1000x001 8'b1000x001

DMA18 (MDMA0_WR) 8'b1000x000 8'b1000x000 8'b1000x000 8'b1000x000

DMA19 (MDMA1_RD) 8'b1000x011 8'b1000x011 8'b1000x011 8'b1000x011

DMA20 (MDMA1_WR) 8'b1000x010 8'b1000x010 8'b1000x010 8'b1000x010

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–9

NOTE: For an overall diagram of all SCB interconnections, see the ADSP-CM40x SCB Block Diagram.

For SCB quality of service (QoS) programing information, see the ADSP-CM40x SCB Program-
ming Model.

ADSP-CM40x SCB Programming Model

The ADSP-CM40x processor's SCB arbitration model among master/slave SCBs is fixed (not program-
mable), but each slave does have a quality of service (QoS) programmable feature that affects arbitration.

Each slave interface has a QoS value (or priority) associated with its read and write channels. These QoS
selections are 4-bit values, which are present in the read QoS register (SCB_MSTxx_IB_RQOS) and write QoS
register (SCB_MSTxx_IB_WQOS) register of each SCB master.

At the entry point to the infrastructure, all transactions are allocated a programmable, local QoS value. The
arbitration of the transaction throughout the infrastructure uses this QoS. At any arbitration node, a fixed
priority exists for transactions with a different QoS. The highest value has the highest priority. If there are
coincident transactions at an arbitration node with the same QoS value that require arbitration, then the
network uses a least recently used (LRU) algorithm. At each switch, the master with highest QOS gains
access, and that switch output takes the winner’s QoS value for that transaction. At the next switch slave
interface, that master uses the winner’s QoS value.

SCB fabric registers occupy 1M byte of address space. The QoS registers in this space may have values from
0 (lowest priority) to 15 (highest priority).

NOTE: Because the ADSP-CM40x processor's SCB arbitration is fixed (not programmable), these SCBs do
not have slot numbers (for modifying read/write arbitration settings). For more information, see
the ADSP-CM40x SCB Arbitration.

FIFO Synchronization

The FIFO associated with every channel is implemented to support clock domain crossing functionality.

The synchronization scheme used in the FIFO can be changed in the FIFO sync mode register (SCB_
MST00_IB_SYNC). By default, FIFO is a pure asynchronous FIFO. If the user wishes to reduce register
access latency while CCLK:SYSCLK frequency ratio is n:1(n integer) or 1:1, FIFO mode register can be
programmed to the respective values in the sync mode bits of the FIFO sync mode register:

• 0-Sync 1:1

• 1-Sync n:1 4-async

Table 3-3: FIFO Sync Modes and Actions

Original Mode Required Mode Action

ASYNC Sync 1:1 or n:1 Change the clocks, then change the register.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NOTE: This synchronization feature is applicable only for CCLK:SYSCLK ratios of 1:1 and n:1 and is not
applicable for ratios of m:n. For example, it is applicable for an CCLK:SYSCLK ratio of 200
MHz:100 MHz and is not applicable for a ratio of 250 MHz:100 MHz.

ADSP-CM40x SCB Programming Concepts

The SCB arbitration model is fixed (not programmable, but each slave does have a quality of service (QoS)
programmable feature that affects arbitration.

Each slave interface has a QoS value (or priority) associated with its read and write channels. At the entry
point to the infrastructure, all transactions are allocated this priority value.

For Example, if a UART peripheral and an SPI peripheral (which are attached to same SCB) simultane-
ously make a write access to the SMC, the peripheral with a higher write QoS value programmed in its
register is granted access.

It is important to note the following restrictions:

• No write is allowed to SPI0 and SPI2 from any of the masters.

• L1CODE is read only.

• MDMA channels are unidirectional. The mdma_rd is read only, and the mdma_wr is write only.

• MDMA access to MMR space is allowed only for selected peripherals (for example, CAN, TRU, and
SEC).

ADSP-CM40x SCB Register Descriptions

System Cross Bar (SCB) contains the following registers.

Sync 1:1 or n:1 ASYNC Change the register, then change ASYNC.

Table 3-4: ADSP-CM40x SCB Register List

Name Description

SCB_MST00_IB_SYNC Master 0 IB Sync Mode

SCB_MST00_IB_RQOS Master 0 Read Quality of Service

SCB_MST00_IB_WQOS Master 0 Write Quality of Service

SCB_MST01_IB_SYNC Master 1 IB Sync Mode

Table 3-3: FIFO Sync Modes and Actions (Continued)

Original Mode Required Mode Action

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–11

SCB_MST01_IB_RQOS Master 1 Read Quality of Service

SCB_MST01_IB_WQOS Master 1 Write Quality of Service

SCB_MST02_RQOS Master 2 Read Quality of Service

SCB_MST02_WQOS Master 2 Write Quality of Service

SCB_MST03_RQOS Master 3 Read Quality of Service

SCB_MST03_WQOS Master 3 Write Quality of Service

SCB_MST04_RQOS Master 4 Read Quality of Service

SCB_MST04_WQOS Master 4 Write Quality of Service

SCB_MST05_RQOS Master 5 Read Quality of Service

SCB_MST05_WQOS Master 5 Write Quality of Service

SCB_MST06_RQOS Master 6 Read Quality of Service

SCB_MST06_WQOS Master 6 Write Quality of Service

SCB_MST07_RQOS Master 7 Read Quality of Service

SCB_MST07_WQOS Master 7 Write Quality of Service

SCB_MST08_RQOS Master 8 Read Quality of Service

SCB_MST08_WQOS Master 8 Write Quality of Service

SCB_MST09_RQOS Master 9 Read Quality of Service

SCB_MST09_WQOS Master 9 Write Quality of Service

SCB_MST10_RQOS Master 10 Read Quality of Service

SCB_MST10_WQOS Master 10 Write Quality of Service

SCB_MST11_RQOS Master 11 Read Quality of Service

SCB_MST11_WQOS Master 11 Write Quality of Service

SCB_MST12_RQOS Master 12 Read Quality of Service

SCB_MST12_WQOS Master 12 Write Quality of Service

Table 3-4: ADSP-CM40x SCB Register List (Continued)

Name Description

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SCB_MST13_RQOS Master 13 Read Quality of Service

SCB_MST13_WQOS Master 13 Write Quality of Service

SCB_MST14_RQOS Master 14 Read Quality of Service

SCB_MST14_WQOS Master 14 Write Quality of Service

SCB_MST15_RQOS Master 15 Read Quality of Service

SCB_MST15_WQOS Master 15 Write Quality of Service

SCB_MST16_RQOS Master 16 Read Quality of Service

SCB_MST16_WQOS Master 16 Write Quality of Service

SCB_MST17_RQOS Master 17 Read Quality of Service

SCB_MST17_WQOS Master 17 Write Quality of Service

SCB_MST18_RQOS Master 18 Read Quality of Service

SCB_MST18_WQOS Master 18 Write Quality of Service

SCB_MST19_RQOS Master 19 Read Quality of Service

SCB_MST19_WQOS Master 19 Write Quality of Service

SCB_MST20_RQOS Master20 Read Quality of Service

SCB_MST20_WQOS Master 20 Write Quality of Service

SCB_MST21_RQOS Master 21 Read Quality of Service

SCB_MST21_WQOS Master 21 Write Quality of Service

SCB_MST22_RQOS Master 22 Read Quality of Service

SCB_MST22_WQOS Master 22 Write Quality of Service

SCB_MST23_RQOS Master 23 Read Quality of Service

SCB_MST23_WQOS Master 23 Write Quality of Service

SCB_MST24_RQOS Master 24 Read Quality of Service

SCB_MST24_WQOS Master 24 Write Quality of Service

Table 3-4: ADSP-CM40x SCB Register List (Continued)

Name Description

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–13

Master 0 IB Sync Mode

The SCB_MST00_IB_SYNC register changes the synchronization scheme used in the FIFO. By default, FIFO
is a pure asynchronous FIFO. If the user wishes to reduce register access latency while CCLK:SCLK
frequency ratio is n:1 (n is an integer) or 1:1. The FIFO mode register can be programmed to the respective
values.

Figure 3-4: SCB_MST00_IB_SYNC Register Diagram

SCB_MST25_RQOS Master 25 Read Quality of Service

SCB_MST25_WQOS Master 25 Write Quality of Service

SCB_MST26_RQOS Master 26 Read Quality of Service

SCB_MST26_WQOS Master 26 Write Quality of Service

Table 3-5: SCB_MST00_IB_SYNC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

2:0
(R/W)

VALUE IB Sync Mode Value.
The SCB_MST00_IB_SYNC.VALUE bits select the sync/async mode.
All enumeration values not shown are reserved.

0 Sync 1:1

1 sync n:1

4 Async

Table 3-4: ADSP-CM40x SCB Register List (Continued)

Name Description

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Master 0 Read Quality of Service

The SCB_MST00_IB_RQOS register selects the QoS value for this master's read channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-5: SCB_MST00_IB_RQOS Register Diagram

Master 0 Write Quality of Service

The SCB_MST00_IB_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-6: SCB_MST00_IB_WQOS Register Diagram

Table 3-6: SCB_MST00_IB_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE IB Read Quality of Service Value.
The SCB_MST00_IB_RQOS.VALUE bit field holds the programmable QoS value
for this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–15

Master 1 IB Sync Mode

The SCB_MST01_IB_SYNC register changes the synchronization scheme used in the FIFO. By default, FIFO
is a pure asynchronous FIFO. If the user wishes to reduce register access latency while CCLK:SCLK
frequency ratio is n:1 (n is an integer) or 1:1. The FIFO mode register can be programmed to the respective
values.

Figure 3-7: SCB_MST01_IB_SYNC Register Diagram

Master 1 Read Quality of Service

The SCB_MST01_IB_RQOS register selects the QoS value for this master's read channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Table 3-7: SCB_MST00_IB_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE IB Write Quality of Service Value.
The SCB_MST00_IB_WQOS.VALUE bit field holds the programmable QoS value
for this master's write channel.

Table 3-8: SCB_MST01_IB_SYNC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

2:0
(R/W)

VALUE IB Sync Mode Value.
The SCB_MST01_IB_SYNC.VALUE bits select the sync/async mode.
All enumeration values not shown are reserved.

0 Sync 1:1

1 Sync n:1

4 Async

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-8: SCB_MST01_IB_RQOS Register Diagram

Master 1 Write Quality of Service

The SCB_MST01_IB_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-9: SCB_MST01_IB_WQOS Register Diagram

Table 3-9: SCB_MST01_IB_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE IB Read Quality of Service Value.
The SCB_MST01_IB_RQOS.VALUE bit field holds the programmable QoS value
for this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–17

Master 2 Read Quality of Service

The SCB_MST02_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-10: SCB_MST02_RQOS Register Diagram

Master 2 Write Quality of Service

The SCB_MST02_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Table 3-10: SCB_MST01_IB_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE IB Write Quality of Service Value.
The SCB_MST01_IB_WQOS.VALUE bit field holds the programmable QoS value
for this master's write channel.

Table 3-11: SCB_MST02_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST02_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-11: SCB_MST02_WQOS Register Diagram

Master 3 Read Quality of Service

The SCB_MST03_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-12: SCB_MST03_RQOS Register Diagram

Table 3-12: SCB_MST02_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST02_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–19

Master 3 Write Quality of Service

The SCB_MST03_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-13: SCB_MST03_WQOS Register Diagram

Master 4 Read Quality of Service

The SCB_MST04_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Table 3-13: SCB_MST03_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST03_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

Table 3-14: SCB_MST03_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST03_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-14: SCB_MST04_RQOS Register Diagram

Master 4 Write Quality of Service

The SCB_MST04_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-15: SCB_MST04_WQOS Register Diagram

Table 3-15: SCB_MST04_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST04_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–21

Master 5 Read Quality of Service

The SCB_MST05_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-16: SCB_MST05_RQOS Register Diagram

Master 5 Write Quality of Service

The SCB_MST05_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Table 3-16: SCB_MST04_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST04_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

Table 3-17: SCB_MST05_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST05_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-17: SCB_MST05_WQOS Register Diagram

Master 6 Read Quality of Service

The SCB_MST06_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-18: SCB_MST06_RQOS Register Diagram

Table 3-18: SCB_MST05_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST05_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–23

Master 6 Write Quality of Service

The SCB_MST06_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-19: SCB_MST06_WQOS Register Diagram

Master 7 Read Quality of Service

The SCB_MST07_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Table 3-19: SCB_MST06_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST06_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

Table 3-20: SCB_MST06_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST06_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-20: SCB_MST07_RQOS Register Diagram

Master 7 Write Quality of Service

The SCB_MST07_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-21: SCB_MST07_WQOS Register Diagram

Table 3-21: SCB_MST07_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST07_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–25

Master 8 Read Quality of Service

The SCB_MST08_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-22: SCB_MST08_RQOS Register Diagram

Master 8 Write Quality of Service

The SCB_MST08_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Table 3-22: SCB_MST07_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST07_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

Table 3-23: SCB_MST08_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST08_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-23: SCB_MST08_WQOS Register Diagram

Master 9 Read Quality of Service

The SCB_MST09_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-24: SCB_MST09_RQOS Register Diagram

Table 3-24: SCB_MST08_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST08_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–27

Master 9 Write Quality of Service

The SCB_MST09_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-25: SCB_MST09_WQOS Register Diagram

Master 10 Read Quality of Service

The SCB_MST10_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Table 3-25: SCB_MST09_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST09_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

Table 3-26: SCB_MST09_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST09_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-26: SCB_MST10_RQOS Register Diagram

Master 10 Write Quality of Service

The SCB_MST10_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-27: SCB_MST10_WQOS Register Diagram

Table 3-27: SCB_MST10_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST10_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–29

Master 11 Read Quality of Service

The SCB_MST11_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-28: SCB_MST11_RQOS Register Diagram

Master 11 Write Quality of Service

The SCB_MST11_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Table 3-28: SCB_MST10_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST10_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

Table 3-29: SCB_MST11_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST11_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-29: SCB_MST11_WQOS Register Diagram

Master 12 Read Quality of Service

The SCB_MST12_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-30: SCB_MST12_RQOS Register Diagram

Table 3-30: SCB_MST11_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST11_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–31

Master 12 Write Quality of Service

The SCB_MST12_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-31: SCB_MST12_WQOS Register Diagram

Master 13 Read Quality of Service

The SCB_MST13_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Table 3-31: SCB_MST12_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST12_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

Table 3-32: SCB_MST12_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST12_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-32: SCB_MST13_RQOS Register Diagram

Master 13 Write Quality of Service

The SCB_MST13_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-33: SCB_MST13_WQOS Register Diagram

Table 3-33: SCB_MST13_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST13_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–33

Master 14 Read Quality of Service

The SCB_MST14_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-34: SCB_MST14_RQOS Register Diagram

Master 14 Write Quality of Service

The SCB_MST14_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Table 3-34: SCB_MST13_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST13_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

Table 3-35: SCB_MST14_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST14_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-35: SCB_MST14_WQOS Register Diagram

Master 15 Read Quality of Service

The SCB_MST15_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-36: SCB_MST15_RQOS Register Diagram

Table 3-36: SCB_MST14_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST14_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–35

Master 15 Write Quality of Service

The SCB_MST15_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-37: SCB_MST15_WQOS Register Diagram

Master 16 Read Quality of Service

The SCB_MST16_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Table 3-37: SCB_MST15_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST15_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

Table 3-38: SCB_MST15_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST15_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-38: SCB_MST16_RQOS Register Diagram

Master 16 Write Quality of Service

The SCB_MST16_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-39: SCB_MST16_WQOS Register Diagram

Table 3-39: SCB_MST16_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST16_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–37

Master 17 Read Quality of Service

The SCB_MST17_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-40: SCB_MST17_RQOS Register Diagram

Master 17 Write Quality of Service

The SCB_MST17_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Table 3-40: SCB_MST16_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST16_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

Table 3-41: SCB_MST17_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST17_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-41: SCB_MST17_WQOS Register Diagram

Master 18 Read Quality of Service

The SCB_MST18_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-42: SCB_MST18_RQOS Register Diagram

Table 3-42: SCB_MST17_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST17_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–39

Master 18 Write Quality of Service

The SCB_MST18_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-43: SCB_MST18_WQOS Register Diagram

Master 19 Read Quality of Service

The SCB_MST19_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Table 3-43: SCB_MST18_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST18_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

Table 3-44: SCB_MST18_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST18_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-44: SCB_MST19_RQOS Register Diagram

Master 19 Write Quality of Service

The SCB_MST19_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-45: SCB_MST19_WQOS Register Diagram

Table 3-45: SCB_MST19_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST19_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–41

Master20 Read Quality of Service

The SCB_MST20_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-46: SCB_MST20_RQOS Register Diagram

Master 20 Write Quality of Service

The SCB_MST20_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Table 3-46: SCB_MST19_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST19_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

Table 3-47: SCB_MST20_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST20_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-47: SCB_MST20_WQOS Register Diagram

Master 21 Read Quality of Service

The SCB_MST21_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-48: SCB_MST21_RQOS Register Diagram

Table 3-48: SCB_MST20_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST20_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–43

Master 21 Write Quality of Service

The SCB_MST21_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-49: SCB_MST21_WQOS Register Diagram

Master 22 Read Quality of Service

The SCB_MST22_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Table 3-49: SCB_MST21_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST21_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

Table 3-50: SCB_MST21_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST21_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-50: SCB_MST22_RQOS Register Diagram

Master 22 Write Quality of Service

The SCB_MST22_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-51: SCB_MST22_WQOS Register Diagram

Table 3-51: SCB_MST22_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST22_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–45

Master 23 Read Quality of Service

The SCB_MST23_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-52: SCB_MST23_RQOS Register Diagram

Master 23 Write Quality of Service

The SCB_MST23_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Table 3-52: SCB_MST22_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST22_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

Table 3-53: SCB_MST23_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST23_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-53: SCB_MST23_WQOS Register Diagram

Master 24 Read Quality of Service

The SCB_MST24_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-54: SCB_MST24_RQOS Register Diagram

Table 3-54: SCB_MST23_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST23_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–47

Master 24 Write Quality of Service

The SCB_MST24_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-55: SCB_MST24_WQOS Register Diagram

Master 25 Read Quality of Service

The SCB_MST25_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Table 3-55: SCB_MST24_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST24_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

Table 3-56: SCB_MST24_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST24_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-56: SCB_MST25_RQOS Register Diagram

Master 25 Write Quality of Service

The SCB_MST25_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Figure 3-57: SCB_MST25_WQOS Register Diagram

Table 3-57: SCB_MST25_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST25_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 3–49

Master 26 Read Quality of Service

The SCB_MST26_RQOS register selects the QoS value for this master's read channel. The arbitration of trans-
actions throughout the infrastructure uses this QoS value. At any arbitration node, the master with highest
QoS value gains access.

Figure 3-58: SCB_MST26_RQOS Register Diagram

Master 26 Write Quality of Service

The SCB_MST26_WQOS register selects the QoS value for this master's write channel. The arbitration of
transactions throughout the infrastructure uses this QoS value. At any arbitration node, the master with
highest QoS value gains access.

Table 3-58: SCB_MST25_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST25_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

Table 3-59: SCB_MST26_RQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Read Quality of Service Value.
The SCB_MST26_RQOS.VALUE bit field holds the programmable QoS value for
this master's read channel.

SYSTEM CROSSBARS (SCB)
ADSP-CM40X SCB REGISTER DESCRIPTIONS

3–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 3-59: SCB_MST26_WQOS Register Diagram

Table 3-60: SCB_MST26_WQOS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

VALUE Write Quality of Service Value.
The SCB_MST26_WQOS.VALUE bit field holds the programmable QoS value for
this master's write channel.

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 4–1

4 Clock Generation Unit (CGU)

The Clock Generation Unit (CGU) includes the phase locked loop (PLL) and the PLL control unit (PCU).
The PLL generates a clock that runs at a frequency that is a multiple of the CLKIN input clock frequency.
It also generates all on-chip clocks and synchronization signals. The PCU allows the application software
to control the PLL module operation.

CGU Features

The following features are supported in the CGU module:

• Generates all on-chip clocks and synchronization signals; programmable values divide the PLL clock
frequency to generate the core clock (CCLK), the system clocks (SYSCLKand SCLK), and the output
clock (OCLK)

• Provides smooth transitions from current clock condition to new condition with PLL logic, executes
the changes to clocks due to register programming

• Supports programmable options for the SYS_CLKOUT output, which may output divided-down versions
of the on-chip clocks

• Provides PLL and clock domain status reporting for event management

• Maximizes power management flexibility in conjunction with the DPM

• Manages power dynamically, allowing the processor’s core clock frequency (fCCLK) to be dynamically
controlled

NOTE: For more information about processor specific CGU features, see the processor data sheet.

CGU Functional Description

The CGU (clock generation unit) generates all on-chip clocks and synchronization signals based on the
programmed PLL multiplication factor and dividers. The following sections describe the CGU features:

• ADSP-CM40x CGU Register List

• ADSP-CM40x CGU Interrupt List

• ADSP-CM40x CGU Trigger List

• CGU Definitions

CLOCK GENERATION UNIT (CGU)
CGU FUNCTIONAL DESCRIPTION

4–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• CGU PLL Block Diagram

ADSP-CM40x CGU Register List

The clock generation unit (CGU) includes the phase locked loop (PLL) and the PLL control unit (PCU).
The PLL generates a clock, running at a frequency that is a multiple of the CLKIN input clock's frequency.
The CGU also generates all on-chip clocks and synchronization signals. The PCU permits application soft-
ware control of the PLL's operation. A set of registers govern CGU operations. For more information on
CGU functionality, see the CGU register descriptions.

ADSP-CM40x CGU Interrupt List

Table 4-1: ADSP-CM40x CGU Register List

Name Description

CGU_CTL Control Register

CGU_STAT Status Register

CGU_DIV Clocks Divisor Register

CGU_CLKOUTSEL CLKOUT Select Register

CGU_OSCWDCTL Oscillator Watchdog Register

CGU_TSCTL Timestamp Control Register

CGU_TSVALUE0 Timestamp Counter Initial 32 l.s.b. Value Register

CGU_TSVALUE1 Timestamp Counter Initial m.s.b. Value Register

CGU_TSCOUNT0 Timestamp Counter 32 l.s.b.

CGU_TSCOUNT1 Timestamp Counter 32 m.s.b. Register

Table 4-2: ADSP-CM40x CGU Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

1 CGU0_EVT CGU0 PLL Lock Count Expired PULSE/EDGE

112 CGU0_ERR CGU0 Error PULSE/EDGE

CLOCK GENERATION UNIT (CGU)
CGU FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 4–3

ADSP-CM40x CGU Trigger List

CGU Definitions

DPM

The dynamic power management (DPM) works with the CGU to provide flexible power dissipation
models for the processor.

PCU

The PLL control unit (PCU) in the CGU controls PLL operations.

PLL

The phase-locked loop (PLL) operates within the CGU.

RCU

The reset control unit (RCU) provides input to the CGU to manage clocks during processor reset.

CGU

The clock generation unit (CGU) is comprised of the PLL and PCU. The CGU generates the clocks listed
in the table.

Table 4-3: ADSP-CM40x CGU Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

1 CGU0_EVT CGU0 Event PULSE/EDGE

Table 4-4: ADSP-CM40x CGU Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

None

Table 4-5: Clock Descriptions

Clock Description

PLLCLK Phase-locked loop clock provides the source from which all clocks below are derived from
unless the PLL is bypassed

CCLK Core Clock

SYSCLK Clock for system buses and peripherals

SCLK Clock for peripherals not clocked by SYSCLK

OCLK Output clock is a possible source for SYS_CLKOUT

CLOCK GENERATION UNIT (CGU)
CGU FUNCTIONAL DESCRIPTION

4–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NOTE: On ADSP-CM40x processors, the CCLKn signal is equivalent to CCLK0, and the SYSCLK signal
is equivalent to SCLKn.

CGU PLL Block Diagram

The CGU PLL block diagram provides a top level block diagram of the phase locked loop (PLL). The main
blocks of the PLL are the phase frequency detector (PFD), the charge pump, the loop filter, and the voltage
controlled oscillator (VCO) which multiplies the SYS_CLKIN input to a higher frequency.

Figure 4-1: CGU PLL Block Diagram

The output of these blocks is called PLLCLK. The PLLCLK is divided to form CCLK, SYSCLK, and OCLK.
The SYSCLK is gated to provide SCLK.

NOTE: On ADSP-CM40x processors, the SYSCLK signal is equivalent to the SCLKx signals mentioned
throughout this book, and the CCLKn signal is equivalent to the CCLK0 signal mentioned
throughout this book. Also note that for the ADSP-CM40x, the DCLK signal is equivalent to the
USBCLK signal.

The OCLK (shown in the CGU PLL block diagram) is routed to the CLKOUT block (shown in the SYS_
CLKOUT generation figure), so OCLK can be selected as one of the SYS_CLKOUT sources.

The following figure is a conceptual representation of the CLKOUT module. As shown in the CGU PLL
block diagram, many clocks are available on the SYS_CLKOUT output pin. The selection of which clock
outputs on the SYS_CLKOUT pin is controlled by CGU_CLKOUTSEL.CLKOUTSEL.

CLOCK GENERATION UNIT (CGU)
CGU OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 4–5

Figure 4-2: SYS_CLKOUT Generation

CGU Operating Modes

The CGU does not have configurable operating modes, but CGU operations affect the operating modes of
other modules. Some CGU operation issues that affect operation of other modules include the following:

• The CGU’s PLL operates in either normal mode (CGU clock divisors applied) or bypass mode (CGU
PLL is bypassed and clock divisors ignored).

• The SCB uses the CGU for clock synchronization across clock domains, For more information, see the
System Crossbars (SCB) chapter.

• The DPM uses the CGU for clock management as power state transitions occur. For more information,
see the Dynamic Power Management (DPM) chapter.

CGU Event Control

The CGU is capable of generating a CGU Event or CGU Error for several different causes.

CLOCK GENERATION UNIT (CGU)
CGU EVENT CONTROL

4–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CGU Events

After a frequency change, a CGU event indicates that the PLL has locked and clocks are synchronized. The
CGU event interrupt can be used to break a core idle if a core was idled while changing frequencies. While
in active mode, a CGU event indicates that the PLL has locked.

CGU Error

The CGU_STAT.WDIVERR bit indicates a write access to the CGU_DIV register to trigger an alignment
sequence or to change a CGU_DIV register field while the PLL is locked, but still aligning the clocks. The
fields for which change is monitored include:

• CCLK Divisor - CGU_DIV.CSEL

• SYSCLK Divisor - CGU_DIV.SYSSEL

This condition generates a CGU error. If this error occurs, it should be cleared and the desired values
should be written to the CGU_DIV register again.

The CGU_STAT.WDFMSERR bit indicates a write access to the CGU_CTL register to change the CGU_CTL.DF bit
field or the CGU_CTL.MSEL bit field while the PLL is locking. This condition generates a CGU error. If this
error occurs, wait until the PLL has finished locking, clear the error, and rewrite the desired value change
to the CGU_CTL.DF bit field or the CGU_CTL.MSEL field.

The CGU_STAT.DIVERR bit indicates a clock divisor value error. This error occurrs when a CCLK divisor is
greater than the SYSCLK divisor, as in CGU_DIV.CSEL> CGU_DIV.SYSSEL. The CGU issues a CGU error
for this condition. If this error occurs, it should be cleared and new values should be written to the CGU_
DIV.CSEL bit field so that it is less than or equal to the CGU_DIV.SYSSEL bit field value.

CGU Generated Bus Errors

The CGU generates a bus error if a read or write transaction is attempted to an unused address within the
CGU address range or if a misaligned access is made to a CGU register. In addition to the bus error, the
CGU_STAT.ADDRERR bit is set. If a write to a write protected CGU register is attempted, a bus error also is
generated. In addition, the CGU_STAT.LWERR bit is set.

Oscillator Watchdog

The Oscillator Watchdog detects the absence of input clock transitions and provides a fault warning via
the SYS_FAULT pin. Under programmable control the watchdog also detects and reports input oscillator
frequencies above and below specified limits, in order to specifically detect harmonic or sub-harmonic
crystal oscillator behavior. This detection is achieved by using an internal asynchronous, local 1 MHz oscil-
lator combined with a series of programmable counters. All the input clock monitor and fault detection

CLOCK GENERATION UNIT (CGU)
CGU EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 4–7

functions can be optionally disabled by setting the CGU_OSCWDCTL.MONDIS bit and clearing the CGU_
OSCWDCTL.FAULTEN bit in the control register.

Harmonic oscillation detection is enabled by setting CGU_OSCWDCTL.HODEN bit. The CGU_OSCWDCTL.HODF
bit field is used to indicate the desired lower fail limit for the harmonic oscillation detection in MHz. The
upper limit is always twice the lower limit. The following table shows an example of the CGU_OSCWDCTL.
HODF bit settings for different input clock frequencies.

The CGU_OSCWDCTL.BOUF asynchronous control bit field is used to indicate the desired upper fail limit for
the bad oscillation detection. The upper limit bad oscillation detection is enabled by setting CGU_
OSCWDCTL.BOUEN bit. The primary purpose is to signal a fault before any processor operations are
attempted (even in bypass mode) at a clock frequency that exceeds the specifications of the system or core
clocks.

CGU_OSCWDCTL.BOUF =0 starts with a target of 32 MHz and each additional LSB increases the frequency
test limit by 2 MHz. For example:

Target Upper Frequency Limit = CGU_OSCWDCTL.BOUF × 2 MHz + 32 MHz

The CGU_STAT.OSCWDSTATFC status bits indicate the nature of the fault. The following table shows the fault
values.

There is a priority to the faults given in the case of multiple fault errors. The highest priority is given to No
Input Clock followed by No AUX_CLK. The other 3 fault cases share the lowest priority. Multiple Limit
Faults are asserted if more than one type of Sub Harmonic CLKIN, Harmonic CLKIN, or BOUF faults are
observed.

Table 4-6: HODF Settings for Different Input Clock Frequencies

HODF[5:0]
Sub-Harmonic

Frequency (MHz)

Nominal
Lower Fail

Limit
Input Clock Frequency

(MHz)
Nominal Upper Fail

Limit (MHz)
2nd Harmonic

Frequency (MHz)

14 10 MHz 20 28 40

21 15 MHz 30 42 60

Table 4-7: Fault Map

FAULT_CODE[2:0] Fault Type

0 No Fault

1 No Input Clock

2 Sub Harmonic CLKIN

3 Harmonic CLKIN

4 No AUX_CLK

5 CLKIN > Upper Freq Limit (BOUF)

6 Reserved

7 Multiple Limit Faults

CLOCK GENERATION UNIT (CGU)
CGU PROGRAMMING MODEL

4–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NOTE: All the CGU_STAT.OSCWDSTATFC other than the absence of AUX_CLK (for example CGU_STAT.
OSCWDSTATFC =4) is not reliable and is used for debug only.

The CGU_OSCWDCTL.CNGEN bit can be used to enable the detection of the clock fault. An asynchronous reset
is issued to the processor via Reset Control Unit or Dynamic Power Management module. By default this
bit is disabled.

CGU Programming Model

This section describes the programming concepts and mode configuration techniques for the CGU.

Configuring CGU Modes

This section provides procedures related to clock and PLL configuration.

Changing the PLL Clock Frequency

To change the phase-locked loop clock (PLLCLK) frequency, write new values to the CGU_CTL.MSEL field
or CGU_CTL.DF field. Any time the PLL re locks, all core and system clocks are aligned.

1. Read CGU_STAT register and verify that:

a. The CGU_STAT.PLLEN bit =1 (PLL enabled).

b. The CGU_STAT.PLOCK bit =1 (PLL is not locking).

c. The CGU_STAT.CLKSALGN bit =0 (clocks aligned).

2. Write the desired values to the CGU_DIV register’s clock divisor select (SEL) fields with the CGU_DIV.
UPDT bit =0.

3. Write the desired values to the CGU_CTL.DF and CGU_CTL.MSEL fields.

a. To change the PLL frequency while the cores are idle, write to the CGU_CTL register with the CGU_
CTL.WFI bit =1.

b. To change the PLL frequency while the cores are active, write to the CGU_CTL register with the CGU_
CTL.WFI bit =0.

AFTER COMPLETING THIS TASK:

This sequence updates the corresponding CGU registers; bypasses the PLL; makes the PLL lock to the new
values in the CGU_CTL.MSEL or CGU_CTL.DF fields; changes the clock frequencies; and exits PLL bypass
with all clocks aligned. When exiting the PLL bypass state, a CGU event occurs.

The CGU_STAT register exits this sequence with the CGU_STAT.PLLEN bit =1, the CGU_STAT.PLOCK bit =1,
the CGU_STAT.PLLBP bit =0, and the CGU_STAT.CLKSALGN bit =0. The CGU_STAT.PLOCK bit, CGU_STAT.

CLOCK GENERATION UNIT (CGU)
CGU PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 4–9

PLLBP bit, and CGU_STAT.CLKSALGN bit may be polled to discover when the PLL is locked and the clocks
are aligned.

Changing the PLL's frequency is allowed while the PLL is bypassed but the new PLLCLK frequency is not
used until the PLL is no longer bypassed.

Changing the CCLKn or SYSCLK Frequency Without Modifying the PLLCLK Frequency

To change the clock frequencies, write new values to CGU_DIV.CSEL or CGU_DIV.SYSSEL bits. The
frequency change occurs only when the PLL is not bypassed. Any time the CCLKn or SYSCLK clock
frequencies are changed, they exit the frequency change sequence aligned.

1. Read the CGU_STAT register to verify that the CGU_STAT.CLKSALGN bit =0 (clocks aligned).

2. Write the desired CGU_DIV.CSEL, CGU_DIV.SYSSEL, and CGU_DIV.OSEL bit field values with the CGU_
DIV.UPDT bit = 1.

ADDITIONAL INFORMATION: This write updates the CGU_DIV register, changes the SCLKn and SYSCLK
frequencies, and aligns the clocks. When the clocks are aligned a CGU Event occurs.

AFTER COMPLETING THIS TASK:

The CGU_STAT register exits this sequence with the CGU_STAT.CLKSALGN bit =0. The CGU_STAT.CLKSALGN
bit can be polled to discover when the clocks are aligned. Any write attempt to change the CGU_DIV.S0SEL
or CGU_DIV.S1SEL bit fields while CGU_STAT.CLKSALGN bit =1 (clocks alignment in progress) triggers an
MMR access bus error and the CGU_DIV register is not modified.

Programming the SYSCLK frequency to a higher value than CCLKn also triggers an MMR access bus error
and the CGU_DIV register is not modified.

Writing to the CGU_DIV register is allowed while the processor is in active (PLL bypassed) mode but the
effect of the write is visible only after the transition to full-on (PLL not bypassed) mode.

Accessing the DDR memory while changing the SYSCLK frequency is not supported and may have unpre-
dictable results.

Changing the OUTCLK Frequency

To change the OUTCLK clock frequency, write a new CGU_DIV.OSEL bit value. Any time the OUTCLK
clock frequency is changed, the OUTCLK, CCLKn, SYSCLK and SCLKn clocks exit the frequency change
sequence aligned. The CGU_SYSDCLK_ALGN signal is not modified.

1. Read the CGU_STAT register to verify that the CGU_STAT.CLKSALGN bit =0 (clocks aligned).

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

4–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

2. Write desired CGU_DIV.OSEL value with the CGU_DIV.UPDT bit =1.

ADDITIONAL INFORMATION: This write updates the CGU_DIV register, changes the DCLK frequency, and
aligns all clocks except OUTCLK.

AFTER COMPLETING THIS TASK:

The CGU_STAT register exits this sequence with the CGU_STAT.CLKSALGN bit =0. The CGU_STAT.CLKSALGN
bit can be polled to discover when the clocks are aligned. Any write attempt to change the CGU_DIV.DSEL
field while the CGU_STAT.CLKSALGN bit =1 (clock alignment in progress) triggers an MMR access bus error
and the CGU_DIV register is not modified. When clocks are aligned a CGU event occurs.

Writing to the CGU_DIV.OSEL bit field is allowed while the processor is in active (PLL bypassed) mode but
the effect of the write is visible only after the transition to full-on (PLL not bypassed) mode.

Aligning All Clocks

To align the clocks write 1 to the CGU_DIV.ALGN bit. The frequency may be changed if required. The CGU_
SYSDCLK_ALGN is asserted if SYSCLK and DCLK frequencies are equal. The clocks aligned include:

• CCLKn

• SYSCLK

• OUTCLK

1. Read the CGU_STAT register to verify that CGU_STAT.CLKSALGN bit =0 (clocks aligned).

2. Write 1 to the CGU_DIV.ALGN bit. All other fields may or may not change.

ADDITIONAL INFORMATION: This write does not alter the CGU_DIV register unless any of the clock select
fields is modified. When clocks are aligned a CGU event occurs.

AFTER COMPLETING THIS TASK:

The CGU_STAT register exits this sequence with the CGU_STAT.CLKSALGN bit =0. The CGU_STAT.CLKSALGN
bit can be polled to discover when the clocks are aligned. Any write to the CGU_DIV register intended to
align clocks or to change a clock select field while the CGU_STAT.CLKSALGN bit =1 (clocks alignment in
progress) triggers an MMR access bus error and the CGU_DIV register is not modified.

Writing 1 to the CGU_DIV.ALGN bit has no effect while the processor is in active (PLL bypassed) mode.

ADSP-CM40x CGU Register Descriptions

Clock Generation Unit (CGU) contains the following registers.

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 4–11

Control Register

The CGU_CTL controls the clock generation divisors for SYS_CLKIN and the PLL. Read after write accesses
to the CGU_CTL register returns the new value even if the clock's frequency change is still in progress.

Figure 4-3: CGU_CTL Register Diagram

Table 4-8: ADSP-CM40x CGU Register List

Name Description

CGU_CTL Control Register

CGU_STAT Status Register

CGU_DIV Clocks Divisor Register

CGU_CLKOUTSEL CLKOUT Select Register

CGU_OSCWDCTL Oscillator Watchdog Register

CGU_TSCTL Timestamp Control Register

CGU_TSVALUE0 Timestamp Counter Initial 32 l.s.b. Value Register

CGU_TSVALUE1 Timestamp Counter Initial m.s.b. Value Register

CGU_TSCOUNT0 Timestamp Counter 32 l.s.b.

CGU_TSCOUNT1 Timestamp Counter 32 m.s.b. Register

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

4–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Status Register

The CGU_STAT register reflects the PLL status and errors detected during the PLL configuration. This
register may be cleared asynchronously by a reset signal from the RCU module. All bits---except those
defined as W1C (write-1-to-clear)---are read only.

Table 4-9: CGU_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the CGU_CTL.LOCK bit is
set, the CGU_CTL register is read only (locked).

0 Unlock

1 Lock

30
(R/W)

WFI Wait For Idle.
Modifying the PLL multiplier requires the PLL to re-lock and once the PLL locks,
clocks have to be synchronized. Changes to the CGU_CTL.MSEL and the CGU_
CTL.DF result in bypassing the PLL. The CGU_CTL.WFI force the PLL to wait for
all processor cores to be in an idle or reset state before changing frequencies as a
result of change to the CGU_CTL.MSEL or CGU_CTL.DF fields. Write accesses to
CGU_CTL to change CGU_CTL.DF or CGU_CTL.MSEL while the PLL is locking
sets the CGU_STAT.WDFMSERR bit.

0 Update Immediately

1 Wait for Idle

14:8
(R/W)

MSEL Multiplier Select.
The CGU_CTL.MSEL selects the multiplier in the PLLCLK equation:
PLLCLK frequency = (SYS_CLKIN frequency / (DF+1)) * MSEL * 2
Where the value of MSEL is between 1 and 127.

xxxxxxx MSEL = 1 to 127

0 Reserved

0
(R/W)

DF Divide Frequency.
The CGU_CTL.DF selects whether or not the SYS_CLKIN input is divided by two
before being passed to the PLL.

0 Pass OSC_CLKIN to PLL

1 Pass OSC_CLKIN/2 to PLL

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 4–13

Figure 4-4: CGU_STAT Register Diagram

Table 4-10: CGU_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

20
(R/W1C)

WDIVERR Write to DIV Error.
The CGU_STAT.WDIVERR indicates a write access to the CGU_DIV register (to
trigger an alignment sequence or to change CGU_DIV.CSEL, CGU_DIV.SYSSEL,
CGU_DIV.S0SEL, CGU_DIV.S1SEL, or CGU_DIV.DSEL) while the PLL is
locked, but still aligning the clocks. Read after write accesses to the CGU_STAT and
CGU_DIV registers return the new value even if the clock frequency change is still in
progress.

0 No Error

1 Write DIV Error

19
(R/W1C)

WDFMSERR Write to DF or MSEL Error.
The CGU_STAT.WDFMSERR indicates a write access to the CGU_CTL register to
change CGU_CTL.DF or CGU_CTL.MSEL while the PLL is locking.

0 No Error

1 Write DF/MSEL Error

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

4–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

18
(R/W1C)

DIVERR DIV Error.
The CGU_STAT.DIVERR indicates a clock divisor value error, occurring when the
CCLK clock divisor is greater than the SYSCLK clock divisor, as in:
CGU_DIV.CSEL> CGU_DIV.SYSSEL
The CGU issues a CGU error for this condition.

0 No Error

1 DIV Error

17
(R/W1C)

LWERR Lock Write Error.
The CGU_STAT.LWERR indicates an attempt to write to write-protected (locked)
CGU registers. The CGU issues a bus error for this condition.

0 No Error

1 Lock Write Error

16
(R/W1C)

ADDRERR Address Error.
The CGU_STAT.ADDRERR indicates an attempt to make a read or write access to
unimplemented addresses or accesses are non-aligned. The CGU issues a bus error
for this condition.

0 No Error

1 Address Error

9
(R/NW)

OCBF OUTCLK Buffer Status.
The CGU_STAT.OCBF indicates whether the OUTCLK buffer is enabled.

0 Disabled

1 Enabled

8
(R/NW)

DCBF DCLK Buffer Status.
The CGU_STAT.DCBF indicates whether the DCLK buffer is enabled.

0 Disabled

1 Enabled

4
(R/NW)

CCBF0 CCLK0 Buffer Status.
The CGU_STAT.CCBF0 indicates whether the CCLK0 buffer is enabled.

0 Disabled

1 Enabled

3
(R/NW)

CLKSALGN Clock Alignment.
The CGU_STAT.CLKSALGN indicates whether a clock alignment sequence is in
progress. This bit is set when clocks alignment is required by changes to CGU_DIV.
CSEL, CGU_DIV.S0SEL, CGU_DIV.S1SEL, CGU_DIV.DSEL, or CGU_DIV.
OSEL. The CGU_STAT.CLKSALGN bit is cleared when clocks are aligned.
Note that (after a PLL frequency change in active state) the CGU_STAT.CLKSALGN
bit may indicate that clocks are not aligned even though the clocks are aligned (all
clocks are aligned and running at CLKIN?s frequency).

0 Clocks are Aligned

1 Clocks not Aligned (alignment in progress)

Table 4-10: CGU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 4–15

Clocks Divisor Register

The CGU_DIV register controls clock divisors for core clocks, system clocks, external (off core) memory
clocks, and output clock. Read after write accesses to the CGU_DIV register returns the new value even if the
clock's frequency change is still in progress.

Figure 4-5: CGU_DIV Register Diagram

2
(R/NW)

PLOCK PLL Lock.
The CGU_STAT.PLOCK indicates whether the PLL is locked. This bit is set when
the PLL locks (PLL lock counter end-of-count). The CGU_STAT.PLOCK bit is
cleared when requested PLL frequency change (for PLL reset, PLL disable-to-enable
transition, or change to CGU_CTL.MSEL or CGU_CTL.DF) is in progress.

0 PLL not Locked (PLL frequency change in progress)

1 PLL Locked

1
(R/NW)

PLLBP PLL Bypass.
The CGU_STAT.PLLBP indicates whether the PLL is bypassed. The default value
for CGU_STAT.PLLBP is determined by the bypass strap pin.

0 PLL not Bypassed

1 PLL Bypassed

0
(R/NW)

PLLEN PLL Enable.
The CGU_STAT.PLLEN indicates whether the PLL is enabled.

0 Disabled

1 Enabled

Table 4-10: CGU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

4–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 4-11: CGU_DIV Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the CGU_DIV.LOCK bit is
set, the CGU_DIV register is read only (locked).

0 Unlock

1 Lock

30
(R/W)

UPDT Update Clock Divisors.
The CGU_DIV.UPDT controls whether the CGU drives new CGU_DIV.CSEL,
CGU_DIV.SYSSEL, CGU_DIV.S0SEL, CGU_DIV.S1SEL, CGU_DIV.DSEL,
and CGU_DIV.OSEL values to PLL after CGU_DIV register update.

0 No PLL Update

1 Drive Updated SEL Values to PLL

29
(R0/W1A)

ALGN Align.
The CGU_DIV.ALGN directs the CGU to align the PLL-based clocks. The divisor
selections (CGU_DIV.CSEL, CGU_DIV.SYSSEL, CGU_DIV.S0SEL, CGU_
DIV.S1SEL, CGU_DIV.DSEL, and/or CGU_DIV.OSEL) do not have to change.

0 No Action

1 Align PLL Clocks

28:22
(R/W)

OSEL OUTCLK Divisor.
The CGU_DIV.OSEL selects the divisor in the OUTCLK equation:
OUTCLK frequency = (SYS_CLKIN frequency / (DF+1)) * MSEL / CGU_DIV.
OSEL
Where the value of CGU_DIV.OSEL is between 1 and 127.

xxxxxxx OSEL = 1 to 127

0 Reserved

20:16
(R/W)

DSEL DCLK Divisor.
The CGU_DIV.DSEL selects the divisor in the DCLK equation:
DCLK frequency = (SYS_CLKIN frequency/(DF+1)) × MSEL/CGU_DIV.DSEL
Where the value of CGU_DIV.DSEL is between 1 and 31.

0 Reserved

xxxxx DSEL = 1 to 31

15:13
(R/W)

S1SEL Short Clocks Alignment Time.
The CGU_DIV.S1SEL Determines if the time it takes clocks to align is short or
long.

0 Long Clocks Alignment Time

xxx Reserved

1 Short Clocks Alignment Time

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 4–17

CLKOUT Select Register

The CGU_CLKOUTSEL selects the signal that the CGU drives through the CLKOUT multiplexer. Also, this
register selects the divisor for the USBCLK output.

Figure 4-6: CGU_CLKOUTSEL Register Diagram

12:8
(R/W)

SYSSEL SYSCLK Divisor.
The CGU_DIV.SYSSEL selects the divisor in the SYSCLK equation:
SYSCLK frequency = (SYS_CLKIN frequency/(DF+1)) × MSEL/CGU_DIV.
SYSSEL
Where the value of CGU_DIV.SYSSEL is between 1 and 31.

0 Reserved

xxxxx SYSSEL = 1 to 31

7:5
(R/W)

S0SEL Short Clocks Alignment Time.
The CGU_DIV.S0SEL Determines if the time it takes clocks to align is short or
long.

0 Long Clocks Alignment Time

xxx Reserved

1 Short Clocks Alignment Time

4:0
(R/W)

CSEL CCLK Divisor.
The CGU_DIV.CSEL selects the divisor in the CCLK equation:
CCLK frequency = (SYS_CLKIN frequency / (DF+1)) * MSEL / CGU_DIV.CSEL
Where the value of CGU_DIV.CSEL is between 1 and 31.

0 Reserved

xxxxx CSEL= 1 to 31

Table 4-11: CGU_DIV Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

4–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Oscillator Watchdog Register

The CGU_OSCWDCTL register configures the CGU to allow the detection of the absence of input clock tran-
sitions and provides a fault warning via the SYS_FAULT pin. The CGU_OSCWDCTL register also detects and
reports input oscillator frequencies above and below specified limits, in order to specifically detect
harmonic or sub-harmonic crystal oscillator behavior. This detection is achieved by using an internal
asynchronous, local 1 MHz oscillator combined with a series of programmable counters.

Table 4-12: CGU_CLKOUTSEL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the CGU_CLKOUTSEL.
LOCK bit is set, the CGU_CLKOUTSEL register is read only (locked).

0 Unlock

1 Lock

21:16
(R/W)

USBCLKSEL USBCLK Select.
The CGU_CLKOUTSEL.USBCLKSEL selects the divisor in the USBCLK equation:
USBCLK frequency = (USB PLL frequency) / (CGU_CLKOUTSEL.USBCLKSEL +1
)
Where the value of CGU_CLKOUTSEL.USBCLKSEL is between 0 and 63.

0 USBCLKSEL = 0

63 USBCLKSEL = 63

4:0
(R/W)

CLKOUTSEL CLKOUT Select.
The CGU_CLKOUTSEL.CLKOUTSEL selects the signal that the CGU drives
through the CLKOUT pin multiplexer.

0 CLKBUF (Buffered version of SYS_CLKIN)

1 CCLK0/4

2 Reserved

3 SYSCLK (SCLK)

4 DCLK (USBCLK)

5 Reserved

6 Reserved

7 OCLK

8 Reserved

9 WOCLK (Osc Watchdog)

10 Reserved

11 GND (Disable CLKOUT)

01111 - 11111 Reserved

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 4–19

Figure 4-7: CGU_OSCWDCTL Register Diagram

Table 4-13: CGU_OSCWDCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set and theCGU_OSCWDCTL.LOCK bit is set, the CGU_
OSCWDCTL register is read only (locked).

23
(R/W)

FAULTPINDIS Fault Pin disabled.
The CGU_OSCWDCTL.FAULTPINDIS bit disables pin fault detection.

15
(R/W)

MONDIS Oscillator Watchdog Monitor functions disabled.
The CGU_OSCWDCTL.MONDIS bit disables all the input clock monitor and fault
detection functions.

14
(R/W)

FAULTEN Fault enabled.
The CGU_OSCWDCTL.FAULTEN bit enables fault detection.

13
(R/W)

BOUEN Bad Oscillator Upper Frequency limit detection enabled.
The CGU_OSCWDCTL.BOUEN bit enables upper limit bad oscillation detection.

12:8
(R/W)

BOUF Bad Oscillator Upper Frequency limit.
The CGU_OSCWDCTL.BOUF bit enables upper limit bad oscillation detection.

7
(R/W)

CNGEN Clock not Good enabled.
The CGU_OSCWDCTL.CNGEN bit enables the detection of an oscillator watchdog
clock fault.

6
(R/W)

HODEN Harmonic Oscillation Detection enabled.
The CGU_OSCWDCTL.HODEN bit enables harmonic oscillation detection.

5:0
(R/W)

HODF Watchdog lower frequency limit.
The CGU_OSCWDCTL.HODF bit field is used to indicate the desired lower fail limit
for the harmonic oscillation detection in MHz.

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

4–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Timestamp Control Register

Figure 4-8: CGU_TSCTL Register Diagram

Timestamp Counter Initial 32 l.s.b. Value Register

Table 4-14: CGU_TSCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.

0 Unlock

1 Lock

7:4
(R/W)

TSDIV Counter's Clock Divider.

xxxx Divides SYSCLK by 2**xxxx

1
(R/W1A)

LOAD Load Counter.

0 Always read as "0"

0
(R/W)

EN Counter Enable.

0 Counter Disabled

1 Counter Enabled

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 4–21

Figure 4-9: CGU_TSVALUE0 Register Diagram

Timestamp Counter Initial m.s.b. Value Register

Figure 4-10: CGU_TSVALUE1 Register Diagram

Table 4-15: CGU_TSVALUE0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Counter's 32 l.s.b. Initial Value.

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxx

Counter's Initial 32 l.s.b. Value

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

4–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Timestamp Counter 32 l.s.b.

Figure 4-11: CGU_TSCOUNT0 Register Diagram

Timestamp Counter 32 m.s.b. Register

Table 4-16: CGU_TSVALUE1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Counter's Initial 32 m.s.b Value.

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxx

Counter's Initial 32 m.s. Value

Table 4-17: CGU_TSCOUNT0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Time Stamp Counter 32 l.s.b..

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxx

Timestamp Counter 32 l.s.b.

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 4–23

Figure 4-12: CGU_TSCOUNT1 Register Diagram

Table 4-18: CGU_TSCOUNT1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Timestamp Counter 32 m.s.b..

xxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxx

Timestamp Counter 32 m.s.b.

CLOCK GENERATION UNIT (CGU)
ADSP-CM40X CGU REGISTER DESCRIPTIONS

4–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 5–1

5 System Protection Unit (SPU)

The system protection unit (SPU) provides features that let you protect system resources from errant
writes. A number of protection categories (types of registers to protect) are available.

In a system with multiple system MMR masters, configurations of peripherals can be changed uninten-
tionally leading to bad data or even system malfunctions. The peripherals are shared resources in the
system. The SPU lets the user restrict access to certain MMRs, similar to the functionality of a semaphore.

SPU Features

The System Protection Unit has the following features.

• Write-protect system MMR from certain system masters.

• Simultaneously lock multiple peripheral configuration registers.

• Write-protect and block access to its own write-protection registers from other system masters.

SPU Functional Description

The SPU has a register associated with each peripheral. Each of these write-protection registers has the
exact same bits that correspond to a particular SMMR master (Core 0, Core 1, MDMA, for example).
When the bits are set, the corresponding SMMR masters are locked out of accessing the associated periph-
eral’s register address space. The bits in the register can be cleared to allow access to the peripheral's regis-
ters again. Any writes that are in progress when write-protection is initiated are completed before
subsequent writes are blocked.

In the following figure, each write-protect register in the SPU is associated with a particular peripheral.

SYSTEM PROTECTION UNIT (SPU)
SPU FUNCTIONAL DESCRIPTION

5–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 5-1: SPU Write Protect Registers

The SPU also has global locking capability. When enabled, a system-wide global lock signal is active. Some
peripherals have a lock enable bit in their control register. When this bit is set, the peripheral recognizes
the global lock signal and blocks further write-accesses to its own control register. Access to the periph-
eral’s configuration register is re-enabled when global lock is turned off in the SPU.

The following figure is a conceptual diagram where a peripheral blocks any write attempts to its control
register if the global lock signal from the SPU is active AND the global lock enable bit is set in the periph-
eral’s control register.

SYSTEM PROTECTION UNIT (SPU)
SPU FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 5–3

Figure 5-2: Global Locking

The SPU can write protect its own registers. When the write protection register lock bit is set and global
locking is enabled, accesses to the SPU write-protection registers are blocked. To re-enable write access to
the write-protection registers in the SPU, global locking must be disabled.

In the following figure a write-protect register in the SPU blocks write-attempts to the associated periph-
eral’s MMR space. The bits in the write-protect register specify which masters to block write-access from.

Figure 5-3: SPU Write-Protect Register Blocking Access from System Master 0 and Core Master 1

SYSTEM PROTECTION UNIT (SPU)
SPU FUNCTIONAL DESCRIPTION

5–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x SPU Register List

The system protection unit (SPU) provides a set of registers that allow you to protect system resources
from errant writes. The protection categories are global lock (protects configuration registers) and write
protect register lock (protects the write protect register). For more information on SPU functionality, see
the SPU register descriptions.

SPU Definitions

Write-Protect Register

Memory mapped registers in the SPU. Each register correlates to a specific peripheral instance. It controls
the write access to the peripheral's register set.

Global Locking

SPU's ability to prevent write access to multiple peripheral's control register at once.

SPU Block Diagram

The figure below shows a system level block diagram of where the SPU is in the system. It sits in between
the SMMR interface and the system crossbar. Depending on the configuration of the SPU write-protect
registers, it can block access to certain peripherals from certain SMMR masters.

Table 5-1: ADSP-CM40x SPU Register List

Name Description

SPU_CTL Control Register

SPU_STAT Status Register

SPU_WPn Write Protect Register n

SYSTEM PROTECTION UNIT (SPU)
SPU EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 5–5

Figure 5-4: SPU System Level Block Diagram

SPU Architectural Concepts

As shown in the block diagram, the SPU sits between the System Crossbar (SCB) and the SMMR interface
to the peripherals. Any MMR access to any peripheral from any master comes through the SCB and is
gated by the SPU. Depending on the configuration of the write-protection registers in the SPU, the SPU
may or may not allow the MMR write to go through.

SPU Event Control

The system protection unit provides write protection against a peripheral's MMRs and its own write-
protect registers. If a write attempt is made to any peripheral's MMR and was locked, the SPU will block
the write and generate a bus error to the master that attempted the write. That master may or may not
generate an event based upon the returned error. The SPU does not generate an event for blocked write
attempts.

The SPU can also lock its own registers from write attempts. If a write-attempt was made to a locked
register in the SPU, the SPU blocks it and records it as an error in SPU_STAT.LWERR. Again, the SPU gener-
ates a bus error to the master that attempted the write. The master may or may not generate an event based
upon the returned error. The SPU does not generate an event for a blocked write access to an SPU register.

SYSTEM PROTECTION UNIT (SPU)
SPU PROGRAMMING MODEL

5–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SPU Programming Model

The system protection unit (SPU) consists of write-protect registers. Each one corresponds to a different
peripheral instance. Bits in the write-protect registers correspond to system masters that can modify the
MMR contents of the peripherals. By writing to these write-protect registers, the corresponding periph-
eral's memory-mapped registers are write protected against masters whose bits in the write-protect register
have been set.

Another capability of the SPU is to globally lock peripherals' control register. Peripherals that support this
feature have a lock enable bit in their control register. When the global lock signal is active from the SPU
and the peripheral’s lock enable bit is set, the peripheral blocks any more write attempts to its control
register from any master. If the lock enable bit of a peripheral is not set and the global lock signal is active,
access to that peripheral’s control register is still allowed. To grant access again, the global lock signal from
the SPU must be disabled by writing the value 0xAD into the SPU_CTL.GLCK bit field.

Another protection mechanism that the SPU offers is write protection against the write-protection regis-
ters. If the write protect register lock bit (SPU_CTL.WPLCK) is set and the global lock signal is active, writes
to the SPU’s write-protect registers will be blocked. To re-enable access to the write-protect registers in the
SPU, the global lock signal must be deactivated by writing 0xAD into the SPU_CTL.GLCK bit field.

SPU Mode Configuration

The SPU can provide address range wide protection by write-protecting the peripherals MMR address
range from system MMR masters. It can also provide register wide protection by using Global Locking.
Peripherals that support this feature can enable it their respective configuration register. When the SPU
enables the Global Lock signal, all subsequent writes to the peripheral's configuration register are blocked
until the Global Lock signal is deasserted. Similarly, the SPU's own write-protection registers can be write
protected using the Global Lock signal as well. All these modes of operation can be used in conjunction.

Locking Write-Protect Registers

Use the following steps to lock (write protect) a register.

1. Set the SPU_CTL.WPLCK bit and configure the SPU_CTL.GLCK field to something other than 0xAD.

RESULT:

The SPU write-protect registers are blocked from further write accesses.

SYSTEM PROTECTION UNIT (SPU)
ADSP-CM40X SPU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 5–7

Protecting a Peripheral

Use the following procedure to protect a peripheral

1. Determine which peripheral needs protection and locate the corresponding write-protect register in
the SPU.

2. Determine which SMMR master(s) the peripheral needs to be protected from and set the corre-
sponding bit(s) in the write-protect register for the peripheral in the SPU.

RESULT:

After setting the write-protect register for the particular peripheral, the SMMR master(s) will be blocked
from writing to any MMR in the peripheral's address space until the bits in the write-protect register are
cleared.

ADSP-CM40x SPU Register Descriptions

System Protection Unit (SPU) contains the following registers.

Control Register

The SPU control register (SPU_CTL) provides a global lock for configuration registers and write protection
for registers.

Table 5-2: ADSP-CM40x SPU Register List

Name Description

SPU_CTL Control Register

SPU_STAT Status Register

SPU_WPn Write Protect Register n

SYSTEM PROTECTION UNIT (SPU)
ADSP-CM40X SPU REGISTER DESCRIPTIONS

5–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 5-5: SPU_CTL Register Diagram

Status Register

The SPU_STAT register indicates the error and lock status for the SPU.

Figure 5-6: SPU_STAT Register Diagram

Table 5-3: SPU_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/W)

WPLCK Write Protect Register Lock.
The SPU_CTL.WPLCK works with the SPU_CTL.GLCK field. If the write protect
register lock is enabled (SPU_CTL.WPLCK bit =1) and the global lock is enabled,
writes to the SPU_WPn register are disabled (locked out).

0 Disable

1 Enable

7:0
(R/W)

GLCK Global Lock Disable.
The SPU_CTL.GLCK controls the global lock of configuration registers. Writing
0xAD to this field disables the lock, and writing any other value enables the lock.

SYSTEM PROTECTION UNIT (SPU)
ADSP-CM40X SPU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 5–9

Write Protect Register n

In the system, each SPU_WPn register is assigned to a specific MMR address range associated with one
peripheral. When the appropriate bits are set, writes to the peripheral from a specific master are blocked
and an error is returned to the master. For more information, see the processor specific additional infor-
mation for the SPU_WPn register.

Figure 5-7: SPU_WPn Register Diagram

Table 5-4: SPU_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

LWERR Lock Write Error.
The SPU_STAT.LWERR is write-1-to-clear and indicates whether there has been an
attempted write to a register with its LOCK bit set while SPU_CTL.GLCK was
asserted.

0 Inactive

1 Active

30
(R/W1C)

ADDRERR Address Error.
The SPU_STAT.ADDRERR is write-1-to-clear and indicates whether there has been
an attempted write to a read-only register or an access an invalid address.

0 Inactive

1 Active

0
(R/NW)

GLCK Global Lock Status.
The SPU_STAT.GLCK indicates whether the global lock is enabled or disabled.

0 Disabled (global_lock=0)

1 Enabled (global_lock=1)

SYSTEM PROTECTION UNIT (SPU)
ADSP-CM40X SPU_WPN REGISTER BITS

5–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x SPU_WPn Register Bits

The SPU consists of a collection of Write Protect Registers each of which are associated with a specific
peripheral or slave. The table below gives the Write Protect Register number for each of the peripherals
that are provided with write protection through the SPU. The SPU for ADDSP-CM40xx is configured with
59 Write Protect Registers.

For each processor, there will be different number of masters that will be able to access the SMMR space.
The table below shows which bits enable the protection against which master.

For each peripheral, there will be a corresponding write-protect register, SPU_WPn. The table below
shows the Write Protect Register number for each peripheral.

Table 5-5: SPU_WPn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19:16
(R/W)

SMn System Master x Write Protect Enable.

0
(R/W)

CMn Core Master x Write Protect Enable.

Table 5-6: SPU_WPn.CMn and SPU_WPn.SMn Bits

Bit No. Bit Name Description

0 CM0_WP (Core Master 0) Core

16 SM0_WP (System Master 0) MDMA0 Source

17 SM1_WP (System Master 1)) MDMA0 Destination

18 SM2_WP (System Master 2) MDMA1 Source

19 SM3_WP (System Master 3)) MDMA1 Destination

Table 5-7: SPU_WPn Registers and Related Peripherals

Write Protect Register Number (n) Peripheral

0 TIMER0

1 TWI0

2 SPORT0 A

3 SPORT0 B

4 SPORT1 A

5 SPORT1 B

6 CRC0

7 CAN0

SYSTEM PROTECTION UNIT (SPU)
ADSP-CM40X SPU_WPN REGISTER BITS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 5–11

8 CAN1

9 UART0

10 UART1

11 UART2

12 PORTA

13 PORTB

14 PORTC

15 PORTD

16 PORTE

17 PORTF

18 PADS0

19 PINT0

20 PINT1

21 PINT2

22 PINT3

23 PINT4

24 SMC0

25 EPWM0

26 EPWM1

27 EPWM2

28 CNT0

29 CNT1

30 CNT2

31 CNT3

32 SINC0

33 ADCC0

34 DACC0

35 DMA1

36 DMA2

37 DMA3

38 DMA4

39 RCU0

40 TRU0

41 CGU0

42 DPM0

Table 5-7: SPU_WPn Registers and Related Peripherals (Continued)

Write Protect Register Number (n) Peripheral

SYSTEM PROTECTION UNIT (SPU)
ADSP-CM40X SPU_WPN REGISTER BITS

5–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

MMRs of certain peripherals can be write protected by locking them in their control registers if Global
Lock is enabled in SPU Control Register. Global Lock is enabled by writing any value other than 0xAD to
the GLCK field in SPU Control Register. Following are the peripheral that can be write protected by using
this feature.

43 HAE0

44 EMAC0

45 SWU0 (SMC)

46 SWU1 (SPI2)

47 SWU2 (SPI0)

48 SWU3 (SRAM)

49 SWU4 (MMR)

50 SPU0

51 SEC0

52 JTAG

53 SPI0

54 SPI1

55 SPI2

56 WDT0

57 USB0

58 Reserved

Table 5-8: Slave Numbers, Protected Modules, and Global Locks

Slave Number Protected Module Global Lock enabling Register

1 GPIO (PORTs A-F) Port Lock Register

2 SEC0 Fault Control Register

3 TRU0 TRU Slave Select Register

4 CGU0 CGU Control Register

5 DPM0 DPM Control Register

6 RCU0 RCU Control Register

Table 5-7: SPU_WPn Registers and Related Peripherals (Continued)

Write Protect Register Number (n) Peripheral

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 6–1

6 Dynamic Power Management (DPM)

The dynamic power management (DPM) unit of the processor controls transitions between different
power saving modes. The DPM also allows individual clock domains to be enabled and disabled.

DPM Features

The DPM allows programs to control the processor's power mode as follows.

• Provides capability to shut off individual clock domains to save power

• Supports capability to bypass the PLL for power savings

• Permits operation of multiple, external wake-up sources

DPM Functional Description

The processor supports a number of power domains, which maximizes flexibility while maintaining
compliance with industry standards and conventions. By isolating the internal logic of the processor into
its own power domain, separate from other I/O, the processor can take advantage of dynamic power
management without affecting the other I/O devices. There are no sequencing requirements for the
various power domains, but all domains must be powered according to the appropriate specifications, even
if the feature/peripheral is not used. For more information on power domains, see the processor data sheet.

The dynamic power management feature of the processor allows the processor's core clock frequency
(fCCLK) to be dynamically controlled.

ADSP-CM40x DPM Register List

The dynamic power management (DPM) unit includes the phase locked loop (PLL) enable/disable
features, mode controls, and clock domain enable/disable features. The combination of these features and
controls provide selective and flexible power management. A set of registers govern DPM operations. For
more information on DPM functionality, see the DPM register descriptions.

Table 6-1: ADSP-CM40x DPM Register List

Name Description

DPM_CTL Control Register

DYNAMIC POWER MANAGEMENT (DPM)
DPM FUNCTIONAL DESCRIPTION

6–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x DPM Interrupt List

DPM Definitions

To make the best use of the DPM, it is useful to understand the following terms.

Active mode

A power saving mode in which the PLL is bypassed but still enabled.

Active mode with PLL disabled

A power saving mode in which the PLL is bypassed and disabled.

CGU

Acronym for the clock generation unit (CGU), which is comprised of the PLL and PCU

Deep sleep mode

A power saving mode in which all CCLKs are gated.

DPM_STAT Status Register

DPM_CCBF_DIS Core Clock Buffer Disable Register

DPM_CCBF_EN Core Clock Buffer Enable Register

DPM_CCBF_STAT Core Clock Buffer Status Register

DPM_CCBF_STAT_STKY Core Clock Buffer Status Sticky Register

DPM_SCBF_DIS System Clock Buffer Disable Register

DPM_WAKE_EN Wakeup Enable Register

DPM_WAKE_POL Wakeup Polarity Register

DPM_WAKE_STAT Wakeup Status Register

Table 6-2: ADSP-CM40x DPM Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

113 DPM0_EVT DPM0 Event

Table 6-1: ADSP-CM40x DPM Register List (Continued)

Name Description

DYNAMIC POWER MANAGEMENT (DPM)
DPM OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 6–3

DPM

Acronym for the dynamic power management (DPM) controller.

Full-on mode

The normal operating mode in which all clock domains are derived from the PLL.

PCU

Acronym for the PLL control unit (PCU).

PLL

Acronym for the phase-locked loop (PLL).

RCU

Acronym for the reset control unit (RCU).

DPM Operating Modes

The DPM includes several operating modes. The modes are:

• RESET

• FULL-ON

• ACTIVE

• ACTIVE with PLL Disabled

• DEEP SLEEP

The operating modes and transitions figure shows the relationships between DPM modes for the ADSP-
CM40x processor.

DYNAMIC POWER MANAGEMENT (DPM)
DPM OPERATING MODES

6–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 6-1: Operating Modes and Transitions

Reset State

Reset is the initial state of the processor and is the result of a hardware or software triggered event. Entering
reset is not triggered by the DPM itself, but by the external SYS_HWRST pin or by the RCU. The DPM
responds to reset by transitioning to its default state.

From RESET, the DPM always transitions to ACTIVE state.

Full-on Mode

In full-on mode, the processor can reach its maximum clock rate and power dissipation can be at its
highest. The DPM transitions from full-on mode to:

• Active mode if DPM_CTL. PLLBPST is set

• Deep sleep mode if DPM_CTL. DEEPSLEEP is set

DYNAMIC POWER MANAGEMENT (DPM)
DPM OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 6–5

Active Mode

Active mode is the DPM’s default state after RESET.

In active mode, power dissipation is reduced on the VDD_INT power domain (compared to full-on mode)
by bypassing the PLL and running clock domains at the SYS_CLKIN pin frequency. The processor is fully
functional. The DPM transitions from active mode to:

• Full-on mode if DPM_CTL. PLLBPCL is set

• Active with PLL disabled mode if DPM_CTL. PLLDIS is set

• Deep sleep mode if DPM_CTL. DEEPSLEEP is set

ACTIVE with PLL Disabled

In active with PLL disabled mode, power dissipation is reduced on the VDD_INT power domain (compared
to active mode) by disabling the PLL in addition to running all units at the at the SYS_CLKIN pin frequency.
The processor is fully functional. The DPM transitions from active with PLL disabled mode to:

• Active mode if DPM_CTL.PLLDIS is cleared

• Deep sleep mode if DPM_CTL.DEEPSLEEP is set

Deep Sleep Mode

To enter deep sleep mode, the processor sets the DPM_CTL.DEEPSLEEP bit, and all processor cores are in
idle state. It is the programs responsibility in software to guarantee that system transfers including DMA
are stopped before each processor core goes into idle state and the processor enters deep sleep mode. In
this state, power dissipation on the VDD_INT power domain is reduced (compared to active mode or gated
active mode) by gating all the core and system clocks and by disabling the PLL.

The enabled hardware wake-up signals or a hardware reset signal can make the processor exit deep sleep
mode. The DPM_WAKE_EN.WSn bits and DPM_WAKE_POL.WSn bits work together to determine which hard-
ware wake-up signals are enabled and the signals’ polarity. Wake-up signal assertion is latched only when
the signal is enabled. The enabled wake-up signal assertion occurring first is recorded in the DPM_WAKE_
STAT register.

NOTE: To see which wake-up sources your processor reports, see ADSP-CM40x Wake-Up Sources.

When a wake-up occurs, the DPM does the following:

• Signals a DPM event interrupt to the SEC

• Transitions to ACTIVE mode

• Enables all clocks domains that are not disabled in the DPM_SCBF_DIS register

DYNAMIC POWER MANAGEMENT (DPM)
DPM EVENT CONTROL

6–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The DPM event interrupt will stay active until the user clears any bits that are set in DPM_WAKE_STAT. The
DPM event interrupt is the first indication that the processor has exited DEEP SLEEP.

One option for waking up the core is to enable the CGU event interrupt, which asserts after the PLL locks.

Another option is to use the DPM event interrupt to make a core exit idle and to enable the corresponding
core clock buffer.

DPM Event Control

The DPM event is triggered when an enabled wake-up is asserted. DPM bus errors are generated when a
misaligned access to a registers occurs or when an attempt is made to access unused DPM address space
or a write protected register.

DPM Events

The DPM event interrupt is triggered when any bit in the DPM_WAKE_STAT register is set. This indicates that
an enabled wake-up was asserted. The DPM event interrupt will stay active until the user clears any bits
that are set in the DPM_WAKE_STAT register.

DPM Errors

The DPM generates a bus error if a read or write transaction is attempted to an unused address within the
DPM address range or if a misaligned access is made to a DPM register. In addition to the bus error, the
DPM sets the DPM_STAT.ADDRERR bit.

If a write to a write protected DPM register is attempted, the DPM generates a bus error. In addition, the
DPM sets the DPM_STAT.LWERR bit.

DPM Programming Model

The following sections describe programming techniques, including verifying restoration of power
supplies, managing power modes, and selecting wake-up sources.

• Configuring Deep Sleep Mode

• ADSP-CM40x Wake-Up Sources

DYNAMIC POWER MANAGEMENT (DPM)
DPM PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 6–7

Configuring Deep Sleep Mode

The deep sleep mode gates all core and system clocks in order to save power.

PREREQUISITE:

The deep sleep mode can be entered from any state in which software can run. Reading the DPM_STAT.
CURMODE field reveals the current power mode. Clocks do not stop immediately after entry to deep sleep
mode is requested, but no further action is needed to guarantee that the mode transition occurs.

The processor cores need to be idle before the clocks are shut down.

1. If the DPM_STAT.CURMODE indicates full-on mode, wait for the CGU_STAT.PLLBP bit =0, the CGU_STAT.
PLOCK bit =1, and the CGU_STAT.CLKSALGN bit =0.

2. If DPM_STAT.CURMODE indicates active mode with PLL disabled, wait for the CGU_STAT.PLLEN bit =0.

3. Enable the DPM event interrupt to wake up the desired core, directing exit from idle after exit from
deep sleep mode.

4. Set the polarity of wake-up sources as needed with the DPM_WAKE_POL.WSn bits.

5. Enable the wake-up sources as needed with the DPM_WAKE_EN.WSn bits.

6. Set the DPM_CTL.DEEPSLEEP bit.

7. Clear all pending core transactions, DMA transactions, and interrupts. (For example, if applicable, use
a system synchronization instruction.)

8. Place all processor cores in idle state.

RESULT:

The processor is now in deep sleep mode. To wake the processor, assert any of the enabled wake-up
sources.

ADSP-CM40x Wake-Up Sources

The table below shows the DEEP SLEEP wake-up sources for the ADSP-CM40x. The first column shows
which wake-up source bit (WSn) is used in the DPM_WAKE_EN, DPM_WAKE_POL, and DPM_
WAKE_STAT registers. The Assigned Source column shows which peripheral or pin source is assigned to
the WSn bit. Peripherals in parentheses mean that the source can either be used as a GPIO wake-up or as
the specific peripheral wake-up listed. The DEEP SLEEP column indicates whether or not the wake-up
source can wake the processor from DEEP SLEEP.

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

6–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x Clock Buffer Disable Bit Assignments

The table below shows the clock buffers that may be disabled on ADSP-CM40x.

The first column shows which system clock buffer bit (DPM_SCB_DIS.SCBFn) is used in the DPM_SCBF_DIS
register. The Assigned Clock column shows which clock buffer is assigned to the DPM_SCB_DIS.SCBn bit.

The table below shows the clock buffers that may be disabled on ADSP-CM40x. The first column shows
which system clock buffer disable bit (SCBFn) is used in the DPM_SCBF_DIS register. The Assigned Clock
column shows which clock buffer is assigned to the SCBFn bit.

ADSP-CM40x DPM Register Descriptions

Dynamic Power Management (DPM) contains the following registers.

Table 6-3: ADSP-CM40x DEEP SLEEP Wake-up Sources

DPM_WAKE_EN, DPM_WAKE_POL,
and DPM_WAKE_STAT Bit Assigned Source DEEP SLEEP

WS0 PC_06 Yes

WS1 PC_07 Yes

WS2 PB_14 Yes

WS3 PB_13 Yes

WS4 JTAG_WK_UP Yes

WS30: WS5 Reserved NA

Table 6-4: ADSP-CM40x Bit Assignments for DPM_SCBF_DIS

DPM_SCBF_DIS Bit Assigned Clock

SCBF0 USBCLK

SCBF1 OUTCLK

Table 6-5: ADSP-CM40x DPM Register List

Name Description

DPM_CTL Control Register

DPM_STAT Status Register

DPM_CCBF_DIS Core Clock Buffer Disable Register

DPM_CCBF_EN Core Clock Buffer Enable Register

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 6–9

Control Register

The DPM_CTL register controls sleep modes selections and PLL operations of the DPM. A write protect
feature permits locking out changes to this register.

Figure 6-2: DPM_CTL Register Diagram

DPM_CCBF_STAT Core Clock Buffer Status Register

DPM_CCBF_STAT_STKY Core Clock Buffer Status Sticky Register

DPM_SCBF_DIS System Clock Buffer Disable Register

DPM_WAKE_EN Wakeup Enable Register

DPM_WAKE_POL Wakeup Polarity Register

DPM_WAKE_STAT Wakeup Status Register

Table 6-6: DPM_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the DPM_CTL.LOCK bit is
set, the DPM_CTL register is read only (locked).

0 Unlock

1 Lock

Table 6-5: ADSP-CM40x DPM Register List (Continued)

Name Description

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

6–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Status Register

3
(R0/W1A)

DEEPSLEEP Deep Sleep.
The DPM_CTL.DEEPSLEEP bit puts the DPM into deep sleep mode. The DPM
stays in this mode until a wakeup event occurs. For more information about DPM
modes, see the functional description.

0 No Action

1 Deep Sleep

2
(R/W)

PLLDIS PLL Disable.
While the DPM is in active mode, it is possible to disable the PLL with the DPM_
CTL.PLLDIS bit, keeping the DPM active and running with lower power
consumption. For more information about DPM modes, see the operating modes.

0 Enable

1 Disable

1
(R0/W1A)

PLLBPCL PLL Bypass Clear.
While the DPM is in active mode, it is possible to disable the PLL bypass with the
DPM_CTL.PLLBPCL bit, transitioning to DPM to full-on mode. For more
information about DPM modes, see the operating modes.

0 No action

1 Disable PLL Bypass

0
(R0/W1A)

PLLBPST PLL Bypass Set.
While the DPM is in full on mode, it is possible to enable the PLL bypass with the
DPM_CTL.PLLBPST bit, transitioning the DPM to active mode. For more
information about DPM modes, see the operating modes.

0 No action

1 Enable PLL Bypass

Table 6-6: DPM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 6–11

Figure 6-3: DPM_STAT Register Diagram

Table 6-7: DPM_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19
(R/W1C)

PLLCFGERR PLL Configuration Error.

0 Inactive

1 Active

18
(R/W1C)

HVBSYERR HV Busy Error.
Reading registers during restore of DPM-LV from DPM-HV.

0 Inactive

1 Active

17
(R/W1C)

LWERR Lock Write Error.

0 Inactive

1 Active

16
(R/W1C)

ADDRERR Address Error.

0 Inactive

1 Active

9
(R/NW)

HVBSY HV Busy.

0 Not Busy (ready)

1 Busy

8
(R/NW)

CCLKDIS Core Clock(s) Disabled.
One or more of the core clocks disabled.

0 Inactive

1 Active

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

6–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Core Clock Buffer Disable Register

The DPM_CCBF_DIS register controls the core n clock buffers. The number of clocks varies with the
processor design, with bit n corresponding to CCLKn. This register includes a write protection lock.

Figure 6-4: DPM_CCBF_DIS Register Diagram

7:4
(R/NW)

PRVMODE Previous Mode.

... Reserved

0 Reset

1 Full-On

2 Active

3 Active with PLL disabled

4 Deep Sleep

5 Reserved

15 Reserved

3:0
(R/NW)

CURMODE Current Mode.

0 Reserved

... Reserved

1 Full-On

2 Active

3 Active with PLL disabled

4 Reserved

15 Reserved

Table 6-7: DPM_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 6–13

Core Clock Buffer Enable Register

The DPM_CCBF_EN register controls the core n clock buffers. The number of clocks varies with the
processor design, with bit n corresponding to CCLKn. This register includes a write protection lock.

Figure 6-5: DPM_CCBF_EN Register Diagram

Table 6-8: DPM_CCBF_DIS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.

0 Unlock

1 Lock

0
(R0/W1A)

CCBFn Core Clock Buffer n Disable.
The DPM_CCBF_DIS.CCBFn bits provide a core clock buffer disable for each core
on the processor with bit n corresponding to CCLKn.

0 No Action

1 Disable Buffer

Table 6-9: DPM_CCBF_EN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the DPM_CCBF_EN.LOCK
bit is set, the DPM_CCBF_EN register is read only (locked).

0 Unlock

1 Lock

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

6–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Core Clock Buffer Status Register

The DPM_CCBF_STAT register indicates core clock buffer enable or disable status for each core on the
processor, with bit n corresponding to CCLKn.

Figure 6-6: DPM_CCBF_STAT Register Diagram

Core Clock Buffer Status Sticky Register

The DPM_CCBF_STAT_STKY register indicates core n clock buffer enable or disable sticky status for each
core on the processor, with bit n corresponding to CCLKn.

0
(R0/W1A)

CCBFn Core Clock Buffer n Enable.
The DPM_CCBF_EN.CCBFn bits provide a core clock buffer enable for each core on
the processor with bit n corresponding to CCLKn.

0 No Action

1 Enable Buffer

Table 6-10: DPM_CCBF_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

0
(R/NW)

CCBFn Core Clock Buffer n Status.
The DPM_CCBF_STAT.CCBFn bits indicates core clock buffer enabled or disabled
status for each core on the processor with bit n corresponding to CCLKn.

0 Buffer Enabled

1 Buffer Disabled

Table 6-9: DPM_CCBF_EN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 6–15

Figure 6-7: DPM_CCBF_STAT_STKY Register Diagram

System Clock Buffer Disable Register

The DPM_SCBF_DIS register controls the system n clock buffers. The number of clocks varies with the
processor design. See the Clock Buffer Disable Bit Assignments topic for the bit assignments of this
processor.

Figure 6-8: DPM_SCBF_DIS Register Diagram

Table 6-11: DPM_CCBF_STAT_STKY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

0
(R/W1C)

CCBFn Core Clock Buffer n Status - Sticky.
The DPM_CCBF_STAT_STKY.CCBFn bits indicates core clock buffer enabled or
disabled sticky status for each core on the processor with bit n corresponding to
CCLKn. The sticky status shows that the status was set since the last time the bit was
cleared with a W1A or reset.

0 Buffer Enabled - Sticky

1 Buffer Disabled - Sticky

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

6–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Wakeup Enable Register

The DPM_WAKE_EN register enables the wakeup event sources for exiting deep sleep mode. The number of
wakeup sources varies with the processor design, with bit 0 corresponding to wakeup source 0, bit 1 corre-
sponding to wakeup source 1, and so on. This register includes a write protection lock. For information
about wakeup source assignments, see the DPM Wakeup Sources topic.

Figure 6-9: DPM_WAKE_EN Register Diagram

Table 6-12: DPM_SCBF_DIS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the DPM_SCBF_DIS.
LOCK bit is set, the DPM_SCBF_DIS register is read only (locked).

0 Unlock

1 Lock

1:0
(R/W)

SCBFn System Clock Buffer n Disable.
The DPM_SCBF_DIS.SCBFn bits provide a system clock buffer enable for each
system clock domain on the processor. See the Clock Buffer Disable Bit Assignments
topic for the bit assignments of this processor.

0 Enable Buffer

1 Disable Buffer

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 6–17

Wakeup Polarity Register

The DPM_WAKE_POL register select polarity (active high or low) of the wakeup event sources for exiting deep
sleep mode. The number of wakeup sources varies with the processor design, with bit 0 corresponding to
wakeup source 0, bit 1 corresponding to wakeup source 1, and so on. This register includes a write protec-
tion lock. For information about wakeup source assignments, see the DPM Wakeup Sources topic.

Figure 6-10: DPM_WAKE_POL Register Diagram

Table 6-13: DPM_WAKE_EN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the DPM_WAKE_EN.LOCK
bit is set, the DPM_WAKE_EN register is read only (locked).

0 Unlock

1 Lock

4:0
(R/W)

WSn Wakeup Source n Enable.
The DPM_WAKE_EN.WSn bits enable wakeup sources for exiting deep sleep mode,
with bit 0 corresponding to wakeup source 0, bit 1 corresponding to wakeup source 1,
and so on. For information about wakeup source assignments, see the DPM Wakeup
Sources topic.

0 Disable Wakeup Source

1 Enable Wakeup Source

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

6–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Wakeup Status Register

The DPM_WAKE_STAT register indicates the enabled and active status of the wakeup event sources for exiting
deep sleep mode. The number of wakeup sources varies with the processor design, with bit 0 corre-
sponding to wakeup source 0, bit 1 corresponding to wakeup source 1, and so on. For information about
wakeup source assignments, see the DPM Wakeup Sources topic.

Figure 6-11: DPM_WAKE_STAT Register Diagram

Table 6-14: DPM_WAKE_POL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the DPM_WAKE_POL.
LOCK bit is set, the DPM_WAKE_POL register is read only (locked).

0 Unlock

1 Lock

4:0
(R/W)

WSn Wakeup Source n Polarity.
The DPM_WAKE_POL.WSn bits select polarity (active high or low) of wakeup
sources for exiting deep sleep mode, with bit 0 corresponding to wakeup source 0, bit
1 corresponding to wakeup source 1, and so on. For information about wakeup
source assignments, see the DPM Wakeup Sources topic.

0 Low Active Wakeup

1 High Active Wakeup

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 6–19

Table 6-15: DPM_WAKE_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4:0
(R/W1C)

WSn Wakeup Source n Status.
The DPM_WAKE_STAT.WSn bits indicate the enabled and active status of wakeup
sources for exiting deep sleep mode, with bit 0 corresponding to wakeup source 0, bit
1 corresponding to wakeup source 1, and so on. For information about wakeup
source assignments, see the DPM Wakeup Sources topic.

0 No Status

1 Enabled and Active

DYNAMIC POWER MANAGEMENT (DPM)
ADSP-CM40X DPM REGISTER DESCRIPTIONS

6–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–1

7 System Event Controller (SEC)

System event management is the responsibility of the system event controller (SEC).

System event management is the responsibility of the System Event Controller (SEC). It comprises of
Cortex M4F Nested Vectored Interrupt Controller (NVIC) and the System Fault Interface (SFI) to perform
efficient event management.

SEC Features

The following list describes the system event controller features.

• NVIC supports

– A programmable priority level of 0-16 for each interrupt

– Level and pulse detection of interrupt signals.

– Dynamic re-prioritizing of interrupts. Grouping of priority values into group priority and sub-
priority fields.

– Interrupt tail-chaining.

• System Fault Interface Supports

– Fault action configuration, time out, external indication, and system reset.

– Fault from external event via GPIO

SEC Functional Description

The following sections provide a functional description of the SEC.

ADSP-CM40x SEC Register List

The system event controller (SEC) manages the system interrupt and system fault sources. The SEC also
provides all system interrupt and fault sources control features, such as enable/disable, prioritization, and
active/pending source status. On multi-core processors, the SEC provides connected core(s) and fault
management with source pending and active indication. For more information on SEC functionality, see
the SEC register descriptions.

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

7–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x Interrupt List

Table 7-1: ADSP-CM40x SEC Register List

Name Description

SEC_GCTL Global Control Register

SEC_GSTAT Global Status Register

SEC_RAISE Global Raise Register

SEC_FCTL Fault Control Register

SEC_FSTAT Fault Status Register

SEC_FSID Fault Source ID Register

SEC_FEND Fault End Register

SEC_FDLY Fault Delay Register

SEC_FDLY_CUR Fault Delay Current Register

SEC_FSRDLY Fault System Reset Delay Register

SEC_FSRDLY_CUR Fault System Reset Delay Current Register

SEC_FCOPP Fault COP Period Register

SEC_FCOPP_CUR Fault COP Period Current Register

SEC_SCTLn Source Control Register n

SEC_SSTATn Source Status Register n

Table 7-2: ADSP-CM40x Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

-15 M4_SCS0_RESET M4_SCS0 Reset

-14 M4_SCS0_NonMaskableInt M4_SCS0 Non-maskable Interrupt

-13 M4_SCS0_HardFault M4_SCS0 Unmanaged Fault

-12 M4_SCS0_MemoryManagement M4_SCS0 MPU Fault

-11 M4_SCS0_BusFault M4_SCS0 Crossbar Fault

-10 M4_SCS0_UsageFault M4_SCS0 Instruction/Privilege Fault

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–3

-9 Reserved

-8 Reserved

-7 Reserved

-6 Reserved

-5 M4_SCS0_SVCall M4_SCS0 Service Call

-4 M4_SCS0_DebugMonitor M4_SCS0 Debug Monitor

-3 Reserved

-2 M4_SCS0_PendSV M4_SCS0 Pending Service

-1 M4_SCS0_SysTick M4_SCS0 System Time Tick

0 OSCW_EVT Oscillator Watchdog Error

1 CGU0_EVT CGU0 PLL Lock Count Expired PULSE/EDGE

2 M4P0_L1CC_PERR M4P0 L1 Cache Code Parity Error PULSE/EDGE

3 M4P0_CORE_SRAM_PERR M4P0 SRAM Core Parity Error PULSE/EDGE

4 M4P0_DMA_SRAM_PERR M4P0 SRAM DMA Parity Error PULSE/EDGE

5 M4P0_BUS_FAULT M4P0 Bus Fault PULSE/EDGE

6 M4P0_LOCKUP M4P0 Lockup Error (Fault only; not an
interrupt)

7 M4P0_SRAM_PERR_FLT M4P0 SRAM Parity Error (Fault only; not an
interrupt)

8 WDOG0_EXP WDOG0 Expiration LEVEL

9 SEC0_ERR SEC0 Fault Interrupt LEVEL

10 ECT_EVT0 Embedded Cross Trigger Event 0 LEVEL

11 ECT_EVT1 Embedded Cross Trigger Event 1 LEVEL

12 PWM0_TRIP PWM0 Trip Occurred LEVEL

13 PWM1_TRIP PWM1 Trip Occurred LEVEL

14 PWM2_TRIP PWM2 Trip Occurred LEVEL

15 PWM0_SYNC PWM0 PWMTMR Group Interrupt LEVEL

16 PWM1_SYNC PWM1 PWMTMR Group Interrupt LEVEL

17 PWM2_SYNC PWM2 PWMTMR Group Interrupt LEVEL

18 PINT0_BLOCK PINT0 Block Interrupt Generated LEVEL

19 PINT1_BLOCK PINT1 Block Interrupt Generated LEVEL

20 PINT2_BLOCK PINT2 Block Interrupt Generated LEVEL

21 PINT3_BLOCK PINT3 Block Interrupt Generated LEVEL

22 PINT4_BLOCK PINT4 Block Interrupt Generated LEVEL

23 SPORT0_A_DMA_ERR DMA Channel 0 Error LEVEL

Table 7-2: ADSP-CM40x Interrupt List Interrupt List (Continued)

Interrupt ID Name Description Sensitivity
DMA

Channel

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

7–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

24 SPORT0_B_DMA_ERR DMA Channel 1 Error LEVEL

25 SPI0_TXDMA_ERR DMA Channel 2 Error LEVEL

26 SPI0_RXDMA_ERR DMA Channel 3 Error LEVEL

27 UART0_TXDMA_ERR DMA Channel 4 Error LEVEL

28 UART0_RXDMA_ERR DMA Channel 5 Error LEVEL

29 SPORT1_A_DMA_ERR DMA Channel 6 Error LEVEL

30 SPORT1_B_DMA_ERR DMA Channel 7 Error LEVEL

31 SPI1_TXDMA_ERR DMA Channel 8 Error LEVEL

32 SPI1_RXDMA_ERR DMA Channel 9 Error LEVEL

33 UART1_TXDMA_ERR DMA Channel 10 Error LEVEL

34 UART1_RXDMA_ERR DMA Channel 11 Error LEVEL

35 UART2_TXDMA_ERR DMA Channel 12 Error LEVEL

36 UART2_RXDMA_ERR DMA Channel 13 Error LEVEL

37 HAE0_RXDMA_CH0_ERR DMA Channel 14 Error LEVEL

38 HAE0_RXDMA_CH1_ERR DMA Channel 15 Error LEVEL

39 HAE0_TXDMA_ERR DMA Channel 16 Error LEVEL

40 Reserved

41 SPI0_ERR SPI0 Error LEVEL

42 SPI1_ERR SPI1 Error LEVEL

43 SPI2_ERR SPI2 Error LEVEL

44 ADCC0_ERR ADCC0 Error LEVEL

45 DACC0_ERR DACC0 DAC Error LEVEL

46 MDMA0_SRC_CRC0_IN_ERR DMA Channel 17 Error LEVEL

47 MDMA0_DST_CRC0_OUT_ERR DMA Channel 18 Error LEVEL

48 MDMA1_SRC_ERR DMA Channel 19 Error LEVEL

49 MDMA1_DST_ERR DMA Channel 20 Error LEVEL

50 TIMER0_STAT TIMER0 Status LEVEL

51 TIMER0_TMR0 TIMER0 Timer 0 Expiration or Event LEVEL

52 TIMER0_TMR1 TIMER0 Timer 1 Expiration or Event LEVEL

53 TIMER0_TMR2 TIMER0 Timer 2 Expiration or Event LEVEL

54 TIMER0_TMR3 TIMER0 Timer 3 Expiration or Event LEVEL

55 TIMER0_TMR4 TIMER0 Timer 4 Expiration or Event LEVEL

56 TIMER0_TMR5 TIMER0 Timer 5 Expiration or Event LEVEL

57 TIMER0_TMR6 TIMER0 Timer 6 Expiration or Event LEVEL

Table 7-2: ADSP-CM40x Interrupt List Interrupt List (Continued)

Interrupt ID Name Description Sensitivity
DMA

Channel

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–5

58 TIMER0_TMR7 TIMER0 Timer 7 Expiration or Event LEVEL

59 CNT0_STAT CNT0 Count Status LEVEL

60 CNT1_STAT CNT1 Count Status LEVEL

61 CNT2_STAT CNT2 Count Status LEVEL

62 CNT3_STAT CNT3 Count Status LEVEL

63 SPORT0_A_STAT SPORT0 Channel A Status LEVEL

64 SPORT0_A_DMA SPORT0 Channel A DMA Transfer Complete LEVEL 0

65 SPORT0_B_STAT SPORT0 Channel B Status LEVEL

66 SPORT0_B_DMA SPORT0 Channel B DMA Transfer Complete LEVEL 1

67 UART0_STAT UART0 Status LEVEL

68 UART0_TXDMA UART0 Transmit DMA Transfer Complete LEVEL 4

69 UART0_RXDMA UART0 Receive DMA Transfer Complete LEVEL 5

70 SINC0_STAT SINC0 Status LEVEL

71 SPI0_STAT SPI0 Status LEVEL

72 SPI0_TXDMA SPI0 TX DMA Channel Transfer Complete LEVEL 2

73 SPI0_RXDMA SPI0 RX DMA Channel Transfer Complete LEVEL 3

74 SPORT1_A_STAT SPORT1 Channel A Status LEVEL

75 SPORT1_A_DMA SPORT1 Channel A DMA Transfer Complete LEVEL 6

76 SPORT1_B_STAT SPORT1 Channel B Status LEVEL

77 SPORT1_B_DMA SPORT1 Channel B DMA Transfer Complete LEVEL 7

78 UART1_STAT UART1 Status LEVEL

79 UART1_TXDMA UART1 Transmit DMA Transfer Complete LEVEL 10

80 UART1_RXDMA UART1 Receive DMA Transfer Complete LEVEL 11

81 SPI1_STAT SPI1 Status LEVEL

82 SPI1_TXDMA SPI1 TX DMA Channel Transfer Complete LEVEL 8

83 SPI1_RXDMA SPI1 RX DMA Channel Transfer Complete LEVEL 9

84 SPI2_TX SPI2 TX Channel (non-DMA) Transfer
Complete

LEVEL

85 SPI2_RX SPI2 RX Channel (non-DMA) Transfer
Complete

LEVEL

86 EMAC0_STAT EMAC0 Status LEVEL

87 UART2_STAT UART2 Status LEVEL

88 UART2_TXDMA UART2 Transmit DMA Transfer Complete LEVEL 12

89 UART2_RXDMA UART2 Receive DMA Operation Complete LEVEL 13

90 HAE0_STAT HAE0 Status LEVEL

Table 7-2: ADSP-CM40x Interrupt List Interrupt List (Continued)

Interrupt ID Name Description Sensitivity
DMA

Channel

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

7–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

91 HAE0_RXDMA_CH0 HAE0 RX DMA Channel 0 Transfer
Complete

LEVEL 14

92 HAE0_RXDMA_CH1 HAE0 RX DMA Channel 1 Transfer
Complete

LEVEL 15

93 HAE0_TXDMA HAE0 TX DMA Channel 0 Transfer
Complete

LEVEL 16

94 ADCC0_TMR0_EVT ADCC0 Timer 0 Event Complete LEVEL

95 ADCC0_TMR1_EVT ADCC0 Timer 1 Event Complete LEVEL

96 DACC0_DAC0 DACC0 DAC Interrupt 0 Generated LEVEL

97 DACC0_DAC1 DACC0 DAC Interrupt 1 Generated LEVEL

98 SPI2_STAT SPI2 Status LEVEL

99 TWI0_DATA TWI0 Data Interrupt LEVEL

100 CRC0_DCNTEXP CRC0 Data count expiration LEVEL

101 CRC0_ERR CRC0 Error LEVEL

102 MDMA0_SRC Memory DMA Stream 0 Source / CRC0 In
Channel Transfer Complete

LEVEL 17

103 MDMA0_DST Memory DMA Stream 0 Destination / CRC0
Out Channel Transfer Complete

LEVEL 18

104 MDMA1_SRC Memory DMA Stream 1 Source Channel
Transfer Complete

LEVEL 19

105 MDMA1_DST Memory DMA Stream 1 Destination
Channel Transfer Complete

LEVEL 20

106 USB0_STAT USB0 Status/FIFO Data Ready LEVEL

107 USB0_DATA USB0 DMA Status/Transfer Complete LEVEL

108 TRU0_INT0 TRU0 Interrupt 0 Generated PULSE/EDGE

109 TRU0_INT1 TRU0 Interrupt 1 Generated PULSE/EDGE

110 TRU0_INT2 TRU0 Interrupt 2 Generated PULSE/EDGE

111 TRU0_INT3 TRU0 Interrupt 3 Generated PULSE/EDGE

112 CGU0_ERR CGU0 Error PULSE/EDGE

113 DPM0_EVT DPM0 Event

114 SOFT0 Software-Driven Interrupt 0 Generated

115 SOFT1 Software-Driven Interrupt 1 Generated

116 SOFT2 Software-Driven Interrupt 2 Generated

117 SOFT3 Software-Driven Interrupt 3 Generated

118 SWU0_EVT SWU0 Event LEVEL

119 SWU1_EVT SWU1 Event LEVEL

Table 7-2: ADSP-CM40x Interrupt List Interrupt List (Continued)

Interrupt ID Name Description Sensitivity
DMA

Channel

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–7

ADSP-CM40x SEC Trigger List

SEC Definitions

The following definitions are used in describing the event controller.

System Events

System source indications including interrupts and faults

System Source

Point of origin of system event

SID (Identification, unique)

Source numeric identifier for each system source connected to the SEC

120 SWU2_EVT SWU2 Event LEVEL

121 SWU3_EVT SWU3 Event LEVEL

122 SWU4_EVT SWU4 Event LEVEL

123 CAN0_RX CAN0 Receive Transfer Complete LEVEL

124 CAN0_TX CAN0 Transmit Transfer Complete LEVEL

125 CAN0_STAT CAN0 Status LEVEL

126 CAN1_RX CAN1 Receive Transfer Complete LEVEL

127 CAN1_TX CAN1 Transmit Transfer Complete LEVEL

128 CAN1_STAT CAN1 Status LEVEL

Table 7-3: ADSP-CM40x SEC Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

53 SEC0_FAULT SEC0 Fault Indication Received PULSE/EDGE

Table 7-4: ADSP-CM40x SEC Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

None

Table 7-2: ADSP-CM40x Interrupt List Interrupt List (Continued)

Interrupt ID Name Description Sensitivity
DMA

Channel

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

7–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SSI

SEC Source Interface, system event source control and status sub-block of the SEC

SFI

SEC Fault Interface, fault management sub-block of the SEC

NVIC

Nested Vectored Interrupt Controller

SEC Block Diagram

The SEC block diagram shows how event management architecture.

As shown in the figure, SEC has two blocks for the purpose of Event Management. NVIC deals with inter-
rupt from various system sources while SFI monitors and manages any Fault event triggered from various
fault input sources. System interrupt sources are routed to the SFI via SEC Source Interface (SSI).

Figure 7-1: SEC Block Diagram

NOTE: NVIC is an independent unit inside the SEC closely tied to the Cortex M4F core; therefore its
programming is exactly same as that mentioned in the ARM Cortex M4F standard documentation.
In contrast, the SFI is mostly integrated to the SEC such that all SEC specific registers are only typi-

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–9

cally used for fault management. For dealing with system interrupts, there is virtually no need for
accessing any of the SEC registers.

Figure 7-2: NVIC Block Diagram

SFI Block Diagram

The SFI manages fault events and associated actions. The fault management support provided in the SEC
is intended to help satisfy the safety requirements of various applications. The SSI provides the highest
priority pending source that is enabled as a fault. The SFI captures this value and enables a countdown and,
once the countdown expires, the prescribed action is taken.

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

7–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 7-3: SFI Block Diagram

SEC Architectural Concepts

The following sections describe SEC architectural features supporting interrupt acknowledge, priority
levels, grouping, flow, and error management.

System Interrupt Acknowledge

A system interrupt acknowledge occurs when the core provides an indication that it has acquired the SID
of the interrupt last issued by the SEC. The SEC core interface option allows for this to be generated by:

• The assertion of an input acknowledge signal (generated by the connected core).

Nested Vectored Interrupt Controller (NVIC)

The Cortex-M4 processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC).
The NVIC includes a Non Maskable Interrupt (NMI) that can provide up to 16 interrupt preemptive
priority levels. The tight integration of the processor core and NVIC provides fast execution of Interrupt
Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through stacking
hardware registers, and suspending load-multiple and store-multiple operations. Additionally, tail-chain
optimization significantly reduces the overhead when switching from one ISR to another. The following
are descriptions of the interrupt types used in the system.

Cortex system exceptions

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–11

The exceptions triggered from within the ARM Cortex-M4 processor core have negative interrupt IDs and
are identified in the interrupt list with an M4_SCS0_ prefix. The Reset, HardFault, and NMI exceptions
have fixed negative priority values, and these have higher priority than any other exception.

External interrupts

There are a total of 129 external interrupts in the processor. Almost all of these interrupts are triggered
from several peripheral interrupt sources. A maximum of 16 levels of preemptive priority are possible.
Interrupts can be enabled or disabled individually via Interrupt Set/Clear register and the priority level
(priority + sub-priority) can be defined by programming the Interrupt Priority registers.

Reset interrupt

When reset signal is de-asserted, execution restarts from the address provided by the reset entry in the
vector table. Execution restarts as privileged execution in Thread mode. Please refer to Reset Control Unit
chapter for more details on Reset implementation and usage in the processor. Refer to the Boot ROM
chapter for information about how the ROM handles the Reset event, before jumping to application.

Non Maskable Interrupt (NMI)

NMI can be asserted with the following sources:

• Through the non-maskable interrupt pin, SYS_NMI.

• Through trigger outputs from TRU unit.

Vector Table

The vector table contains the reset value of the stack pointer, and the start addresses, also called exception
vectors, for all exception handlers. On system reset, the vector table is fixed at address 0x00000000, which
is inside the Boot ROM, for the processor. The address offset should be aligned to the vector table size,
extended to the next larger power of 2.

See the ADSP-CM40x Interrupt List for the ADSP-CM40x processor exception vectors.

Priority Grouping

ADSP-CM40x NVIC is configured with 4 bits of priority. The lower bits of the register are always 0; PRI_
N[7:4] sets the priority, and PRI_N[3:0] is 4'b0000.

Table 7-5: PRIGROUP Implementation

PRIGROUP Binary Point

Group Priority Sub-priority

Bits Levels Bits Levels

011 4.0 4 16 0 0

100 3.1 3 8 1 2

101 2.2 2 4 2 4

110 1.3 1 2 3 8

111 0.4 0 0 4 16

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

7–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NVIC Registers with ADSP-CM40x Specifications

Note that the Cortex M4 Generic User Guide documents a total of 8 Set or Clear enable registers, 8 Set or
Clear pending registers, 8 Active Bit registers, and 60 Priority registers. In the ADSP-CM40x only those
bits and registers related to the processor's 129 external interrupts are valid. Interrupt number assignment
starts from 0 for external system interrupts, which are managed by the NVIC.

System Fault Interface (SFI) and NVIC

The system fault interface (SFI) operates independently from the NVIC. All system sources that can
generate interrupt can also be routed to generate fault through SEC source control registers. A fault also
may be generated from the SYS_FAULT pin or from the oscillator watchdog. For more information on a
fault generated from the oscillator watchdog, see the clock generation unit (CGU) chapter.

NOTE: In the ADSP-CM40x, the SYS_FAULT input pin is same as the output pin. The SYS_FAULT pin
always operates in an open drain configuration and requires an external pull-up for correct opera-
tion.

Fault Input Options

A fault may be generated from a number of sources:

• Through the SYS_FAULT pin (external source)

• From the oscillator watchdog

• From system interrupt sources

Externally generated through SYS_FAULT Pin

When the SFI detects a falling edge at the SYS_FAULT pin, the SFI can sense this condition as an external
fault and take necessary action. The SFI must be configured with the SEC_FCTL.FIEN bit to sample the pin
for a fault. One usage case of this feature is to control the ADSP-CM40x processor from another system or
to permit another processor to communicate a fault occurrence.

From Oscillator Watchdog

In case of an oscillator watchdog fault input, the SEC might not be functional, because the SEC needs a
clock for its operation. The direct path to the SYS_FAULT pin is provided in that case. The oscillator
watchdog and its fault generation are explained in the clock generation unit (CGU) chapter.

Faults from System Interrupt Sources

System interrupts from various peripherals and other sources may be routed to the SFI through the SSI.
This routing is enabled by setting the source signal enable (SEC_SCTLn.SEN) and fault enable (SEC_SCTLn.
FEN) bits. When the SSI detects the interrupt assertion and if the fault is enabled for that interrupt, the fault
is passed to the SFI for further fault management actions.

Because the NVIC is an independent block outside of the SSI and SFI, the NVIC would not know how SFI
is managing the fault. Managing interrupts is dedicated to NVIC and managing faults is dedicated to SFI.

SYSTEM EVENT CONTROLLER (SEC)
SEC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–13

So, the NVIC must be appropriately configured to service the interrupt using an interrupt service routine
(ISR).

After the interrupt line is asserted, the signal is sent to both the NVIC and the SFI. Because, the source for
interrupt and fault generation is same, a program may manage the fault inside the NVIC handler. Note
that fault events are triggered when the delay registers count down to zero. In some cases, a program may
perform a disable and re-enable of the SEC_SCTLn.FEN bit inside the handler to halt any fault event that is
not desired when interrupt is running. For more information, see the examples in Programming Exam-
ples.

Managing Fault

A fault may be monitored and managed with a number of options:

• Trigger output

• System reset

• Indication on the SYS_FAULT pin

Trigger Output

The fault interface does not have an interrupt line registered for dedicated management of fault actions. A
program must assign a TRU slave (for example, NMI) to the SEC fault TRU master in order to manage the
fault. This approach may not be typically required when a system interrupt is routed to the SFI through
the SSI, because the NVIC interrupt service routine of that particular interrupt may also manage the fault
event.

System Reset

It is possible to optionally issue a system reset. It is also possible to delay the assertion, such that the appli-
cation can perform some critical housekeeping operations before the reset is generated.

Indication on the SYS_FAULT Pin

SFI can drive the SYS_FAULT pin to indicate fault to the external world. In a development system, this
signal may be connected to an LED. In COP toggle mode, the SFI continuously sends out a series of pulses,
and it stops when a fault is asserted.

Managing Fault Assertion

The SFI must be pre-configured with input and output options, early during system initialization. The
fault control register (SEC_FCTL) contains the bits for configuring these options. When COP toggle mode
is selected, the width value (count in SCLK cycles) for the high and low phase of the toggled output on the
COP pin (alternate function of the SYS_FAULT pin) must also be programmed. For routing system inter-
rupts to the SFI through the SSI, the SEC_SCTLn.SEN and SEC_SCTLn.FEN bits must be programmed.

The SEC fault delay register (SEC_FDLY) contains the number (SEC_FDLY.COUNT field) of SCLK periods to
delay from fault pending to fault active, when actions are enabled. Similarly, The SEC fault system reset
delay register (SEC_FSRDLY) contains the number (SEC_FSRDLY.COUNT field) of SCLK periods for the

SYSTEM EVENT CONTROLLER (SEC)
SEC PROGRAMMING MODEL

7–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

delay from a fault becoming active to system reset request assertion, if enabled. These registers must be
programmed with values sufficient to manage critical tasks in the system, before the fault action can occur.

For SFI purposes, a fault may occur from a system interrupt source or from input on the SYS_FAULT pin.
Status of a fault assertion is indicated by the SEC_FSTAT.ACT bit. If this bit is set, it may be read from the
Fault Source ID register (SEC_FSID) that contains information about whether the last active fault was
internally (SSI) or externally triggered (fault pin). If it was triggered internally, the source ID field (SEC_
FSID.SID) indicates the interrupt number of the system interrupt source.

SEC Error

A SEC error (SEC_GSTAT.ERR) is included as a system source input to the SEC to allow for handling the
error as an interrupt or fault.

SEC Programming Model

Implementing a system interrupt service model using the SEC with NVIC requires, at a minimum, proper
configuration of a system interrupt source (for example a peripheral or DMA), a core interrupt/fault/event
service model, and proper configuration of the NVIC and the SEC.

Programming Concepts

The following list provides the basic programming concepts necessary for configuring the NVIC and SEC.

• Configuring a System Interrupt with NVIC

• Configuring FMU as Fault Pin

• Managing Faults Inside a Triggered ISR

• Configuring and Managing Faults (that are also Interrupts)

Programming Examples

This section provides example programming tasks that are typical for SEC usage.

Configuring a System Interrupt with NVIC

The NVIC supports configuring system interrupts.

1. Set the NVIC priority and sub-priority levels for the interrupt.

2. Enable the System Interrupt at peripheral source.

3. Enable the interrupt with the NVIC.

SYSTEM EVENT CONTROLLER (SEC)
SEC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–15

4. Inside the interrupt service routine (ISR), the NVIC pushes and pops the C program ABI registers.

5. The program must clear the source for the interrupt inside the ISR.

Configuring FMU as Fault Pin

The NVIC supports configuring the FMU as a Fault pin.

1. Enable the SEC_GCTL.RESET bit.

2. Enable the SEC_GCTL.EN bit.

3. Program the SEC_FCTL.FIEN bit.

4. Program the SEC_FCTL register with the SEC_FDLY delay time from fault pending to fault active.

5. Program the SEC_FCTL register with SEC_FCTL.SREN or SEC_FCTL.TOEN, depending on requirements.
If using trigger mode, one has to route the Fault trigger to an interrupt handler such as an NMI inter-
rupt service routine (ISR).

6. Enable the Fault Unit by setting the SEC_FCTL.EN bit.

7. If using trigger mode, the Fault is dealt with inside the interrupt handler of the ISR to which the Fault
was routed.

Managing Faults Inside a Triggered ISR

The SEC supports Fault management within an interrupt service routine (ISR).

1. Check whether the SEC_FSTAT.ACT bit is set.

2. Check whether the SEC_FSID.FEXT bit is set.

a. If set, clear the external fault pin source by writing the SEC_FEND.FEXT bit.

b. If not set, clear the system interrupt source by writing the SEC_FEND.SID bit.

Configuring and Managing Faults (that are also Interrupts)

The SEC permits simultaneously registering an interrupt with NVIC and configuring the interrupt as Fault
(configuring/managing a fault that is also an interrupt).

1. Enable the SEC_GCTL.RESET bit.

2. Enable the SEC_GCTL.EN bit.

3. Program the SEC_SCTLn.SEN and SEC_SCTLn.FEN bits for the SSI.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

7–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

4. Program the SEC_FCTL register with required options: Fault Delay, COP Toggle mode, System Reset,
and others.

5. Enable the Fault Unit by setting the SEC_FCTL.EN bit.

ADDITIONAL INFORMATION: Interrupts are handled by the NVIC. Inside the interrupt service routine (ISR),
the software must first clear the system interrupt source. If software does not handle the Fault soon
enough, the Fault events are kicked off. So, prioritize interrupt handling first (finish it first).

6. To halt Fault event, perform the following:

a. Clear the SEC_SCTLn.FEN and SEC_SCTLn.SEN bits.

b. Write the SEC_SSTATn.PND bits.

c. Handle the fault as described in triggered ISR case.

d. Re-enable the SEC_SCTLn.FEN and SEC_SCTLn.SEN bits.

e. Return from the ISR.

ADSP-CM40x SEC Register Descriptions

System Event Controller (SEC) contains the following registers.

Table 7-6: ADSP-CM40x SEC Register List

Name Description

SEC_GCTL Global Control Register

SEC_GSTAT Global Status Register

SEC_RAISE Global Raise Register

SEC_FCTL Fault Control Register

SEC_FSTAT Fault Status Register

SEC_FSID Fault Source ID Register

SEC_FEND Fault End Register

SEC_FDLY Fault Delay Register

SEC_FDLY_CUR Fault Delay Current Register

SEC_FSRDLY Fault System Reset Delay Register

SEC_FSRDLY_CUR Fault System Reset Delay Current Register

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–17

Global Control Register

The SEC global control register (SEC_GCTL) provides register locking, reset, and enable for the SEC
module.

Figure 7-4: SEC_GCTL Register Diagram

SEC_FCOPP Fault COP Period Register

SEC_FCOPP_CUR Fault COP Period Current Register

SEC_SCTLn Source Control Register n

SEC_SSTATn Source Status Register n

Table 7-7: SEC_GCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the SEC_GCTL.LOCK
bit is enabled, the SEC_GCTL register is read only.

0 Unlock

1 Lock

1
(R0/W1A)

RESET Reset.
The SEC_GCTL.RESET bit is write-1-action and triggers a soft reset to all SEC
registers.

0 No Action

1 Reset

Table 7-6: ADSP-CM40x SEC Register List (Continued)

Name Description

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

7–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Global Status Register

The SEC global status register (SEC_GSTAT) contains global status bits for the SEC.

Figure 7-5: SEC_GSTAT Register Diagram

0
(R/W)

EN Enable.
The SEC_GCTL.EN bit is read/write and must be set for the SEC to begin/resume
SEC operation with the current configuration and status. Clearing the SEC_GCTL.
ENbit halts the execution of the SFI. All SSIs remain active, along with all error
detection, without resetting status registers.

0 Disable

1 Enable

Table 7-8: SEC_GSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

LWERR Lock Write Error.
The SEC_GSTAT.LWERR bit indicates (when set) there was an attempted write to
an SEC register while the SEC_GCTL.LOCK bit was set and while the global lock bit
was enabled (SPU_CTL_GLCK bit =1). This status bit is sticky; write-1-to-clear it.

0 No Error

1 Error Occurred

30
(R/W1C)

ADRERR Address Error.
The SEC_GSTAT.ADRERR bit indicates that the SEC generated and address error.
This status bit is sticky; write-1-to-clear it.

0 No Error

1 Error Occurred

Table 7-7: SEC_GCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–19

Global Raise Register

The SEC global raise register (SEC_RAISE) contains a source ID event set-to-pending field (SEC_RAISE.
SID). When a source ID value is written to this field, the SEC raises the source's event status to pending.

Figure 7-6: SEC_RAISE Register Diagram

5:4
(R/NW)

ERRC Error Cause.
When the SEC updates the SEC_GSTAT.ERR bit, the SEC updates the SEC_
GSTAT.ERRC bits to indicate the error type. Note that for SSI errors, the error status
indicates an error is active for any SSI input. This error is an OR of all the interrupt
source errors.

0 SFI Error

1 Reserved

2 SSI Error

3 Reserved

1
(R/W1C)

ERR Error.
The SEC_GSTAT.ERR bit indicates an error has occurred in the SEC. When the
SEC asserts this bit (=1), the SEC updates the SEC_GSTAT.ERRC field to indicate
the corresponding error cause. Even if multiple errors occur, only the first error is
captured on assertion of this bit. This status bit is sticky; write-1-to-clear it.

0 No Error

1 Error Occurred

Table 7-9: SEC_RAISE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

SID Source ID of event that is set to Pending status.

Table 7-8: SEC_GSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

7–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Fault Control Register

The SEC fault control register (SEC_FCTL) contains fault control bits for all SEC channels. This register
controls the operation of the System Fault Management Interface (SFI).

Figure 7-7: SEC_FCTL Register Diagram

Table 7-10: SEC_FCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the SEC_FCTL.LOCK
bit is enabled, the SEC_FCTL register is read only.

0 UnLock

1 Lock

13
(R/W)

TES Trigger Event Select.
The SEC_FCTL.TES bit selects the event that directs the SEC to assert trigger
output. In fault pending mode, the SEC asserts trigger output when a fault is pending.
In fault active mode, the SEC asserts trigger output when a fault is active.

0 Fault Active Mode

1 Fault Pending Mode

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–21

12
(R/W)

CMS COP Mode Select.
The SEC_FCTL.CMS selects the SEC mode for handling fault input. In COP mode,
the SEC toggles the COP pin to indicate that no fault is active and ceases toggling the
pin to indicate that a fault is active. In fault mode, the SEC de-asserts the fault pin
(=0) and fault_b pin (=1) when no fault is active and asserts the fault pin (=1) and
fault_b pin (=0) when a fault is active.

0 Fault Mode

1 COP Mode

7
(R/W)

FIEN Fault Input Enable.
The SEC_FCTL.FIEN bit enables the SEC the to sample fault input. If SEC_
FCTL.FIEN is set (=1), a fault indication from an external device sets the SEC_
FSTAT.ACT bit and SEC_FSID.FEXT bit.

0 Disable

1 Enable

6
(R/W)

SREN System Reset Enable.
The SEC_FCTL.SREN bit enables the SEC to issue a system reset request when a
fault becomes active.

0 Disable

1 Enable

5
(R/W)

TOEN Trigger Output Enable.
The SEC_FCTL.TOEN bit enables the SEC to produce trigger output when a fault
becomes active.

0 Disable

1 Enable

4
(R/W)

FOEN Fault Output Enable.
The SEC_FCTL.FOEN bit enables the SEC to indicate fault status, according to the
SEC_FCTL.CMS bit configuration.

0 Disable

1 Enable

1
(R0/W1A)

RESET Reset.
Setting the SEC_FCTL.RESET bit resets ALL SEC registers to their default values.

0 No Action

1 Reset

0
(R/W)

EN Enable.
The SEC_FCTL.EN bit controls the operational state of the SEC. Clearing the SEC_
FCTL.EN bit halts the execution of the SEC without resetting status registers. Setting
the SEC_FCTL.EN bit enables the SEC to begin or resume operation with the
current configuration and status.

0 Disable

1 Enable

Table 7-10: SEC_FCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

7–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Fault Status Register

The SEC fault status register (SEC_FSTAT) indicates the operational status of the SFI.

Figure 7-8: SEC_FSTAT Register Diagram

Table 7-11: SEC_FSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10
(R/NW)

NPND Next Pending Fault.
The SEC_FSTAT.NPND bit indicates that one or more sources have signalled fault
assertion, but the input has not yet triggered the fault pending detection in the SEC
fault interface. The SEC sets the SEC_FSTAT.NPND bit when the fault interface
detects assertion of any enabled fault source input, while either SEC_FSTAT.PND
or SEC_FSTAT.ACT bits are set. The SEC clears the SEC_FSTAT.NPND bit when
there are no fault sources waiting.

0 Not Pending

1 Pending

9
(R/NW)

ACT Fault Active.
The SEC_FSTAT.ACT bit indicates that the SEC has received a fault source input,
the current fault delay count (in the SEC_FDLY_CUR register) has expired, and the
fault actions are enabled. The SEC also sets the SEC_FSTAT.ACT bit on fault input
detection if the SEC_FCTL.FIEN bit is set. The SEC_FSTAT.ACT bit is cleared by
writing the ID value of the asserted fault from SEC_FSID register to the SEC_FEND
register.

0 No Fault

1 Active Fault

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–23

Fault Source ID Register

The SEC fault source ID register (SEC_FSID) contains a fault source ID and internal/external fields.

8
(R/NW)

PND Pending Fault.
The SEC_FSTAT.PND bit indicates a fault source has signalled a fault assertion to
the SEC, but the SEC has not yet triggered the event actions due to the delay selected
with the SEC_FDLY register. The SEC fault interface sets the SEC_FSTAT.PND bit
when the SEC_FSID is updated on assertion of a fault source input. The SEC_
FSTAT.PND bit is only set when the SEC_FSTAT.ACT bit is cleared. The SEC
updates the SEC_FSID register with the SID value when the SEC_FSTAT.PND bit
is set. The SEC_FSTAT.PND bit is cleared either by the SEC fault interface when
the current delay count in the SEC_FDLY_CUR register expires or by writing the
SEC_FSID.SID field value (which indicates the ID of the asserted fault) to the
SEC_FEND register.

0 Not Pending

1 Pending

5:4
(R/NW)

ERRC Error Cause.
When the SEC updates the SEC_FSTAT.ERR bit, the SEC updates the SEC_
FSTAT.ERRC bits to indicate the error type. When the error status is End Error, the
status indicates two possible error scenarios. Either, the SEC received a write to SEC_
FEND while neither the pending fault bit (SEC_FSTAT.PND) nor fault active bit
(SEC_FSTAT.ACT) were set, or the SEC detected that the SID written to SEC_
FEND.SID does not match the fault source indicated in the SEC_FSID.SID field.

0 Reserved

1 Reserved

2 End Error

3 Reserved

1
(R/W1C)

ERR Error.
The SEC_FSTAT.ERR bit indicates an SEC fault interface error. When SEC_
FSTAT.ERR is set, the SEC updates the SEC_FSTAT.ERRC field to indicate the
corresponding error cause. When multiple errors occur, the SEC_FSTAT register
captures the status for the first error and does not capture subsequent errors until the
status is cleared.

0 No Error

1 Error Occurred

Table 7-11: SEC_FSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

7–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 7-9: SEC_FSID Register Diagram

Fault End Register

The SEC fault end register (SEC_FEND) contains fault source ID and internal/external fields. This register
receives fault end indication from a core.

Table 7-12: SEC_FSID Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/NW)

FEXT Fault External.
The SEC_FSID.FEXT bit indicates that the last active fault was asserted by an
external device. The SEC sets the SEC_FSID.FEXT bit when the SEC_FSTAT
register's SEC_FSTAT.ACT bit is set by the fault input pins. The SEC_FSID.FEXT
bit is cleared when the SEC_FSTAT.ACT bit is set by an internal fault or when the
external fault is ended. When the SEC_FSID.FEXT bit is set, the SEC_FSID.SID
is cleared.

0 Fault Internal

1 Fault External

7:0
(R/NW)

SID Source ID.
The SEC_FSID.SID identifies the fault assertion detected by the SEC fault
interface. The SEC loads the SEC_FSID.SID field value when a system fault
indication is asserted. The SEC fault interface does not change the SEC_FSID.SID
value until the fault is no longer pending or active, as indicated by the SEC_FSTAT.
PND bit and SEC_FSTAT.ACT bit being cleared in the SEC_FSTAT register.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–25

Figure 7-10: SEC_FEND Register Diagram

Fault Delay Register

The SEC fault delay register (SEC_FDLY) contains the number (SEC_FDLY.COUNT field) of (SEC) clock
periods to delay from fault pending to fault active, when actions are enabled.

Table 7-13: SEC_FEND Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/W)

FEXT Fault External.
Setting the SEC_FEND.FEXT bit, when the SEC_FEND.SID field is cleared, clears
an active fault from an external source.

0 Fault Internal

1 Fault External

7:0
(R/W)

SID Source ID.
The SEC_FEND.SID identifies a fault to be ended as indicated to the SEC by the
core. The core loads the SEC_FEND.SID field value. If the SEC_FEND.SID value
matches the SEC_FSID.SID value, the SEC_FSTAT.PND bit and SEC_FSTAT.
ACT bit are cleared.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

7–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 7-11: SEC_FDLY Register Diagram

Fault Delay Current Register

The SEC fault delay current register (SEC_FDLY_CUR) contains the active count (SEC_FDLY_CUR.COUNT
field) in (SEC) clock periods for the delay from fault pending to fault active, when actions are enabled. The
count is loaded from the SEC_FDLY register when a fault becomes pending (SEC_FSTAT.PND bit is set). The
SEC decrements the value in SEC_FDLY_CUR each (SEC) clock cycle while the SEC_FSTAT.PND bit is set.

Figure 7-12: SEC_FDLY_CUR Register Diagram

Table 7-14: SEC_FDLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

COUNT Fault Delay.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–27

Fault System Reset Delay Register

The SEC fault system reset delay register (SEC_FSRDLY) contains the number (SEC_FSRDLY.COUNT field)
of (SEC) clock periods for the delay from a fault becoming active to system reset request assertion, if
enabled.

Figure 7-13: SEC_FSRDLY Register Diagram

Fault System Reset Delay Current Register

The SEC fault system reset delay current register (SEC_FSRDLY_CUR) contains the active count (SEC_
FSRDLY_CUR.COUNT field) in (SEC) clock periods for the delay from fault active to system reset assertion,
if enabled. The count is loaded from the SEC_FSRDLY register when a fault becomes active (SEC_FSTAT.
ACT bit is set). The SEC decrements the value in SEC_FSRDLY_CUR each (SEC) clock cycle while the SEC_
FSTAT.ACT bit is set.

Table 7-15: SEC_FDLY_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

COUNT Fault Delay.

Table 7-16: SEC_FSRDLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

COUNT Fault System Reset Delay.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

7–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 7-14: SEC_FSRDLY_CUR Register Diagram

Fault COP Period Register

The SEC fault COP period register (SEC_FCOPP) contains the width value (count in (SEC) clock cycles) for
the high and low phase of the computer operating properly (COP) toggled output on the COP pin. Note
that the actual high/low phase is value is the SEC_FCOPP.COUNT programmed value plus 1.

Figure 7-15: SEC_FCOPP Register Diagram

Table 7-17: SEC_FSRDLY_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

COUNT Fault System Reset Delay.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–29

Fault COP Period Current Register

The SEC fault COP period current register (SEC_FCOPP_CUR) contains the active count (in (SEC) clock
periods) for the current phase (high or low) of the computer operating properly (COP) toggled output on
the COP pin. The SEC loads the SEC_FCOPP_CUR register from the SEC_FCOPP register when the SEC_
FCOPP_CUR.COUNT field is cleared and the SEC is in COP mode (SEC_FCTL.CMS bit =1). The SEC decre-
ments the SEC_FCOPP_CUR count each (SEC) clock cycle while SEC_FCTL.CMS is set and the SEC_FSTAT.
ACT bit is not set.

Figure 7-16: SEC_FCOPP_CUR Register Diagram

Source Control Register n

The SEC source control register (SEC_SCTLn) contains control bits to configure the SEC event sources.
This register controls the configuration of the corresponding SEC event source.

Table 7-18: SEC_FCOPP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

COUNT Fault COP Period.

Table 7-19: SEC_FCOPP_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

COUNT Fault COP Period.

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

7–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 7-17: SEC_SCTLn Register Diagram

Source Status Register n

The SEC event source status register (SEC_SSTATn) contains bits indicating the status of the corresponding
event source n. An event source may be: pending, active, active and pending, or neither pending nor active.

Table 7-20: SEC_SCTLn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the SEC_SCTLn.LOCK
bit is enabled, the SEC_SCTLn register is read only.

0 Unlock

1 Lock

2
(R/W)

SEN Source (signal) Enable.
The SEC_SCTLn.SEN bit controls whether the system event source input signal
may affect the Pending status of the source. Clearing SEC_SCTLn.SEN disables the
source input signal from affecting Pending. Setting SEC_SCTLn.SEN enables the
source input signal to affect Pending status.

0 Disable

1 Enable

1
(R/W)

FEN Fault Enable.
The SEC_SCTLn.FEN bit controls whether the SEC may forward an interrupt
request to the SEC fault interface as a fault source. This bit does not affect the ability
of an interrupt source to set an interrupt as pending. The SEC_SCTLn.FEN bit only
affects whether the pending request may be forwarded to the SEC fault interface.

0 Disable

1 Enable

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 7–31

Figure 7-18: SEC_SSTATn Register Diagram

Table 7-21: SEC_SSTATn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

8
(R/W1C)

PND Pending Source.
The SEC_SSTATn.PND bit indicates the source has signaled an event request, but
the event request has not been (or is not currently being) serviced. A SEC_SSTATn.
PND bit is set by the SEC on detection of an assertion of the corresponding system
source input. A SEC_SSTATn.PND bit is cleared by a W1C operation.

0 Not Pending

1 Pending

SYSTEM EVENT CONTROLLER (SEC)
ADSP-CM40X SEC REGISTER DESCRIPTIONS

7–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 8–1

8 Trigger Routing Unit (TRU)

The TRU provides system-level sequence control without core intervention. The TRU maps trigger
masters (generators of triggers) to trigger slaves (receivers of triggers). Slave endpoints can be configured
to respond to triggers in various ways. Common applications enabled by the TRU include:

• Automatically triggering the start of a DMA sequence after a sequence from another DMA channel
completes

• Software triggering

• Synchronization of concurrent activities

TRU Features

The TRU supports the following features.

• Trigger routing of any trigger master to any trigger slave.

• Software generation of any trigger master ID.

• Configuration protection through register level lock bits and global lock indication.

TRU Functional Description

The following sections provide a description of the TRU.

ADSP-CM40x TRU Register List

The trigger routing unit (TRU) provides simple sequence control of distributed modules without the
penalties associated with core intervention (for example, interrupt overhead). The TRU resides in the
SYSCLK domain and receives trigger inputs from all master trigger inputs (MTI) and the TRU master
trigger register (TRU_MTR). Based on these inputs, the TRU logic generates trigger outputs that initiate slave
operations in the processor core and peripherals. A set of registers govern TRU operations. For more infor-
mation on TRU functionality, see the TRU register descriptions.

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

8–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x TRU Interrupt List

ADSP-CM40x Trigger List

Table 8-1: ADSP-CM40x TRU Register List

Name Description

TRU_SSRn Slave Select Register

TRU_MTR Master Trigger Register

TRU_ERRADDR Error Address Register

TRU_STAT Status Information Register

TRU_GCTL Global Control Register

Table 8-2: ADSP-CM40x TRU Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

108 TRU0_INT0 TRU0 Interrupt 0 Generated PULSE/EDGE

109 TRU0_INT1 TRU0 Interrupt 1 Generated PULSE/EDGE

110 TRU0_INT2 TRU0 Interrupt 2 Generated PULSE/EDGE

111 TRU0_INT3 TRU0 Interrupt 3 Generated PULSE/EDGE

Table 8-3: ADSP-CM40x Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

0 Reserved

1 CGU0_EVT CGU0 Event PULSE/EDGE

2 TIMER0_TMR0 TIMER0 Timer 0 Expiration or Event PULSE/EDGE

3 TIMER0_TMR1 TIMER0 Timer 1 Expiration or Event PULSE/EDGE

4 TIMER0_TMR2 TIMER0 Timer 2 Expiration or Event PULSE/EDGE

5 TIMER0_TMR3 TIMER0 Timer 3 Expiration or Event PULSE/EDGE

6 TIMER0_TMR4 TIMER0 Timer 4 Expiration or Event PULSE/EDGE

7 TIMER0_TMR5 TIMER0 Timer 5 Expiration or Event PULSE/EDGE

8 TIMER0_TMR6 TIMER0 Timer 6 Expiration or Event PULSE/EDGE

9 TIMER0_TMR7 TIMER0 Timer 7 Expiration or Event PULSE/EDGE

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 8–3

10 PINT0_BLOCK PINT0 Block Interrupt Generated LEVEL

11 PINT1_BLOCK PINT1 Block Interrupt Generated LEVEL

12 PINT2_BLOCK PINT2 Block Interrupt Generated LEVEL

13 PINT3_BLOCK PINT3 Block Interrupt Generated LEVEL

14 PINT4_BLOCK PINT4 Block Interrupt Generated LEVEL

15 CNT0_STAT CNT0 Counter Status LEVEL

16 CNT1_STAT CNT1 Counter Status LEVEL

17 CNT2_STAT CNT2 Counter Status LEVEL

18 CNT3_STAT CNT3 Counter Status LEVEL

19 PWM0_SYNC PWM0 PWMTMR Group Trigger LEVEL

20 PWM1_SYNC PWM1 PWMTMR Group Trigger LEVEL

21 PWM2_SYNC PWM2 PWMTMR Group Trigger LEVEL

22 ADCC0_TMR0_EVT ADCC0 Timer 0 Event Complete LEVEL

23 ADCC0_TMR1_EVT ADCC0 Timer 1 Event Complete LEVEL

24 SPORT0_A_DMA SPORT0 Channel A DMA Transfer Complete PULSE/EDGE

25 SPORT0_B_DMA SPORT0 Channel B DMA Transfer Complete PULSE/EDGE

26 SPORT1_A_DMA SPORT1 Channel A DMA Transfer Complete PULSE/EDGE

27 SPORT1_B_DMA SPORT1 Channel B DMA Transfer Complete PULSE/EDGE

28 SPI0_TXDMA SPI0 TX DMA Channel Transfer Complete PULSE/EDGE

29 SPI0_RXDMA SPI0 RX DMA Channel Transfer Complete PULSE/EDGE

30 SPI1_TXDMA SPI1 TX DMA Channel Transfer Complete PULSE/EDGE

31 SPI1_RXDMA SPI1 RX DMA Channel Transfer Complete PULSE/EDGE

32 EMAC0_STAT EMAC0 Status LEVEL

33 HAE0_RXDMA_CH0 HAE0 RX DMA Channel 0 Transfer Complete PULSE/EDGE

34 HAE0_RXDMA_CH1 HAE0 RX DMA Channel 1 Transfer Complete PULSE/EDGE

35 HAE0_TXDMA HAE0 TX DMA Channel 0 Transfer Complete PULSE/EDGE

36 SINC0_P0_OVLD SINC0 Pair 0 Overload Indicator PULSE/EDGE

37 SINC0_P1_OVLD SINC0 Pair 1 Overload Indicator PULSE/EDGE

38 SINC0_P2_OVLD SINC0 Pair 2 Overload Indicator PULSE/EDGE

39 SINC0_P3_OVLD SINC0 Pair 3 Overload Indicator PULSE/EDGE

40 SINC0_DATA0 SINC0 Data Move 0 Complete PULSE/EDGE

41 SINC0_DATA1 SINC0 Data Move 1 Complete PULSE/EDGE

42 UART0_TXDMA UART0 Transmit DMA Transfer Complete PULSE/EDGE

43 UART0_RXDMA UART0 Receive DMA Transfer Complete PULSE/EDGE

44 UART1_TXDMA UART1 Transmit DMA Transfer Complete PULSE/EDGE

Table 8-3: ADSP-CM40x Trigger List Trigger Masters (Continued)

Trigger ID Name Description Sensitivity

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

8–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

45 UART1_RXDMA UART1 Receive DMA Transfer Complete PULSE/EDGE

46 UART2_TXDMA UART2 Transmit DMA Transfer Complete PULSE/EDGE

47 UART2_RXDMA UART2 Receive DMA Transfer Complete PULSE/EDGE

48 MDMA0_SRC Memory DMA Stream 0 Source/CRC0 Input Channel
Transfer Complete

PULSE/EDGE

49 MDMA0_DST Memory DMA Stream 0 Destination/CRC0 Output
Channel Transfer Complete

PULSE/EDGE

50 MDMA1_SRC Memory DMA Stream 1 Source Channel Transfer
Complete

PULSE/EDGE

51 MDMA1_DST Memory DMA Stream 1 Destination Channel
Transfer Complete

PULSE/EDGE

52 USB0_DATA USB0 DMA Status/Transfer Complete LEVEL

53 SEC0_FAULT SEC0 Fault Indication Received PULSE/EDGE

54 SOFT0 Software-driven Trigger 0

55 SOFT1 Software-driven Trigger 1

56 SOFT2 Software-driven Trigger 2

57 SOFT3 Software-driven Trigger 3

58 SOFT4 Software-driven Trigger 4

59 SOFT5 Software-driven Trigger 5

60 SWU0_EVT SWU0 Event PULSE/EDGE

61 SWU1_EVT SWU1 Event PULSE/EDGE

62 SWU2_EVT SWU2 Event PULSE/EDGE

63 SWU3_EVT SWU3 Event PULSE/EDGE

64 SWU4_EVT SWU4 Event PULSE/EDGE

65 ECT_MST0 Embedded Cross Trigger Master 0 PULSE/EDGE

66 ECT_MST1 Embedded Cross Trigger Master 1 PULSE/EDGE

67 ECT_MST2 Embedded Cross Trigger Master 2 PULSE/EDGE

68 ECT_MST3 Embedded Cross Trigger Master 3 PULSE/EDGE

Table 8-4: ADSP-CM40x Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

0 RCU0_SYSRST0 RCU0 System Reset Assert (Slave 0)

1 RCU0_SYSRST1 RCU0 System Reset Assert (Slave 1)

2 TIMER0_TMR0 TIMER0 Timer 0 Slave

3 TIMER0_TMR1 TIMER0 Timer 1 Slave

Table 8-3: ADSP-CM40x Trigger List Trigger Masters (Continued)

Trigger ID Name Description Sensitivity

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 8–5

4 TIMER0_TMR2 TIMER0 Timer 2 Slave

5 TIMER0_TMR3 TIMER0 Timer 3 Slave

6 TIMER0_TMR4 TIMER0 Timer 4 Slave

7 TIMER0_TMR5 TIMER0 Timer 5 Slave

8 TIMER0_TMR6 TIMER0 Timer 6 Slave

9 TIMER0_TMR7 TIMER0 Timer 7 Slave

10 C0_NMI_S0 Generate NMI on Core 0 (Slave 0)

11 C0_NMI_S1 Generate NMI on Core 0 (Slave 1)

12 TRU0_IRQ0 TRU0 Interrupt Request 0

13 TRU0_IRQ1 TRU0 Interrupt Request 1

14 TRU0_IRQ2 TRU0 Interrupt Request 2

15 TRU0_IRQ3 TRU0 Interrupt Request 3

16 SPORT0_A_DMA SPORT0 Channel A DMA Transfer Start

17 SPORT0_B_DMA SPORT0 Channel B DMA Transfer Start

18 SPORT1_A_DMA SPORT1 Channel A DMA Transfer Start

19 SPORT1_B_DMA SPORT1 Channel B DMA Transfer Start

20 SPI0_TXDMA SPI0 TX DMA Channel Transfer Start

21 SPI0_RXDMA SPI0 RX DMA Channel Transfer Start

22 SPI1_TXDMA SPI1 TX DMA Channel Transfer Start

23 SPI1_RXDMA SPI1 RX DMA Channel Transfer Start

24 ADCC0_TRIG0 ADCC0 Trigger Slave 0

25 ADCC0_TRIG1 ADCC0 Trigger Slave 1

26 ADCC0_TRIG2 ADCC0 Trigger Slave 2

27 ADCC0_TRIG3 ADCC0 Trigger Slave 3

28 ADCC0_TRIG4 ADCC0 Trigger Slave 4

29 ADCC0_TRIG5 ADCC0 Trigger Slave 5

30 HAE0_RXDMA_CH0 HAE0 RX DMA Channel 0 Transfer Start

31 HAE0_RXDMA_CH1 HAE0 RX DMA Channel 1 Transfer Start

32 HAE0_TXDMA HAE0 TX DMA Channel 0 Transfer Start

33 UART0_TXDMA UART0 Transmit DMA Transfer Start

34 UART0_RXDMA UART0 Receive DMA Transfer Start

35 UART1_TXDMA UART1 Transmit DMA Transfer Start

36 UART1_RXDMA UART1 Receive DMA Transfer Start

37 UART2_TXDMA UART2 Transmit DMA Transfer Start

38 UART2_RXDMA UART2 Receive DMA Transfer Start

Table 8-4: ADSP-CM40x Trigger List Trigger Slaves (Continued)

Trigger ID Name Description Sensitivity

TRIGGER ROUTING UNIT (TRU)
TRU FUNCTIONAL DESCRIPTION

8–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

TRU Definitions

Trigger Master

A trigger master is any system module that provides trigger event indication to the TRU. Trigger events
and conditions for assertion are defined by trigger master modules.

39 MDMA0_SRC Memory DMA Stream 0 Source/CRC0 Input Channel
Transfer Start

40 MDMA0_DST Memory DMA Stream 0 Destination/CRC0 Output
Channel Transfer Start

41 MDMA1_SRC Memory DMA Stream 1 Source Channel Transfer
Start

42 MDMA1_DST Memory DMA Stream 1 Destination Channel
Transfer Start

43 SWU0_EVT SWU0 Event

44 SWU1_EVT SWU1 Event

45 SWU2_EVT SWU2 Event

46 SWU3_EVT SWU3 Event

47 SWU4_EVT SWU4 Event

48 PWM0_TRIP_TRIG0 PWM0 Trip Trigger Slave 0

49 PWM0_TRIP_TRIG1 PWM0 Trip Trigger Slave 1

50 PWM0_TRIP_TRIG2 PWM0 Trip Trigger Slave 2

51 PWM1_TRIP_TRIG0 PWM1 Trip Trigger Slave 0

52 PWM1_TRIP_TRIG1 PWM1 Trip Trigger Slave 1

53 PWM1_TRIP_TRIG2 PWM1 Trip Trigger Slave 2

54 PWM2_TRIP_TRIG0 PWM2 Trip Trigger Slave 0

55 PWM2_TRIP_TRIG1 PWM2 Trip Trigger Slave 1

56 PWM2_TRIP_TRIG2 PWM2 Trip Trigger Slave 2

57 SINC0_SYNC0 SINC0 Synchronization Input 0

58 SINC0_SYNC1 SINC0 Synchronization Input 1

59 ECT_SLV0 Embedded Cross Trigger Slave 0

60 ECT_SLV1 Embedded Cross Trigger Slave 1

61 ECT_SLV2 Embedded Cross Trigger Slave 2

62 ECT_SLV3 Embedded Cross Trigger Slave 3

Table 8-4: ADSP-CM40x Trigger List Trigger Slaves (Continued)

Trigger ID Name Description Sensitivity

TRIGGER ROUTING UNIT (TRU)
TRU PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 8–7

Trigger Master ID

Trigger masters are assigned a unique numeric ID according to their physical connection to the TRU.
Trigger master ID 0 is reserved and defined as null.

Trigger Slave

A trigger slave is any system module that receives a trigger event indication from the TRU. A trigger event
response is defined by the trigger slave modules.

TRU Block Diagram

Trigger masters and the master trigger register (MTR) generate trigger assertions. Each trigger slave has a
dedicated slave select register (SSR) that specifies the unique trigger master from which it receives the
trigger indication.

Figure 8-1: TRU Block Diagram

TRU Architectural Concepts

The TRU supports a simple trigger-in/trigger-out model for modules that comply with the triggering func-
tional model. The TRU is the controller of the trigger system. Trigger outputs from trigger masters are
mapped to trigger inputs of trigger slaves through a set of programmable registers (TRU_SSRn).

System modules may be trigger master only, trigger slave only, or trigger master and trigger slave.

All of the trigger input and output signals are connected to a Trigger Routing Unit (TRU) which manages
the connections of triggers between modules.

TRU Programming Model

Implementing sequence control using the TRU requires, at a minimum, proper configuration of a trigger
slave, a trigger master, and the TRU module itself. The only requirement for the configuration procedure
is that the trigger master should be configured and enable as the last step.

TRIGGER ROUTING UNIT (TRU)
TRU PROGRAMMING MODEL

8–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The other steps that must be completed are:

• The trigger slave must be configured for response to triggers.

• The TRU must be configured to map the trigger master to the trigger slave through the TRU_SSRn regis-
ters.

• The trigger master must be configured to generate trigger assertions.

• Alternatively, software triggering may be used for trigger assertion. Software triggers are generated by
writing the trigger master ID to the MTR register.

Programming Concepts

The following concepts will aid in programming the TRU.

• Trigger Sequence Configuration. A simple sequence may consist of one trigger master and one trigger
slave. More complex trigger sequences may consist of several trigger slaves functioning as trigger slave
and trigger master. Additionally, trigger sequences may loop back to the original master forming a
perpetual sequence.

• Software Triggering. Writing a trigger master ID to the MTR generates a trigger within the TRU from
the trigger master ID specified.

• Synchronization. The TRU can be used to coarsely synchronize events by mapping multiple trigger
slaves to the same trigger master and/or by generating multiple trigger master assertions simultane-
ously through the MTR.

• Configuration Protection. The TRU_SSRn.LOCK bit and the TRU_GCTL.LOCK bit enable register level
write protection when global lock is asserted in the SPU.

Programming Example

The following example shows the steps to create a simple trigger.

1. Write to the TRU_GCTL register to enable the TRU.

2. Write to the TRU_SSRn register of a specific trigger slave to assign it to a specific trigger master.

3. Enable the trigger slave to wait for and accept a trigger.

4. Enable the trigger master to generate a trigger.

TRIGGER ROUTING UNIT (TRU)
TRU EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 8–9

TRU Event Control

The TRU is a major part of event control solutions. It is the center of the trigger functional model and may
be extended to support the interrupt and fault management models as well.

TRU Status and Error Signals

The TRU does not have dedicated status and error output signals other than the MMR interface. Slave
errors are reported to the master over the standard bus protocol.

ADSP-CM40x TRU Register Descriptions

Trigger Routing Unit (TRU) contains the following registers.

Slave Select Register

The TRU slave select registers (TRU_SSRn) each provide slave selection and register locking.

Table 8-5: ADSP-CM40x TRU Register List

Name Description

TRU_SSRn Slave Select Register

TRU_MTR Master Trigger Register

TRU_ERRADDR Error Address Register

TRU_STAT Status Information Register

TRU_GCTL Global Control Register

TRIGGER ROUTING UNIT (TRU)
ADSP-CM40X TRU REGISTER DESCRIPTIONS

8–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 8-2: TRU_SSRn Register Diagram

Master Trigger Register

The TRU master trigger register (TRU_MTR) permits trigger generation through software by writing a
trigger master ID value to one of the four fields in the TRU_MTR register. If the global lock is enabled SPU_
CTL_GLCK bit =1) and the TRU_GCTL.LOCK bit is set, the TRU_MTR register is read only.

Figure 8-3: TRU_MTR Register Diagram

Table 8-6: TRU_SSRn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK SSRn Lock.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the TRU_SSRn.LOCK
bit is enabled, the TRU_SSRn register is read only.

7:0
(R/W)

SSR SSRn Slave Select.
The TRU_SSRn register selects the trigger master ID to which the trigger slave
responds. For example, when a TRU_SSRn register is set to respond to trigger master
ID n, a trigger that is generated by trigger master ID n results in a trigger out to the
slave.

TRIGGER ROUTING UNIT (TRU)
ADSP-CM40X TRU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 8–11

Error Address Register

The TRU error address register (TRU_ERRADDR) holds the address from the memory mapped register
access generating an access error of TRU registers.

Figure 8-4: TRU_ERRADDR Register Diagram

Table 8-7: TRU_MTR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R/W)

MTR3 Master Trigger Register 3.

23:16
(R/W)

MTR2 Master Trigger Register 2.

15:8
(R/W)

MTR1 Master Trigger Register 1.

7:0
(R/W)

MTR0 Master Trigger Register 0.

Table 8-8: TRU_ERRADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:0
(R/W)

ADDR Error Address.
The TRU_ERRADDR.ADDR holds the address from the memory mapped register
access generating an access error of TRU registers. These errors occur on access to
the TRU_SSRn or TRU_MTR registers when these registers are locked or on access to
an invalid address. See the TRU_SSRn and TRU_MTR register descriptions for more
information about locking. The TRU_ERRADDR register holds the address of the first
error to occur. In the event of multiple errors occurring, the TRU_ERRADDR register
contains the address of the first error. To re-enable the TRU_ERRADDR register for
update, both status bits (TRU_STAT.LWERR and TRU_STAT.ADDRERR) in the
TRU_STAT register must be cleared.

TRIGGER ROUTING UNIT (TRU)
ADSP-CM40X TRU REGISTER DESCRIPTIONS

8–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Status Information Register

The TRU status register (TRU_STAT) contains the status of TRU_MTR and TRU_SSRn register writes and
status of bus read/write errors.

Figure 8-5: TRU_STAT Register Diagram

Global Control Register

The TRU global control register (TRU_GCTL) provides register locking, TRU reset, and TRU enable.

Table 8-9: TRU_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W1C)

ADDRERR Address Error Status.
The TRU_STAT.ADDRERR bit is set when an invalid address is provided for an
MMR access while the TRU is selected. Writing a one to this bit clears the error
indication. The TRU_ERRADDR register also is updated when an address error
occurs during an MMR access while the TRU is selected.

0
(R/W1C)

LWERR Lock Write Error Status.
If TRU_STAT.LWERR is set, a lock write error has occurred. Writing a one to this bit
clears the error indication.

TRIGGER ROUTING UNIT (TRU)
ADSP-CM40X TRU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 8–13

Figure 8-6: TRU_GCTL Register Diagram

Table 8-10: TRU_GCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK GCTL Lock Bit.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the TRU_GCTL.LOCK
bit is enabled, the TRU_GCTL register is read only.

2
(R/W)

MTRL MTR Lock Bit.
If the global lock is enabled (SPU_CTL_GLCK bit =1) and the TRU_GCTL.MTRL
bit is enabled, the TRU_MTR register is read only.

1
(R/W)

RESET Soft Reset.
The TRU_GCTL.RESET bit is write-1-action and triggers a soft reset to all TRU
registers.

0
(R/W)

EN Non-MMR Enable.
The TRU_GCTL.EN bit is read/write and must be set for the TRU to propagate
trigger events. All TRU register read/write operations continue to operate
independent of the TRU_GCTL.EN bit.

TRIGGER ROUTING UNIT (TRU)
ADSP-CM40X TRU REGISTER DESCRIPTIONS

8–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–1

9 Static Memory Controller (SMC)

The static memory controller is a protocol converter and data transfer interface between the internal
processor bus and the external L3 memory. It provides a glueless interface to a variety of external memories
and peripheral devices, including SRAM, ROM, EPROM, NOR flash memory, and FPGA/ASIC devices.

The SMC acts as an SCB slave, and accesses to the SMC are arbitrated by the processor SCB interconnect
fabric. On the chip boundary, the SMC is connected to an address bus, a data bus, and memory control
signal pins (such as read, write, output enable, and memory select lines).

SMC Features

SMC features include:

• 16-bit I/O width

• Provides flexible timing control through extended timing parameters

• Supports asynchronous access extension (SMC_ARDY pin)

• Supports 8-bit data masking writes

SMC Functional Description

The SMC contains memory-mapped registers that control the access characteristics for each asynchronous
memory bank. Different banks can be programmed in different modes, independently controlled using the
functional and cycle time bit settings for each bank.

The SMC provides separate sets of registers, SMC_B0CTL – SMC_B3CTL (control), SMC_B0TIM – SMC_B3TIM
(timing) and SMC_B0ETIM – SMC_B3ETIM (extended timing) to control the mode and timing characteristic
of each bank independently. The control registers contain bits for enabling the bank and bits for selecting
mode of operation.

The control registers also contain bits to control the type of bank select control signal. External FIFO
devices often do not have a separate chip select pin. As a result, for a read, the FIFO’s output enable (SMC_
AOE) pin must be connected to the OR of the SMC_AMS0 and the SMC_ARE. Similarly, the write case requires
an OR between SMC_AMS0 and SMC_AWE. The SMC provides this function so that an external OR gate is not
required. The appropriate AMS function can be selected for each memory bank region using the SMC_
B0CTL.SELCTRL bits.

STATIC MEMORY CONTROLLER (SMC)
SMC FUNCTIONAL DESCRIPTION

9–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The following sections provide additional functional descriptions of the SMC.

• SMC Definitions

• SMC Architectural Concepts

ADSP-CM40x SMC Register List

The static memory controller SMC is a protocol converter and data transfer interface between the internal
processor bus and the external L3 memory. The SMC acts as a bus slave and accesses to SMC are arbitrated
by the module's system crossbar. On the chip boundary, the SMC is connected to an external memory
address bus, a 16-bit data bus and memory control signal pins (read, write) including up to 4 chip selects.
This memory interface can support a sizable external memory connected to one or more banks, with each
bank being controlled by the chip select signal. A set of registers govern SMC operations. For more infor-
mation on SMC functionality, see the SMC register descriptions. For the memory map, see the product
data sheet.

Table 9-1: ADSP-CM40x SMC Register List

Name Description

SMC_B0CTL Bank 0 Control Register

SMC_B0TIM Bank 0 Timing Register

SMC_B0ETIM Bank 0 Extended Timing Register

SMC_B1CTL Bank 1 Control Register

SMC_B1TIM Bank 1 Timing Register

SMC_B1ETIM Bank 1 Extended Timing Register

SMC_B2CTL Bank 2 Control Register

SMC_B2TIM Bank 2 Timing Register

SMC_B2ETIM Bank 2 Extended Timing Register

SMC_B3CTL Bank 3 Control Register

SMC_B3TIM Bank 3 Timing Register

SMC_B3ETIM Bank 3 Extended Timing Register

STATIC MEMORY CONTROLLER (SMC)
SMC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–3

SMC Definitions

The timing registers contain bits to program the setup time, hold time and access time for read and write
access to each bank separately. The SMC allows for totally different setup/hold/access times for reads and
writes. The SMC_B0TIM – SMC_B3TIM registers control the timing characteristics of the asynchronous
memory interface using the following parameter definitions. Each of these parameters can be programmed
in terms of SCLK clock cycles.

Read setup time

The time between the beginning of a memory cycle (SMC_AMS0 low) and the read-enable assertion (SMC_
ARE low).

Read hold time

The time between read-enable de-assertion (SMC_ARE high) and the end of the memory cycle (SMC_AMS0
high).

Read access

The time between read-enable assertion (SMC_ARE low) and de-assertion (SMC_ARE high).

Write setup time

The time between the beginning of a memory cycle (SMC_AMS0 low) and the write-enable assertion (SMC_
AWE low).

Write hold time

The time between write-enable de-assertion (SMC_AWE high) and the end of the memory cycle (SMC_AMS0
high).

Write access

The time between write-enable assertion (SMC_AWE low) and de-assertion (SMC_AWE high).

The SMC provides another register for defining additional timing characteristics of control signals by
programming the extended timing registers SMC_B0TIM – SMC_B3TIM. These registers contain bits to
program following timing characteristics.

Pre-setup time

The number of cycles SMC_AMS0 is asserted before SMC_AOE is asserted.

Pre-access time

The number of cycles inserted after SMC_AOE() is de-asserted, before SMC_ARE is asserted for the next
access.

Memory idle time

The number of bus idle cycles between SMC_AMS0 de-asserting edge and next asserting edge.

STATIC MEMORY CONTROLLER (SMC)
SMC FUNCTIONAL DESCRIPTION

9–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Memory transition time

The number of bus idle cycles extending the Idle time cycles in case of the subsequent access has a different
data direction or is to different bank.

Additional useful definitions are provided below.

Bus contention

State of the bus in which more than one device on the bus attempts to place values on the bus at the same
time. For more information see Avoiding Bus Contention.

ARDY signal

The SMC_ARDY signal is used to insert wait states for slower asynchronous memories. There is no upper
limit to how many wait states the ARDY signal can enter. As long as its held, the processor waits for the
access to the asynchronous memory. Once asserted, the processor accesses the memory according to the
timing diagrams. For more information see ARDY Input Control.

SMC Architectural Concepts

The SMC can support connection to multiple different external banks, with each bank controlled by an
SMC_AMSn chip select signal. Check the processor data sheet for details on the bank address ranges and
configurations.

NOTE: The address range allocated to each bank is shown in the processor data sheet. Not all of an enabled
memory bank need to be populated.

The processor does not directly support 8-bit accesses to the external memories. So, the SMC address lines
start from SMC_A01; there is no SMC_A0 pin.

The SMC does indirectly support 8-bit accesses through the additional byte enable signals SMC_ABE0 and
SMC_ABE1. Some 16-bit memory systems allow the processor to perform 8-bit reads and writes, which are
selected through the SMC_ABE0 and SMC_ABE1 signals.

The byte enable pins are both low during all asynchronous reads and 16-bit asynchronous writes. When
an asynchronous write is made to the upper byte of a 16-bit memory, SMC_ABE1=0 and SMC_ABE0=1. When
an asynchronous write is made to the lower byte of a 16-bit memory, SMC_ABE1=1 and SMC_ABE0=0.

Avoiding Bus Contention

Bus contention occurs during the time one device is getting off the bus and another is getting on. If the first
device is slow to three-state and the second device is quick to drive, the devices contend. Bus contention
causes excessive power dissipation and can lead to device failure.

STATIC MEMORY CONTROLLER (SMC)
SMC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–5

There are two cases where contention can occur.

• In reads followed by writes to the same memory space, the data bus drivers can potentially contend with
those of the memory device addressed by the read.

• In back-to-back reads from two different memory spaces, the two memory devices addressed by the
two reads can contend at the transition between the two read operations.

To avoid contention, program the turnaround time appropriately in the extended time registers (SMC_
B0ETIM – SMC_B3ETIM), setting the number of clock cycles between these types of accesses on a bank-by-
bank basis.

The idle time bit (SMC_B0ETIM.IT) applies to similar back to back access types on the same bank. The tran-
sition time bit (SMC_B0ETIM.TT) applies to the SMC_B0ETIM.IT bit. For actual turnaround situations, idle
time and transition time function in an accumulated fashion. The sequence of access types and times are
shown below.

• A write followed by write to same bank – SMC_B0ETIM.IT

• A read followed by read to same bank – SMC_B0ETIM.IT

• A write followed by read to same bank – SMC_B0ETIM.IT + SMC_B0ETIM.TT

• A read followed by write to same bank – SMC_B0ETIM.IT + SMC_B0ETIM.TT

• Any access to a given bank followed by any access to a different bank – SMC_B0ETIM.IT + SMC_B0ETIM.
TT

The reset value of turnaround transition time is 2 cycles. Program the SMC_B0ETIM.TT bit to a value either
greater than or equal to 2 cycles, depending on memory AC-timing specifications. It is important to be
aware that the SMC_B0ETIM.TT bit may be programmed to 0 only when:

• There are either only read accesses or only write accesses possible to external memory devices for the
current device configuration/processor operation situation.

ARDY Input Control

Each bank can be programmed to sample the SMC_ARDY input after the read or write access timer has
counted down or to ignore this input’s signal. If enabled and disabled at the sample window, SMC_ARDY can
be used to extend the access time as required.

The SMC_ARDY input is treated as an asynchronous input, however it must reach the desired value (either
asserted or deasserted) more than two SCLK cycles before the completion of access time (scheduled rising
edge of SMC_AWE or SMC_ARE). This determines whether the access is extended by the assertion of SMC_
ARDYor not. Once SMC_ARDY (asserted by the memory device), is sampled high the total delay between SMC_
ARDY going high at the pads and SMC_ARE being de-asserted at the pads can be a maximum of 5 SCLK
cycles.

Asynchronous SRAM writes are also possible with the SMC_ARDY signal enabled. In asynchronous SRAM
writes, the write access is extended beyond the programmed write access cycles depending on the SMC_

STATIC MEMORY CONTROLLER (SMC)
SMC OPERATING MODES

9–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ARDY signal state. Once SMC_ARDY is sampled asserted, the SMC_AWE signal is deasserted after 2 CLKOUT
cycles and the write access ends.

The polarity of SMC_ARDY is programmable on a per-bank basis. Since SMC_ARDY is not sampled until an
access is in progress to a bank in which the SMC_ARDY enable is asserted, it does not need to be driven by
default. When using flash memory, the WAIT input should be connected to SMC_ARDY.

To avoid stalls in case of erroneous SMC_ARDY behavior, set the SMC_B0CTL.RDYABTEN bit to enable the
SMC_ARDY abort counter. When the abort counter is enabled, it starts counting down as soon as the
programmed read/write access cycles expire, and times out (generating an error) if the SMC_ARDY signal is
not sampled as asserted within 64 cycles. This ensures that the processor does not hang if SMC_ARDY is not
sampled correctly.

SMC Operating Modes

The SMC supports the following operating modes.

• Asynchronous Flash Mode

• Asynchronous Page Mode

Asynchronous Flash Mode

When the access selected mode is asynchronous flash (SMC_B0CTL.MODE=01), external bank accesses
operate exactly the same as in standard asynchronous mode, except for the pin configuration. This mode
should be used when accessing burst devices in non-read array modes.

Asynchronous Page Mode

When asynchronous page mode access is selected (SMC_B0CTL.MODE=10), asynchronous page reads are
enabled. Page sizes of 4, 8 and 16 words are supported. When performing a page mode read, the first access
in the page proceeds according to the read access time configured in SMC_B0TIM register. This opens the
page and the subsequent reads in that page have a period equal to the page wait states programmed in the
SMC_B0ETIM register. Besides the start of the setup phase, the read address is incremented at the start of
every page cycle.

Page mode access is only supported for back-to-back accesses, such as cache line fills (16 words), 64-bit
instruction reads (4 words) and DMA reads. Write accesses in asynchronous page mode are treated as
simple asynchronous flash write accesses.

STATIC MEMORY CONTROLLER (SMC)
SMC EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–7

SMC Event Control

SMC event control consists of recording status of SMC errors. Accesses to reserved locations and writes to
read only registers result in bus errors. Bus errors are translated into internal SCB crossbar errors which in
turn get translated into interrupts. To report errors occurring in the slave memory devices (for both this
memory interface and the MMR interface as well), the core combines the SCB crossbar response signals to
generate a combined error signal indication which is routed to the fault management unit.

SMC Programmable Timing Characteristics

This section describes the programmable timing characteristics for the SMC. Timing relationships depend
on the programming of the SMC bank registers, whether initiation is from the core or from DMA, and the
sequence of transactions (read followed by read, read followed by write, and others).

NOTE: All memory control, address and data signals are driven out of chip with regard to the falling edge
of the CLKOUT signal. The CLKOUT signal is SCLK on the chip pins (pad delayed).

Asynchronous SRAM Reads and Writes

The following figure shows a basic single write and read operation to an external device with SMC
programmed in asynchronous SRAM mode.

Figure 9-1: Basic Asynchronous SRAM Write Followed by Read

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

9–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

For the current bank, the programmed time cycles are:

• write setup time=2 cycles

• write access time=4 cycles

• write hold time is=2 cycles

• read setup time=3 cycles

• read access time=5 cycles

• read hold time=1 cycle

• turnaround transition time=2 cycles

• idle transition time=0 cycles

The asynchronous SRAM bus cycles proceed as follows.

1. At the start of the write setup period, the chip select signal (SMC_AMSn) for the target bank asserts. The
write data (WD0), address (AW0) and byte enables become valid.

2. At the end of the setup phase and at the start of the write access period, the write enable (SMC_AWE)
asserts.

3. At the end of the programmed write access, the SMC_AWE signal de-asserts. The target device is assumed
to have captured the write data before SMC_AWE de-asserts.

4. At the end of the write hold period, the SMC_AWE signal de-asserts because the pending access is a read
access, and the turnaround transition time cycles start. The write data and byte enables become invalid
within 1 cycle of the SMC_AMS0 signal de-asserting.

5. At the end of turnaround transition time, the read setup period starts with the assertion of the SMC_
AMS0 and SMC_AOE signals and a new read address (AR0) presented on the address bus.

6. At the start of the read access period, the read enable signal, SMC_ARE asserts.

7. At the end of the read access period the SMC_ARE signal de-asserts and the read hold period starts. Read
data is latched along with SMC_ARE de-asserting.

8. At the end of the read hold period, the SMC_AMSn signal is pulled high and turnaround transition cycles
are appended unless there is a pending read request to the same bank.

Asynchronous SRAM Reads with IDLE Transition Cycles Inserted

The following figure shows two consecutive asynchronous SRAM mode reads to the same bank separated
by programmed IDLE transition time cycles.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–9

Figure 9-2: Asynchronous SRAM Read with IDLE Transition

Programmed cycle times are:

• SMC_B0TIM.RST=2cycles

• SMC_B0TIM.RAT=4 cycles

• SMC_B0TIM.RHT=1 cycle

• IDLE transition time=2 cycles

At the start of the IDLE transition cycle, SMC_AMSn and SMC_AOE signal are de-asserted. The setup period
of the second read starts at the end of the IDLE transition cycle with the assertion of the SMC_AMSn and
SMC_AOE signals and a new address on the address bus.

High Speed Asynchronous SRAM Read Burst

The following figure shows a high speed asynchronous SRAM read bus cycle. This is typical for SRAM
devices with small access times being access through SCB read bursts, especially for boot purposes.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

9–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-3: Fast Asynchronous SRAM Reads, Burst of Four Word

In this case, the target SMC bank has been programmed with:

• read setup time=1 cycle

• read access time=2 cycles

• read hold time=0

• SMC_B0ETIM.PREAT=0

• SMC_B0ETIM.PREST=0

• IDLE transition time=0

The SMC_AMSn signal asserts at the start of the setup cycle of the first read out of the burst. Since the hold
time and the IDLE transition time have been programmed to 0, the SMC_AMSn signal does not de-assert
until the entire set of reads concludes. Only the SMC_ARE signal de-asserts periodically for 1 cycle for the
setup period. The read address changes to the next address at the start of each individual setup cycle. Read
data words are latched at the end of each individual read access period.

High Speed Asynchronous SRAM Writes

High speed asynchronous SRAM writes are similar to the high speed read accesses. The bus protocol is
shown in the following figure for a write burst of 4 words. Here, the write setup time is 1 cycle and the write
access time has been programmed to 2 cycles. Write hold time, pre-access time, pre-setup time and idle
transition time are programmed to 0.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–11

The chip select signal, SMC_AMSn, asserts at the start of the entire write burst and de-asserts only at the end
of the last individual write access period. Write address, byte enables and write data for each individual
write access are presented onto the bus at the start of each individual write setup cycle. The SMC_AWE signal
asserts for the write access period and de-asserts during the setup period for each individual data write.

Figure 9-4: Fast Asynchronous SRAM Writes

Asynchronous SRAM Reads with ARDY

The following figure shows an extended asynchronous SRAM read bus cycle with SMC_ARDY enabled.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

9–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-5: Asynchronous SRAM Read with ARDY

The programmed SMC bank control parameters are:

• Pre-Setup Time=1 cycle

• Read Setup Time=3 Cycles

• Read Access Time=6 Cycles

• Read Hold Time=2 Cycles,

• SMC_B0CTL.RDYPOL=1 (memory is ready when SMC_ARDY=1)

The bus cycles proceed as follows:

• At the start of the pre-setup phase, SMC_AMSn asserts, and read address SMC_A01 is presented on the
address bus.

• At the start of the setup period, SMC_AOE asserts.

• At the start of the read access, SMC_ARE asserts.

• The CLKOUT signal is SCLK which is driven out of the pads. The CLKOUT signal falling edge can be
delayed from the internal SCLK falling edge. See the data sheet for the specification related to this delay.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–13

All output signals out of the pads, for example SMC_ARE and SMC_AOE, are driven with regard to the
falling edge of CLKOUT.

• The SMC starts sampling the SMC_ARDYsignal on every rising edge of internal SCLK 2 cycles before the
programmed number of read access cycles expires. The read access is extended (SMC_ARE is kept
asserted) until SMC_ARDY is sampled high.

• Once the SMC_ARDY signal (asserted by memory device), is sampled high in SCLK, the read signal is
pulled off internally in the SCLK domain. The total delay between the SMC_ARDY signal going high at
the pads and the de-assertion of the SMC_ARE signal at the pads can be a maximum of 5 SCLK cycles.

• Read data is latched at the falling edge of CLKOUT on the same edge where SMC_ARE is deasserted.

• Hold bus cycles start after the SMC_ARE signal is de-asserted.

• At the end of the hold period, the SMC_AMSn and SMC_AOE signals de-assert and the SMC goes into the
transition state.

Asynchronous Flash Reads

The following figure illustrates a single asynchronous flash mode read bus cycle.

Figure 9-6: Asynchronous Flash Read with Pre-Setup and Pre-Access Cycles

 In this case, the target SMC bank has been programmed with:

• pre-setup time=1 cycle

• read setup time=2 cycles

• pre-access time=1 cycle

• read access time=5 cycles

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

9–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• read hold time=2 cycles.

The read bus cycle is almost identical to the asynchronous SRAM read bus cycle. The only difference is the
behavior of the SMC_AOE signal which is used as the flash address valid SMC_NORDV signal. The flash address
valid SMC_NORDV signal asserts at the start of the setup cycle and de-asserts at the end of the setup cycle.

The pre-access cycle inserts 1 cycle gap between the de-assertion of flash address valid SMC_NORDV and the
assertion of the flash read strobe NOR_OE at the start of read access. asynchronous flash reads can also be
used with SMC_ARDY enabled for flash devices which use SMC_NORWT in asynchronous mode. In that case,
the read bus cycle operation is identical to the asynchronous SRAM with SMC_ARDY enabled except for the
SMC_AOE/SMC_NORDV signal behavior.

The following figure shows a 32-bit read access to a flash device in asynchronous mode which is split into
two 16-bit external memory accesses. For this bank, read setup and read hold are programmed as 2 cycles
whereas the read access time is 5 cycles. Note that the flash device chip select signal (NOR_CE) remains
asserted for the entire duration of both read accesses, and is de-asserted at the end of the hold period of the
second read access. The SMC_NORDV signal is asserted during the setup phase of both read accesses. Read
data is latched at the end of the read access period.

Figure 9-7: 32-bit Asynchronous Flash Read

Asynchronous Flash Writes

The following figure shows a single asynchronous flash write bus cycle.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–15

Figure 9-8: Asynchronous Flash Write Operation

 For this example, the SMC has been programmed with:

• pre-setup time=1 cycle

• write setup time=2 cycles

• write access time=6 cycles

• write hold time=2 cycles

• pre-access time=0

The asynchronous flash write bus cycle is again almost identical to the asynchronous SRAM write. The
SMC_AWE pin is connected to flash write enable signal (NOR_WE). However, in asynchronous flash writes, the
SMC_AOE signal is used as the address valid signal (SMC_NORDV) and asserts for the duration of the setup
period, unlike in asynchronous SRAM writes where the SMC_AOE signal never asserts.

Asynchronous Flash Page Mode Reads

The following figure shows an asynchronous page mode bus read cycle for a burst of 5 reads which are split
into 4 reads followed by a single read.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

9–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-9: Asynchronous Page Mode Read Bus Cycle

The programmed bank parameters are:

• read setup time=2 cycles

• read access time=6 cycles

• page wait=2 cycles

• hold time=2 cycles

The maximum number of read bursts in a total page access depends on the bank SMC_B0CTL.PGSZ bits
(00=4 words, 01=8 words, 1x=16 words). The first read access is extended for three more page-read cycles
whose period is equal to the page wait states. Besides the start of the setup phase, the read address is incre-
mented at the start of every page cycle. Read data is latched with the falling edge of CLKOUT the end of
the read access period, and also at the end of the page cycles.

Asynchronous FIFO Reads and Writes

The following figure shows read bus cycles for an asynchronous FIFO device. The SMC bank has been
programmed in asynchronous SRAM mode, with SMC_B0CTL.SELCTRL =01 (SMC_AMSn is OR-ed with
SMC_ARE).

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMABLE TIMING CHARACTERISTICS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–17

Figure 9-10: Asynchronous FIFO Read Bus Cycles

Other settings are:

• read setup time=1 cycle

• read access time=3 cycles

• read hold time=1 cycle

• idle transition time=0 cycles

• turnaround transition time=2 cycles

The SMC_AMSn signal is connected to the read enable (RE) of the FIFO device, and the data bus is connected
to the output data bus (DQ) of the FIFO. The SMC_AMSn signal or the FIFO read strobe asserts only for the
duration of the read access. Read data is latched at the falling edge of CLKOUT at the end of the read access,
when SMC_AMSn is deasserted.

The following figure illustrates write bus cycles for an asynchronous FIFO device. The SMC bank has been
programmed in asynchronous SRAM mode, with SMC_B0CTL.SELCTRL = 10 (SMC_AMSn is OR-ed with
SMC_AWE). Other settings are:

• write setup time=1 cycle

• write access time=3 cycles

• write hold time=1 cycle

• idle transition time=0

• turnaround transition time=2 cycles

The SMC_AMSn signal is connected to the write enable (WE) of the FIFO device, and data bus is connected
to the input data bus (DIN) of the FIFO. The SMC_AMSn signal or the FIFO write strobe asserts only for the
duration of the write access. However, write data is asserted at the start of the setup cycle and is taken off
at the end of the hold period for each individual write access.

STATIC MEMORY CONTROLLER (SMC)
SMC PROGRAMMING MODEL

9–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-11: Asynchronous FIFO Write Bus Cycles

SMC Programming Model

Following are general guidelines for configuring and enabling the SMC interface. Failure to follow these
guidelines can lead to erroneous behavior.

• In asynchronous page mode, the SMC_B0CTL.RDYEN bit should always be 0.

• The ARDY abort counter should be enabled (the SMC_B0CTL.RDYABTEN bit =1) whenever the SMC_
ARDY signal is enabled (the SMC_B0CTL.RDYEN is set to 1). Doing so ensures that the interface does not
hang due to erroneous SMC_ARDY signal behavior or erroneous sampling of the SMC_ARDY signal.

• Read access time (SMC_B0TIM.RAT), write access time (SMC_B0TIM.WAT), read setup time (SMC_B0TIM.
RST), and write setup time (SMC_B0TIM.WST) should not be programmed to zero.

• Page mode wait states (SMC_B0ETIM.PGWS) should never be programmed to 0 or 1.

• Program the page size bits (SMC_B0CTL.PGSZ) to match the configurations of the flash device that is
being connected to the SMC interface.

• The SMC_B0CTL.RDYPOL bit should be selected to be the complement of the WAIT polarity that is config-
ured in the flash device.

• In asynchronous SRAM and asynchronous flash modes with SMC_ARDY enabled and where SMC_
B0TIM.RHT, SMC_B0TIM.WHT, SMC_B0TIM.RAT, SMC_B0TIM.WAT are the read and write hold and access
times and SMC_B0ETIM.IT and SMC_B0ETIM.TT are the idle and transition times ensure that:

– SMC_B0TIM.RHT + SMC_B0ETIM.IT + SMC_B0ETIM.TT>= 2

– SMC_B0TIM.WHT + SMC_B0ETIM.IT + SMC_B0ETIM.TT>= 2

– SMC_B0TIM.RAT>= 5

– SMC_B0TIM.WAT>= 5

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–19

ADSP-CM40x SMC Register Descriptions

Static Memory Controller (SMC) contains the following registers.

Bank 0 Control Register

The SMC_B0CTL register enables bank 0 accesses and configures the memory access features for this bank.

Table 9-2: ADSP-CM40x SMC Register List

Name Description

SMC_B0CTL Bank 0 Control Register

SMC_B0TIM Bank 0 Timing Register

SMC_B0ETIM Bank 0 Extended Timing Register

SMC_B1CTL Bank 1 Control Register

SMC_B1TIM Bank 1 Timing Register

SMC_B1ETIM Bank 1 Extended Timing Register

SMC_B2CTL Bank 2 Control Register

SMC_B2TIM Bank 2 Timing Register

SMC_B2ETIM Bank 2 Extended Timing Register

SMC_B3CTL Bank 3 Control Register

SMC_B3TIM Bank 3 Timing Register

SMC_B3ETIM Bank 3 Extended Timing Register

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-12: SMC_B0CTL Register Diagram

Table 9-3: SMC_B0CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

21:20
(R/W)

PGSZ Flash Page Size.
The SMC_B0CTL.PGSZ bits select the flash page size, if page flash or sync burst
flash protocol has been enabled (SMC_B0CTL.MODE> 1). Note that the SMC_
B0CTL.PGSZ bits must be set to match the flash protocol of the external flash
memory device in the system. The typical SMC_B0CTL.PGSZ selection for external
devices supporting async flash or async flash page protocols is 4 or 8 words. The
typical SMC_B0CTL.PGSZ selection for external devices supporting sync burst
flash protocol is 16 words.

0 4 words

1 8 words

2 16 words

3 16 words

14
(R/W)

RDYABTEN ARDY Abort Enable.
The SMC_B0CTL.RDYABTEN bit enables the abort counter for the SMC_ARDY pin,
if enabled (SMC_B0CTL.RDYEN =1). After SMC_B0TIM.RAT or SMC_B0TIM.
WAT cycles, the SMC starts sampling the SMC_ARDY pin and starts the abort down
counter (if enabled). The abort count is 64 cycles of SCLK. If the SMC detects that
SMC_ARDY remains de-asserted when the counter expires, the SMC aborts the
access and returns an error response back on the system bus.

0 Disable abort counter

1 Enable abort counter

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–21

Bank 0 Timing Register

The SMC_B0TIM register configures bank 0 read and write access, setup, and hold timing for this bank. Note
that read and write timing configurations are independent and may differ.

13
(R/W)

RDYPOL ARDY Polarity.
The SMC_B0CTL.RDYPOL bit selects the polarity (active high or low) for the SMC_
ARDY pin, if enabled (SMC_B0CTL.RDYEN =1). When the SMC samples the SMC_
ARDY pin in the selective active state, the transaction completes.

0 Low active ARDY

1 High active ARDY

12
(R/W)

RDYEN ARDY Enable.
The SMC_B0CTL.RDYEN bit enables SMC_ARDY pin operation for bank 0 accesses.
When enabled, the SMC uses SMC_ARDY (after the access time countdown) to
determine completion of access to this memory bank. When disabled, the SMC
ignores SMC_ARDY for accesses to this memory bank.

0 Disable ARDY

1 Enable ARDY

9:8
(R/W)

SELCTRL Select Control.
The SMC_B0CTL.SELCTRL bits select the handling of the SMC_AMSn, SMC_ARE,
SMC_AOE, and SMC_AWE pins for memory access control.

0 AMS0 only

1 AMS0 ored with ARE

2 AMS0 ored with AOE

3 AMS0 ored with AWE

5:4
(R/W)

MODE Memory Access Mode.
The SMC_B0CTL.MODE bits select the protocol the SMC uses for static memory
read/write access. Note that the write protocol for async flash, async flash page, and
sync burst flash are all similar; only the read protocols differ for these modes.

0 Async SRAM protocol

1 Async flash protocol

2 Async flash page protocol

3 Reserved

0
(R/W)

EN Bank 0 Enable.
The SMC_B0CTL.EN bit enables accesses to the memory in bank 0. When this bit is
disabled, accesses to bank 0 return an error response.

0 Disable access

1 Enable access

Table 9-3: SMC_B0CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-13: SMC_B0TIM Register Diagram

Table 9-4: SMC_B0TIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29:24
(R/W)

RAT Read Access Time.
The SMC_B0TIM.RAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_ARE pin for a read access. The access time is from 1 to 63 SCLK
cycles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

22:20
(R/W)

RHT Read Hold Time.
The SMC_B0TIM.RHT bits select the hold time (in SCLK cycles) that the SMC waits
after de-asserting the SMC_ARE pin before asserting the SMC_AOE pin for the next
access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

18:16
(R/W)

RST Read Setup Time.
The SMC_B0TIM.RST bits select the setup time (in SCLK cycles) that the SMC
asserts the SMC_AOE pin before asserting the SMC_ARE pin for an access. The setup
time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–23

Bank 0 Extended Timing Register

The SMC_B0ETIM register configures extensions to access times and idle times, augmenting the setup, hold,
and access times configured with the SMC_B0TIM register.

13:8
(R/W)

WAT Write Access Time.
The SMC_B0TIM.WAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_AWE pin for a write access. The access time is from 1 to 63 SCLK
cycles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

6:4
(R/W)

WHT Write Hold Time.
The SMC_B0TIM.WHT bits select the hold time (in SCLK cycles) that the SMC waits
after de-asserting the SMC_AWE pin before de-asserting the SMC_AOE pin for the
current access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

2:0
(R/W)

WST Write Setup Time.
The SMC_B0TIM.WST bits select the setup time (in SCLK cycles) that the SMC
asserts the SMC_AOE pin before asserting the SMC_AWE pin for a write access. The
setup time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

Table 9-4: SMC_B0TIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-14: SMC_B0ETIM Register Diagram

Table 9-5: SMC_B0ETIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19:16
(R/W)

PGWS Page Wait States.
The SMC_B0ETIM.PGWS bits select a page access extension time (in SCLK cycles)
that the SMC waits during read accesses when configured for flash page protocol
(SMC_B0CTL.MODE =2). The wait time is from 2 to 15 SCLK cycles.

0 Not supported

1 Not supported

0010 - 1111 2-15 SCLK clock cycles

14:12
(R/W)

IT Idle Time.
The SMC_B0ETIM.IT bits select a bus idle time (in SCLK cycles) that the SMC
waits between de-asserting the SMC_AMSn pin and asserting the SMC_AMSn pin for
the next access. Note that the SMC_B0ETIM.IT period may be extended using the
SMC_B0ETIM.TT selection. The idle time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

7 7 SCLK clock cycles

10:8
(R/W)

TT Transition Time.
The SMC_B0ETIM.TT bits select a bus idle time (in SCLK cycles) that the SMC
extends the SMC_B0ETIM.IT to allow for the subsequent access either using a
different transfer direction or accessing a different bank. The transition time is from
1 to 7 SCLK cycles.

0 No bank transition

1 1 SCLK clock cycle

7 7 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–25

Bank 1 Control Register

The SMC_B1CTL register enables bank 1 accesses and configures the memory access features for this bank.

Figure 9-15: SMC_B1CTL Register Diagram

5:4
(R/W)

PREAT Pre Access Time.
The SMC_B0ETIM.PREAT bits select the pre-access time (in SCLK cycles) that the
SMC waits after de-asserting the SMC_AOE/ADV pin before asserting the SMC_ARE/
SMC_AWE pin for the current access. The pre-access time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

1:0
(R/W)

PREST Pre Setup Time.
The SMC_B0ETIM.PREST bits select the pre-setup time (in SCLK cycles) that the
SMC asserts the SMC_AMSn pin before asserting the SMC_AOE/ADV pin for an
access. The pre-setup time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

Table 9-5: SMC_B0ETIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 9-6: SMC_B1CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

21:20
(R/W)

PGSZ Flash Page Size.
The SMC_B1CTL.PGSZ bits select the flash page size, if page flash or sync burst
flash protocol has been enabled (SMC_B1CTL.MODE> 1). Note that the SMC_
B1CTL.PGSZ bits must be set to match the flash protocol of the external flash
memory device in the system. The typical SMC_B1CTL.PGSZ selection for external
devices supporting async flash or async flash page protocols is 4 or 8 words. The
typical SMC_B1CTL.PGSZ selection for external devices supporting sync burst
flash protocol is 16 words.

0 4 words

1 8 words

2 16 words

3 16 words

14
(R/W)

RDYABTEN ARDY Abort Enable.
The SMC_B1CTL.RDYABTEN bit enables the abort counter for the SMC_ARDY pin,
if enabled (SMC_B1CTL.RDYEN =1). After SMC_B1TIM.RAT or SMC_B1TIM.
WAT cycles, the SMC starts sampling the SMC_ARDY pin and starts the abort down
counter (if enabled). The abort count is 64 cycles of SCLK. If the SMC detects that
SMC_ARDY remains de-asserted when the counter expires, the SMC aborts the
access and returns an error response back on the system bus.

0 Disable abort counter

1 Enable abort counter

13
(R/W)

RDYPOL ARDY Polarity.
The SMC_B1CTL.RDYPOL bit selects the polarity (active high or low) for the SMC_
ARDY pin, if enabled (SMC_B1CTL.RDYEN =1). When the SMC samples the SMC_
ARDY pin in the selective active state, the transaction completes.

0 Low active ARDY

1 High active ARDY

12
(R/W)

RDYEN ARDY Enable.
The SMC_B1CTL.RDYEN bit enables SMC_ARDY pin operation for bank 1 accesses.
When enabled, the SMC uses SMC_ARDY (after the access time countdown) to
determine completion of access to this memory bank. When disabled, the SMC
ignores SMC_ARDY for accesses to this memory bank.

0 Disable ARDY

1 Enable ARDY

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–27

Bank 1 Timing Register

The SMC_B1TIM register configures bank 1 read and write access, setup, and hold timing for this bank. Note
that read and write timing configurations are independent and may differ.

9:8
(R/W)

SELCTRL Select Control.
The SMC_B1CTL.SELCTRL bits select the handling of the SMC_AMSn, SMC_ARE,
SMC_AOE, and SMC_AWE pins for memory access control.

0 AMS1 only

1 AMS1 ored with ARE

2 AMS1 ored with AOE

3 AMS1 ored with AWE

5:4
(R/W)

MODE Memory Access Mode.
The SMC_B1CTL.MODE bits select the protocol the SMC uses for static memory
read/write access. Note that the write protocol for async flash, async flash page, and
sync burst flash are all similar; only the read protocols differ for these modes.

0 Async SRAM protocol

1 Async flash protocol

2 Async flash page protocol

3 Reserved

0
(R/W)

EN Bank 1 Enable.
The SMC_B1CTL.EN bit enables accesses to the memory in bank 1. When this bit is
disabled, accesses to bank 1 return an error response.

0 Disable access

1 Enable access

Table 9-6: SMC_B1CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-16: SMC_B1TIM Register Diagram

Table 9-7: SMC_B1TIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29:24
(R/W)

RAT Read Access Time.
The SMC_B1TIM.RAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_ARE pin for a read access. The access time is from 1 to 63 SCLK
cycles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

22:20
(R/W)

RHT Read Hold Time.
The SMC_B1TIM.RHT bits select the hold time (in SCLK cycles) that the SMC waits
after de-asserting the SMC_ARE pin before asserting the SMC_AOE pin for the next
access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

18:16
(R/W)

RST Read Setup Time.
The SMC_B1TIM.RST bits select the setup time (in SCLK cycles) that the SMC
asserts the SMC_AOE pin before asserting the SMC_ARE pin for an access. The setup
time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–29

Bank 1 Extended Timing Register

The SMC_B1ETIM register configures extensions to access times and idle times, augmenting the setup, hold,
and access times configured with the SMC_B1TIM register.

13:8
(R/W)

WAT Write Access Time.
The SMC_B1TIM.WAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_AWE pin for a write access. The access time is from 1 to 63 SCLK
cycles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

6:4
(R/W)

WHT Write Hold Time.
The SMC_B1TIM.WHT bits select the hold time (in SCLK cycles) that the SMC waits
after de-asserting the SMC_AWE pin before de-asserting the SMC_AOE pin for the
current access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

2:0
(R/W)

WST Write Setup Time.
The SMC_B1TIM.WST bits select the setup time (in SCLK cycles) that the SMC
asserts the SMC_AOE pin before asserting the SMC_AWE pin for a write access. The
setup time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

Table 9-7: SMC_B1TIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-17: SMC_B1ETIM Register Diagram

Table 9-8: SMC_B1ETIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19:16
(R/W)

PGWS Page Wait States.
The SMC_B1ETIM.PGWS bits select a page access extension time (in SCLK cycles)
that the SMC waits during read accesses when configured for flash page protocol
(SMC_B1CTL.MODE =2). The wait time is from 2 to 15 SCLK cycles.

0 Not supported

1 Not supported

0010 - 1111 2-15 SCLK clock cycles

14:12
(R/W)

IT Idle Time.
The SMC_B1ETIM.IT bits select a bus idle time (in SCLK cycles) that the SMC
waits between de-asserting the SMC_AMSn pin and asserting the SMC_AMSn pin for
the next access. Note that the SMC_B1ETIM.IT period may be extended using the
SMC_B1ETIM.TT selection. The idle time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

7 7 SCLK clock cycles

10:8
(R/W)

TT Transition Time.
The SMC_B1ETIM.TT bits select a bus idle time (in SCLK cycles) that the SMC
extends the SMC_B1ETIM.IT to allow for the subsequent access either using a
different transfer direction or accessing a different bank. The transition time is from
1 to 7 SCLK cycles.

0 No bank transition

1 1 SCLK clock cycle

7 7 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–31

Bank 2 Control Register

The SMC_B2CTL register enables bank 2 accesses and configures the memory access features for this bank.

Figure 9-18: SMC_B2CTL Register Diagram

5:4
(R/W)

PREAT Pre Access Time.
The SMC_B1ETIM.PREAT bits select the pre-access time (in SCLK cycles) that the
SMC waits after de-asserting the SMC_AOE/ADV pin before asserting the SMC_ARE/
SMC_AWE pin for the current access. The pre-access time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

1:0
(R/W)

PREST Pre Setup Time.
The SMC_B1ETIM.PREST bits select the pre-setup time (in SCLK cycles) that the
SMC asserts the SMC_AMSn pin before asserting the SMC_AOE/ADV pin for an
access. The pre-setup time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

Table 9-8: SMC_B1ETIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 9-9: SMC_B2CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

21:20
(R/W)

PGSZ Flash Page Size.
The SMC_B2CTL.PGSZ bits select the flash page size, if page flash or sync burst
flash protocol has been enabled (SMC_B2CTL.MODE> 1). Note that the SMC_
B2CTL.PGSZ bits must be set to match the flash protocol of the external flash
memory device in the system. The typical SMC_B2CTL.PGSZ selection for external
devices supporting async flash or async flash page protocols is 4 or 8 words. The
typical SMC_B2CTL.PGSZ selection for external devices supporting sync burst
flash protocol is 16 words.

0 4 words

1 8 words

2 16 words

3 16 words

14
(R/W)

RDYABTEN ARDY Abort Enable.
The SMC_B2CTL.RDYABTEN bit enables the abort counter for the SMC_ARDY pin,
if enabled (SMC_B2CTL.RDYEN =1). After SMC_B2TIM.RAT or SMC_B2TIM.
WAT cycles, the SMC starts sampling the SMC_ARDY pin and starts the abort down
counter (if enabled). The abort count is 64 cycles of SCLK. If the SMC detects that
SMC_ARDY remains de-asserted when the counter expires, the SMC aborts the
access and returns an error response back on the system bus.

0 Disable abort counter

1 Enable abort counter

13
(R/W)

RDYPOL ARDY Polarity.
The SMC_B2CTL.RDYPOL bit selects the polarity (active high or low) for the SMC_
ARDY pin, if enabled (SMC_B2CTL.RDYEN =1). When the SMC samples the SMC_
ARDY pin in the selective active state, the transaction completes.

0 Low active ARDY

1 High active ARDY

12
(R/W)

RDYEN ARDY Enable.
The SMC_B2CTL.RDYEN bit enables SMC_ARDY pin operation for bank 2 accesses.
When enabled, the SMC uses SMC_ARDY (after the access time countdown) to
determine completion of access to this memory bank. When disabled, the SMC
ignores SMC_ARDY for accesses to this memory bank.

0 Disable ARDY

1 Enable ARDY

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–33

Bank 2 Timing Register

The SMC_B2TIM register configures bank 2 read and write access, setup, and hold timing for this bank. Note
that read and write timing configurations are independent and may differ.

9:8
(R/W)

SELCTRL Select Control.
The SMC_B2CTL.SELCTRL bits select the handling of the SMC_AMSn, SMC_ARE,
SMC_AOE, and SMC_AWE pins for memory access control.

0 AMS2 only

1 AMS2 ored with ARE

2 AMS2 ored with AOE

3 AMS2 ored with AWE

5:4
(R/W)

MODE Memory Access Mode.
The SMC_B2CTL.MODE bits select the protocol the SMC uses for static memory
read/write access. Note that the write protocol for async flash, async flash page, and
sync burst flash are all similar; only the read protocols differ for these modes.

0 Async SRAM protocol

1 Async flash protocol

2 Async flash page protocol

3 Reserved

0
(R/W)

EN Bank 2 Enable.
The SMC_B2CTL.EN bit enables accesses to the memory in bank 2. When this bit is
disabled, accesses to bank 2 return an error response.

0 Disable access

1 Enable access

Table 9-9: SMC_B2CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-19: SMC_B2TIM Register Diagram

Table 9-10: SMC_B2TIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29:24
(R/W)

RAT Read Access Time.
The SMC_B2TIM.RAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_ARE pin for a read access. The access time is from 1 to 63 SCLK
cycles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

22:20
(R/W)

RHT Read Hold Time.
The SMC_B2TIM.RHT bits select the hold time (in SCLK cycles) that the SMC waits
after de-asserting the SMC_ARE pin before asserting the SMC_AOE pin for the next
access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

18:16
(R/W)

RST Read Setup Time.
The SMC_B2TIM.RST bits select the setup time (in SCLK cycles) that the SMC
asserts the SMC_AOE pin before asserting the SMC_ARE pin for an access. The setup
time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–35

Bank 2 Extended Timing Register

The SMC_B2ETIM register configures extensions to access times and idle times, augmenting the setup, hold,
and access times configured with the SMC_B2TIM register.

13:8
(R/W)

WAT Write Access Time.
The SMC_B2TIM.WAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_AWE pin for a write access. The access time is from 1 to 63 SCLK
cycles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

6:4
(R/W)

WHT Write Hold Time.
The SMC_B2TIM.WHT bits select the hold time (in SCLK cycles) that the SMC waits
after de-asserting the SMC_AWE pin before de-asserting the SMC_AOE pin for the
current access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

2:0
(R/W)

WST Write Setup Time.
The SMC_B2TIM.WST bits select the setup time (in SCLK cycles) that the SMC
asserts the SMC_AOE pin before asserting the SMC_AWE pin for a write access. The
setup time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

Table 9-10: SMC_B2TIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-20: SMC_B2ETIM Register Diagram

Table 9-11: SMC_B2ETIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19:16
(R/W)

PGWS Page Wait States.
The SMC_B2ETIM.PGWS bits select a page access extension time (in SCLK cycles)
that the SMC waits during read accesses when configured for flash page protocol
(SMC_B2CTL.MODE =2). The wait time is from 2 to 15 SCLK cycles.

0 Not supported

1 Not supported

0010 - 1111 2-15 SCLK clock cycles

14:12
(R/W)

IT Idle Time.
The SMC_B2ETIM.IT bits select a bus idle time (in SCLK cycles) that the SMC
waits between de-asserting the SMC_AMSn pin and asserting the SMC_AMSn pin for
the next access. Note that the SMC_B2ETIM.IT period may be extended using the
SMC_B2ETIM.TT selection. The idle time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

7 7 SCLK clock cycles

10:8
(R/W)

TT Transition Time.
The SMC_B2ETIM.TT bits select a bus idle time (in SCLK cycles) that the SMC
extends the SMC_B2ETIM.IT to allow for the subsequent access either using a
different transfer direction or accessing a different bank. The transition time is from
1 to 7 SCLK cycles.

0 No bank transition

1 1 SCLK clock cycle

7 7 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–37

Bank 3 Control Register

The SMC_B3CTL register enables bank 3 accesses and configures the memory access features for this bank.

Figure 9-21: SMC_B3CTL Register Diagram

5:4
(R/W)

PREAT Pre Access Time.
The SMC_B2ETIM.PREAT bits select the pre-access time (in SCLK cycles) that the
SMC waits after de-asserting the SMC_AOE/ADV pin before asserting the SMC_ARE/
SMC_AWE pin for the current access. The pre-access time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

1:0
(R/W)

PREST Pre Setup Time.
The SMC_B2ETIM.PREST bits select the pre-setup time (in SCLK cycles) that the
SMC asserts the SMC_AMSn pin before asserting the SMC_AOE/ADV pin for an
access. The pre-setup time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

Table 9-11: SMC_B2ETIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 9-12: SMC_B3CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

21:20
(R/W)

PGSZ Flash Page Size.
The SMC_B3CTL.PGSZ bits select the flash page size, if page flash or sync burst
flash protocol has been enabled (SMC_B3CTL.MODE> 1). Note that the SMC_
B3CTL.PGSZ bits must be set to match the flash protocol of the external flash
memory device in the system. The typical SMC_B3CTL.PGSZ selection for external
devices supporting async flash or async flash page protocols is 4 or 8 words. The
typical SMC_B3CTL.PGSZ selection for external devices supporting sync burst
flash protocol is 16 words.

0 4 words

1 8 words

2 16 words

3 16 words

14
(R/W)

RDYABTEN ARDY Abort Enable.
The SMC_B3CTL.RDYABTEN bit enables the abort counter for the SMC_ARDY pin,
if enabled (SMC_B3CTL.RDYEN =1). After SMC_B3TIM.RAT or SMC_B3TIM.
WAT cycles, the SMC starts sampling the SMC_ARDY pin and starts the abort down
counter (if enabled). The abort count is 64 cycles of SCLK. If the SMC detects that
SMC_ARDY remains de-asserted when the counter expires, the SMC aborts the
access and returns an error response back on the system bus.

0 Disable abort counter

1 Enable abort counter

13
(R/W)

RDYPOL ARDY Polarity.
The SMC_B3CTL.RDYPOL bit selects the polarity (active high or low) for the SMC_
ARDY pin, if enabled (SMC_B3CTL.RDYEN =1). When the SMC samples the SMC_
ARDY pin in the selective active state, the transaction completes.

0 Low active ARDY

1 High active ARDY

12
(R/W)

RDYEN ARDY Enable.
The SMC_B3CTL.RDYEN bit enables SMC_ARDY pin operation for bank 3 accesses.
When enabled, the SMC uses SMC_ARDY (after the access time countdown) to
determine completion of access to this memory bank. When disabled, the SMC
ignores SMC_ARDY for accesses to this memory bank.

0 Disable ARDY

1 Enable ARDY

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–39

Bank 3 Timing Register

The SMC_B3TIM register configures bank 3 read and write access, setup, and hold timing for this bank. Note
that read and write timing configurations are independent and may differ.

9:8
(R/W)

SELCTRL Select Control.
The SMC_B3CTL.SELCTRL bits select the handling of the SMC_AMSn, SMC_ARE,
SMC_AOE, and SMC_AWE pins for memory access control.

0 AMS3 only

1 AMS3 ored with ARE

2 AMS3 ored with AOE

3 AMS3 ored with AWE

5:4
(R/W)

MODE Memory Access Mode.
The SMC_B3CTL.MODE bits select the protocol the SMC uses for static memory
read/write access. Note that the write protocol for async flash, async flash page, and
sync burst flash are all similar; only the read protocols differ for these modes.

0 Async SRAM protocol

1 Async flash protocol

2 Async flash page protocol

3 Reserved

0
(R/W)

EN Bank 3 Enable.
The SMC_B3CTL.EN bit enables accesses to the memory in bank 3. When this bit is
disabled, accesses to bank 3 return an error response.

0 Disable access

1 Enable access

Table 9-12: SMC_B3CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-22: SMC_B3TIM Register Diagram

Table 9-13: SMC_B3TIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29:24
(R/W)

RAT Read Access Time.
The SMC_B3TIM.RAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_ARE pin for a read access. The access time is from 1 to 63 SCLK
cycles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

22:20
(R/W)

RHT Read Hold Time.
The SMC_B3TIM.RHT bits select the hold time (in SCLK cycles) that the SMC waits
after de-asserting the SMC_ARE pin before asserting the SMC_AOE pin for the next
access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

18:16
(R/W)

RST Read Setup Time.
The SMC_B3TIM.RST bits select the setup time (in SCLK cycles) that the SMC
asserts the SMC_AOE pin before asserting the SMC_ARE pin for an access. The setup
time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–41

Bank 3 Extended Timing Register

The SMC_B3ETIM register configures extensions to access times and idle times, augmenting the setup, hold,
and access times configured with the SMC_B3TIM register.

13:8
(R/W)

WAT Write Access Time.
The SMC_B3TIM.WAT bits select the access time (in SCLK cycles) that the SMC
asserts the SMC_AWE pin for a write access. The access time is from 1 to 63 SCLK
cycles.

0 Not supported

1 1 SCLK clock cycle

63 63 SCLK clock cycles

6:4
(R/W)

WHT Write Hold Time.
The SMC_B3TIM.WHT bits select the hold time (in SCLK cycles) that the SMC waits
after de-asserting the SMC_AWE pin before de-asserting the SMC_AOE pin for the
current access. The hold time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

2:0
(R/W)

WST Write Setup Time.
The SMC_B3TIM.WST bits select the setup time (in SCLK cycles) that the SMC
asserts the SMC_AOE pin before asserting the SMC_AWE pin for a write access. The
setup time is from 1 to 8 SCLK cycles.

0 8 SCLK clock cycles

1 1 SCLK clock cycle

7 7 SCLK clock cycles

Table 9-13: SMC_B3TIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 9-23: SMC_B3ETIM Register Diagram

Table 9-14: SMC_B3ETIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19:16
(R/W)

PGWS Page Wait States.
The SMC_B3ETIM.PGWS bits select a page access extension time (in SCLK cycles)
that the SMC waits during read accesses when configured for flash page protocol
(SMC_B3CTL.MODE =2). The wait time is from 2 to 15 SCLK cycles.

0 Not supported

1 Not supported

0010 - 1111 2-15 SCLK clock cycles

14:12
(R/W)

IT Idle Time.
The SMC_B3ETIM.IT bits select a bus idle time (in SCLK cycles) that the SMC
waits between de-asserting the SMC_AMSn pin and asserting the SMC_AMSn pin for
the next access. Note that the SMC_B3ETIM.IT period may be extended using the
SMC_B3ETIM.TT selection. The idle time is from 0 to 7 SCLK cycles.

0 0 SCLK clock cycles

7 7 SCLK clock cycles

10:8
(R/W)

TT Transition Time.
The SMC_B3ETIM.TT bits select a bus idle time (in SCLK cycles) that the SMC
extends the SMC_B3ETIM.IT to allow for the subsequent access either using a
different transfer direction or accessing a different bank. The transition time is from
1 to 7 SCLK cycles.

0 No bank transition

1 1 SCLK clock cycle

7 7 SCLK clock cycles

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 9–43

5:4
(R/W)

PREAT Pre Access Time.
The SMC_B3ETIM.PREAT bits select the pre-access time (in SCLK cycles) that the
SMC waits after de-asserting the SMC_AOE/ADV pin before asserting the SMC_ARE/
SMC_AWE pin for the current access. The pre-access time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

1:0
(R/W)

PREST Pre Setup Time.
The SMC_B3ETIM.PREST bits select the pre-setup time (in SCLK cycles) that the
SMC asserts the SMC_AMSn pin before asserting the SMC_AOE/ADV pin for an
access. The pre-setup time is from 0 to 3 SCLK cycles.

0 0 SCLK clock cycles

3 3 SCLK clock cycles

Table 9-14: SMC_B3ETIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

STATIC MEMORY CONTROLLER (SMC)
ADSP-CM40X SMC REGISTER DESCRIPTIONS

9–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–1

10 Cyclic Redundancy Check (CRC)

The CRC peripheral is used to perform the Cyclic Redundancy Check (CRC) of the block of data that is
presented to the peripheral. The peripheral provides a means to periodically verify the integrity of the
system memory, the contents of memory-mapped registers (MMRs), or communication message objects,
and it is based on a CRC32 engine that computes the signature of 32-bit data presented to the peripheral.

The dedicated hardware compares the calculated signature of the operation to a pre-loaded expected
signature and if the two fail to match, the peripheral generates an error.

Data may be provided by the source channel of the memory-to-memory DMA channels and optionally
forwarded to memory via the destination DMA channel. Alternatively, the peripheral also supports data
presented by core write transactions.

The CRC peripheral implements a reduced table-lookup algorithm to compute the signature of the data.
A programmable 32-bit CRC polynomial is used to automatically generate the lookup table (LUT)
contents.

Additional CRC peripheral modes allow for initializing large memory sections with a constant value, or
for verifying that sections of memory are equal to a constant value.

CRC Features

The CRC peripheral supports a number of key features, including memory scan modes for memory veri-
fication, memory transfer modes for on-the-fly CRC calculations while transferring data from one
memory to another, a programmable 32-bit CRC polynomial with automatic LUT generation, and data
mirroring options.

The CRC module includes the following features.

• CRC checksum computation and comparison modes

• 32-bit programmable CRC polynomial with bit reverse option

• Automatic look up table (LUT) generation

• Data mirroring options for endian and reflected polynomial cases

• Automatic clear and preset of results

• Fault and error interrupt reporting

• DMA and MMR based operation

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

10–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Because the CRC module is closely tied to memory-to-memory DMA (MDMA) channel pairs, the use
cases include the following features.

• Memory scan with CRC compute or compare

• Memory transfer with CRC compute or compare

• Memory fill with 32-bit data patterns

• Memory verify

• MMR write access to FIFO of destination DMA

• MMR read access to FIFO of source DMA

• Profiting from advanced DMA features, like descriptor mode and bandwidth control/monitor

CRC Functional Description

The CRC peripheral supports a number of modes of operation that allows for the initialization and verifi-
cation of regions of memory. The peripheral supports efficient memory fill and verification operations on
regions of memory with or against a constant value. These modes of operation do not require the CRC
engine to calculate a signature. Other modes of operation allow for the CRC signature to be calculated and
verified for a memory region and also allow for on the fly CRC calculation when performing memory-to-
memory DMA transfers from one memory region to another.

To minimize the need for core accesses, the peripheral interfaces with one or more (depending on
processor features) memory-to memory DMA (MDMA) channels. This connectivity permits flexible
configuration, in which data may be written-to or read-from the peripheral using DMA transactions, core
transactions, or a combination of both.

One DMA channel is supported, providing both a data input and data output. CRC0 is connected to the
MDMA0 channel pair.

Figure 10-1: Memory Flow

The following sections describe in further detail the functional operation of the CRC peripheral:

• ADSP-CM40x CRC Register List

• CRC Definitions

• CRC Block Diagram

• CRC Architectural Concepts

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–3

ADSP-CM40x CRC Register List

The cyclic redundancy check (CRC) unit includes the data comparison, polynomial operation, and look
up table generation features needed for CRC operation. The CRC provides CRC protection as specified by
the ASIL (Automobile Safety Integrity Level) requirements for the ADAS (Advanced Driver Assistance
System) segment. This unit meets the requirements that the system software should be able to periodically
check the correctness of the code/data available in the memory. A set of registers govern CRC operations.
For more information on CRC functionality, see the CRC register descriptions.

ADSP-CM40x CRC Interrupt List

Table 10-1: ADSP-CM40x CRC Register List

Name Description

CRC_CTL Control Register

CRC_DCNT Data Word Count Register

CRC_DCNTRLD Data Word Count Reload Register

CRC_COMP Data Compare Register

CRC_FILLVAL Fill Value Register

CRC_DFIFO Data FIFO Register

CRC_INEN Interrupt Enable Register

CRC_INEN_SET Interrupt Enable Set Register

CRC_INEN_CLR Interrupt Enable Clear Register

CRC_POLY Polynomial Register

CRC_STAT Status Register

CRC_DCNTCAP Data Count Capture Register

CRC_RESULT_FIN CRC Final Result Register

CRC_RESULT_CUR CRC Current Result Register

Table 10-2: ADSP-CM40x CRC Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

100 CRC0_DCNTEXP CRC0 Data count expiration LEVEL

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

10–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CRC Definitions

To make the best use of the CRC, it is useful to understand the following terms.

CRC

Acronym for Cyclic Redundancy Check. An error detection code that is capable of detecting changes
within a block of data.

CRC Polynomial

The 32-bit polynomial used by the CRC engine to generate the Look-Up-Table required for the CRC
implementation

LUT

Acronym for the Look-Up-Table. The Look-Up-Table is automatically generated from the supplied 32-bit
CRC polynomial.

DMA

Acronym for Direct Memory Access. Used to describe a data transfer that takes place via a DMA channel
allowing data to be distributed around a system without intervention from the core.

MDMA

Acronym for Memory-To-Memory DMA transfer that often requires the use of two DMA channels to
transfer data from one memory region to another memory region. One DMA channel is configured as a
source channel and the second as a destination channel.

CRC Block Diagram

The following figure shows the functional block diagram of the CRC. The following sections describe the
blocks.

101 CRC0_ERR CRC0 Error LEVEL

Table 10-2: ADSP-CM40x CRC Interrupt List Interrupt List (Continued)

Interrupt ID Name Description Sensitivity
DMA

Channel

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–5

Figure 10-2: CRC Block Diagram

Peripheral DMA Bus

The CRC peripheral provides both an incoming and outgoing data path to the Peripheral DMA bus. The
MDMA source channel is interfaced to the incoming data path providing data to the CRC peripheral. For
memory transfer and data fill modes, the MDMA destination channel is used to either output the data
from the CRC FIFO or the data to be used for the fill operation.

MMR Access Bus

The MMR access bus is used by the core to access all the memory-mapped registers of the peripheral for
configuration, status and debug purposes. The core may also use the MMR access bus to feed data to the

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

10–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CRC peripheral or read data from the FIFO of the CRC peripheral as an alternative to the operation being
performed by the DMA channels.

Data received by MMR writes can transfer to destination DMA. Similarly, data received by source DMA
can be output through the MMR interface. Optionally, intermediate results can be made available to the
MMR interface.

Mirror Block

The mirror block individually controls bit reversing of the polynomial, the computation results and the
expected result. Endian and reflection of processed data can be controlled by bit mirroring, byte mirroring,
word swapping and any combination of these operations.

Data FIFO

The CRC data FIFO is a 32-bit-wide 4-entry FIFO. The FIFO is accessible to both the Peripheral DMA bus
and the MMR Access bus. The FIFO status is accessible from the CRC_STAT register.

DMA Request Generator

The DMA Request Generator is responsible for granting incoming DMA requests from the source DMA
channel and issuing outgoing DMA requests to the destination DMA channel.

CRC Engine

The CRC Engine is a 32-bit CRC engine that implements the Reduced Table Lookup scheme. The CRC
engine provides support for a user-programmable 32-bit polynomial that is used to load the lookup table
parameters required for the CRC calculation. The CRC engine is a 2-cycle implementation operating on
16 bits of data per cycle.

Compare Logic

The compare logic takes the final CRC signature and compares this to the expected CRC signature, gener-
ating a CRC compare error if the signatures do not match. A compare error can flag a system fault.

CRC Architectural Concepts

The CRC peripheral includes a 32-bit CRC engine that implements the reduced table lookup scheme oper-
ating on 16 bits of data per cycle, resulting in a 2-cycle implementation for each 32 bits of data written to
the peripheral. The upper 16 bits of the data are processed in the first cycle, followed by the lower 16 bits.

A 32-bit polynomial is required before calculation of the CRC signature can occur. The polynomial is used
to generate the contents of an internal lookup table that is required by the reduced table lookup implemen-

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–7

tation. The lookup table that is automatically generated when the polynomial is written must be initialized
prior to any operation that requires the use of the CRC engine.

The data presented to the CRC engine may be manipulated by the mirror block logic before being used in
the calculation of the CRC signature. The data mirror operation is configurable to allow for bit reversing,
byte reversing and 16-bit word swapping operations to be applied to the incoming data. For memory
transfer compute and compare operations, programs may configure the peripheral to output the data in
the same form in which it was received, or output the mirrored data in the same manner that it is presented
to the CRC engine.

While the CRC peripheral is in operation, the status of the FIFO is continually updated and reflected in the
CRC_STAT register. The FIFO status is required for core-based accesses to the CRC peripheral. The status
indicates when the CRC peripheral is capable of receiving data, when data is available to be read from the
FIFO and when the result of the CRC_RESULT_CUR register has been updated, indicating that the current
CRC calculation has completed and the result is available.

Lookup Table

The lookup table consists of a set of 16 32-bit registers that are automatically populated by hardware when
a write access takes place to the CRC_POLY register. 16 clock cycles are required to generate all 16 look up
table entries. The status of the lookup table generation process is reflected in CRC_STAT.LUTDONE allowing
for software to poll on the completion of the event or for generation of an interrupt.

NOTE: The lookup table must be populated before any operation requiring the use of the CRC peripheral
can take place, even if the operation does not require the use of the CRC engine. The peripheral will
not issue any data requests until the table generation process has completed. In addition, the CRC_
STAT.IBR field that indicates the input buffer status as required for core-based transfers is only
valid upon completion of the lookup table generation process.

Data Mirroring

The data mirror block may be configured to manipulate the incoming data before the data is passed on to
the CRC engine and, optionally, to the FIFO. This allows the peripheral to handle various forms of endi-
anness and to function with reflected polynomials.

There are three configuration bits that control the data mirroring process: CRC_CTL.BITMIRR, CRC_CTL.
BYTMIRR and CRC_CTL.W16SWP. The following table details how these options affect the incoming data and
the output that is generated by the mirror block.

Table 10-3: Data Mirroring Options

W16SWP BYTMIRR BITMIRR Output Data

0 0 0 Dout[31:0] = Din[31:0]

0 0 1 Dout[31:0] = Din[24:31],Din[16:23],Din[8:15],Din[0:7]

0 1 0 Dout[31:0] = Din[7:0],Din[15:8],Din[23:16],Din[31:24]

0 1 1 Dout[31:0] = Din[0:7],Din[8:15],Din[16:23],Din[24:31]

CYCLIC REDUNDANCY CHECK (CRC)
CRC FUNCTIONAL DESCRIPTION

10–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

When the CRC is configured to operate in the memory transfer compute and compare mode, the bit-
reversed output data may be written to the FIFO. This feature is controlled via the CRC_CTL.FDSELfield.

In addition to providing bit swapping and mirror options to the incoming data, the CRC peripheral also
supports bit mirroring on the following registers.

• CRC_RESULT_CUR and CRC_RESULT_FIN, controlled via the CRC_CTL.RSLTMIRR field. When mirroring
is enabled, the values to be written to these registers are fully bit-reversed before being written.

• CRC_POLY, controlled via the CRC_CTL.POLYMIRR field. When mirroring is enabled, the 32-bit polyno-
mial is fully bit-reversed before being written to the register.

• CRC_COMP, controlled via the CRC_CTL.CMPMIRR field. When mirroring is enabled, the contents to be
loaded to this register are fully bit-reversed before being written.

FIFO Status and Data Requests

The CRC peripheral provides input and output buffer status indication via CRC_STAT.IBR and CRC_STAT.
OBR respectively. For core-based operations, software is required to monitor these status fields prior to
writing to or reading from the CRC FIFO. No write to the CRC FIFO should occur while CRC_STAT.IBR
indicates that the buffer is not ready to accept data. Similarly, the CRC FIFO should not be read until CRC_
STAT.OBR indicates that data is available.

The memory scan modes of operation only require the monitoring of the input buffer status, whereas the
memory transfer compute and compare mode is required to use both input and output buffer status. If at
any point the current result of the CRC computation is required, then software must verify that the current
operation has completed and that the intermediate result is ready, as indicated by CRC_STAT.IRR.

NOTE: The memory transfer fill mode of operation requires the use of a DMA channel. Core reads from
the CRC FIFO for this mode of operations are not supported.

Memory transfer compute and compare mode makes use of burst transactions in order to make the most
efficient use of the available resources. In this mode, when the FIFO is initially empty and the peripheral
is enabled, the CRC_STAT.IBR bit indicates that the CRC is ready to accept data, and the peripheral gener-
ates data requests to the source DMA channel (if DMA is used). As long as the number of words remaining
in the CRC_DCNT register is greater than the FIFO depth, the peripheral issues data requests or accepts
incoming data in bursts until the CRC FIFO becomes full.

1 0 0 Dout[31:0] = Din[15:0], D[31:16]

1 0 1 Dout[31:0] = Din[8:15],Din[0:7], Din[24:31],Din[16:23]

1 1 0 Dout[31:0] = Din[23:16],Din[31:24], Din[7:0],Din[15:8]

1 1 1 Dout[31:0] = Din[16:23],Din[24:31], Din[0:7],Din[8:15]

Table 10-3: Data Mirroring Options (Continued)

W16SWP BYTMIRR BITMIRR Output Data

CYCLIC REDUNDANCY CHECK (CRC)
CRC OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–9

Once full, the CRC_STAT.IBR and CRC_STAT.OBR bits are updated accordingly, and then outgoing data
requests are issued. Only when the FIFO is empty can the peripheral accept further incoming data, and the
CRC_STAT.IBR and CRC_STAT.OBR bits are updated once again.

Once CRC_DCNT is decremented such that the number of words remaining to be processed is less than the
number of words required to fill the FIFO, the burst mode of operation is disabled and incoming data is
accepted as long as the FIFO is not full and outgoing data is available as long the FIFO is not empty. There-
fore, there are no restrictions requiring the word count to be a multiple of the FIFO depth.

All other CRC modes of operation indicate that incoming data may be accepted as long as the FIFO is not
full, and that outgoing data is available as long the FIFO is not empty.

The way in which data requests and the status bits are generated is additionally influenced by the CRC_CTL.
OBRSTALL and CRC_CTL.IRRSTALL bit configurations described below.

• The CRC_CTL.OBRSTALL bit may be configured such that the CRC peripheral stalls as soon as there is
output data available in the FIFO. This mode of operation should only be used in memory transfer
compute and compare mode. This results in the processing of a single 32-bit word at a time. The
peripheral does not request or accept incoming data until the current value being processed is read
from the peripheral.

• The CRC_CTL.IRRSTALL bit may be configured so that the CRC peripheral stalls all further incoming
data requests until the CRC_RESULT_CUR register is read after being updated. This mode of operation is
only used for modes that result in CRC signature generation. It is not applicable to memory transfer
data fill or memory scan data verify modes of operation.

CRC Operating Modes

The following sections describe the various operating modes of the CRC interface.

Data Transfer Modes

The CRC peripheral supports two main categories of operation involving data transfers:

• Memory Scan mode

• Memory Transfer mode

Memory scan modes are read-only operations that allow the contents of memory to be read into the
peripheral and verified for correctness. There are two forms of memory scan mode:

• CRC Compute and Compare performs a CRC calculation on data presented to the peripheral and
compares the CRC result with a pre-determined and pre-loaded result. An error is generated if the
results differ.

• Data Verify compares each 32-bit data word presented to the CRC peripheral to a pre-loaded 32-bit
value and generates an error if the data is found to be different.

CYCLIC REDUNDANCY CHECK (CRC)
CRC OPERATING MODES

10–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Both of these modes of operation require, at the very most, a single DMA channel to read the data from
memory into the peripheral. No data is forwarded to data output or destination DMA. Core-driven trans-
fers may also be used for either of these modes of operation.

The memory transfer modes involve memory write or memory read and write operations allowing for
memory to be initialized or transferred from one region of memory to another. There are two forms of
memory transfer mode:

• CRC Compute and Compare performs a full data transfer from one memory region to another memory
region. A CRC signature is generated on the data presented to the peripheral and compared with a pre-
determined and pre-loaded result. An error is generated if the results differ.

• Data Fill initializes a region of memory with a pre-loaded 32-bit constant value.

The CRC compute and compare mode of operation requires both incoming and outgoing data channels
either in the form of DMA channels, core driven write/read operations to/from the FIFO or a combination
of both. The data fill mode of operation requires only a memory write DMA destination channel—this
mode does not support core driven operations.

Memory Scan Compute and Compare

In this mode of operation the CRC Engine of the peripheral is enabled. The mode is configured through
the CRC_CTL.OPMODE field and the CRC engine performs a 32-bit CRC operation on the incoming data
stream.

The length of the data stream is configured via the CRC_DCNT register. The accumulated result of the CRC
operation is contained in the CRC_RESULT_CUR register. Upon each 32-bit word being processed by the
CRC engine the CRC_DCNT register is decremented and CRC_RESULT_CUR is updated.

Once CRC_DCNT decrements to zero, the contents of the CRC_RESULT_CUR register are copied to CRC_
RESULT_FIN and CRC_STAT.DCNTEXP is updated accordingly. The CRC_COMP register is used to store the
expected result of the CRC operation. Upon completion of the CRC calculation, CRC_COMP is compared
with CRC_RESULT_FIN and CRC_STAT.CMPERR is updated to reflect the status of the compare operation.
CRC_STAT.CMPERR is required to be cleared before the next CRC operation is performed.

The CRC peripheral also contains CRC_DCNTRLD register. This register is used to reload CRC_DCNT upon
completion of the CRC operation in preparation for the next transfer.

The initial seed of the CRC computation may be configured via CRC_CTL.AUTOCLRZ and CRC_CTL.
AUTOCLRF. This provides a means to reset CRC_RESULT_CUR to 0x00000000, 0xFFFFFFFF or to leave the
current register contents untouched for the next operation.

The peripheral may be configured to allow for the compare error and data expiration events to generate
an interrupt.

CYCLIC REDUNDANCY CHECK (CRC)
CRC OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–11

Memory Scan Data Verify

In this mode of operation the CRC engine of the peripheral is not required. The mode is enabled through
the CRC_CTL.OPMODE field. Each 32-bit word of the data stream is compared with a constant value that is
stored in the CRC_COMP register. The CRC_DCNT register contains the number of words that are to be
compared. The CRC_DCNT register is decremented upon receiving a new 32-bit word from the data stream.
If at any point the compare operation should fail the CRC_STAT.CMPERR bit updated accordingly and the
contents of CRC_DCNT are captured in the CRC_DCNTCAP register. This may be used in order to identify the
location in the data stream where the error occurred. The CRC_STAT.CMPERR field should be cleared in
order to re-enable capturing of further errors.

Once CRC_DCNT decrements to zero, CRC_STAT.DCNTEXP is updated accordingly to signal the end of the
operation. The peripheral may be configured to allow for the compare error and data expiration events to
generate an interrupt.

Memory Transfer Compute and Compare

In this mode of operation the CRC Engine of the peripheral is enabled. The mode is configured through
the CRC_CTL.OPMODE field and the CRC engine performs a 32-bit CRC operation on the incoming data
stream.

The length of the data stream is configured via the CRC_DCNT register. The accumulated result of the CRC
operation is contained in the CRC_RESULT_CUR register. Upon each 32-bit word being processed by the
CRC engine the CRC_DCNT register is decremented and CRC_RESULT_CUR is updated.

Once CRC_DCNT decrements to zero, the contents of the CRC_RESULT_CUR register are copied to CRC_
RESULT_FIN and CRC_STAT.DCNTEXP is updated accordingly. The CRC_COMP register is used to store the
expected result of the CRC operation. Upon completion of the CRC calculation, CRC_COMP is compared
with CRC_RESULT_FIN and CRC_STAT.CMPERR is updated to reflect the status of the compare operation.
CRC_STAT.CMPERR is required to be cleared before the next CRC operation is performed.

The CRC peripheral also contains CRC_DCNTRLD register. This register is used to reload CRC_DCNTupon
completion of the CRC operation in preparation for the next transfer.

The initial seed of the CRC computation may be configured via CRC_CTL.AUTOCLRZ and CRC_CTL.
AUTOCLRF. This provides a means to reset CRC_RESULT_CUR to 0x00000000, 0xFFFFFFFF or to leave the
current register contents untouched for the next operation.

The peripheral may be configured to allow for the compare error and data expiration events to generate
an interrupt.

Memory Transfer Data Fill Mode

In this mode of operation the CRC engine of the peripheral is not required. The mode is enabled through
the CRC_CTL.OPMODE field. The CRC_FILLVAL register is written with a 32-bit value. This value is used to
initialize a block memory via the Memory-to-Memory DMA Destination channel. When the CRC periph-
eral and the DMA destination channel are enabled, the contents of the CRC_FILLVAL register is written to

CYCLIC REDUNDANCY CHECK (CRC)
CRC EVENT CONTROL

10–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

the DMA channel to initialize the memory region. The CRC_DCNT register contains the number of words
that are to be written.

Once CRC_DCNT decrements to zero, CRC_STAT.DCNTEXP is updated accordingly to signal the end of the
operation. The peripheral may be configured to allow for the this data expiration event to generate an
interrupt.

CRC Event Control

The CRC peripheral can enable certain CRC status operations to generate an interrupt event to the System
Event Controller. There, a CRC error can be qualified as a system fault.

Interrupt Signals

The CRC peripheral is capable of generating two interrupts that may optionally be enabled within the
System Event Controller. One is a CRC status interrupt and the other a CRC error interrupt.

The CRC_STAT.CMPERR status bit may be configured as an interrupt and is signalled via the CRC error
interrupt signal. The CRC_STAT.CMPERR status field is set whenever a compare operation performed by the
CRC peripheral fails. This may be as the result of a failed memory scan data verify operation that compares
the contents of a memory range with a constant 32-bit value. Or it may be as a result of the CRC signature
calculated for a memory region not matching the expected pre-programmed result for a memory scan or
memory transfer compute compare operation.

The CRC_STAT.DCNTEXP status bit is set when the CRC_DCNT register has decremented to zero indicating
that the CRC peripheral has now processed all the data that was requested for the current CRC operation.
This signal may also be used to generate an interrupt. The interrupt is signalled on the CRC status interrupt
signal.

Both these status bits may be configured to generate and interrupt via the CRC_INEN register. The CRC_
INEN register also has bit set, CRC_INEN_SET, and bit clear CRC_INEN_CLR equivalent registers that may be
used for the enabling and disabling of these interrupt sources.

The CRC_STAT register has two write one to clear (W1C) fields for clearing the two interrupt sources.

NOTE: Disabling the CRC peripheral via CRC_CTL.BLKEN does not result in the interrupt sources being
cleared. The interrupt sources must be cleared via a W1C operation to CRC_STAT.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–13

CRC Programming Model

It is important to note the following restrictions when using the CRC peripheral in conjunction with the
DMA channels:

1. When enabling the CRC peripheral and the DMA channels, the CRC peripheral should be enabled
prior to enabling the DMA channels.

2. When disabling the CRC peripheral and the DMA channels, the DMA channels should be disabled
prior to disabling the CRC peripheral.

CRC Mode Configuration

Describes a number of tasks showing the various operation modes of the CRC peripheral.

• Look-Up Table Generation

• Core Driven Memory Scan Compute Compare Mode

• DMA Driven Memory Scan Compute Compare Mode

• Core Driven Memory Scan Data Verify Mode

• DMA Driven Memory Scan Data Verify Mode

• Core Driven Memory Transfer Compute Compare Mode

• DMA Driven Memory Transfer Compute Compare Mode

• DMA Driven Memory Transfer Data Fill Mode

Look-Up Table Generation

Describes the steps required to initialize the CRC peripheral LUT.

1. Write the 32-bit CRC polynomial of choice to the CRC_POLY register.

ADDITIONAL INFORMATION: This operation results in the CRC peripheral starting the LUT initialization
process. The CRC_STAT.LUTDONE bit is updated to reflect the operation is in progress.

2. Poll the CRC_STAT.LUTDONE bit until the status bit indicates that the operation is completed.

RESULT:

The CRC peripheral has completed initialization of all the LUT registers and is now ready for data opera-
tions. The CRC_STAT.LUTDONE bit remains in the current state until the CRC_POLY register is written again,
or the peripheral or processor are reset.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

10–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Core Driven Memory Scan Compute Compare Mode

Performs CRC signature calculation and verification for a region of memory using core transactions. The
CRC peripheral is configured such that it operates in the burst mode of operation due to the stalling
options configured via the CRC_CTL register being disabled.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, that all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per CRC_CTL.
BLKEN.

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

3. Initialize the CRC_RESULT_CUR register.

ADDITIONAL INFORMATION: This register may be initialized to provide an initial seed for the CRC opera-
tion that is about to take place.

4. Initialize the CRC_COMP register.

ADDITIONAL INFORMATION: This register contains the pre-calculated final CRC signature result for the
memory region that is used in the final compare operation.

5. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of compare errors and block completion. Configure these interrupts as required. If enabled
ensure the corresponding interrupt handlers are also configured.

6. Initialize CRC_CTL register with the CRC_CTL.OPMODE bit set to Memory Scan Compute Compare Mode
and the CRC_CTL.BLKEN bit configured to enable the CRC peripheral.

• The CRC_CTL.OBRSTALL and CRC_CTL.IRRSTALL bit options must be disabled for this task
example.

• All mirroring and bit reversal options should also be configured.

• CRC auto clear options should also be configured.

STEP RESULT: The CRC peripheral is now enabled and ready for data to be written by the core or DMA
channel.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–15

7. Write memory region data to the CRC peripheral.

a. While CRC_STAT.IBR bit indicates input buffer is ready, write the CRC_DFIFO register with 32-bit
data.

ADDITIONAL INFORMATION: This step is repeated until all required data has been written.

8. Poll the CRC_STAT.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if counter expired interrupt is disabled. Polling is
required to ensure all the data has been processed.

9. Poll the CRC_STAT.CMPERR bit if the interrupt was disabled to check for a compare error.

ADDITIONAL INFORMATION: This step is only required if the compare error interrupt is not enabled.

10. Write the CRC_STAT register to clear both CRC_STAT.DCNTEXP and CRC_STAT.CMPERR bits.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of these status bits should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC compute compare operation is now complete and the CRC peripheral is ready
to be configured for the next CRC operation.

RESULT:

The integrity check of the memory via the expected CRC signature has completed and the final result is
indicated via the CRC_STAT.CMPERR bit and the corresponding interrupt if it was enabled.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits are cleared before performing additional CRC operations.

DMA Driven Memory Scan Compute Compare Mode

Performs CRC signature calculation and verification for a region of memory using DMA transactions. The
CRC peripheral is configured such that it operates in the burst mode of operation due to the stalling
options configured via CRC_CTL being disabled.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per the CRC_CTL.
BLKEN bit.

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

10–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

3. Initialize the CRC_RESULT_CUR register.

ADDITIONAL INFORMATION: This register may be initialized to provide an initial seed for the CRC opera-
tion that is about to take place.

4. Initialize the CRC_COMP register.

ADDITIONAL INFORMATION: This register contains the pre-calculated final CRC signature result for the
memory region that is used in the final compare operation.

5. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of compare errors and block completion. Configure these interrupts as required. If enabled
ensure the corresponding interrupt handlers are also configured.

6. Initialize the CRC_CTL register with the CRC_CTL.OPMODE bit set to memory scan compute compare
mode and the CRC_CTL.BLKEN bit configured to enable the CRC peripheral.

• The CRC_CTL.OBRSTALL and CRC_CTL.IRRSTALL bit options must be disabled for this task
example.

• All mirroring and bit reversal options should also be configured.

• CRC auto clear options should also be configured.

STEP RESULT: The CRC peripheral is now enabled and ready for data to be written by the core or DMA
channel.

7. Configure and enable the memory-to-memory source DMA channel for memory read STOP mode.

ADDITIONAL INFORMATION: This step starts the data transfer from the memory region and writes the data
to the CRC peripheral.

8. Poll the CRC_STAT.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if counter expired interrupt is disabled. Polling is
required to ensure all the data has been processed.

9. Poll the CRC_STAT.CMPERR bit if the interrupt was disabled to check for a compare error.

ADDITIONAL INFORMATION: This step is only required if the compare error interrupt is not enabled.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–17

10. Write the CRC_STAT register to clear both the CRC_STAT.DCNTEXP and CRC_STAT.CMPERR bits.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of these status bits should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC compute compare operation is now complete and the CRC peripheral is ready
to be configured for the next CRC operation.

RESULT:

The integrity check of the memory via the expected CRC signature has completed and the final result indi-
cated is via CRC_STAT.CMPERR and the corresponding interrupt if it were enabled.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits are cleared before performing a further CRC operation. Any W1C status
bits of the memory-to-memory source DMA channel should also be cleared before the next CRC opera-
tion.

Core Driven Memory Scan Data Verify Mode

Reads a region of memory using core transactions and performs a compare operation on each 32-bit word
against a single pre-loaded 32-bit constant. The compare error interrupt is enabled to capture and log the
location of any compare errors.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per CRC_CTL.
BLKEN. The interrupt service routine for the compare error interrupt should read and store the contents of
CRC_DCNTCAP register to a buffer before clearing the compare error interrupt.

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

3. Initialize the CRC_COMP register.

ADDITIONAL INFORMATION: This register contains the 32-bit constant that the memory region is expected
to be filled with. Each 32-bit of data presented to the peripheral will be compared with this value.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

10–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

4. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of compare errors and block completion. Configure these interrupts as required. If enabled
ensure the corresponding interrupt handlers are also configured.

5. Initialize the CRC_CTL register with the CRC_CTL.OPMODE bit set to memory scan data verify mode and
the CRC_CTL.BLKEN bit configured to enable the CRC peripheral.

STEP RESULT: The CRC peripheral is now enabled and ready for data to be written by the core or DMA
channel.

6. Write memory region data to the CRC peripheral.

a. Poll the CRC_STAT.IBR bit until input buffer is ready.

b. Write the CRC_DFIFO register with 32-bit data.
ADDITIONAL INFORMATION: These two steps are repeated until the entire memory region has been written to the
CRC peripheral.

7. Poll the CRC_INEN_SET.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if counter expired interrupt is disabled. Polling is
required to ensure all the data has been processed.

8. Check if the buffer used to capture the CRC_DCNTCAP register upon a compare error has any new entries.

ADDITIONAL INFORMATION: The values captures in the buffer provide a means to locate where in the
memory region the failures occurred.

9. Write CRC_STAT to clear both the CRC_INEN_SET.DCNTEXP and CRC_INEN.CMPERR bits.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of these status bits should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC memory scan verify operation is now complete and the CRC peripheral is ready
to be configured for the next CRC operation.

RESULT:

The result of the integrity check of the memory with the 32-bit constant is indicated via the CRC_INEN.
CMPERR bit and the corresponding interrupt if it were enabled. Each comparison error is traceable due to
the logging of CRC_DCNTCAP from within the compare error interrupt handler.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits are cleared before performing a further CRC operation.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–19

DMA Driven Memory Scan Data Verify Mode

Reads a region of memory using DMA transactions and performs a compare operation on each 32-bit
word against a single pre-loaded 32-bit constant. The compare error interrupt is enabled to capture and
log the location of any compare errors.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per the CRC_CTL.
BLKEN bit. The interrupt service routine for the compare error interrupt should read and store the contents
of the CRC_DCNTCAP register to a buffer before clearing the compare error interrupt.

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

3. Initialize the CRC_COMP register.

ADDITIONAL INFORMATION: This register contains the 32-bit constant that the memory region is expected
to be filled with. Each 32-bit of data presented to the peripheral will be compared with this value.

4. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of compare errors and block completion. Configure these interrupts as required. If enabled
ensure the corresponding interrupt handlers are also configured.

5. Initialize the CRC_CTL register with the CRC_CTL.OPMODE bit set to memory scan data verify mode and
CRC_CTL.BLKEN configured to enable the CRC peripheral.

STEP RESULT: The CRC peripheral is now enabled and ready for data to be written by the core or DMA
channel.

6. Configure and enable the memory-to-memory source DMA channel for memory read STOP mode.

ADDITIONAL INFORMATION: This step starts the data transfer from the memory region and writes the data
to the CRC peripheral.

7. Poll the CRC_STAT.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if counter expired interrupt is disabled. Polling is
required to ensure all the data has been processed.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

10–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

8. Check if the buffer used to capture the CRC_DCNTCAP register upon a compare error has any new entries.

ADDITIONAL INFORMATION: The values captures in the buffer provide a means to locate where in the
memory region the failures occurred.

9. Write the CRC_STAT register to clear both the CRC_STAT.DCNTEXP and CRC_STAT.CMPERR bits.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of these status bits should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC memory scan verify operation is now complete and the CRC peripheral is ready
to be configured for the next CRC operation.

RESULT:

The result of the integrity check of the memory with the 32-bit constant is indicated via the CRC_STAT.
CMPERR bit and the corresponding interrupt if it were enabled. Each comparison error is traceable due to
the logging of the CRC_DCNTCAP register from within the compare error interrupt handler.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits and DMA status bits are cleared before performing a further CRC oper-
ation.

Core Driven Memory Transfer Compute Compare Mode

Performs CRC signature calculation and verification for a region of memory using core transactions while
copying the contents to another memory region. The CRC peripheral is configured such that it operates
in the burst mode of operation due to the stalling options configured via the CRC_CTL register being
disabled.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per the CRC_CTL.
BLKEN bit.

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–21

3. Initialize the CRC_RESULT_CUR register.

ADDITIONAL INFORMATION: This register may be initialized to provide an initial seed for the CRC opera-
tion that is about to take place.

4. Initialize the CRC_COMP register.

ADDITIONAL INFORMATION: This register contains the pre-calculated final CRC signature result for the
memory region that is used in the final compare operation.

5. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of compare errors and block completion. Configure these interrupts as required. If enabled
ensure the corresponding interrupt handlers are also configured.

6. Initialize the CRC_CTL register with the CRC_CTL.OPMODE bit set to memory scan compute compare
mode and the CRC_CTL.BLKEN bit configured to enable the CRC peripheral.

• the CRC_CTL.OBRSTALL bit and the CRC_CTL.IRRSTALL bit options must be disabled for this task
example.

• All mirroring and bit reversal options should also be configured.

• CRC auto clear options should also be configured.

STEP RESULT: The CRC peripheral is now enabled and ready for data to be written by the core or DMA
channel.

7. Write memory region data to the CRC peripheral and read it back to the new destination.

a. While the CRC_STAT.IBR bit indicates input buffer is ready, write the CRC_DFIFO register with 32-
bit data.

b. While the CRC_STAT.OBR bit indicates output buffer is ready, read the CRC_DFIFO register and store
data to new destination.

ADDITIONAL INFORMATION: These two steps are repeated until all required data has been processed through the
CRC peripheral and copied to the new destination.

8. Poll the CRC_STAT.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if the counter expired interrupt is disabled. Polling
is required to ensure all the data has been processed.

9. Poll the CRC_STAT.CMPERR bit if the interrupt was disabled to check for a compare error.

ADDITIONAL INFORMATION: This step is only required if the compare error interrupt is not enabled.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

10–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

10. Write the CRC_STAT register to clear both CRC_STAT.DCNTEXP and CRC_STAT.CMPERR bits.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of these status bits should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC compute and compare operation is now complete and the CRC peripheral is
ready to be configured for the next CRC operation. The memory region has also been copied to its new
destination.

RESULT:

The memory region has been copied to a new location and an integrity check of the memory via the
expected CRC signature has also completed and the final result is indicated via the CRC_STAT.CMPERR bit
and the corresponding interrupt if it were enabled.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits are cleared before performing a further CRC operation.

DMA Driven Memory Transfer Compute Compare Mode

Performs CRC signature calculation and verification for a region of memory using DMA transactions. The
memory region is also copied to another memory region via the use of Memory-to-Memory DMA trans-
fers. The CRC peripheral is configured such that it operates in the burst mode of operation due to the
stalling options configured via CRC_CTL being disabled.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per the CRC_CTL.
BLKEN register.

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

3. Initialize the CRC_RESULT_CUR register.

ADDITIONAL INFORMATION: This register may be initialized to provide an initial seed for the CRC opera-
tion that is about to take place.

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–23

4. Initialize the CRC_COMP register.

ADDITIONAL INFORMATION: This register contains the pre-calculated final CRC signature result for the
memory region that is used in the final compare operation.

5. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of compare errors and block completion. Configure these interrupts as required. If enabled
ensure the corresponding interrupt handlers are also configured.

6. Initialize the CRC_CTL register with the CRC_CTL.OPMODE bit set to memory scan compute compare
mode and CRC_CTL.BLKEN configured to enable the CRC peripheral.

• the CRC_CTL.OBRSTALL and the CRC_CTL.IRRSTALL bit options must be disabled for this task
example.

• All mirroring and bit reversal options should also be configured.

• CRC auto clear options should also be configured.

STEP RESULT: The CRC peripheral is now enabled and ready for data to be written by the core or DMA
channel.

7. Configure and enable the memory-to-memory source DMA channel for memory read STOP mode and
destination DMA channel for memory write STOP mode.

ADDITIONAL INFORMATION: This step starts the data transfer from one memory region to another via the
memory-to-memory DMA channels and the CRC peripheral.

8. Poll the CRC_STAT.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if counter expired interrupt is disabled. Polling is
required to ensure all the data has been processed.

9. Poll the CRC_STAT.CMPERR bit if the interrupt was disabled to check for a compare error.

ADDITIONAL INFORMATION: This step is only required if the compare error interrupt is not enabled.

10. Write the CRC_STAT register to clear both the CRC_STAT.DCNTEXP and the CRC_STAT.CMPERR bits.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of these status bits should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC compute and compare operation is now complete and the CRC peripheral is
ready to be configured for the next CRC operation. The memory region has also been copied to its new
destination.

RESULT:

CYCLIC REDUNDANCY CHECK (CRC)
CRC PROGRAMMING MODEL

10–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The integrity check of the memory via the expected CRC signature has completed and the final result is
indicated via the CRC_STAT.CMPERR bit and the corresponding interrupt if it were enabled. The memory
region has also been copied to its final destination.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits are cleared before performing a further CRC operation. Any W1C status
bits of the memory-to-memory source and destination DMA channels should also be cleared before the
next CRC operation.

DMA Driven Memory Transfer Data Fill Mode

Initializes a region of memory to a constant 32-bit value using DMA transactions.

PREREQUISITE:

The task assumes that the polynomial has been loaded and the look-up table is fully initialized, all CRC
interrupts have been serviced (none pending), and the CRC block is currently disabled as per the CRC_CTL.
BLKEN bit.

1. Initialize the CRC_DCNT register.

ADDITIONAL INFORMATION: The value loaded must represent the number of 32-bit words in the memory
region for which the CRC signature is to be calculated and verified.

2. Initialize the CRC_DCNTRLD register.

ADDITIONAL INFORMATION: This is the value that is used to reload the CRC_DCNT register upon completion
of current CRC operation. If no further operation is required then this register may be initialized to
zero.

3. Initialize the CRC_FILLVAL register.

ADDITIONAL INFORMATION: This register contains the 32-bit constant that is used to fill the memory
region.

4. Initialize the CRC_INEN register.

ADDITIONAL INFORMATION: This register is used to enable the generation of the CRC interrupts for notifi-
cation of block completion. Configure these interrupts as required. If enabled ensure the corre-
sponding interrupt handlers are also configured.

5. Initialize the CRC_CTL register with theCRC_CTL.OPMODE bit set to memory transfer fill mode and the
CRC_CTL.BLKEN bit configured to enable the CRC peripheral.

STEP RESULT: The CRC peripheral is now enabled and is ready for data to be written by the DMA channel

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC PERIPHERAL AND DMA CHANNEL LIST

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–25

6. Configure and enable the memory-to-memory destination DMA channel for memory write STOP
mode.

ADDITIONAL INFORMATION: This step starts the data transfer taking the constant 32-bit value from the CRC
peripheral and writing the data to the DMA channel.

7. Poll the CRC_STAT.DCNTEXP bit if the interrupt was disabled.

ADDITIONAL INFORMATION: This step is required only if counter expired interrupt is disabled. Polling is
required to ensure all the data has been processed.

8. Write the CRC_STAT register to clear the CRC_STAT.DCNTEXP bit.

ADDITIONAL INFORMATION: If interrupts were enabled then the clearing of this status bit should be
performed within the interrupt handlers for the respective interrupts.

STEP RESULT: The CRC memory transfer fill operation is now complete and the CRC peripheral is ready
to be configured for the next CRC operation.

RESULT:

The memory region is now filled with the constant data and the CRC peripheral is ready to be configured
for a new operation.

AFTER COMPLETING THIS TASK:

Ensure any W1C CRC status bits and DMA status bits are cleared before performing a further CRC oper-
ation.

ADSP-CM40x CRC Peripheral and DMA Channel List

Table 10-4: CRC DMA Channels

DMA Channel Peripheral FIFO Depth (Bytes) Bandwidth Limit/Monitor Support

DMA17 CRC0 Receive 128 Yes

DMA18 CRC0 Transmit 64 Yes

Table 10-5: CRC DMA Channels (Continued)

DMA Channel Memory Bus Width Peripheral Bus Width Max Outstanding Reads Max Outstanding Writes

DMA17 32-bit 32-bit 8 7

DMA18 32-bit 32-bit 8 4

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

10–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x CRC Register Descriptions

Cyclic Redundancy Check Unit (CRC) contains the following registers.

Control Register

The CRC_CTL configures the operation modes and settings for the CRC.

Table 10-6: ADSP-CM40x CRC Register List

Name Description

CRC_CTL Control Register

CRC_DCNT Data Word Count Register

CRC_DCNTRLD Data Word Count Reload Register

CRC_COMP Data Compare Register

CRC_FILLVAL Fill Value Register

CRC_DFIFO Data FIFO Register

CRC_INEN Interrupt Enable Register

CRC_INEN_SET Interrupt Enable Set Register

CRC_INEN_CLR Interrupt Enable Clear Register

CRC_POLY Polynomial Register

CRC_STAT Status Register

CRC_DCNTCAP Data Count Capture Register

CRC_RESULT_FIN CRC Final Result Register

CRC_RESULT_CUR CRC Current Result Register

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–27

Figure 10-3: CRC_CTL Register Diagram

Table 10-7: CRC_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

22
(R/W)

CMPMIRR COMPARE Register Mirroring.
The CRC_CTL.CMPMIRR enables data mirroring for the CRC_COMP compare
register. When enabled, the 32-bit value in this register is fully bit mirrored
(reversed). The bit-reversed value is used for comparison with the CRC_RESULT_
FIN register.

0 Disable compare mirroring

1 Enable compare mirroring

21
(R/W)

POLYMIRR Polynomial Register Mirroring.
The CRC_CTL.POLYMIRR enables data mirroring for the CRC_POLY polynomial
register. When enabled, the 32-bit value in this register is fully bit mirrored
(reversed). The bit-reversed value is used for CRC computations.

0 Disable polynomial mirroring

1 Enable polynomial mirroring

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

10–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

20
(R/W)

RSLTMIRR Result Register Mirroring.
The CRC_CTL.RSLTMIRR enables data mirroring for the CRC_RESULT_CUR and
CRC_RESULT_FIN result registers. When enabled, the 32-bit values is these
registers are fully bit mirrored (reversed).

0 Disable result mirroring

1 Enable result mirroring

19
(R/W)

FDSEL FIFO Data Select.
The CRC_CTL.FDSEL selects whether the CRC writes modified or unmodified
data to the FIFO in memory transfer mode. If enabled, the data written is affected by
the state of the data mirroring selections (CRC_CTL.BITMIRR, CRC_CTL.
BYTMIRR, and CRC_CTL.W16SWP) before being written to the FIFO.

0 Write unmodified data to FIFO

1 Write modified data to FIFO

18
(R/W)

W16SWP Word16 Swapping.
The CRC_CTL.W16SWP enables the CRC's data mirror block to swap the upper and
lower 16-bit words within the 32-bit input data, before further processing.

0 Disable word16 swapping

1 Enable word16 swapping

17
(R/W)

BYTMIRR Byte Mirroring.
The CRC_CTL.BYTMIRR enables the CRC's data mirror block to mirror the bytes
within the 32-bit input data, before further processing.

0 Disable byte mirroring

1 Enable byte mirroring

16
(R/W)

BITMIRR Bit Mirroring.
The CRC_CTL.BITMIRR enables the CRC's data mirror block to mirror the bits
within each byte of the 32-bit input data, before further processing.

0 Disable bit mirroring

1 Enable bit mirroring

13
(R/W)

IRRSTALL Intermediate Result Ready Stall.
The CRC_CTL.IRRSTALL enables stalling the state machine for input data when
there is a valid intermediate result to be read in CRC_RESULT_CUR. This feature
should be used only in CRC computation modes (for example, CRC_CTL.OPMODE
=1 or =3).

0 Do not stall

1 Stall on IRR

Table 10-7: CRC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–29

Data Word Count Register

The CRC_DCNT holds the word count that is used for the CRC operation. On transfer of every 32-bit word,
the CRC decrements by 1 the content of this register. When the count decrements to zero, this event trig-
gers a CRC compare action, and CRC_DCNT is automatically loaded from the CRC_DCNTRLD for the next
CRC operation. Note that the initial value programmed into CRC_DCNT may be different from what is
programmed in the CRC_DCNTRLD.

12
(R/W)

OBRSTALL Output Buffer Ready Stall.
The CRC_CTL.OBRSTALL enables stalling the state machine for input data when
there is a valid data in the output buffer. This feature should be used only in memory-
to-memory transfer modes (for example, CRC_CTL.OPMODE =1).

0 Do not stall

1 Stall on OBR

9
(R/W)

AUTOCLRF Auto Clear to One.
The CRC_CTL.AUTOCLRF enables auto clear to one when the CRC is in
intermediate results ready stall mode (CRC_CTL.IRRSTALL=1) and the CRC data
count expires (CRC_DCNT=0). Note that CRC_CTL.AUTOCLRZ must be disabled,
or the CRC_CTL.AUTOCLRF has no effect.

0 No auto clear

1 Auto clear

8
(R/W)

AUTOCLRZ Auto Clear to Zero.
The CRC_CTL.AUTOCLRZ enables auto clear to zero when the CRC is in
intermediate results ready stall mode (CRC_CTL.IRRSTALL=1) and the CRC data
count expires (CRC_DCNT=0). Note that CRC_CTL.AUTOCLRF must be disabled,
or the CRC_CTL.AUTOCLRZ has no effect.

0 No auto clear

1 Auto clear

7:4
(R/W)

OPMODE Operation Mode.
The CRC_CTL.OPMODE selects the memory transfer or scan mode.

0 Reserved

1 CRC compute/compare memory transfer

2 Data fill memory transfer

3 CRC compute/compare memory scan

4 Data verify memory scan

0
(R/W)

BLKEN Block Enable.
The CRC_CTL.BLKEN enables/disables CRC operation.

0 Disable

1 Enable

Table 10-7: CRC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

10–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 10-4: CRC_DCNT Register Diagram

Data Word Count Reload Register

The CRC_DCNTRLD holds the value that the CRC automatically loads into CRC_DCNT when the CRC_DCNT
decrements to 0. At startup, the value programmed in CRC_DCNT and CRC_DCNTRLD could be different. So,
for the first iteration, the CRC operation happens for the count initially programmed in the CRC_DCNT
register. While for subsequent CRC operations, the count is taken from the CRC_DCNTRLD register.

Figure 10-5: CRC_DCNTRLD Register Diagram

Table 10-8: CRC_DCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Data Word Count.

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–31

Data Compare Register

The CRC_COMP contains the value corresponding to the expected CRC result or signature for the current
data stream. At the end of the operation, the content of this register is used to compare against the result
produced by the CRC operation. In data verify mode, each incoming data value is compared with the
content of this register.

Figure 10-6: CRC_COMP Register Diagram

Fill Value Register

The CRC_FILLVAL holds the value that the CRC uses for the memory fill operation. In data fill mode, the
value programmed in this register is used for the memory fill operation.

Table 10-9: CRC_DCNTRLD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Reload Value.

Table 10-10: CRC_COMP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Expected CRC Result Value.

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

10–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 10-7: CRC_FILLVAL Register Diagram

Data FIFO Register

In memory transfer mode (non-data fill mode), the data from the DMA or processor core buses is written
into the CRC_DFIFO on each input data grant (DMA grant or core write). Data is read from this FIFO on
each output data grant (DMA grant or core read). FIFO status information is available in the CRC_STAT
register. Whenever, the FIFO has valid data, output data requests are generated.

Note that---in non-memory transfer mode and in data fill mode---the input data actually does not get
written into this FIFO. So, this register should not be read in these modes.

Figure 10-8: CRC_DFIFO Register Diagram

Table 10-11: CRC_FILLVAL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Memory Fill Value.

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–33

Interrupt Enable Register

The CRC_INEN unmasks (enables) or masks (disables) interrupt requests generated in the CRC from going
to the processor core. Note that CRC interrupts are not disabled when the CRC is disabled (CRC_CTL.
BLKEN =0).

Figure 10-9: CRC_INEN Register Diagram

Table 10-12: CRC_DFIFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Data FIFO Value.

Table 10-13: CRC_INEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

DCNTEXP Data Count Expired (Status) Interrupt Enable.
The CRC_INEN.DCNTEXP enables (unmasks) the data count expired (CRC status)
interrupt.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

1
(R/W)

CMPERR Compare Error Interrupt Enable.
The CRC_INEN.CMPERR enables (unmasks) the data compare interrupt, which is
generated when CRC data comparison fails.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

10–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Interrupt Enable Set Register

The CRC_INEN_SET permits setting individual bits in the CRC_INEN register without affecting other bits in
the register.

Figure 10-10: CRC_INEN_SET Register Diagram

Interrupt Enable Clear Register

The CRC_INEN_CLR permits clearing individual bits in the CRC_INEN register without affecting other bits
in the register.

Table 10-14: CRC_INEN_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R0/WS)

DCNTEXP Data Count Expired (Status) Interrupt Enable Set.

0 No Effect

1 Set Bit

1
(R0/WS)

CMPERR Compare Error Interrupt Enable Set.

0 No Effect

1 Set Bit

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–35

Figure 10-11: CRC_INEN_CLR Register Diagram

Polynomial Register

The CRC_POLY holds a 32-bit polynomial for CRC operations. Bit 31 corresponds to coefficient of x31 of
the CRC polynomial, bit 30 corresponds to coefficient of x30, and so on through to bit 0. Coefficient of x32
is assumed to be "1" for any polynomial that is selected. Based on the polynomial in CRC_POLY, the CRC
generates a look-up table (LUT), which is used to compute the CRC of the incoming data stream.

Figure 10-12: CRC_POLY Register Diagram

Table 10-15: CRC_INEN_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R0/WC)

DCNTEXP Data Count Expired (Status) Interrupt Enable Clear.

0 No Effect

1 Clear Bit

1
(R0/WC)

CMPERR Compare Error Interrupt Enable Clear.

0 No Effect

1 Clear Bit

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

10–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Status Register

The CRC_STAT indicates status for CRC operations and interrupt generation.

Figure 10-13: CRC_STAT Register Diagram

Table 10-16: CRC_POLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE CRC Polynomial Value.

Table 10-17: CRC_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

22:20
(R/NW)

FSTAT FIFO Status.
The CRC_STAT.FSTAT indicates the current FIFO status. This field is read-only.

0 FIFO Empty

1 FIFO has 1 data

2 FIFO has 2 data

3 FIFO has 3 data

4 FIFO has 4 data (Full)

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–37

19
(R/NW)

LUTDONE Look Up Table Done.
The CRC_STAT.LUTDONE indicates that the CRC has generated the look up table
for the current polynomial. This read-only bit is cleared at reset and cleared when the
CRC_POLY is written.

0 No Status

1 LUT Generation Done

18
(R/NW)

IRR Intermediate Result Ready.
The CRC_STAT.IRR indicates that the CRC has updated the CRC_RESULT_CUR
register with intermediate CRC results for the new data written to the CRC. The
processor core should read from the CRC_RESULT_CUR register only after
detecting CRC_STAT.IRR =1. This read-only bit is cleared by CRC hardware and is
valid when CRC_CTL.IRRSTALL is enabled.

0 No Status

1 Intermediate Results Ready

17
(R/NW)

OBR Output Buffer Ready.
The CRC_STAT.OBR indicates that the CRC has data ready for the processor core to
read. The processor core should read from the CRC only after detecting CRC_
STAT.OBR =1. This read-only bit is cleared by CRC hardware.

0 No Status

1 Output Buffer Ready

16
(R/NW)

IBR Input Buffer Ready.
The CRC_STAT.IBR indicates that the CRC is ready to accept a processor core
write. The processor core should write to the input register only after detecting that
CRC_STAT.IBR =1. This read-only bit is cleared by CRC hardware.

0 No Status

1 Input Buffer Ready

4
(R/W1C)

DCNTEXP Data Count Expired.
The CRC_STAT.DCNTEXP indicates that the CRC_DCNT has expired. This W1C
bit is not automatically cleared when the CRC is disabled (CRC_CTL.BLKEN =0).
When the CRC sets this bit on CRC_DCNT expiry, the CRC generates the CRC_
INEN.DCNTEXP interrupt.

0 No Status

1 Data Counter Expired

1
(R/W1C)

CMPERR Compare Error.
The CRC_STAT.CMPERR indicates that a CRC mismatch or data mismatch has
been detected. This W1C bit is not automatically cleared when the CRC is disabled
(CRC_CTL.BLKEN =0). When the CRC sets this bit on detecting a mismatch, the
CRC generates the CRC_INEN.CMPERR interrupt. While this bit is set, the CRC_
DCNTCAP is disabled from capturing the data count values.

0 No Status

1 Compare Error

Table 10-17: CRC_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

10–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Data Count Capture Register

The CRC_DCNTCAP captures the CRC_DCNT value when a compare operation fails in data verify mode. This
capture can be used to track the position of error in the data stream. Capture operation is enabled only if
the CRC_STAT.CMPERR indicates no compare error. After an error occurs and data count is captured, no
further errors are logged until the CRC_STAT.CMPERR bit is cleared. To obtain the position of error in the
data stream, subtract the CRC_DCNTCAP value from the initial CRC_DCNT.

Figure 10-14: CRC_DCNTCAP Register Diagram

CRC Final Result Register

The CRC_RESULT_FIN holds the final CRC computed for a data stream. A data stream is a DMA of CRC_
DCNT number of words into the CRC. When CRC_DCNT decrements to zero for each data stream, the CRC
loads CRC_RESULT_FIN with the value from CRC_RESULT_CUR.

Table 10-18: CRC_DCNTCAP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Data Count Capture Value.

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 10–39

Figure 10-15: CRC_RESULT_FIN Register Diagram

CRC Current Result Register

The CRC_RESULT_CUR holds the current or intermediate CRC result and is updated when new data is
written into the CRC. Each time the CRC_DCNT expires, the CRC loads the value from this register into the
CRC_RESULT_FIN. The CRC_RESULT_CUR may be set to auto clear to zero or auto clear to ones when CRC_
DCNT expires by configuring the CRC_CTL.AUTOCLRZ and CRC_CTL.AUTOCLRF bits. Before starting a CRC
operation, the CRC_RESULT_CUR should be programmed to the desired value. Note that this register can be
read by the processor core at any time.

Figure 10-16: CRC_RESULT_CUR Register Diagram

Table 10-19: CRC_RESULT_FIN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Computed CRC.

CYCLIC REDUNDANCY CHECK (CRC)
ADSP-CM40X CRC REGISTER DESCRIPTIONS

10–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 10-20: CRC_RESULT_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Intermediate CRC Result.

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–1

11 Direct Memory Access (DMA)

The DMA channels are dispersed throughout the infrastructure and may be clustered together via system
crossbars (SCB) so as to share a single interface with the main system crossbar.

The DMA channels can perform transfers between memory and a peripheral or between one memory and
another memory. Two DMA channels are required for memory to memory DMA transfers (MDMA). One
channel is the source channel, and the second, the destination channel.

All DMA channels can transport data to and from virtually all on-chip and off-chip memories.

DMA transfers on the processor can be descriptor-based or register-based. Register-based DMA allows the
processor to directly program DMA controller registers to initiate a DMA transfer. On completion, the
controller registers may be automatically updated with their original setup values for continuous transfer,
if needed. Descriptor-based DMA transfers require a set of parameters stored within memory to initiate a
DMA sequence. Descriptor-based transfers allow the chaining together of multiple DMA sequences. In
Descriptor-based DMA operations, a DMA channel can be programmed to automatically set up and start
another DMA transfer after the current sequence completes.

The DMA channel does not connect external memories and devices directly. Rather, data is passed
through an external memory interface port. Any kind of device that is supported by the external memory
interface can also be accessed by DMA operations. These interfaces typically include:

• flash memory

• SRAM

• FIFOs

• memory-mapped peripheral devices

DMA Channel Features

The processor uses Direct Memory Access (DMA) to transfer data within memory spaces or between a
memory space and a peripheral. The processor can specify data transfer operations and return to normal
processing while the fully integrated DMA channel carries out the data transfers independent of processor
activity. The DMA channels are dispersed throughout the infrastructure and interface with the system
crossbar unit (SCB).

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FEATURES

11–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The following is a list of DMA interface features.

• Supports integer byte strides including byte strides of 0 and negative byte strides

• Register based configuration

– Core writes DMA configuration

– Supports automatic reloading for continuous operation

• Flexible descriptor based configuration

– DMA descriptors are fetched from memory

– Support for variable descriptor sizes

• Flexible flow control – Transitions between the various descriptor based modes and for DMA termi-
nation

• Orthogonal transfers

– Support for three transfer dimensions

– 1-D and 2-D transfers supported per descriptor set

– 3-D support provided by chained descriptor sets

• Configurable memory and peripheral transfer word sizes

– Memory interface supports 8, 16, 32, 64, 128 and 256-bit transfers

– Peripheral interface supports for 8, 16, and 32-bit transfers

• Interrupt notification

– Row or work unit completion

– Error conditions

• Incoming and outgoing trigger support

– Trigger generation for row or work unit completion

– Work unit can wait for incoming trigger

• MMR access bus – Provides access to memory mapped registers for configuration, monitoring and
debug

• SCB crossbar interface connects the DMA channel to the system crossbar

• Peripheral DMA bus – Interfaces the DMA channel to a peripheral or another DMA channel

• Peripheral data request interrupt support

• Bandwidth monitoring and limiting

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–3

DMA Channel Functional Description

This section provides a functional description of the DMA channel interface.

ADSP-CM40x DMA Register List

The DMA channel (DMA) supports data transfers within memory spaces or between a memory space and
a peripheral. The processor can specify data transfer operations and return to normal processing while the
fully integrated DMA channel carries out the data transfers independent of processor activity. The DMA
channels are dispersed throughout the infrastructure, as DMAs. A set of registers govern DMA operations.
For more information on DMA functionality, see the DMA register descriptions.

Table 11-1: ADSP-CM40x DMA Register List

Name Description

DMA_DSCPTR_NXT Pointer to Next Initial Descriptor

DMA_ADDRSTART Start Address of Current Buffer

DMA_CFG Configuration Register

DMA_XCNT Inner Loop Count Start Value

DMA_XMOD Inner Loop Address Increment

DMA_YCNT Outer Loop Count Start Value (2D only)

DMA_YMOD Outer Loop Address Increment (2D only)

DMA_DSCPTR_CUR Current Descriptor Pointer

DMA_DSCPTR_PRV Previous Initial Descriptor Pointer

DMA_ADDR_CUR Current Address

DMA_STAT Status Register

DMA_XCNT_CUR Current Count(1D) or intra-row XCNT (2D)

DMA_YCNT_CUR Current Row Count (2D only)

DMA_BWLCNT Bandwidth Limit Count

DMA_BWLCNT_CUR Bandwidth Limit Count Current

DMA_BWMCNT Bandwidth Monitor Count

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

11–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA Definitions

To make the best use of the DMA channel, it is useful to understand the following terms.

Descriptor

An individual configuration fetched from memory that maps to a single register within a DMA channel.

Descriptor Fetch

The action of retrieving descriptors from memory through memory read operations and loading then into
the DMA channel registers upon their read return.

Descriptor Set

A group of descriptors associated with a single work unit.

Disabled State

The channel is disabled because the enable bit = 0 or as a result of an error.

DMAC

An acronym used for a DMA cluster.

DMA Channel

A single DMA engine that has all the capabilities and registers as defined for a given processor. A DMA
channel or engine is connected to a single peripheral.

DMA Cluster

A grouping of multiple DMA channels with a shared SCB crossbar interface, controller and arbiter. Also
known as a DMAC.

Initial Descriptor

The first descriptor in the descriptor set.

MDMA

Memory-to-Memory DMA Data transfer. Two DMA channels are paired to perform a memory read from
one address location and a memory write of that data to another address location.

DMA_BWMCNT_CUR Bandwidth Monitor Count Current

Table 11-1: ADSP-CM40x DMA Register List (Continued)

Name Description

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–5

Stop State

A time where the channel is enabled but not currently programmed to perform a data transfer. Program-
ming the flow to STOP causes the channel to enter Stop State at the end of the work unit.

User

Any person, debug, emulator, software routine or action taken by the core that accesses the MMR registers
of the DMA channel or peripherals, or sets up data and descriptors in memory.

Wait State

If instructed to wait for a trigger, the channel enters this state once it has completed a work unit. The
channel remains in this state until a trigger occurs. If a trigger came in before reaching the wait state, the
channel will skip over the Wait State upon completion of the work unit.

Work Unit

A single data transaction or series of data transactions performed based on the configuration of the DMA
channel. In the case of autobuffer mode, a new work unit is defined at the time all current count registers
are initialized to start values. Once all the current count registers count down to zero, the work unit has
completed.

Work Unit Chain

A single work unit or a series or work units separated by a stop or disabled state. The work units in the
chain are programmed to another descriptor flow. The last work unit in the chain is programmed to a flow
of STOP or AUTO. STOP stops the state at the end of that work unit. AUTO is required to be disabled by
disabling the DMA channel. A work unit chain is also known as a descriptor chain.

Block Diagram

The figure shows the functional blocks within the DMA interface.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

11–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 11-1: DMA Channel Block Diagram

For more information on the interfaces shown in the block diagram, see:

• DMA Channel Peripheral DMA Bus

• DMA Channel MMR Access Bus

• DMA Channel Event Control

• DMA Channel SCB Interface

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–7

SCB Interface Signals

The DMA channel operates at SCLK frequency as does the SCB interface. The SCB crossbar handles the
internal arbitration of the transfer requests of all the masters interfaced to the SCB crossbar instance (see
the following table.

DMA Channel Peripheral DMA Bus

The peripheral DMA bus connects the DMA channel to a peripheral or another DMA channel.

The DMA channel connects to peripherals or other DMA channels via the peripheral DMA bus. This is a
dedicated point-to-point interface supporting data bus widths of 8, 16, 32 or 64 bits. The data bus widths
for a given DMA channel on a particular processor may vary and are not configurable. The assigned bus
width can be determined by reading the DMA_STAT.PBWID field.

The DMA channel operates at SCLK frequency as does the peripheral DMA bus. The following table
provides descriptions of the peripheral DMA bus signals.

Table 11-2: SCB Interface Signals

Signal Width (bits) Description

SCB_WRITE_DATA 16/32/64/128 Data bus used for write operations. The width of the bus
can be determined from DMA_STAT.MBWID

SCB_WRITE_ADDRESS 32 Write address bus. Provides the address of the first transfer
in a burst transaction

SCB_READ_DATA 16/32/64/128 Data bus used for read operations. The width of the bus
can be determined from DMA_STAT.MBWID

SCB_READ_ADDRESS 32 Read address bus. Provides the address of the first transfer
in a burst transaction

Table 11-3: Peripheral DMA Bus Signals

Signal Width (bits) Description

PDMA_WRITE_DATA 8/16/32/64 Data bus used for write operations. The width of the bus can be
determined from DMA_STAT.PBWID

PDMA_READ_DATA 8/16/32/64 Data bus used for read operations. The width of the bus can be
determined from DMA_STAT.PBWID

PDMA_DMA_GRANT Control signals to indicate that data is valid for DMA channel read
operations (peripheral transmit) and that the DMA channel is ready to
receive data for write operations (peripheral receive)

PDMA_CMD 3 Used by the peripheral for issuing DMA channel control commands

PDMA_CTRL The control signals used by the peripheral to send various commands to
the DMA channel and control the direction of flow

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

11–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA Channel MMR Access Bus

The MMR access bus provides access to all the DMA channels memory-mapped registers for DMA
channel configuration, monitoring and debug. The interface has a fixed 32-bit data bus for read and write
accesses.

The following table provides descriptions of the MMR access bus signals.

Event Signals

The following table provides descriptions of DMA channel events.

Architectural Concepts

The DMA channel provides a means to transfer data between memory spaces or between memory and a
peripheral using a number of system interfaces. The DMA channel provides an efficient means of distrib-
uting data throughout the system, freeing up the processor core for other operations. Each peripheral that
supports DMA transfers has its own dedicated DMA channel or channels with its own register set that
configures and controls the operating modes of the DMA transfers.

DMA Channel SCB Interface

The SCB interface connects the DMA channel to the SCB crossbar allowing for transfers to and from the
processors internal memory and other suitable system resources.

Table 11-4: MMR Access Bus Signals

Signal Width (bits) Description

 MMR_WRITE_DATA 32 Data bus used for write operations to the MMRs from the core.

 MMR_READ_DATA 32 Data bus used to return read data from the MMRs

 MMR_READ_ADDR 7 Address that is used to select the MMR to access

Table 11-5: Event Signals

Signal Width (bits) Description

DMA_ERROR 1 Used to signal an error condition in the DMA channel. The source of the error can be
determined by reading the DMA_STAT.ERRC bit.

DONE_PIRQ_INT 1 Signal used to indicate DMA completions events, PIRQ events and also for forwarding
PDR events based on configuration. The source of the event may be determined by
reading the corresponding fields in DMA_STAT.

DMA_TRIG_OUT 1 Trigger output that gets routed to the TRU and can be configured to provide notification
on row or work unit completion.

DMA_TRIG_IN 1 Trigger input from the TRU that can be used to control the start of a work unit.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–9

The DMA channel connects to the system interconnect through the SCB interface so that the DMA
channel can perform work unit data transfers with memories such as L1, internal L2 and external L3. In
addition to work unit data transfers, the SCB interface is also used for fetching descriptor sets for all the
descriptor based transfer modes.

The DMA channel is capable of supporting data bus widths of 16, 32, 64 or 128-bits. The data bus widths
for a given DMA channel on a specific processor may vary and are not configurable. The assigned bus
widths can be determined by reading the DMA_STAT.MBWID field.

SCB Interface Signals

The DMA channel operates at SCLK frequency as does the SCB interface. The SCB crossbar handles the
internal arbitration of the transfer requests of all the masters interfaced to the SCB crossbar instance (see
the following table.

SCB Burst Transfers

The SCB interface supports burst transfers for memory read and write operations. The burst length is a
function of the DMA channel’s configurable memory size for the work unit and the fixed bus width of the
DMA channel’s SCB data bus.

• If the DMA channel is configured such that the memory transfer size is less than or equal to the DMA
channels bus width, then the burst length is always 1.

• If the configured memory size is greater then the SCB interface bus width, then the burst length is suffi-
cient to transfer a transaction as specified by the configured memory size.

Table 11-6: SCB Interface Signals

Signal Width (bits) Description

SCB_WRITE_DATA 16/32/64/128 Data bus used for write operations. The width of the bus
can be determined from DMA_STAT.MBWID

SCB_WRITE_ADDRESS 32 Write address bus. Provides the address of the first transfer
in a burst transaction

SCB_READ_DATA 16/32/64/128 Data bus used for read operations. The width of the bus
can be determined from DMA_STAT.MBWID

SCB_READ_ADDRESS 32 Read address bus. Provides the address of the first transfer
in a burst transaction

Table 11-7: DMA Channel SCB Burst Lengths

 Configured Memory
Size Burst Length

16-bit Bus 32-bit Bus 64-Bit Bus 128-bit Bus

1 Bytes 1 1 1 1

2 Bytes 1 1 1 1

4 Bytes 2 1 1 1

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

11–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Data Address Alignment

In order to prevent addressing errors and maximize bandwidth of the SCB interface to the DMA channel,
data addresses must be aligned to be a multiple of the programmable memory size of the DMA channels
configuration as shown in Descriptor Set Address Alignment.

There are situations in which entire work units cannot be transferred at the maximum configurable
memory size. In this case the entire work unit may be fulfilled by reducing the configured memory size at
the expense of bus bandwidth. Through the use of descriptor sets:

• The first descriptor set can be configured to transfer data until the larger memory size alignments are
met.

• A second descriptor set with a larger memory size configuration may then be used to transfer a bulk of
the data in the work unit.

• Finally a third descriptor set may be used with a smaller memory size in order to complete any final
data transfers that may not meet the alignment requirements of the previous descriptor set configura-
tion.

Descriptor Set Address Alignment

All descriptor set addresses and descriptors within a descriptor set must be aligned to a 32-bit address. The
memory size of the DMA channel’s configuration is ignored for descriptor set fetches, which avoids the
need to align descriptor sets based on the previous descriptor set’s memory width configuration.

For descriptor sets containing only a single descriptor the transfer takes place as a single 32-bit transfer.
For descriptor sets containing multiple descriptors, each 32-bit descriptor is fetched individually and
treated as multiple 32-bit transfers.

8 Bytes 4 2 1 1

16 Bytes 8 4 2 1

32 Bytes 16 8 4 2

Table 11-8: DMA Channel Address Alignment Requirements

Configured Memory Size Address Restriction

1 Byte No restriction

2 Bytes ADDR[0] == 0

4 Bytes ADDR[1:0] == 0

8 Bytes ADDR[2:0] == 0

16 Bytes ADDR[3:0] == 0

32 Bytes ADDR[4:0] == 0

Table 11-7: DMA Channel SCB Burst Lengths (Continued)

 Configured Memory
Size Burst Length

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–11

DMA Channel Peripheral DMA Bus

The peripheral DMA bus connects the DMA channel to a peripheral or another DMA channel.

The DMA channel connects to peripherals or other DMA channels via the peripheral DMA bus. This is a
dedicated point-to-point interface supporting data bus widths of 8, 16, 32 or 64 bits. The data bus widths
for a given DMA channel on a particular processor may vary and are not configurable. The assigned bus
width can be determined by reading the DMA_STAT.PBWID field.

The DMA channel operates at SCLK frequency as does the peripheral DMA bus. The following table
provides descriptions of the peripheral DMA bus signals.

Peripheral Control Commands

The peripheral DMA bus of the DMA channel provides a means for peripherals on the processor to issue
commands to the DMA channel to provide greater control over the DMA channel operation. This control
improves real-time performance and relieves control and interrupt demands on the core. Peripherals may
send commands to the DMA controller over the 3-bit PERI_CMD bus. The DMA control commands
extend the set of operations available to the peripheral beyond the simple “request data” command used
by peripherals in general. Refer to the appropriate peripheral chapter for a description on how that periph-
eral uses DMA control commands.

While these DMA control commands (see the following table) are not visible to or controlled by the
program, their use by a peripheral has implications for the structure of the DMA transfers which that
peripheral can support. It is important that application software be written to comply with certain restric-
tions regarding work units and descriptor chains so that the peripheral operates properly whenever it
issues DMA control commands.

The following table describes the commands that are given by the DMA controller. These commands are
described in more detail in the following sections.

Table 11-9: Peripheral DMA Bus Signals

Signal Width (bits) Description

PDMA_WRITE_DATA 8/16/32/64 Data bus used for write operations. The width of the bus can be
determined from DMA_STAT.PBWID

PDMA_READ_DATA 8/16/32/64 Data bus used for read operations. The width of the bus can be
determined from DMA_STAT.PBWID

PDMA_DMA_GRANT Control signals to indicate that data is valid for DMA channel read
operations (peripheral transmit) and that the DMA channel is ready to
receive data for write operations (peripheral receive)

PDMA_CMD 3 Used by the peripheral for issuing DMA channel control commands

PDMA_CTRL The control signals used by the peripheral to send various commands to
the DMA channel and control the direction of flow

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

11–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Idle Command

This command is driven by the DMA channel when the peripheral is enabled and no data requests are
required.

Restart Command

This command causes the current work unit to interrupt processing and star again, using the addresses and
count values from the DMA_ADDRSTART, DMA_XCNT and DMA_YCNT registers. No interrupt is signalled when
the work unit terminates.

If a channel programmed to transmit (memory read) receives a restart command, the channel momen-
tarily pauses while any pending memory reads initiated prior to the Restart command are completed.
During this period of time, the channel does not grant DMA requests. Once all pending reads have been
flushed from the channel’s pipelines, the channel resets its counters and FIFO, and starts pre fetch reads
from memory. DMA data requests from the peripheral are granted as soon as new pre fetched data is avail-
able in the DMA FIFO. In this case the peripheral can use the Restart command to reattempt a failed trans-
mission of a work unit.

If a channel programmed to receive (memory write) receives a restart command, the channel stops writing
to memory, discards any data held in its DMA FIFO, and resets its counters and FIFO. As soon as this
initialization is complete, the channel again grants DMA write requests from the peripheral. In this case
the peripheral can use the restart command to abort the transfer of received data into a work unit, and
reuse the memory buffer for a later data transfer.

The restart control command request is not granted/acknowledged. The request is always accepted by the
DMA controller.

Finish Command

The finish command causes the current work unit to terminate processing and move on to the next work
unit. An interrupt/trigger event is signalled as usual, (if enabled within the DMA_CFG register). The periph-

Table 11-10: PDMA_CMD Peripheral DMA Control Commands

Command Name Description

b#000 NOP No operation

b#001 Restart Restarts the current work unit from the beginning

b#010 Finish Finishes the current work unit and starts the next

b#011 Interrupt Immediately sets the DMA completion interrupt in the DMA
channel

b#100 Request Data Typical DMA data request

b#101 Request Data Urgent Urgent DMA data request

b#110 Reserved Reserved

b#111 Reserved Reserved

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–13

eral can then use the finish command to partition the DMA stream into work units on its own, perhaps as
a result of parsing the data currently passing though its supported communication channel, without direct
real-time control by the processor.

If a channel is programmed to transmit (memory read) operation and receives a finish command, the
channel momentarily pauses while any pending memory reads initiated prior to the finish command are
completed. During this period of time, the channel does not grant DMA requests. Once all pending reads
have been flushed from the channel’s pipelines, the channel signals an interrupt/trigger (if enabled), and
begins fetching the next descriptor (if any). DMA data requests from the peripheral are granted as soon as
new pre fetched data is available in the DMA FIFO.

If a channel programmed to receive (memory write) receives a finish command, the channel stops granting
new DMA requests while it drains its FIFO. Any DMA data received by the DMA channel prior to the
finish command is written to memory. When the FIFO reaches an empty state, the channel signals an
interrupt/trigger (if enabled) and begins fetching the next descriptor (if any). Once the next descriptor has
been fetched, the channel initializes its FIFO, and then resumes granting DMA requests from the periph-
eral.

The finish command request is not granted/acknowledged. The request is always accepted by the DMA
channel.

Interrupt Command

The interrupt command causes the DMA channel to generate an interrupt. When programming the
channel to support this command, the DMA_CFG.INT bit field must be configured to PIRQ mode so that
the channel does not generate interrupts based on work unit state, but instead generates interrupts only
when it receives the interrupt command from the peripheral. When the interrupt command is received,
the event is indicated in the DMA_STAT.PIRQ bit if all of the following conditions are satisfied.

• The DMA channel is enabled as per the DMA_CFG.EN bit.

• The DMA channel is in the stop state.

• The interrupt in DMA_CFG.INT is configured for PIRQ mode.

The peripheral only issues the interrupt command in response to the last grant command being received
from the DMA channel which indicates that the transfer is the last transfer in the work unit.

Request Data Command

The request data command is a request for data transfers between the DMA channel and the peripheral.
The request is held by the peripheral until granted/acknowledged by the DMA channel.

Request Data Urgent Command

The request data urgent command behaves identically to the request data command, except that while it
is asserted the DMA channel performs its memory accesses with urgent priority. This includes both data
and descriptor fetch memory accesses. A DMA management capable peripheral might use this control
command if, for example, an internal FIFO is approaching a critical condition.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

11–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The request is held by the peripheral until granted/acknowledged by the DMA channel.

Peripheral Control Command Restrictions

The proper operation of the DMA channel FIFO leads to certain restrictions in the sequence of DMA
peripheral control commands issued by a peripheral. These restrictions are described in the following
sections.

Transmit Restart or Finish

No restart or finish control command may be issued by a peripheral to a channel configured for memory
read unless all the following conditions are met.

• The peripheral has already performed at least one DMA transfer in the current work unit.

• The current work unit has (FIFO_SIZE/DMA_CFG.MSIZE) + 1 memory transfers remaining.

The first item ensures that the work unit has started. The second item ensures that the work unit has not
completed. The second item is sufficiently large that it is always at least five more than the maximum data
count prior to any restart or finish command. This implies that any work unit which might be managed by
restart or finish commands must have DMA_XCNT_CUR and DMA_YCNT_CUR register values representing at
least five data items.

The second item can be satisfied by ensuring that the number of memory transfers described by the
descriptor is (FIFO_SIZE/DMA_CFG.MSIZE) + 1 larger than the maximum number of memory transfers
expected.

Receive Restart or Finish

No restart or finish control command may be issued by a peripheral to a channel configured for memory
write unless either of the following conditions is met.

• The number of peripheral transfers completed is less than (DMA_CFG.MSIZE/DMA_CFG.PSIZE) × (trans-
fers described by descriptor)

In addition to either of the above two conditions, one of the following two conditions must also be met.

• The previous work unit was terminated by a finish command AND the peripheral has done at least one
transfer in the current work unit.

• The peripheral has done (FIFO_SIZE/DMA_CFG.PSIZE) + 1 transfers in the current work unit.

The first set of conditions ensures that the descriptor is still active while the second set ensures that data
from the previous descriptor has left the FIFO and that the current descriptor has started.

Finish Only

The peripheral has completed exactly (DMA_CFG.MSIZE/DMA_CFG.PSIZE) × (transfers described by
descriptor) and gives the restart/finish command immediately in the next cycle following the last data
transfer.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–15

Memory DMA and Triggering

A memory DMA (MDMA) channel provides a means of doing memory-to-memory DMA transfers
among the various memory spaces that have DMA support.

Memory DMA (MDMA) channels are implemented by interfacing two DMA channels via the peripheral
DMA bus interface. One DMA channel is used for memory read operations and the second is used for
memory writes. Depending on the processor, a memory DMA channel may have an additional peripheral,
such as a CRC peripheral, inserted into the peripheral DMA bus that may optionally be enabled.

MDMA channel configurations that do not involve an additional peripheral impose no restrictions on
which of the DMA channels is to be used for the read operation and which is to be used for the write oper-
ation so long as both are not configured for the same transfer direction. For MDMA channel configura-
tions that enable a peripheral between the read and write channels, restrictions may be imposed on which
channel may be used for a given transfer direction.

Figure 11-2: MDMA Channel Dedicated Pair

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

11–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 11-3: MDMA Channel Pair with Peripheral

A memory-to-memory transfer always requires the source and destination channels to be enabled. Because
the channels are interfaced through the peripheral DMA bus, and because the channel may have an addi-
tional peripheral inserted into the peripheral DMA bus, programs must ensure that the DMA_CFG.PSIZE
of both the source and destination channels are set to the same values.

The memory DMA channels support the full range of DMA_CFG.MSIZE options for the DMA transfers to
and from the memories.

As the MDMA channel consists of two DMA channels, the entire MDMA channel has two sets of FIFOs,
one in the read channel and one in the write channel. This allows for more efficient bursting of both read
and write transactions in order to make use of the available bandwidth. While the DMA_CFG.PSIZE config-
uration must be identical for both source and destination DMA channels, this restriction is not imposed
for the DMA_CFG.MSIZE configuration.

The independent source and destination DMA channels also have their own dedicated interrupt and
trigger events, and while it is normal practice to only have event generation performed at destination DMA
completion, programs are not restricted to this means of interrupt generation.

Configuration of an MDMA transfer is done in a similar manner to peripheral DMA transfers with the
exception of writing two DMA channel registers instead of one.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–17

To control the pace of data transfers, triggers may be used on either the memory read or the memory write
channel pair used in an MDMA operation. Enabling DMA_CFG.TWAIT in the memory read channel will
prevent both channels from transferring data before the system is ready. However, only configuring the
memory write channel to wait for a trigger will allow for data to be fetched from the memory in anticipa-
tion of the memory write operation.

DMA Channel MMR Access Bus

The MMR access bus provides access to all the DMA channels memory-mapped registers for DMA
channel configuration, monitoring and debug. The interface has a fixed 32-bit data bus for read and write
accesses.

The following table provides descriptions of the MMR access bus signals.

DMA Channel Operation Flow

The flow of operation of the DMA channel is described in the following topics:

• Startup

• Refresh

• DMA Operating Modes

• Stop Mode

• DMA Channel Errors

Startup

In order to enable a DMA operation on a given channel, some or all of the DMA parameter registers must
first be written directly. The minimum set of register required to be initialized is dependent upon the
desired mode of operation as described in the following sections.

Table 11-11: MMR Access Bus Signals

Signal Width (bits) Description

 MMR_WRITE_DATA 32 Data bus used for write operations to the MMRs from the core.

 MMR_READ_DATA 32 Data bus used to return read data from the MMRs

 MMR_READ_ADDR 7 Address that is used to select the MMR to access

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

11–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Minimum Enable Requirements

To start a DMA operation on a given channel, some or all of the DMA parameter registers must first be
initialized and configured to the DMA channels desired operating mode.

• For descriptor array based flow modes – At a minimum the DMA_DSCPTR_CUR register must be written
prior to writing to the DMA_CFG register, which is the special action required to start the DMA channel.

• For descriptor list based flow modes – At a minimum the DMA_DSCPTR_NXT register must be written
prior to writing to the DMA_CFG register, which is the special action required to start the DMA channel.

• For non descriptor based flow modes – The DMA_ADDRSTART, DMA_XCNT and DMA_XMOD registers must
be written prior to the DMA_CFG register.

Programs can write other registers that might remain static throughout the course of the DMA activity.
The DMA operation begins once the DMA_CFG register is written.

ATTENTION: When the DMA_CFG register is written directly by software, the DMA controller recognizes
this as the special startup condition that occurs when starting DMA for the first time on this
channel or after the DMA channel is stopped. It is possible for a DMA error condition to be
flagged regardless of the DMA_CFG.EN bit setting.

Startup Operation

When the DMA_CFG register is written directly by software, the DMA channel recognizes this as the special
startup condition that occurs when starting DMA for the first time on this channel or after the channel has
entered to the stop state.

When the descriptor fetch is complete and the DMA channel is enabled, the DMA_CFG descriptor element
that was read into the DMA_CFG register assumes control. Before this point, the direct write to the DMA_CFG
register had control.

At startup, the selected flow mode and the and descriptor size determine the course of the DMA initializa-
tion process. The DMA_CFG.FLOW field determines whether to load more current registers from descriptor
sets in memory, while the DMA_CFG.NDSIZE field details how many descriptor elements to fetch before
starting the DMA. DMA registers not included in the descriptor are not modified from their prior values.

For descriptor list flow modes, the DMA_DSCPTR_NXT register is copied into the DMA_DSCPTR_CUR register.
Then, fetches of new descriptor elements from memory are performed, indexed by the DMA_DSCPTR_CUR
register, which is incremented after each fetch. After completion of the descriptor fetch, the DMA_DSCPTR_
CUR register points to the next 32-bit word in memory past the end of the descriptor.

If the descriptor fetch is for a descriptor array mode transfer, then the DMA_DSCPTR_NXT register is not
copied into the DMA_DSCPTR_CUR register. Instead the descriptor fetch indexing begins with the value in
the DMA_DSCPTR_CUR register.

If DMA_CFG is not part of the fetched descriptor set, then the previous value, (originally as written on
startup) controls the work unit operation. If the DMA_CFG register is part of the fetched descriptor set, then
the value programmed by the MMR access controls only the loading of the first descriptor fetched from

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–19

memory. The subsequent DMA work units are controlled by the configuration of the DMA_CFG register of
the fetched descriptor set.

Once the descriptor fetch is complete, or if the flow was originally configured for one of the register based
flow modes, then the DMA operation begins. The DMA channel immediately fills its FIFO. For a memory
write operation the DMA channel begins accepting data from its peripheral. For a memory read operation
the DMA channel begins memory reads when the DMA channel is granted access to the SCB bus.

When the DMA channel performs its first data memory access, its address and count computations take
their input operands from the start registers (DMA_ADDRSTART, DMA_XCNT and DMA_YCNT if required), and
writes results back to the current registers (DMA_ADDR_CUR, DMA_XCNT_CUR and DMA_YCNT_CUR). Note also
that the current registers are not valid until the first memory access is performed, which may be some time
after the channel is started by the write to the DMA_CFG register. The current registers are loaded automat-
ically from the appropriate descriptor elements, overwriting their previous contents, as follows:

• DMA_ADDRSTART is copied to DMA_ADDR_CUR

• DMA_XCNT is copied to DMA_XCNT_CUR

• DMA_YCNT is copied to DMA_YCNT_CUR

Refresh

When a work unit has been processed (is complete), the DMA channel performs the following operations:

• Completes the transfer of all data between memory and the DMA channel.

• If the DMA channel is configured for a memory read operation with the DMA_CFG.SYNC bit enabled,
then a synchronized transition takes place. The DMA channel transfers all data to the peripheral before
continuing.

• If interrupts/triggers are enabled, then the signals are forwarded from the DMA channel and the DMA_
STAT register is updated to indicate the interrupt/trigger events.

• If the flow was set to stop mode, the DMA operation stops by setting the DMA_STAT.RUN bit field to indi-
cate the channel is no longer running. Any remaining data in the DMA channel’s FIFO is transferred
to the peripheral.

• For descriptor array mode – Loads a new descriptor from memory into the DMA registers by way of
the contents of the DMA_DSCPTR_CUR register, while incrementing the DMA_DSCPTR_CUR register. The
descriptor size is taken from the DMA_CFG.NDSIZE value prior to the fetch.

• For descriptor list mode – Copies the DMA_DSCPTR_NXT register into the DMA_DSCPTR_CUR register.
Next, the DMA channel fetches the descriptor from the new contents of the DMA_DSCPTR_CURregister
and places these contents into the DMA registers while incrementing the DMA_DSCPTR_CUR register.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

11–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• For descriptor on demand array mode – Checks to see if an incoming trigger event has been detected.

If a trigger event has been detected, then the DMA channel loads a new descriptor from memory into
the DMA registers from the contents of the DMA_DSCPTR_CUR register, while incrementing the DMA_
DSCPTR_CUR register. The descriptor size is taken from the DMA_CFG.NDSIZE value prior to the fetch.

If a trigger event was not detected then the DMA channel begins the next work unit by reloading the
current registers as described below.

• For descriptor on demand list mode – Checks to see if an incoming trigger event has been detected.

– If a trigger event was detected, then the DMA channel copies the DMA_DSCPTR_NXT register into the
DMA_DSCPTR_CUR register. Next, the DMA channel fetches the descriptor memory from the new
contents of the DMA_DSCPTR_CUR register and places these contents into the DMA registers while
incrementing the DMA_DSCPTR_CUR register.

– If a trigger event was not detected then the DMA channel begins the next work unit by reloading
the current registers as described in the step below.

• If flow was configured for anything other than stop mode then the DMA channel begins the next work
unit by reloading the current registers (DMA_ADDR_CUR, DMA_XCNT_CUR and DMA_YCNT_CUR) from their
descriptor registers (DMA_ADDRSTART, DMA_XCNT and DMA_YCNT).

Work Unit Transitions

Transitions from one work unit to the next are controlled by DMA_CFG.SYNC bit for a given work unit. In
general, continuous transitions have lower latency at the cost of restrictions on changes of data format or
addressed memory space in the two work units. These latency gains and data restrictions arise from the
way the DMA FIFO pipeline is handled while the next descriptor is fetched.

In continuous transitions where synchronization is disabled, the DMA FIFO pipeline continues to transfer
data to and from the peripheral or destination memory during the descriptor fetch and/or when the DMA
channel is paused between descriptor chains. On the other hand, synchronized transitions provide better
real-time synchronization of interrupts and triggers with a given peripheral state. Synchronized transitions
also provide greater flexibility in the data formats and memory spaces of the two work units, at the cost of
higher latency in the transition. In synchronized transitions, the DMA FIFO pipeline is drained to the
destination or flushed (received data discarded) between work units.

NOTE: Work unit transitions for MDMA streams are controlled by the DMA_CFG.SYNC bit of the MDMA
source channel. The DMA_CFG.SYNC bit of the MDMA destination channel is reserved and must be
set to disabled state. In transmit (memory read) channels, the DMA_CFG.SYNC bit of the last
descriptor prior to the transition controls the transition behavior. In contrast, in receive channels,
the DMA_CFG.SYNC bit of the first descriptor of the next descriptor chain controls the transition.

Transmit and MDMA Source Transitions

In DMA transmit (memory read) and MDMA source channels, the DMA_CFG.SYNC bit controls the inter-
rupt timing at the end of the work unit and the handling of the DMA FIFO between the current and the
next work unit.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–21

If the DMA_CFG.SYNC bit is configured to disable synchronization, a continuous transition is selected. In a
continuous transition, just after the last data item is read from memory, these four operations all start in
parallel.

• The interrupt/trigger (if any) is signalled.

• The DMA_STAT register is updated to indicate DMA status is completed.

• The next descriptor begins to be fetched.

• The final data items are delivered from the DMA FIFO to the destination memory or peripheral.

This allows the DMA channel to provide data from the FIFO to the peripheral continuously during the
descriptor fetch latency period.

When synchronization is disabled, the final interrupt/trigger (if enabled) occurs when the last data is read
from memory. This event occurs at the earliest time that the output memory buffer may safely be modified
without affecting the previous data transmission. There may be a number of data items still remaining in
the FIFO and not yet at the peripheral. This number is dependent on the FIFO depth of the DMA channel.
Therefore, in this configuration, the DMA interrupt should not be used as the sole means of synchronizing
the shutdown or re configuration of the peripheral following a transmission.

NOTE: If continuous transition is selected on a transmit (memory read) descriptor, the next descriptor is
required to have the same peripheral transfer size (DMA_CFG.PSIZE), read/write direction, and
source memory (internal versus external) as the current descriptor.

Disabling synchronization, to select continuous transition on a work unit that is configured for stop flow
mode with interrupts/triggers enabled, can result in the event service routine being executed while the final
data is still draining from the FIFO to the peripheral. This is indicated by the DMA channels DMA_STAT.
RUN bits—if the channel is still running then the FIFO is not yet empty. Do not start a new work unit with
different peripheral transfer size or direction while the channel is still running. Further, if the channel is
disabled via the DMA_CFG.EN bit, the data in the FIFO is lost.

A synchronized transition allows the DMA FIFO to first be drained to the destination memory or periph-
eral before any interrupt is signalled, and before any subsequent descriptor or data is fetched. This incurs
greater latency, but provides direct synchronization between the DMA interrupt and the state of the data
at the peripheral.

For example, if synchronization is enabled and interrupts are enabled on the last descriptor in a work unit,
the interrupt occurs when the final data is transferred to the peripheral. This allows the service routine to
properly switch to non-DMA transmit operation. When the interrupt service routine is invoked, the DMA
channel FIFO is empty and the DMA channel is not running as indicated by the DMA_STAT.RUN bits.

A synchronized transition also allows greater flexibility in the format of the DMA descriptor chain. When
enabled, the next descriptor may have any DMA_CFG.PSIZE configuration or read/write direction
supported by the peripheral and may come from either memory space (internal as opposed to external).
This can be useful in managing MDMA work unit queues, since it is no longer necessary to interrupt the
queue between dissimilar work units.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

11–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Work Unit Receive and MDMA Destination Transitions

In DMA receive (memory write) channels, the DMA_CFG.SYNC bit controls the handling of the DMA FIFO
between descriptor chains (not individual descriptor sets), when the DMA channel is paused. The DMA
channel pauses after descriptor sets configured with stop flow mode complete, and the channel may be
restarted (for example, after an interrupt) by writing the channel’s DMA_CFG register with a value that
enables the DMA channel. If the synchronization is disabled in the new work unit’s DMA_CFG value, a
continuous transition is selected. In this mode, any data items received into the DMA FIFO while the
channel was paused are retained, and they are the first items written to memory in the new work unit. This
mode of operation provides lower latency at work unit transitions and ensures that no data items are
dropped during a DMA pause, at the cost of certain restrictions on the DMA descriptors.

NOTE: If the DMA_CFG.SYNC bit is configured to disable synchronization on the first descriptor of a
descriptor chain after a DMA pause, the DMA_CFG.PSIZE field of the new chain must not change
from the configuration of the previous descriptor chain that was active before the pause, unless the
DMA channel is reset between chains by disabling and then re-enabling the DMA channel.

A synchronized transition is selected if the DMA_CFG.SYNC bit is configured to enable synchronization. In
this mode, only the data received from the peripheral by the DMA channel after the write to the DMA_CFG
register is delivered to memory. Any prior data items transferred from the peripheral to the DMA FIFO
before this register write are discarded. This provides direct synchronization between the data stream
received from the peripheral and the timing of the channel restart (when the DMA_CFG register is written).

For receive DMA operations, the synchronization has no effect in transitions between work units in the
same descriptor chain (that is, when the previous descriptor’s flow mode was not stop, so that the DMA
channel did not pause).

If a descriptor chain begins with synchronization enabled, there is no restriction on the DMA_CFG.PSIZE
of the new chain in comparison to the previous chain.

NOTE: The peripheral transfer size (DMA_CFG.PSIZE) must not change between one descriptor and the
next in any DMA receive (memory write) channel within a single descriptor chain, regardless of
the DMA_CFG.SYNC bit setting. In other words, all memory write descriptor sets in a descriptor
chain must have the same DMA_CFG.PSIZE value. For any DMA receive (memory write) channel,
there is no restriction on changes of peripheral transfer size (internal versus external) between
descriptors or descriptor chains.

Transfer Termination and Shutdown

This section describes channel transfer termination and shutdown in stop flow mode and in autobuffer
flow mode.

Stop Flow Mode

In stop flow mode, the DMA channel stops automatically after the work unit is complete. If a list or array
of descriptors is used to control DMA transfers, and if every descriptor contains a DMA_CFG descriptor
element, then the final DMA_CFG descriptor element should have the flow configured to stop mode setting
to gracefully stop the channel. Upon completion the DMA channel remains in the stop state. This state

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–23

should not be confused with the disabled state which occurs either due to a DMA error or by configuring
the DMA_CFG.EN bit so as to disable the DMA channel.

Disabling the DMA channel via a write to the DMA_CFG.EN bit is intended to shut down the DMA channel
and enter the disabled state. All memory and peripheral data transfers cease and only peripheral interrupts
are passed through the DMA channels interrupt signals. However, the DMA channel maintains the DMA_
STAT.RUN bits. Therefore, in the case of a memory write operation, the outstanding memory transaction
counter keeps track of returning memory write acknowledgements and updates as required.

In the case of memory read operations, the outstanding memory transaction counter also keeps track of
returning memory reads. However, the memory reads are not written into the FIFO. The counter is
updated to reflect the completion of the transaction, but the data is ignored. The DMA_STAT.RUN bits
remain in the waiting for write ACK/FIFO drain to peripheral state and do not change to stop/idle state until
all outstanding transactions have returned.

When the DMA channel is enabled again via the DMA_CFG.EN bit, a full reset is performed and all counters
are cleared. If an outstanding memory transaction returns an acknowledgement or read data after this
event, then a memory transaction error has occurred and an error is generated. Programs must ensure that
all outstanding memory transactions have been completed before re configuring the DMA channel. One
method programs may use is to poll the DMA_STAT.RUN bits to return to the stop/idle state before
proceeding.

Autobuffer Flow Mode

In the case of Autobuffer flow modes, the only way to cease operations is to disable the DMA channel via
the DMA_CFG.EN bit. Therefore, one method of changing to a new work unit would be to disable the DMA
channel, set up all the registers (and descriptors in memory, if used) except for DMA_CFG, then poll DMA_
STAT.RUN to wait for the status to reflect stop/idle state, and finally write DMA_CFG to the new configuration
to begin the next work unit.

In autobuffer flow mode, or if a list or array of descriptor sets without DMA_CFG descriptors, then the DMA
transfer process must be terminated by an MMR write to the DMA_CFG register with a value whose DMA_
CFG.EN bit is configured to disable the DMA channel.

CAUTION: Interrupt logic based on work unit transitions are disabled when the DMA channel is disabled.
Programmers should be aware of their environment and current actions so that additional
interrupts are not required from the DMA channel.

CAUTION: The DMA channel completes any transactions that have begun and avoids generating bus
errors if disabled through DMA_CFG.EN in the middle of a transaction. However, the action of
re-enabling the DMA is considered a hard reset for all internal DMA channel components.
Therefore, programmers must pay special attention to that particular action in order to avoid
unexpected results.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

11–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA Channel Errors

When an error occurs, the DMA channel maintains all the state and register values which allows programs
to diagnose error causes more thoroughly. The greatest benefit to the programmer is to know exactly what
operational state the DMA channel was in at the exact moment the error occurred.

It is the responsibility of the programmer to take special care to ensure the root cause of the error is
addressed, whether the problem originated in the DMA channel or not. If not properly resolved, the error
could result in an additional error shortly after operations resume. The problem may have caused other
errors elsewhere in the DMA channel or associated modules and circuitry, therefore care must be taken to
address those potential problems also. Finally, the programmer must ensure that all outstanding memory
reads and writes are complete, or cleared, before resuming DMA channel operation.

Once all issues have been addressed and all side effects of any error are neutralized, the programmer may
clear the DMA_STAT.ERRC status field and restart the DMA channel by disabling then re-enabling the DMA
channel through the DMA_CFG.EN bit.

The error types are described in the following sections.

Status and Debug

DMA channel error conditions can cause the DMA process to end abnormally. DMA error detection is
provided as a tool for system development and debug, as a way to detect DMA related programming
errors. When the DMA channel detects and error, the channel is immediately stopped and any memory
read transactions that are returned are discarded. The DMA channels DMA_STAT.RUN field is set to indicate
idle state, once all outstanding memory transactions are acknowledged. In addition, an error interrupt is
asserted and theDMA_STAT.IRQERR is updated to reflect this. Also the error cause of the first detected error
is updated in the DMA_STAT.ERRC field. Unless the error occurs at the exact moment that register values
are being modified, the registers will contain their values.

It is possible for error interrupt signals to be combined. Combined error signals requires that the DMA_STAT
register of each DMA channel associated with a combined error interrupt be read to determine the DMA
channel responsible for the generation of the interrupt.

The DMA channel error interrupt handler is required to perform the following actions:

• Read each DMA channel’s DMA_STAT register to look for a channel with the DMA_STAT.IRQERR set to
indicate an error.

• Read the DMA channel’s DMA_STAT.ERRC field to determine the cause of the error.

• Clear the problem with the DMA channel, for example fix the register values.

• Clear the error in the DMA channel via a write 1 to clear operation to the DMA_STAT.IRQERR bit.

If any error other than a bandwidth monitor error is already flagged and is not cleared, no other error is
reported. If a bandwidth monitor error was reported and not cleared, any newly detected error would be
in the updated DMA_STAT.ERRC field.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–25

DMA Configuration Register Errors

These errors are only flagged when the DMA channel is enabled via the DMA_CFG.EN bit.

• Reserved setting was used

• DMA_CFG.TWAIT enabled in Descriptor On Demand Flow mode

• Illegal DMA_CFG.NDSIZE

• Illegal DMA_CFG.MSIZE

• DMA_CFG.MSIZE exceeds the DMA channel's FIFO size

• Illegal DMA_CFG.PSIZE

• DMA_CFG.PSIZE exceeds the FIFO size

• DMA_CFG.PSIZE exceeds the bus width

• Memory read (transmit operation), cannot change to receive unless properly synced in the previous
work unit, or if first work unit in a new chain

• Memory read (transmit operation), cannot change DMA_CFG.PSIZE unless properly synced in previous
work unit, or if first work unit in a new chain

• Memory write (receive operation), cannot change to transmit during a descriptor chain. Can only
change from receive to transmit if new transmit is synced and first work unit

• Memory write (receive operation), cannot change DMA_CFG.PSIZE unless first work unit with DMA_
CFG.SYNC enabled

Illegal Register Write During Run

Writes to writable registers when the DMA channel is enabled and running are blocked and generate an
error. The DMA_STAT, DMA_BWLCNT and DMA_BWMCNT registers are exempt from this behavior.

Address Alignment Error

An address alignment error is generated when a descriptor address is not aligned to a 32-bit boundary or
a transfer address is not aligned for the current DMA_CFG.MSIZE configuration.

Memory Access Error

A memory access error is generated when an attempt was made to access an address not populated, defined
as cache, or there was a security violation. This error is triggered by an error returned from the memory.

Trigger Overrun Error

A trigger overrun error is generated when a new trigger input occurred while an outstanding trigger is
waiting. This error is only generated if DMA_CFG.TOVEN is enabled.

DIRECT MEMORY ACCESS (DMA)
DMA OPERATING MODES

11–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Bandwidth Monitor Error

This error is generated when the bandwidth monitor count expired. This is not a fatal error and the DMA
channel continues operation.

Control Interface Error

Control interface errors are reported as bus errors to the bus master. This can be as a result of:

• An address error

• Write to a read-only register

DMA Operating Modes

The DMA channel supports a number of different flow modes that control how the DMA channel
progresses from one work unit to the next.

The flow mode of a DMA channel is not a global setting. A DMA descriptor set may include the descriptor
responsible for configuring the flow of the work unit and there is no restriction that the flow must be
configured the same for the entire descriptor chain. If the descriptor chain is not endless then the last
descriptor set configures the flow to stop mode which results in termination of the descriptor chain after
work unit completion. Another example for mixing flow modes is to create an endless descriptor array.
The last descriptor set in the array is configured for list mode and the next descriptor pointer of this
descriptor set points to the first descriptor in the array.

Register Based Flow Modes

Register-based DMA operations require configuration by directly writing to the DMA channel’s memory-
mapped registers.

Register-based DMA is the traditional method of DMA operation. Software writes all of the DMA
channel’s configuration into the memory-mapped registers. This includes information such as the source
or destination address and length of the data to be transferred. The DMA controller then starts channel
operation. The DMA channel supports the following register-based flow modes.

• Stop Mode

• Autobuffer Mode

The DMA channel supports variable descriptor set sizes within the configuration. The size of a descriptor
set can contain as little as a single descriptor. The supported descriptor set sizes can differ between the
various descriptor based flow modes. In addition to the descriptor set size being configurable, descriptor
based DMA also allows for the flow mode of the next descriptor set to be altered allowing for the transition
from descriptor array mode to descriptor list mode, in addition to configuring the flow to stop or auto-
buffer mode.

DIRECT MEMORY ACCESS (DMA)
DMA OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–27

Stop Mode

In stop mode, the DMA operation is executed only once. If started, the DMA channel transfers the desired
number of data words and stops itself again when finished. If the DMA channel is no longer used, software
configures the enable bit to disable a paused channel. Interrupts and triggers may also be generated for
each row/work unit completion, depending on the desired operation.

Autobuffer Mode

In autobuffer mode, the DMA operates repeatedly in a circular manner. If all data words have been trans-
ferred, the address pointer (DMA_ADDR_CUR) is reloaded automatically with the DMA_ADDRSTART value. An
interrupt may also be generated.

Autobuffer mode is enabled via the DMA_CFG.FLOW field. The DMA_CFG.NDSIZE field must be configured
such that the next descriptor size is zero.

Descriptor Based Flow Modes

Descriptor based DMA operations fetch descriptor sets from memory allowing for autonomous loading of
work units on other work units. Software is not required to set up the DMA sequences directly by writing
into the DMA controller registers. Rather, software keeps DMA descriptor sets in memory.

Descriptor based DMA operations have the following additional attributes.

• The DMA controller autonomously loads the descriptor set from memory to the affected DMA
controller registers on demand.

• The descriptor sets can be fetched from any memory space that supports DMA read operations.

• The descriptor set describes the next operation to be performed by the DMA controller.

• The descriptor set may include information such as the DMA configuration word as well as data
source/destination address, transfer count, and address modify values.

A descriptor set describes a single work unit. However some values from one descriptor set may be reused
in the next work unit if they are not overwritten in the subsequent descriptor set fetches and the work unit
requires the use of this descriptor.

The DMA channel supports the following flow modes with descriptor based operations.

• Descriptor Array Mode

• Descriptor List Mode

• Descriptor On-Demand Modes

The DMA channel supports variable descriptor set sizes within the configuration. The size of a descriptor
set can contain as little as a single descriptor and the supported descriptor set sizes can differ between the
various descriptor based flow modes. In addition to configurable descriptor set size, descriptor based DMA

DIRECT MEMORY ACCESS (DMA)
DMA OPERATING MODES

11–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

also allows for the flow mode of the next descriptor set to be altered. Programs can transition from one
descriptor based mode to another descriptor based mode and can also transition to any of the register
based flow modes.

Descriptor Array Mode

When configured in this mode, the descriptor sets do not contain further descriptor pointers. The initial
descriptor pointer value is written by software and points to an array of descriptors. The individual
descriptors are assumed to reside next to each other and, therefore, their address is known.

The following table illustrates how a descriptor set must be structured in memory. Note that descriptor sets
must reside in a contiguous block or memory in the format shown in the table. That is to say that the first
descriptor of the next descriptor set must be located in the memory location immediately following the last
descriptor of the current descriptor set. The values have the same order as the corresponding MMR offset
addresses.

All other DMA channel registers not loaded as a result of the descriptor set fetch retain their previous
values. All of the current registers are reloaded between the descriptor set fetch and the start of the DMA
operation for the work unit.

NOTE: At a minimum the DMA_DSCPTR_CUR register must be written prior to writing to the DMA_CFG
register, which is the special action required to start the DMA channel.

Descriptor List Mode

In this flow mode, multiple descriptors form a chained list in which each descriptor set contains a pointer
to the next descriptor set, allowing greater flexibility in memory layout options. When the descriptor set is
fetched, this pointer value is loaded into the DMA channels next descriptor pointer register.

Descriptor Sets

The Descriptor List Mode Parameter and Descriptor Offsets illustrates how a descriptor set must be struc-
tured in memory. Note that while the descriptor sets can be dispersed throughout memory and reside in
different memory blocks, each descriptor of the descriptor set must reside in a contiguous section of

Table 11-12: Descriptor Array Mode Parameter and Descriptor Offsets

Descriptor Offset Parameter Register

0x00 DMA_ADDRSTART

0x04 DMA_CFG

0x08 DMA_XCNT

0x0C DMA_XMOD

0x10 DMA_YCNT

0x14 DMA_YMOD

DIRECT MEMORY ACCESS (DMA)
DMA OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–29

memory in the format shown in the table. The values have the same order as the corresponding MMR
offset addresses.

All other DMA channel registers not loaded as a result of the descriptor set fetch retain their previous
values. All of the register's current values are reloaded between the descriptor set fetch and the start of the
DMA operation for the work unit.

Minimum Startup Requirements

At a minimum theDMA_DSCPTR_NXT register must be written prior to write to the DMA_CFG register which
is the special action required to start the DMA channel.

Descriptor On-Demand Modes

The Descriptor Array Mode and Descriptor List Mode each have an on demand mode of operation

In on-demand mode, at the end of the work unit, if the DMA channel has not detected an incoming trigger
event, the current work unit is repeated. If the DMA channel receives an incoming trigger before comple-
tion of the work unit, a new descriptor set is fetched.

The following tables illustrate how each descriptor set must be structured in memory.

Table 11-13: Descriptor List Mode Parameter and Descriptor Offsets

Descriptor Offset Parameter Register

0x00 DMA_DSCPTR_NXT

0x04 DMA_ADDRSTART

0x08 DMA_CFG

0x0C DMA_XCNT

0x10 DMA_XMOD

0x14 DMA_YCNT

0x18 DMA_YMOD

Table 11-14: Descriptor Array Mode Parameter and Descriptor Offsets

Descriptor Offset Parameter Register

0x00 DMA_ADDRSTART

0x04 DMA_CFG

0x08 DMA_XCNT

0x0C DMA_XMOD

0x10 DMA_YCNT

0x14 DMA_YMOD

DIRECT MEMORY ACCESS (DMA)
DMA OPERATING MODES

11–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NOTE: For descriptor list mode, at a minimum the DMA_DSCPTR_NXT register must be written prior to
write to the DMA_CFG register, which is the special action required to start the DMA channel.

NOTE: For descriptor array mode, at a minimum the DMA_DSCPTR_CUR register must be written prior to
writing to the DMA_CFG register, which is the special action required to start the DMA channel.

Data Transfer Modes

In addition to supporting basic one-dimensional DMA transfers, the DMA channel also supports two-
dimensional functionality.

Two-Dimensional DMA

Register-based and descriptor-based DMA flow modes support two-dimensional data transfers.

In two-dimensional (2D) mode the X directional count and modifier (DMA_XCNT and DMA_XMOD) registers
are accompanied by the Y directional count and modifier (DMA_YCNT and DMA_YMOD) registers, supporting
arbitrary row and column sizes. Furthermore, modify values can be negative, allowing implementation of
interleaved data streams. DMA_XCNT and DMA_YCNT specify the row and column sizes respectively, where
the DMA_XCNT must be 2 or greater.

The DMA start address (DMA_ADDRSTART) register, along with DMA_XMOD and DMA_YMOD registers, are all
specified in bytes, and they must be aligned to a multiple of the DMA transfer word size as configured by
the DMA_CFG.MSIZE bit. Misalignment results in a DMA channel error.

The DMA_XMOD register value is the byte-address increment that is applied after each transfer that decre-
ments the DMA_XCNT register. The DMA_XCNT register is not applied when the inner loop count is ended by
the DMA_XCNT_CUR register decrementing to 0 from 1, except that it is applied on the final transfer when
the DMA_YCNT register is 1 and the DMA_XCNT register decrements from 1 to 0.

The DMA_YMOD register value is the byte-address increment that is applied after each decrement of the value
in the DMA_YCNT_CUR register. However, the DMA_YMOD value is not applied to the last item in the array on
which the outer loop count (DMA_YCNT_CUR) also expires by decrementing from 1 to 0.

Table 11-15: Descriptor List Mode Parameter and Descriptor Offsets

Descriptor Offset Parameter Register

0x00 DMA_DSCPTR_NXT

0x04 DMA_ADDRSTART

0x08 DMA_CFG

0x0C DMA_XCNT

0x10 DMA_XMOD

0x14 DMA_YCNT

0x18 DMA_YMOD

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–31

After the last transfer completes, DMA_YCNT_CUR is 1 and the DMA_XCNT_CUR register is 0. The DMA chan-
nels current address points to the last items address plus the DMA_XMOD register value. Note that if the DMA
channel is programmed to refresh automatically such as in autobuffer mode, then both the DMA_XCNT_CUR
and DMA_YCNT_CUR registers and the DMA current address (DMA_ADDR_CUR) are reloaded for the first data
transfer of the next work unit.

Interrupt notification is configurable for end of row or end of work unit completion.

DMA Channel Event Control

The DMA channel supports a number of events that provide notification of work unit state, peripheral
data request, peripheral data request and completion events, and DMA channel error conditions. In addi-
tion to flexible interrupt configuration, the DMA channel also supports incoming and outgoing triggers
which are useful in synchronizing the DMA channel with other system resources.

The DMA channel has two interrupt signals for support of a number of events such as work unit state
events, peripheral interrupt request (PIRQ) events, peripheral data request (PDR) events and DMA
channel errors. DMA channel errors are reported on a dedicated interrupt signal while all other interrupt
sources share the same interrupt signal. In addition to flexible interrupt configuration, the DMA channel
also supports incoming and outgoing triggers which are useful in synchronizing the DMA channel with
other system resources.

DMA channel events can be signaled to the processor using status information and optional interrupt
requests. These events may be used for data transfer progress updates and to request intervention from the
processor core. A majority of DMA channel interrupts are configured using bits in the DMA_CFG register.
Dedicated bits in the DMA_STAT register are used to report the occurrence of various events. Interrupt
requests are cleared by write-one-to-clear (W1C) operations to the status register.

NOTE: Hardware does not clear the interrupt status bits automatically even if the DMA channel is disabled
then re-enabled. In this situation the interrupt signal from the DMA channel is de-asserted once
the DMA channel is disabled, but the status bit remains set until the DMA channel is enabled again
or cleared by software.

The DMA channel supports the following categories of events on the interrupt signals.

• Work unit state events are used to generate interrupts on row or on work unit DMA completion.

• Peripheral interrupt request (PIRQ) events are signaled by the peripheral when it has completed the
transfer of all data.

• Peripheral data request (PDR) events for when the DMA channel is disabled or idle and the peripheral
is requesting data from the DMA channel.

• Error events due to a failure in the work unit.

ATTENTION: The DMA channel does not generate an interrupt to the processor for a work unit state event,
PIRQ event or forward a PDR event while in an error state.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL EVENT CONTROL

11–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Event Signals

The following table provides descriptions of DMA channel events.

Work Unit State Events

Work unit state events are generated as a result of a row or a work unit completion. In order for either of
these events to result in the generation of an interrupt, the interrupt of the DMA channel must be config-
ured for one of the available work unit completion modes.

• Current X count reaching 0 for row completion or 1-D DMA work unit completion.

• Current Y count reaching 0 for work unit completion of 2-D DMA.

NOTE: For 1-D DMA, configuring the interrupt to be generated on the current Y counter reaching 0
results in a DMA channel configuration error.

The DMA channel issues the last memory read or write transaction for the row or work unit and then
pauses until the read or write acknowledge is returned. Once the transfer has been acknowledged success-
fully, the DMA channel issues the interrupt and continues to process the next row or work unit.

Waiting for the memory access to be acknowledged results in a delay. However, programs can read or
modify data in the memory without adversely affecting, or being affected by, the DMA transfer.

NOTE: While the DMA channel may be paused waiting for the memory transfer to be acknowledged, the
DMA channel is still capable of fetching the next descriptor set in order to be ready to process the
next work unit as soon as the memory access completes.

The interrupt timing is also affected by the synchronization feature of the DMA channel’s configuration.
For memory read operations with synchronization enabled, the interrupt is delayed further until the last
transfer from the DMA channel’s FIFO to the peripheral completes. The interrupt timing for memory
write operations is not affected by the synchronization feature.

Table 11-16: Event Signals

Signal Width (bits) Description

DMA_ERROR 1 Used to signal an error condition in the DMA channel. The source of the error can be
determined by reading the DMA_STAT.ERRC bit.

DONE_PIRQ_INT 1 Signal used to indicate DMA completions events, PIRQ events and also for forwarding
PDR events based on configuration. The source of the event may be determined by
reading the corresponding fields in DMA_STAT.

DMA_TRIG_OUT 1 Trigger output that gets routed to the TRU and can be configured to provide notification
on row or work unit completion.

DMA_TRIG_IN 1 Trigger input from the TRU that can be used to control the start of a work unit.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–33

Peripheral Interrupt Request Events

Peripheral interrupt request (PIRQ) events may be used by a peripheral connected to the DMA channel to
indicate, in the case of a peripheral transmit operation, that data has not only left the FIFO of the DMA
channel, but that the peripheral has also completed the transfer.

In order to support PIRQ interrupts the DMA channel’s interrupt must be configured correctly. This
disables the generation of interrupts based on work unit state and instead results in generating an interrupt
when the DMA channel receives the command from the peripheral.

The interrupt is only generated if the following conditions are satisfied.

• The DMA channel is enabled.

• The DMA channel is in the stop state.

• The DMA channel’s interrupt is configured for PIRQ operation.

Peripheral Data Request Events

Peripheral data request (PDR) events occur when an interfaced peripheral requests data from the DMA
channel and the DMA channel is either disabled or enabled and in the stop state.

When the DMA channel is disabled and a peripheral sends a command to the DMA channel to request
data, the DMA channel generates an interrupt to the System Event Controller (SEC). There is no status
information reported about this event in the DMA channel’s status register. Instead, the PDR event is iden-
tified by the fact that the DMA channel generated an interrupt when it was disabled. Further confirmation
can be obtained by verifying the status of the peripheral interfaced to the DMA channel.

In addition to requests for data being forwarded as interrupts when the DMA channel is in the disabled
state, the DMA channel is also able to forward PDR events as an interrupt when the DMA channel is in the
stop state after completion of a work unit. The forwarding of this interrupt when the DMA channel is in
the stop state is optional and configured by the program during DMA channel configuration.

DMA Channel Triggers

DMA channel triggers are useful for synchronizing the DMA channel with other events in the system.
Channel triggers can be used in combination with each other in order to create ping-pong buffers or when
combined with interrupts to notify the processor that a particular milestone has been reached and that
service is required. Triggers may also be used to enforce a handshake DMA operation in which the trigger
acts as a signal for a DMA request.

NOTE: Using the trigger to control the pace of data transfers, such as in the case of a handshake DMA,
requires that all the data for the entire work unit is ready for transfer.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL EVENT CONTROL

11–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The DMA channel has a single incoming trigger that can be used to control the pace of the data transfers
performed by the DMA channel. The DMA channel can be configured to wait for the incoming trigger
before starting the work unit transfer or fetching a descriptor set from memory.

The DMA channel also has a single outgoing trigger signal that may be configured to signal the end of row
or an entire work unit. The DMA channel issues the last memory read or memory write transaction for the
row or work unit, and then pauses until the transfer acknowledge is returned. Once the transfer has been
acknowledged, the DMA channel issues the trigger before processing the next row or work unit.

Issuing Triggers

The DMA channel can be configured to generate an outgoing trigger signal at the end of row or the end of
a work unit. The DMA channel issues the last memory read or memory write transaction for the row or
work unit, and then pauses until the transfer acknowledge is returned. Once the transfer has been acknowl-
edged the DMA channel issues the trigger before processing the next row or work unit.

NOTE: While the DMA channel may be paused while waiting for the memory transfer to be acknowl-
edged, the DMA channel is still capable of fetching the next descriptor set in order to be ready to
process the next work unit as soon as the memory access completes.

Waiting For Triggers

Triggering may be used to control the pace of data transfers performed by the DMA channel. If the DMA_
CFG.TWAIT bit is enabled and a trigger has been received since the last time the DMA channel left the wait
state or since transition from disabled to enabled, then the DMA channel enters a wait state before begin-
ning the next work unit. In this state the DMA channel also does not perform a descriptor fetch. Once a
trigger is received, the DMA channel leaves the wait state and begins the next work unit or fetches the next
descriptor if configured for a descriptor based mode of operation.

If the DMA channel is programmed through a memory mapped register write operation with stop flow
mode enabled, the DMA_CFG.TWAIT bit enabled, and no trigger having already been received, then the
DMA channel enters a wait state before performing the data transfer. Upon receiving the trigger, the DMA
channel begins the data transfer portion of the work unit. Once the data transfer is complete, the DMA
channel enters the stop state.

If the DMA channel is programmed through a memory-mapped register write operation with the flow
mode configured to one of the descriptor based modes, then the DMA channel enters the wait state before
performing the descriptor fetch. Once the descriptor fetch is complete, the DMA channel immediately
proceeds to the data transfer, regardless of the value of the DMA_CFG.TWAIT bit. If the descriptor fetch is
followed by another descriptor fetch, then the DMA channel enters a wait state before fetching the next
descriptor.

If the descriptor fetch returns a descriptor with stop flow mode then the DMA_CFG.TWAIT value for that
descriptor does not affect the DMA as the DMA channel enters the stop state once the data transfer is

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–35

completed. The DMA channel only enters the wait state based on DMA_CFG.TWAIT before the next work
unit or descriptor fetch.

If the descriptor fetch returns a descriptor configured for autobuffer flow mode, then DMA_CFG.TWAIT for
that descriptor does not affect the DMA for the first work unit of the autobuffer transfer. Once the first
work unit is completed and another trigger has not been received, then the DMA channel enters the wait
state before re-initializing its counters and address registers (if not configured for current addressing). The
next work unit is performed once the trigger is received.

The incoming trigger does not have to be issued after the DMA channel has entered the wait state, and can
be issued while the DMA channel is executing a work unit, descriptor fetch or even when in the stop state.
The trigger is held internally, and once the work unit is complete, the DMA channel skips the wait state
and proceeds directly to executing the following work unit. If the DMA_CFG.TWAIT bit is not enabled, the
DMA channel also skips the wait state. However, the trigger is held internally and used the next time DMA_
CFG.TWAIT is enabled. This allows programs to enable the DMA_CFG.TWAIT functionality several work
units apart and not be concerned with losing a trigger. The DMA channels trigger overrun enable func-
tionality may be enabled in all work units to ensure multiple triggers do not occur between the work units
with the DMA_CFG.TWAIT bit enabled.

DMA Channel Programming Model

Several synchronization and control methods are available for use in development of software tasks which
manage peripheral DMA and memory DMA. Such software needs to be able to accept requests for new
DMA transfers from other software tasks, integrate these transfers into existing transfer queues, and reli-
ably notify other tasks when the transfers are complete.

In the processor, it is possible for each peripheral DMA and memory DMA stream to be managed by a
separate task or to be managed together with any other stream. Each DMA channel has independent,
orthogonal control registers, resources, and interrupts, so that the selection of the control scheme for one
channel does not affect the choice of control scheme on other channels. For example, one peripheral can
use a linked-descriptor-list, interrupt-driven scheme while another peripheral can simultaneously use a
demand-driven, buffer-at-a-time scheme synchronized by polling DMA events.

The topics that follow describe the steps required to configure the DMA channel for the various modes in
addition to the programming concepts required for software synchronization.

Mode Configuration

Use the step-by-step directions that follow to set up the DMA channel for operating modes.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

11–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Register Based Linear Buffer Stop Flow Mode

Configures a peripheral’s DMA channel to read data from internal memory and send it to the peripheral
for transmission.

PREREQUISITE:

The peripheral is assumed to be in a state where it is ready to transmit data received from the DMA
channel.

The task involves writing to a number of DMA channel MMR registers in order to configure a DMA
channel to read data from internal memory and send it to a peripheral connected to the peripheral DMA
bus. On DMA completion the DMA channel enters the idle state until either disabled or reconfigured for
a new transfer.

1. Write the DMA_ADDRSTART register.

ADDITIONAL INFORMATION: The address may be used to calculate the most optimum DMA_CFG.MSIZE
possible.

2. Calculate most optimum DMA_CFG.MSIZE based on the DMA_ADDRSTART register and number of bytes
in work unit.

ADDITIONAL INFORMATION: The number of bytes in the work unit must be a multiple of the selected DMA_
CFG.MSIZE and the start address alignment must also be considered.

3. Write the DMA_XCNT register based on the calculated DMA_CFG.MSIZE.

ADDITIONAL INFORMATION: The DMA_XCNT value is the number of DMA_CFG.MSIZE transfers required to
make up the entire work unit.

4. Write the DMA_XMOD register.

ADDITIONAL INFORMATION: For a completely linear buffer transfer, DMA_XMOD is determined by the selected
DMA_CFG.MSIZE. This register is always specified in the number of bytes.

5. Write the DMA_CFG register with DMA_CFG.EN configured to enable the DMA channel.

ADDITIONAL INFORMATION: DMA_CFG.FLOW must be set for STOP mode, DMA_CFG.WNR must be configured
for memory read operation and DMA_CFG.PSIZE must be configured to a value no larger than the
supported bus width of the peripheral DMA bus.

• The DMA_CFG.SYNC bit may be configured to control DMA completion notification timing.

• Interrupts and triggers may also be configured at this step depending on requirements.

RESULT:

The DMA channel is now enabled and the buffer is transferred. The DMA channel enters the IDLE state
upon completion of the work unit.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–37

Register Based Autobuffer Flow Mode

Configures a peripheral’s DMA channel to read data from internal memory and send it to the peripheral
for transmission. The transmission of the buffer is repeated endlessly.

PREREQUISITE:

The peripheral is assumed to be in a state where it is ready to transmit data received from the DMA
channel.

The task involves writing to a number of DMA channel MMR registers in order to configure a DMA
channel to read data from internal memory and send it to a peripheral connected to the peripheral DMA
bus. On DMA completion the DMA channel starts the DMA operation over again creating an endless
circular buffer transfer.

1. Write the DMA_ADDRSTART register.

ADDITIONAL INFORMATION: The address may be used to calculate the most optimum DMA_CFG.MSIZE
possible.

2. Calculate most optimum DMA_CFG.MSIZE based on the DMA_ADDRSTART register and number of bytes
in work unit.

ADDITIONAL INFORMATION: The number of bytes in the work unit must be a multiple of the selected DMA_
CFG.MSIZE and the start address alignment must also be considered.

3. Write the DMA_XCNT register based on calculated DMA_CFG.MSIZE.

ADDITIONAL INFORMATION: DMA_XCNT is the number of DMA_CFG.MSIZE transfers required to make up the
entire work unit.

4. Write the DMA_XMOD register.

ADDITIONAL INFORMATION: For a completely linear buffer transfer, DMA_XMOD is determined by the selected
DMA_CFG.MSIZE. This register is always specified in the number of bytes.

5. Write the DMA_CFG register with the DMA_CFG.EN bit configured to enable the DMA channel.

ADDITIONAL INFORMATION: DMA_CFG.FLOW must be set for AUTOBUFFER mode, the DMA_CFG.WNR bit
must be configured for memory read operation and the DMA_CFG.PSIZE bit must be configured to a
value no larger than the supported bus width of the peripheral DMA bus.

• The DMA_CFG.SYNC bit may be configured to control DMA completion notification timing.

• Interrupts and triggers may also be configured at this step depending on requirements.

RESULT:

The DMA channel is now enabled and the buffer is transferred until the DMA channel is disabled.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

11–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Descriptor Array Flow Mode

Configures a peripheral’s DMA channel to read data from memory as described by the descriptor sets in
the array and send it to the peripheral for transmission. Descriptor sets are read from an array in memory
to configure the individual work units.

PREREQUISITE:

The peripheral is assumed to be in a state where it is ready to transmit data received from the DMA
channel. The array of descriptors is assumed to be initialized with the last descriptor set configured for
STOP flow mode.

The task involves writing to a number of DMA channel MMR registers in order to configure a DMA
channel to read the first descriptor set from the array in memory that is responsible for the configuring the
DMA channel to retrieve and send the data to a peripheral connected to the peripheral DMA bus. Upon
DMA completion the DMA channel enters the idle state until either disabled or reconfigured for a new
transfer.

1. Write the DMA_DSCPTR_CUR register with the address of the array in which the descriptor sets are stored.

ADDITIONAL INFORMATION: The array address must meet any processor alignments restrictions imposed
by descriptor fetches.

2. Write the DMA_CFG register with the DMA_CFG.EN bit configured to enable the DMA channel.

ADDITIONAL INFORMATION: DMA_CFG.FLOW must be set for DESCRIPTOR ARRAY mode, DMA_CFG.
NDSIZE must be configured to describe the number of descriptor elements contained within the first
descriptor set. DMA_CFG.WNR must be configured for memory read operation and DMA_CFG.PSIZE must
be configured to a value no larger than the supported bus width of the peripheral DMA bus.

• DMA_CFG.SYNC configuration is controlled by the descriptor set that is to be fetched as are interrupt
and trigger configurations

STEP RESULT: The first descriptor set is fetched from memory location provided by the DMA_DSCPTR_CUR
register and loaded to the DMA channel’s MMR registers.

RESULT:

The DMA channel is now processing all the work units provided in the descriptor array. The DMA
channel enters the IDLE state upon completion of the final work unit that was configured for STOP flow
mode.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–39

Descriptor List Flow Mode

Configures a peripheral’s DMA channel to read data from memory as described by the descriptor sets in
the list and send it to the peripheral for transmission. Descriptor sets are read from a list of descriptors in
which each descriptor set has a descriptor that points to the next descriptor set location in memory.

PREREQUISITE:

The peripheral is assumed to be in a state where it is ready to transmit data received from the DMA
channel. The list of descriptors is assumed to be initialized with the last descriptor set in the list configured
for STOP flow mode.

The task involves writing to a number of DMA channel MMR registers in order to configure a DMA
channel to read the first descriptor set from the list in memory that is responsible for the configuring the
DMA channel to retrieve and send the data to a peripheral connected to the peripheral DMA bus. Upon
DMA completion the DMA channel enters the idle state until either disabled or reconfigured for a new
transfer.

1. Write the DMA_DSCPTR_NXT register with the address of the first descriptor in the list to be processed.

ADDITIONAL INFORMATION: The array address must meet any processor alignments restrictions imposed
by descriptor fetches.

2. Write the DMA_CFG register with the DMA_CFG.EN configured to enable the DMA channel.

ADDITIONAL INFORMATION: DMA_CFG.FLOW must be set for DESCRIPTOR LIST mode, and the DMA_CFG.
NDSIZE bit must be configured to describe the number of descriptor elements contained within the first
descriptor set. The DMA_CFG.WNR bit must be configured for memory read operation and the DMA_CFG.
PSIZE bit must be configured to a value no larger than the supported bus width of the peripheral DMA
bus.

• DMA_CFG.SYNC configuration is controlled by the descriptor set that is to be fetched as are interrupt
and trigger configurations.

STEP RESULT: The first descriptor set is fetched from the memory location provided by DMA_DSCPTR_NXT
and loaded to the DMA channel’s MMR registers.

RESULT:

The DMA channel is now processing all the work units provided in the descriptor list. The DMA channel
enters the IDLE state when the final work unit that was configured for STOP flow mode is complete.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

11–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Register Based Memory-to-Memory Transfer in Stop Flow Mode

Configures a memory DMA channel pair in STOP flow mode. One DMA channel is configured for
memory read operations while the other is configured for memory write.

PREREQUISITE:

The task involves writing to a number of DMA channels on two DMA channels that create a memory
DMA pair. Upon DMA completion the DMA channel enters the idle state until either disabled or recon-
figured for a new transfer.

1. Write the DMA_ADDRSTART register of the source DMA channel.

ADDITIONAL INFORMATION: The address may be used to calculate the most optimum DMA_CFG.MSIZE
possible.

2. Calculate most optimum DMA_CFG.MSIZE based on the DMA_ADDRSTART register and number of bytes
in work unit.

ADDITIONAL INFORMATION: The number of bytes in the work unit must be a multiple of the selected DMA_
CFG.MSIZE and the start address alignment must also be considered.

3. Write the DMA_XCNT register of the source DMA channel based on calculated DMA_CFG.MSIZE.

ADDITIONAL INFORMATION: DMA_XCNT is the number of DMA_CFG.MSIZE transfers required to make up the
entire work unit.

4. Write the DMA_XMOD register of the source DMA channel.

ADDITIONAL INFORMATION: For a completely linear buffer transfer, DMA_XMOD is determined by the selected
DMA_CFG.MSIZE. This register is always specified in the number of bytes.

5. Write the DMA_ADDRSTART register of the destination DMA channel.

ADDITIONAL INFORMATION: The address may be used to calculate the most optimum DMA_CFG.MSIZE
possible.

6. Calculate most optimum DMA_CFG.MSIZE based on the DMA_ADDRSTART register and number of bytes
in work unit.

ADDITIONAL INFORMATION: The number of bytes in the work unit must be a multiple of the selected DMA_
CFG.MSIZE and the start address alignment must also be considered.

7. Write the DMA_XCNT register of the destination DMA channel based on calculated DMA_CFG.MSIZE.

ADDITIONAL INFORMATION: DMA_XCNT is the number of DMA_CFG.MSIZE transfers required to make up the
entire work unit.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–41

8. Write the DMA_XMOD register of the destination DMA channel.

ADDITIONAL INFORMATION: For a completely linear buffer transfer, DMA_XMOD is determined by the selected
DMA_CFG.MSIZE. This register is always specified in the number of bytes.

9. Write the DMA_CFG register of the source DMA channel with DMA_CFG.EN configured to enable the
DMA channel.

ADDITIONAL INFORMATION: DMA_CFG.FLOW must be set for STOP mode, DMA_CFG.WNR must be configured
for memory read operation and DMA_CFG.PSIZE must be configured to a value no larger than the
supported bus width of the peripheral DMA bus.

• DMA_CFG.SYNC may be configured to control DMA completion notification timing.

• Interrupts and triggers may also be configured at this step depending on requirements, generally
however they would be enabled within the destination DMA channel configuration.

STEP RESULT: The memory read DMA transfer begins.

10. Write the DMA_CFG register of the destination DMA channel with DMA_CFG.EN configured to enable the
DMA channel.

ADDITIONAL INFORMATION: DMA_CFG.FLOW must be set for STOP mode, DMA_CFG.WNR must be configured
for memory write operation and DMA_CFG.PSIZE must be configured to a value no larger than the
supported bus width of the peripheral DMA bus. This must also match the value written for the source
DMA channel configuration.

• Interrupts and triggers may also be configured at this step depending on requirements.

STEP RESULT: The memory write DMA transfer begins.

RESULT:

Both memory DMA channels are now running and the data is transferred from the source address to the
destination address. The DMA channel enters the IDLE state upon completion of the work unit.

Programming Concepts

Using the features, operating modes, and event control for the DMA channel to their greatest potential
requires an understanding of some DMA channel related concepts.

Synchronization of Software and DMA

A critical element of software DMA management is synchronization of DMA work unit completion with
the software. This can best be achieved using DMA channel interrupt and trigger events, or through
polling of these event’s status bits within the DMA channel registers, or a combination of both. Polling for
address or count can only provide synchronization within loose tolerances comparable to pipeline lengths.

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

11–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Interrupt and Trigger Event Based Synchronization

Interrupt and trigger based synchronization methods must avoid interrupt/trigger overrun, or the failure
to invoke a DMA channel’s event handler for every event due to excessive latency in processing of events.
Generally, the system design must either ensure that only one event per channel is scheduled (for example,
at the end of a descriptor list), or that generated events are spaced sufficiently far apart in time that system
processing budgets can guarantee every event is serviced.

When the DMA channel issues an interrupt/trigger event or changes event status bits in the DMA_STAT
register, it guarantees that the last memory operation of the work unit is complete. For memory read DMA
transactions, this means that the final memory read data has been safely received in the DMA channel’s
FIFO. For memory write DMA transactions, this means that the DMA channel has received an acknowl-
edge that the last write transfer of the work unit is complete.

Register Polling Based Synchronization

Polling of DMA channel registers such as the DMA_ADDR_CUR, DMA_DSCPTR_CUR, or the DMA_XCNT_CUR/
DMA_YCNT_CUR registers is not recommended as a method of precisely synchronizing DMA with data
processing due to the DMA channel FIFOs and DMA/memory pipelining. The current address, pointer,
and count registers change several cycles in advance of the completion of the corresponding memory oper-
ation, as measured by the time at which the results of the operation are first visible to the core by memory
read or write instructions.

For example, in a DMA channel memory write operation to external memory, assume a DMA channel
write operation is initiated by DMA channel A. For memories with access latency, this operation requires
many system clock cycles. Meanwhile, another DMA channel (channel B) which does not in itself incur
latency, initiates a transfer that is stalled behind the slow operation of channel A. Software monitoring
channel B could not safely conclude whether the memory location pointed to by channel B’s DMA_ADDR_
CUR register has or has not been written, based solely on this register’s contents.

Polling of the current address, pointer, and count registers can permit loose synchronization of DMA with
software if allowances are made for the lengths of the DMA/memory pipeline. Further, the length of the
DMA FIFO for a particular peripheral needs to be taken into consideration. The DMA channel does not
advance current address/pointer/count registers if these FIFOs are filled with incomplete work (including
reads that have been started but not yet finished).

Additionally, the length of the pipelines to the destination memory needs to be taken into consideration.
If the DMA FIFO length and the DMA channel’s memory pipeline length are added, an estimate can be
made of the maximum number of incomplete memory operations in progress at one time.

NOTE: The estimate would be a maximum, as the DMA/memory pipeline may include traffic from other
DMA channels.

Descriptor Queues

A system designer might want to write a DMA manager facility which accepts DMA requests from other
software. The DMA manager software does not know in advance when new work requests are received or
what these requests might contain. The software could manage these transfers using a circular linked list

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–43

of DMA descriptors, where each descriptor sets the DMA_DSCPTR_NXT descriptor which points to the next
descriptor set, and the last descriptor set points to the first.

The code that writes into this descriptor list could use the processor’s circular addressing modes, so that it
does not need to use comparison and conditional instructions to manage the circular structure. In this
case, the DMA_DSCPTR_NXT descriptor of each descriptor set could even be written once at startup, and
skipped over as each descriptor’s new contents are written.

The recommended method for synchronization of a descriptor queue is through the use of an interrupt or
trigger. The descriptor queue is structured so that (at least) the final valid descriptor set is always
programmed to generate an interrupt or trigger event upon completion. More detail is provided in the
following sections.

• Queues Using Event Generation for Every Descriptor Set

• Queues Using Minimal Events

Queues Using Event Generation for Every Descriptor Set

In this system, the DMA manager software synchronizes with the DMA channel by enabling an interrupt
or trigger on every descriptor set. This method should only be used if the system design can guarantee that
each work unit completion event is serviced separately (no interrupt or trigger overrun).

To maintain synchronization of the descriptor set queue, the non-interrupt software maintains a count of
descriptor sets added to the queue, while the event handler (either interrupt or trigger) maintains a count
of completed descriptor sets removed from the queue. The counts are equal only when the DMA channel
is paused after having processed all the descriptor sets.

When each new work unit event is received, the DMA manager software initializes a new descriptor set,
taking care to set the flow to STOP mode. Next, the software compares the descriptor set counts to deter-
mine if the DMA channel is running or not. If the DMA channel is paused (counts equal), the software
increments its count and then starts the DMA channel by writing the new descriptor set’s DMA_CFG
descriptor.

If the counts are unequal, the software instead modifies the next-to-last descriptor set’s DMA_CFG descriptor
so that it now describes the newly-queued descriptor set. This operation does not disrupt the DMA
channel provided the rest of the descriptor set’s descriptors are initialized in advance. It is necessary,
however, to synchronize the software to the DMA to correctly determine whether the new or the old DMA_
CFG value was read by the DMA channel.

The synchronization operation should be performed in the event handler. First, when an event is detected,
the handler should read the channel’s DMA_STAT register. If the DMA_STAT.RUN bit indicates the DMA
channel is running, then the channel has moved on to processing another descriptor, and the event handler
may increment its count and exit. If the DMA_STAT.RUN bit indicates the channel is not running, then the
channel is paused, either because there are no more descriptor sets to process, or because the last descriptor
set was queued too late (that is, the modification of the next-to-last descriptor set’s DMA_CFG descriptor
occurred after that descriptor was read into the DMA channel). In this case, the event handler writes the

DIRECT MEMORY ACCESS (DMA)
DMA CHANNEL PROGRAMMING MODEL

11–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA_CFG value appropriate for the last descriptor set to the DMA channel’s DMA_CFG register, increments
the completed descriptor count, and exits.

Again, this system can fail if the system’s event latencies are large enough to cause any of the channel’s
DMA events to be dropped. An event handler capable of safely synchronizing multiple descriptor set inter-
rupts is complex, performing several MMR accesses to ensure robust operation. In such a system environ-
ment a minimal event synchronization method is preferred.

Queues Using Minimal Events

In this system, only one DMA interrupt or trigger event is generated in the queue at any time. The DMA
event handler for this system can also be extremely short. Here, the descriptor queue is organized into an
active and a waiting portion, where events are enabled only on the last descriptor set in each portion.

When each new DMA request is processed, the software fills in a new descriptor set’s contents and adds it
to the waiting portion of the queue. The descriptor set’s DMA_CFG descriptor should have the flow set to
stop mode. If more than one request is received before the DMA queue completion event occurs, the non-
interrupt code queues later descriptor sets, forming a waiting portion of the queue that is disconnected
from the active portion of the queue being processed by the DMA channel. In other words, all but the last
active descriptor sets contain FLOW values for a descriptor based mode and have no event enable set.

The last active descriptor set has the stop flow mode and an event generation enabled. Also, all but the last
waiting descriptor sets are configured for descriptor based flow modes with no event generation. Only the
last waiting descriptor set is configured for stop flow mode and event generation enabled. This ensures that
the DMA channel can automatically process the whole active queue before then issuing one event. Also,
this arrangement makes it easy to start the waiting queue within the event handler by a single DMA_CFG
register write.

After queuing a new waiting descriptor, the non-interrupt software leaves a message for its interrupt
handler in a memory mailbox location containing the desired DMA_CFG value to use to start the first waiting
descriptor set in the waiting queue (or 0 to indicate no descriptors are waiting).

It is critical that the software not modify the contents of the active descriptor set queue directly, once
processing by the DMA channel has started, unless careful synchronization measures are taken. In the
most straightforward implementation of a descriptor set queue, the DMA manager software never modi-
fies descriptors on the active queue. Instead, the DMA manager waits until the DMA queue completion
event indicates the processing of the entire active queue is complete.

When a DMA queue completion event is received, the event handler reads the mailbox from the non-inter-
rupt software and writes the value to the DMA channel’s DMA_CFG register. This single register write
restarts the queue, effectively transforming the waiting queue to an active queue. The event handler then
passes a message back to the non-interrupt software indicating the location of the last descriptor set
accepted into the active queue.

If, on the other hand, the event handler reads its mailbox and finds a DMA_CFG value of zero, indicating
there is no more work to perform, then it passes an appropriate message back to the non-interrupt software
indicating that the queue has stopped.

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–45

The non-interrupt software which accepts new DMA work unit requests needs to synchronize the activa-
tion of a new work unit with the interrupt handler. If the queue has stopped (that is, if the mailbox from
the event handler is zero), the non-interrupt software is responsible for starting the queue (writing the first
descriptor sets DMA_CFG value to the channel’s DMA_CFG register). If the queue is not stopped, the non-
interrupt software must not write the DMA_CFG register (which would cause a DMA error), but instead it
should queue the descriptor onto the waiting queue and update its mailbox directed to the event handler.

ADSP-CM40x DMA Register Descriptions

DMA Channel (DMA) contains the following registers.

Table 11-17: ADSP-CM40x DMA Register List

Name Description

DMA_DSCPTR_NXT Pointer to Next Initial Descriptor

DMA_ADDRSTART Start Address of Current Buffer

DMA_CFG Configuration Register

DMA_XCNT Inner Loop Count Start Value

DMA_XMOD Inner Loop Address Increment

DMA_YCNT Outer Loop Count Start Value (2D only)

DMA_YMOD Outer Loop Address Increment (2D only)

DMA_DSCPTR_CUR Current Descriptor Pointer

DMA_DSCPTR_PRV Previous Initial Descriptor Pointer

DMA_ADDR_CUR Current Address

DMA_STAT Status Register

DMA_XCNT_CUR Current Count(1D) or intra-row XCNT (2D)

DMA_YCNT_CUR Current Row Count (2D only)

DMA_BWLCNT Bandwidth Limit Count

DMA_BWLCNT_CUR Bandwidth Limit Count Current

DMA_BWMCNT Bandwidth Monitor Count

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

11–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Pointer to Next Initial Descriptor

The DMA_DSCPTR_NXT register specifies the start location of the next descriptor set, which begins when the
DMA activity specified by the current descriptor set completes. This register is read/write prior to enabling
the channel, but is read-only after enabling channel.

The DMA_DSCPTR_NXT register is only used in descriptor list mode. At the start of a descriptor fetch in this
mode, the DMA_DSCPTR_NXT register is copied into the DMA_DSCPTR_CUR register. During descriptor fetch,
the DMA increments the DMA_DSCPTR_CUR register value after reading each element of the descriptor set.

In descriptor list mode, the DMA_DSCPTR_NXT register (not the DMA_DSCPTR_CUR register) must be
programmed directly through MMR access, before the DMA operation is started. In descriptor array
mode, the DMA disregards the DMA_DSCPTR_NXT register and uses the DMA_DSCPTR_CUR register to control
descriptor fetch.

Figure 11-4: DMA_DSCPTR_NXT Register Diagram

DMA_BWMCNT_CUR Bandwidth Monitor Count Current

Table 11-18: DMA_DSCPTR_NXT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Pointer To Next Descriptor Set.

Table 11-17: ADSP-CM40x DMA Register List (Continued)

Name Description

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–47

Start Address of Current Buffer

The DMA_ADDRSTART register contains the start address of the Work Unit currently targeted for DMA. This
register is read/write prior to enabling the channel, but is read-only after enabling channel.

Figure 11-5: DMA_ADDRSTART Register Diagram

Configuration Register

The DMA_CFG sets up DMA parameters and operation modes. Other than clearing the DMA_CFG.EN bit,
writing to the DMA_CFG register while a DMA process is already running cause a DMA error.

Table 11-19: DMA_ADDRSTART Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Work Unit address start value.

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

11–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 11-6: DMA_CFG Register Diagram

Table 11-20: DMA_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

28
(R/W)

PDRF Peripheral Data Request Forward.
The DMA_CFG.PDRF defines how the DMA handles data requests from the
peripheral while in idle state after a stop mode or memory read work unit. If set, the
DMA forwards the peripheral data request as an interrupt.
Note that the peripheral data request forward selection applies only to DMA_CFG.
FLOW bits set for stop and DMA_CFG.WNR bits set for memory read.

0 Peripheral Data Request Not Forwarded

1 Peripheral Data Request Forwarded

26
(R/W)

TWOD Two Dimension Addressing Enable.
The DMA_CFG.TWOD selects whether the DMA addressing involves only DMA_
XCNT and DMA_XMOD (one-dimensional DMA) or also involves DMA_YCNT and
DMA_YMOD (two-dimensional DMA).

0 One-Dimensional Addressing

1 Two-Dimensional Addressing

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–49

25
(R/W)

DESCIDCPY Descriptor ID Copy Control.
The DMA_CFG.DESCIDCPY specifies when to copy the initial descriptor pointer to
the DMA_DSCPTR_PRV register.
Note that a bus write to DMA_CFG to clear the DMA_CFG.EN bit cause the DMA to
use the new value of DMA_CFG.DESCIDCPY immediately. To preserve consistency
(if required by application), the new value of DMA_CFG.DESCIDCPY should match
the previous value.

0 Never Copy

1 Copy on Work Unit Complete

24
(R/W)

TOVEN Trigger Overrun Error Enable.
A trigger overrun occurs if more than one trigger was received before the DMA
reached the trigger wait state. If DMA_CFG.TOVEN is set, a trigger overrun causes
the DMA to flag an error. In cases where a trigger overrun is not a problem, clearing
DMA_CFG.TOVEN prevents the overrun from causing an error and halting the
DMA. The DMA_CFG.TOVEN operates independently of the DMA_CFG.TWAIT bit
selection.

0 Ignore Trigger Overrun

1 Error on Trigger Overrun

23:22
(R/W)

TRIG Generate Outgoing Trigger.
The DMA_CFG.TRIG selects whether the DMA issues an outgoing trigger, based on
the work unit counter values. In one-dimensional mode, the only options are to
trigger at the end of the whole Work Unit (trigger when DMA_XCNT_CUR reaches 0)
or not to trigger at all. If in one-dimensional addressing mode, programming DMA_
CFG.TRIG to trigger when DMA_YCNT_CUR reaches 0 (or to reserved) cause the
DMA to flag a configuration error.
If in two-dimensional addressing mode, the options are to trigger at the end of each
row of the inner loop (when DMA_XCNT_CUR reaches 0), to trigger only after
completing the whole work unit (when DMA_YCNT_CURreaches 0), or not to trigger
at all. If in two-dimensional mode and set to trigger when DMA_XCNT_CUR reaches
0, the DMA also issues a trigger at the end of the work unit. If in two-dimensional
addressing mode, programming DMA_CFG.TRIG to reserved causes the DMA to
flag a configuration error.
If DMA_CFG.TRIG is non-zero and the peripheral issues a finish command, the
DMA issues a trigger after the finish procedure is complete.
For more information about trigger generation timing, see the trigger section of the
DMA functional description.

0 Never assert Trigger

1 Trigger when XCNTCUR reaches 0

2 Trigger when YCNTCUR reaches 0

3 Reserved

Table 11-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

11–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

21:20
(R/W)

INT Generate Interrupt.
The DMA_CFG.INT selects whether an interrupt is sent to the core based on work
unit status or peripheral interrupt request.
For one-dimensional mode, setting DMA_CFG.INT for interrupt when DMA_
YCNT_CUR reaches 0 causes the DMA to flag a configuration error.
The peripheral interrupt setting enables the DMA to generate the last grant
indication and to accept/forward the peripheral interrupt command.
Note that the peripheral interrupt selection applies only to DMA_CFG.FLOW bits set
for stop and DMA_CFG.WNR bits set for memory read.
If DMA_CFG.INT is set for interrupt on count completion (DMA_XCNT_CUR or
DMA_YCNT_CUR reach 0) and the peripheral issues a finish command, the DMA
issues an interrupt after the finish procedure is complete.
For more information see the sections on interrupt generation and peripheral control
in the DMA functional description.

0 Never assert Interrupt

1 Interrupt when X Count Expires

2 Interrupt when Y Count Expires

3 Peripheral Interrupt

18:16
(R/W)

NDSIZE Next Descriptor Set Size.
The DMA_CFG.NDSIZE specifies the number of descriptor elements in memory to
load during the next descriptor fetch. The DMA loads the descriptors in a specific
order. The descriptor set may or may not have the next descriptor pointer, depending
on whether it is a descriptor list or descriptor array.

0 Fetch one Descriptor Element

1 Fetch two Descriptor Elements

2 Fetch three Descriptor Elements

3 Fetch four Descriptor Elements

4 Fetch five Descriptor Elements

5 Fetch six Descriptor Elements

6 Fetch seven Descriptor Elements

7 Reserved

15
(R/W)

TWAIT Wait for Trigger.
The DMA_CFG.TWAIT controls whether the DMA waits for a incoming trigger
from another channel or user. If DMA_CFG.TWAIT is set, the DMA enters the wait
state before starting the next work unit, including descriptor fetch if in descriptor
mode. Using the wait for trigger control is not allowed for descriptor-on-demand
mode, and using this control in that mode causes an error. For more information, see
the trigger section of the DMA functional description.

0 Begin Work Unit Automatically (No Wait)

1 Wait for Trigger (Halt before Work Unit)

Table 11-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–51

14:12
(R/W)

FLOW Next Operation.
The DMA_CFG.FLOW selects descriptor handling options.

0 STOP - Stop
When the current work unit completes, the DMA
channel stops automatically, after signaling an interrupt
(if selected). The DMA_STAT.RUN status bit changes
to idle, while DMA_CFG.EN bit is unchanged. In this
state, the channel is stopped. Peripheral interrupts are
still filtered out by the DMA. The channel may be
restarted simply by another write (with the DMA_CFG.
EN set) to the DMA_CFG register specifying the next
work unit.

1 AUTO - Autobuffer
In this mode, no descriptors in memory are used.
Instead, DMA is performed in a continuous circular
buffer fashion based on user programmed DMA MMR
settings. On completion of the work unit, the
parameter registers are reloaded into the current
registers, and DMA resumes immediately with zero
overhead. This mode is considered to be a succession of
automatically restarted work units. Autobuffer mode is
stopped by a user write of 0 to the DMA_CFG.EN bit.

2 Reserved

3 Reserved

4 DSCL - Descriptor List
This mode fetches a descriptor Set from memory that
includes DMA_DSCPTR_NXT, allowing maximum
flexibility in locating descriptors in memory.

5 DSCA - Descriptor Array
This mode fetches a descriptor set from memory that
does not include the DMA_DSCPTR_NXT element.
Because the descriptor set does not contain a next
descriptor pointer entry, the DMA defaults to using the
DMA_DSCPTR_CUR register to step through
descriptors, allowing a group of descriptors sets to
follow one another in memory as an array.

6 Descriptor On Demand List
This mode fetches a descriptor set from memory that
includes DMA_DSCPTR_NXT. At the end of the work
unit, if the channel has not been triggered, the work
unit is repeated. But, if the channel has been triggered
before the end of the work unit, the DMA fetches a new
descriptor set.

7 Descriptor On Demand Array
This mode fetches a descriptor set from memory that
does not include DMA_DSCPTR_NXT. At the end of
the work unit, if the channel has not been triggered, the
work unit is repeated. But, if the channel has been
triggered before the end of the work unit, the DMA
fetches a new descriptor set is fetched. Because the
descriptor set does not contain a next descriptor

h d f l h DMA

Table 11-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

11–52 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

10:8
(R/W)

MSIZE Memory Transfer Word Size.
The DMA_CFG.MSIZE bits select memory transfer sizes of 8-, 16-, 32-, 64-, 128-, or
256-bit words. Note that the transfer start address (DMA_ADDRSTART) and transfer
increment values (DMA_XMOD, and if needed DMA_YMOD) must be a multiple of the
memory transfer unit size.

0 1 Byte

1 2 Bytes

2 4 Bytes

3 8 Bytes

4 16 Bytes

5 32 Bytes

6:4
(R/W)

PSIZE Peripheral Transfer Word Size.
The DMA_CFG.PSIZE bits select peripheral transfer sizes as 8, 16, 32, or 64 bits
wide. Each request/grant results in a single peripheral access. There is no bursting on
the peripheral bus, so the DMA_CFG.PSIZE selection must be less than, or equal to,
the width of the bus. If the selection is greater than the bus width, a configuration
error occurs. Note that the processor's peripheral bus is dedicated to DMA and
peripheral accesses.

0 1 Byte

1 2 Bytes

2 4 Bytes

3 8 Bytes

3
(R/W)

CADDR Use Current Address.
If the DMA_CFG.CADDR bit is cleared, the DMA loads the DMA_ADDRSTART
register on the first access of the work unit. If the DMA_CFG.CADDR bit is set, the
DMA uses the DMA_ADDR_CUR register value for the starting address for the work
unit and writes the same value to the DMA_ADDRSTART register.
This operation permits continuation of a previous work unit. If this mode is used at
the end of a descriptor list or array, the DMA ignores the start address value that is
fetched as part of the descriptor set.

0 Load Starting Address

1 Use Current Address

Table 11-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–53

2
(R/W)

SYNC Synchronize Work Unit Transitions.
Setting the DMA_CFG.SYNC bit clears the DMA FIFO and pointers before starting
the first Work Unit of a Work Unit Chain.
When the transfer direction is memory read/transmit (DMA_CFG.WNR =0), the
DMA waits until all data has been transmitted to peripheral before moving on to next
Work Unit, clearing the FIFO and pointers.
When the transfer direction is memory write/receive (DMA_CFG.WNR =1), the
DMA ignores the DMA_CFG.SYNC bit value after processing the first Work Unit of a
Work Unit Chain. Because the channel is allowed to receive data when turned on but
idling, there could be data in the FIFO that was put in by the peripheral before the
channel was programmed. With DMA_CFG.SYNC set at the beginning of a work unit
chain (during the first work unit), the DMA clears the FIFO, erasing the data put in
to the FIFO while the channel was idling.
Syncing lets you change the DMA_CFG.PSIZE between individual work units and
(in some cases) work unit chains. The sync resets the pointers in the FIFO,
preventing misaligned FIFO access.
The DMA_CFG.MSIZE may be changed between consecutive work units,
independent of the DMA_CFG.SYNC bit setting.
Syncing also permits changes to transfer direction. And, because the data in the FIFO
is eliminated, the data that went into the FIFO from one direction (transmit or
receive) is not sent back in the other direction after the direction change.

0 No Synchronization

1 Synchronize Channel

1
(R/W)

WNR Write/Read Channel Direction.
The DMA_CFG.WNR selects receive (write to memory) or transmit (read from
memory) channel direction.

0 Transmit (Read from memory)

1 Receive (Write to memory)

0
(R/W)

EN DMA Channel Enable.
The DMA_CFG.EN enables the selected DMA Channel.
When a peripheral DMA channel is enabled, data requests from the peripheral
denote DMA requests. When a channel is disabled, the DMA unit ignores the
peripheral data request and passes it directly to the system event controller.
To avoid unexpected results, take care to enable the DMA channel before enabling
the peripheral, and to disable the peripheral before disabling the DMA channel.
A transition of DMA_CFG.EN from 0 to 1 creates a hard reset of all internal counters
and state, including the DMA_STAT register. (All other register values remain
unaffected.) A transition from 1 to 0 maintains all counters and registers for the user
to read and analyze.
If a descriptor is loaded (see DMA_CFG.FLOW field) with DMA_CFG.EN cleared, the
DMA goes to off/idle state after the descriptor load is complete.

0 Disable

1 Enable

Table 11-20: DMA_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

11–54 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Inner Loop Count Start Value

For 2D DMA, the DMA_XCNT contains the inner loop count. This value selects the number of DMA_CFG.
MSIZE size data transfers to make up the length of a row. For 1D DMA, DMA_XCNT specifies the number of
DMA_CFG.MSIZE size data transfers for the entire work unit. The DMA_XCNT register is read/write prior to
enabling the channel, but is read-only after enabling channel. Note that the DMA generates a configura-
tion error if DMA_XCNT is 0x0 when a work unit begins.

Figure 11-7: DMA_XCNT Register Diagram

Inner Loop Address Increment

The DMA_XMOD contains a signed, two's-complement byte address increment. In 1D DMA, this increment
is the stride that is applied after each DMA_CFG.MSIZE size data transfer. The DMA_XMOD register is read/
write prior to enabling the channel, but is read-only after enabling channel.

The DMA_XMOD value is specified in bytes, regardless of the work unit size. In 2D DMA, this increment is
applied after each DMA_CFG.MSIZE size data transfer in the inner loop, up to but not including the last DMA_
CFG.MSIZE size data transfer in each inner loop. After the last DMA_CFG.MSIZE size data transfer in each
inner loop, the DMA_YMOD register is applied instead, including the last DMA_CFG.MSIZE size data transfer
of a work unit.

The DMA_XMOD field may be set to 0. In this case, DMA is performed repeatedly to or from the same address.
This approach can be useful for transferring data between a data register and an external memory-mapped
peripheral.

Table 11-21: DMA_XCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Work Unit Inner Loop Counter Start Value.

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–55

Figure 11-8: DMA_XMOD Register Diagram

Outer Loop Count Start Value (2D only)

For 2D DMA, the DMA_YCNT contains the outer loop count. This register is not used in 1D DMA mode.
The DMA_YCNT register specifies the number of rows in the outer loop of a 2D DMA sequence. The DMA_
YCNT register is read/write prior to enabling the channel, but is read-only after enabling channel. Note that
the DMA generates a configuration error if DMA_YCNT is 0x0 when a work unit begins.

Figure 11-9: DMA_YCNT Register Diagram

Table 11-22: DMA_XMOD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Inner Loop Address Increment in Bytes.

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

11–56 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Outer Loop Address Increment (2D only)

The DMA_YMOD contains a signed, two's-complement value. This byte address increment is applied after
each decrement of the DMA_YCNT_CUR register. The value is the offset between the last word of one row and
the first word of the next row. Note that DMA_YMOD is specified in bytes, regardless of the work unit size.
The DMA_YMOD register is read/write prior to enabling the channel, but is read-only after enabling channel.

Figure 11-10: DMA_YMOD Register Diagram

Current Descriptor Pointer

The DMA_DSCPTR_CUR contains the memory address for the next descriptor to be loaded. The DMA_
DSCPTR_CUR register is read/write prior to enabling the channel, but is read-only after enabling channel.
For DMA_CFG.FLOW mode settings that involve descriptor fetches, this register is used to read descriptors
into appropriate MMRs before a work unit begins. For descriptor list mode, the DMA_DSCPTR_CUR is initial-
ized from the DMA_DSCPTR_NXT register before fetching each descriptor set. Then, the address in the DMA_
DSCPTR_CUR register increments as each descriptor is read in.

Table 11-23: DMA_YCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Work Unit Inner Loop Counter Current Value.

Table 11-24: DMA_YMOD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Outer Loop Address Increment in Bytes.

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–57

When the entire descriptor set has been read, the DMA_DSCPTR_CUR register contains this value:

DMA_DSCPTR_CUR = Descriptor Start Address + Descriptor Size (# of elements)

For descriptor array mode, the DMA_DSCPTR_CUR register, and not the DMA_DSCPTR_NXT register, must be
programmed by MMR access before starting DMA operation.

Figure 11-11: DMA_DSCPTR_CUR Register Diagram

Previous Initial Descriptor Pointer

The DMA_DSCPTR_PRV contains the initial descriptor pointer for the previous work unit. If DMA_CFG.
DESCIDCPY is set, the DMA copies the initial descriptor pointer to DMA_DSCPTR_PRV after the work unit
completes. Otherwise, the value is not updated.

To indicate an overrun, bit 0 of DMA_DSCPTR_PRV is used as a previous descriptor pointer overrun (PDPO)
status bit. Due to aligned addressing combined with all descriptors being 32 bits in width, bits 0 and 1 of
all descriptor pointers must be zero. Otherwise, an alignment error would occur when used for descriptor
fetches. As a result, bit 1 and 0 of DMA_DSCPTR_PRV may be used for status. For more information, see the
section on descriptor pointer capture in the DMA functional description.

Table 11-25: DMA_DSCPTR_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Pointer for Current Descriptor Element.

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

11–58 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 11-12: DMA_DSCPTR_PRV Register Diagram

Current Address

The DMA_ADDR_CUR contains the present memory transfer address for a given work unit. At the start of a
work unit, the DMA_ADDR_CUR is loaded from the DMA_ADDRSTART register, and DMA_ADDR_CUR is incre-
mented as each transfer occurs. The DMA_ADDR_CUR register is read/write prior to enabling the channel, but
is read-only after enabling channel.

Figure 11-13: DMA_ADDR_CUR Register Diagram

Table 11-26: DMA_DSCPTR_PRV Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:2
(R/NW)

DESCPPREV Pointer for Previous Descriptor Element.

0
(R/NW)

PDPO Previous Descriptor Pointer Overrun.

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–59

Status Register

The DMA_STAT indicates status of DMA work units, FIFO, errors, interrupts, and triggers.

Figure 11-14: DMA_STAT Register Diagram

Table 11-27: DMA_ADDR_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Work Unit current address value.

Table 11-28: DMA_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

20
(R/NW)

TWAIT Trigger Wait Status.
The DMA_STAT.TWAIT indicates whether the DMA has or has not received a
trigger. This bit is set until it reaches the next wait state. At that point, the bit is
cleared, the DMA stops processing that work unit, and the following work unit is
processed. The DMA does not distinguish between one or more triggers received.

0 No trigger received

1 Trigger received

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

11–60 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

18:16
(R/NW)

FIFOFILL FIFO Fill Status.
The DMA_STAT.FIFOFILL reports the quantity of data in the FIFO relative to
available space.

0 Empty

1 Empty < FIFO = 1/4 Full

2 1/4 Full < FIFO = 1/2 Full

3 1/2 Full < FIFO = 3/4 Full

4 3/4 Full < FIFO = Full

5 Reserved

6 Reserved

7 Full

15:14
(R/NW)

MBWID Memory Bus Width.
The DMA_STAT.MBWID indicates the width of the memory bus connected to this
DMA.

0 2 Bytes

1 4 Bytes

2 8 Bytes

3 16 Bytes

13:12
(R/NW)

PBWID Peripheral Bus Width.
The DMA_STAT.PBWID indicates the width of the peripheral bus connected to this
DMA.

0 1 Byte

1 2 Bytes

2 4 Bytes

3 8 Bytes

Table 11-28: DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–61

10:8
(R/NW)

RUN Run Status.
The DMA_STAT.RUN reports the DMA's current operational state. If the DMA is in
idle or stop state, the DMA_CFG.EN bit may be either 0 or 1. Note that the DMA_
STAT.RUN is not cleared by a transition of the DMA_CFG.EN bit from 0 to 1. The
DMA_STAT.RUN is automatically cleared when the DMA completes.

0 Idle/Stop State

1 Descriptor Fetch

2 Data Transfer

3 Waiting for Trigger

4 Waiting for Write ACK/FIFO Drain to Peripheral

5 Reserved

6 Reserved

7 Reserved

6:4
(R/NW)

ERRC Error Cause.
When an interrupt request error occurs (DMA_STAT.IRQERR), the DMA updates
DMA_STAT.ERRC to identify the type of error. For more information, see the errors
section of the DMA functional description.

0 Configuration Error

1 Illegal Write Occurred While Channel Running

2 Address Alignment Error

3 Memory Access/Fabric Error

4 Reserved

5 Trigger Overrun

6 Bandwidth Monitor Error

7 Reserved

2
(R/W1C)

PIRQ Peripheral Interrupt Request.
The DMA_STAT.PIRQ indicates an interrupt has been caused by the peripheral.
Programmers can use the DMA_STAT.PIRQ status to help determine which DMA
asserted the interrupt and to help distinguish between an interrupt caused based on
the state of the work unit and an interrupt made by the peripheral.

0 No Interrupt

1 Interrupt Signaled by Peripheral

Table 11-28: DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

11–62 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Current Count(1D) or intra-row XCNT (2D)

For 1D DMA, the DMA loads the DMA_XCNT_CUR from the DMA_XCNT register at the beginning of each work
unit. For 2D DMA, the DMA loads DMA_XCNT_CUR from the DMA_XCNT register after the end of each row.
The DMA decrements the value in DMA_XCNT_CUR each time a DMA_CFG.MSIZE size data transfer occurs.
When the count in DMA_XCNT_CUR expires, the work unit is complete. In 2D DMA, the DMA_XCNT_CUR
value is 0 only when the entire transfer is complete.

Figure 11-15: DMA_XCNT_CUR Register Diagram

1
(R/W1C)

IRQERR Error Interrupt.
The DMA_STAT.IRQERR indicates that the DMA has detected a documented rule
violations during DMA programming or operation. The DMA cannot, however, flag
all possible programming or operation issues to indicate errors. Programmers can
use DMA_STAT.IRQERR to help determine which DMA issued the error interrupt.
Note that the DMA_STAT.IRQERR is not cleared by a transition of the DMA_CFG.
EN bit from 0 to 1. The DMA_STAT.IRQERR must be cleared with a write-1-to-clear
operation prior to the DMA_CFG.EN transition for the fields to be reset.

0 No Error

1 Error Occurred

0
(R/W1C)

IRQDONE Work Unit/Row Done Interrupt.
The DMA_STAT.IRQDONE indicates the DMA has detected the completion of a
work unit or row (inner loop count) and has issued an interrupt. Programmers can
use the DMA_STAT.IRQDONE status to help determine which DMA asserted the
interrupt and to help distinguish between an interrupt caused based on the state of
the work unit and an interrupt made by the peripheral. For more information, see the
interrupts section of the DMA functional description.

0 Inactive

1 Active

Table 11-28: DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–63

Current Row Count (2D only)

For 2D DMA, the DMA loads the DMA_YCNT_CUR from the DMA_YCNT register at the beginning of each 2D
DMA session. The DMA_YCNT_CUR is not used for 1D DMA. The DMA decrements DMA_YCNT_CUR each
time the DMA_XCNT_CUR expires during 2D DMA operation, signifying completion of an entire row
transfer.

Figure 11-16: DMA_YCNT_CUR Register Diagram

Bandwidth Limit Count

The DMA_BWLCNT contains a count that determines how often the DMA issues memory transactions. The
DMA loads the value from DMA_BWLCNT into DMA_BWLCNT_CUR and decrements the current value each
SCLK cycle. When DMA_BWLCNT_CUR reaches 0x0000, the next request is issued, and the DMA reloads DMA_
BWLCNT_CUR. This bandwidth limit functionality is not applied to descriptor fetch requests. Programming
0x0000 allows the DMA to request as often as possible. 0xFFFF is a special case and causes requests to stop.

Table 11-29: DMA_XCNT_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Work Unit outer loop counter start value.

Table 11-30: DMA_YCNT_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Work Unit outer loop counter current value.

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

11–64 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 11-17: DMA_BWLCNT Register Diagram

Bandwidth Limit Count Current

The DMA_BWLCNT_CUR contains the number of SCLK count cycles remaining before the next request is
issued.

Figure 11-18: DMA_BWLCNT_CUR Register Diagram

Table 11-31: DMA_BWLCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Bandwidth Limit Count.

Table 11-32: DMA_BWLCNT_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/NW)

VALUE Bandwidth Limit Count Current.

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 11–65

Bandwidth Monitor Count

The DMA_BWMCNT contains the maximum number of SCLK cycles allowed for a work unit to complete. Each
time the DMA_CFG register is written (MMR access only), a work unit ends, or an autobuffer wraps, the
DMA loads the value in DMA_BWMCNT into DMA_BWMCNT_CUR. The DMA decrements DMA_BWMCNT_CUR
every SCLK a work unit is active. If DMA_BWMCNT_CUR reaches 0x0000_0000, the DMA_STAT.IRQERR bit is
set, and the DMA_STAT.ERRC is set to 0x6. The DMA_BWMCNT_CUR remains at 0x0000_0000 until it is reloaded
when the work unit completes. Unlike other error causes, a bandwidth monitor error does not stop work
unit processing. Programming 0x0000_0000 disables bandwidth monitor functionality.

Figure 11-19: DMA_BWMCNT Register Diagram

Bandwidth Monitor Count Current

The DMA_BWMCNT_CUR contains the number of cycles remaining for the current descriptor to complete.

Table 11-33: DMA_BWMCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Bandwidth Monitor Count.

DIRECT MEMORY ACCESS (DMA)
ADSP-CM40X DMA REGISTER DESCRIPTIONS

11–66 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 11-20: DMA_BWMCNT_CUR Register Diagram

Table 11-34: DMA_BWMCNT_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Bandwidth Monitor Count Current.

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–1

12 General-Purpose Ports (PORT)

This section describes general-purpose ports, pin multiplexing, general-purpose input/output (GPIO)
functionality, and pin interrupts.

The general-purpose ports provide the following three functions.

• Pin multiplexing scheme

• GPIO functionality

• Pin interrupts

Figure 12-1: Simplified GPIO and Pin Interrupt Signal Flow

GENERAL-PURPOSE PORTS (PORT)
PORT FEATURES

12–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

PORT Features

The PORTs include the following features:

• Up to 91 general-purpose I/O (GPIO) pins

• Input mode, output mode, and open-drain mode of GPIO operation

• Port multiplexing controlled by individual pin-per-pin base

• No glue hardware required for unused pins

• Five interrupt channels dedicated to pin interrupts

• All port pins provide interrupt functionality

• Byte-wide pin-to-interrupt assignment

PORT Functional Description

Every port pin can operate in GPIO mode. This is the default after reset and is controlled by the port-
specific PORTx_FER enable register. Every port has a dedicated set of MMR registers that control the GPIO
functionality. Every bit in these registers represents a certain GPIO pin of the specific port. The following
sections provide functional descriptions for PORT features:

• ADSP-CM40x PORT Register List

• ADSP-CM40x PINT Register List

• ADSP-CM40x PINT Interrupt List

• ADSP-CM40x PINT Trigger List

• ADSP-CM40x PADS Register List

• PORT Definitions

• PORT Architectural Concepts

ADSP-CM40x PORT Register List

Every port pin can operate in general-purpose I/O (GPIO) mode. This operation is the default after
processor reset and is controlled by a set of registers that control GPIO functionality. Every bit in these
registers represents a certain GPIO pin of a specific port. For more information on PORT functionality,
see the PORT register descriptions.

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–3

ADSP-CM40x PORT 120-PIN LQFP_EP GP I/O Multiplexing

When a pin is in peripheral mode (not GPIO mode), the PORT_MUX register controls which peripheral takes
ownership of a pin. The Portx Signal Muxing tables show the relationship between the PORT_MUX.MUXn
bit fields and their values (function number), the PORT_FER.Pxn bits, and the multiplexed pin functions
these bits select.

Table 12-1: ADSP-CM40x PORT Register List

Name Description

PORT_FER Port x Function Enable Register

PORT_FER_SET Port x Function Enable Set Register

PORT_FER_CLR Port x Function Enable Clear Register

PORT_DATA Port x GPIO Data Register

PORT_DATA_SET Port x GPIO Data Set Register

PORT_DATA_CLR Port x GPIO Data Clear Register

PORT_DIR Port x GPIO Direction Register

PORT_DIR_SET Port x GPIO Direction Set Register

PORT_DIR_CLR Port x GPIO Direction Clear Register

PORT_INEN Port x GPIO Input Enable Register

PORT_INEN_SET Port x GPIO Input Enable Set Register

PORT_INEN_CLR Port x GPIO Input Enable Clear Register

PORT_MUX Port x Multiplexer Control Register

PORT_DATA_TGL Port x GPIO Input Enable Toggle Register

PORT_POL Port x GPIO Polarity Invert Register

PORT_POL_SET Port x GPIO Polarity Invert Set Register

PORT_POL_CLR Port x GPIO Polarity Invert Clear Register

PORT_LOCK Port x GPIO Lock Register

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

12–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 For all port pins, when the peripheral mode is enabled (PORT_FER.Pxn =1), the value in the PORT_MUX.
MUXn bit fields select the pin function:

• 00 = default/reset peripheral option

• 01 = first alternate peripheral option

• 10 =second alternate peripheral option

• 11 = third alternate peripheral option

NOTE: For information about Input Tap functionality, see the descriptions in chapters corresponding to
each input tap pin.

Table 12-2: PORT Signal Muxing Table Port A

PORTA_MUX.
MUXn

Bit Field

Function:
GPIO

(MUX=x,
FER=0)

Function:
0

(MUX=0,
FER=1)

Function:
1

(MUX=1,
FER=1)

Function:
2

(MUX=2,
FER=1)

Function:
3

(MUX=3,
FER=1)

Function:
Input Tap
(MUX=x,
FER=x)

MUX0 PA_00 PWM0_SYNC SPT1_ACLK

MUX1 PA_01 PWM0_TRIP0 SPT1_AFS

MUX2 PA_02 PWM0_AH SPT1_AD0

MUX3 PA_03 PWM0_AL SPT1_AD1

MUX4 PA_04 PWM0_BH SPT1_BCLK

MUX5 PA_05 PWM0_BL SPT1_BFS

MUX6 PA_06 PWM0_CH SPT1_BD0

MUX7 PA_07 PWM0_CL SMC0_AMS2 SPT1_BD1

MUX8 PA_08 PWM1_CH SMC0_D00 TM0_ACLK5

MUX9 PA_09 PWM1_CL SMC0_D01 TM0_ACLK4

MUX10 PA_10 PWM1_SYNC SMC0_D02 TM0_ACLK3

MUX11 PA_11 PWM1_TRIP0 UART1_CTS SMC0_D03 TM0_ACLK2

MUX12 PA_12 PWM1_AH TM0_TMR4 SMC0_D04

MUX13 PA_13 PWM1_AL TM0_TMR5 SMC0_D05

MUX14 PA_14 PWM1_BH TM0_TMR6 SMC0_D06

MUX15 PA_15 PWM1_BL TM0_TMR3 SMC0_D07

Table 12-3: PORT Signal Muxing Table Port B

PORTB_MUX.
MUXn

Bit Field

Function:
GPIO

(MUX=x,
FER=0)

Function:
0

(MUX=0,
FER=1)

Function:
1

(MUX=1,
FER=1)

Function:
2

(MUX=2,
FER=1)

Function:
3

(MUX=3,
FER=1)

Function:
Input Tap
(MUX=x,
FER=x)

MUX0 PB_00 PWM0_DH TRACE_CLK SPT0_ACLK SMC0_D08 CNT0_ZM

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–5

MUX1 PB_01 PWM0_DL TRACE_D00 SPT0_AFS SMC0_D09 CNT0_UD

MUX2 PB_02 PWM1_DH TRACE_D01 SPT0_AD0 SMC0_D10 CNT0_DG

MUX3 PB_03 PWM1_DL TRACE_D02 SPT0_AD1 SMC0_D11 CNT1_ZM

MUX4 PB_04 PWM2_SYNC UART0_RTS SPT0_ATDV SMC0_D12 CNT1_UD

MUX5 PB_05 PWM2_TRIP0 UART0_CTS TM0_TMR7 SMC0_D13 CNT1_DG

MUX6 PB_06 PWM2_AH TM0_CLK SPI1_SEL2 SMC0_D14

MUX7 PB_07 PWM2_AL TM0_TMR0 SPI1_SEL3 SMC0_D15

MUX8 PB_08 PWM2_BH TM0_TMR1 UART1_RX SMC0_ARDY TM0_ACI2

MUX9 PB_09 PWM2_BL TM0_TMR2 UART1_TX SMC0_ARE

MUX10 PB_10 SINC0_CLK0 SPI0_D2 CAN1_RX SMC0_AWE TM0_ACI1

MUX11 PB_11 SINC0_D0 SPI0_D3 CAN1_TX SMC0_AMS0 TM0_ACLK1

MUX12 PB_12 SINC0_D1 SPT0_BTDV UART2_RX SMC0_AOE TM0_ACI3

MUX13 PB_13 SINC0_D2 CNT0_OUTA SPI0_SEL2 SMC0_A01 TM0_ACLK0/
SYS_DSWAKE3

MUX14 PB_14 SINC0_D3 CNT0_OUTB SPI0_SEL3 SMC0_A02 SPI0_SS/SYS_
DSWAKE2

MUX15 PB_15 CAN0_RX SPT1_ATDV UART1_RX SMC0_A03 TM0_ACI4

Table 12-4: PORT Signal Muxing Table Port C

PORTC_MUX.
MUXn

Bit Field

Function:
GPIO

(MUX=x,
FER=0)

Function:
0

(MUX=0,
FER=1)

Function:
1

(MUX=1,
FER=1)

Function:
2

(MUX=2,
FER=1)

Function:
3

(MUX=3,
FER=1)

Function:
Input Tap
(MUX=x,
FER=x)

MUX0 PC_00 CAN0_TX SPT1_BTDV UART1_TX SMC0_A04

MUX1 PC_01 UART0_RX SMC0_A05 TM0_ACI5

MUX2 PC_02 UART0_TX TRACE_D03 SPI0_RDY

MUX3 PC_03 SPI0_CLK PWM2_CH

MUX4 PC_04 SPI0_MISO PWM2_CL

MUX5 PC_05 SPI0_MOSI PWM2_DH

MUX6 PC_06 SPI0_SEL1 PWM2_DL SYS_DSWAKE0

MUX7 PC_07 SINC0_CLK1 UART2_TX UART1_RTS SYS_DSWAKE1

Table 12-3: PORT Signal Muxing Table Port B (Continued)

PORTB_MUX.
MUXn

Bit Field

Function:
GPIO

(MUX=x,
FER=0)

Function:
0

(MUX=0,
FER=1)

Function:
1

(MUX=1,
FER=1)

Function:
2

(MUX=2,
FER=1)

Function:
3

(MUX=3,
FER=1)

Function:
Input Tap
(MUX=x,
FER=x)

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

12–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x PORT 176-PIN LQFP_EP GP I/O Multiplexing

When a pin is in peripheral mode (not GPIO mode), the PORT_MUX register controls which peripheral takes
ownership of a pin. The Portx Signal Muxing tables show the relationship between the PORT_MUX.MUXn
bit fields and their values (function number), the PORT_FER.Pxn bits, and the multiplexed pin functions
these bits select.

 For all port pins, when the peripheral mode is enabled (PORT_FER.Pxn =1), the value in the PORT_MUX.
MUXn bit fields select the pin function:

• 00 = default/reset peripheral option

• 01 = first alternate peripheral option

• 10 =second alternate peripheral option

• 11 = third alternate peripheral option

NOTE: For information about Input Tap functionality, see the descriptions in chapters corresponding to
each input tap pin.

Table 12-5: PORT Signal Muxing Table Port A

PORTA_MUX.
MUXn

Bit Field

Function:
GPIO

(MUX=x,
FER=0)

Function:
0

(MUX=0,
FER=1)

Function:
1

(MUX=1,
FER=1)

Function:
2

(MUX=2,
FER=1)

Function:
3

(MUX=3,
FER=1)

Function:
Input Tap
(MUX=x,
FER=x)

MUX0 PA_00 PWM0_SYNC SPT1_ACLK

MUX1 PA_01 PWM0_TRIP0 SPT1_AFS

MUX2 PA_02 PWM0_AH SPT1_AD0

MUX3 PA_03 PWM0_AL SPT1_AD1

MUX4 PA_04 PWM0_BH SPT1_BCLK

MUX5 PA_05 PWM0_BL SPT1_BFS

MUX6 PA_06 PWM0_CH SPT1_BD0

MUX7 PA_07 PWM0_CL SMC0_AMS2 SPT1_BD1

MUX8 PA_08 PWM1_CH SMC0_D00 TM0_ACLK5

MUX9 PA_09 PWM1_CL SMC0_D01 TM0_ACLK4

MUX10 PA_10 PWM1_SYNC SMC0_D02 TM0_ACLK3

MUX11 PA_11 PWM1_TRIP0 UART1_CTS SMC0_D03 TM0_ACLK2

MUX12 PA_12 PWM1_AH TM0_TMR4 SMC0_D04

MUX13 PA_13 PWM1_AL TM0_TMR5 SMC0_D05

MUX14 PA_14 PWM1_BH TM0_TMR6 SMC0_D06

MUX15 PA_15 PWM1_BL TM0_TMR3 SMC0_D07

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–7

Table 12-6: PORT Signal Muxing Table Port B

PORTB_MUX.
MUXn

Bit Field

Function:
GPIO

(MUX=x,
FER=0)

Function:
0

(MUX=0,
FER=1)

Function:
1

(MUX=1,
FER=1)

Function:
2

(MUX=2,
FER=1)

Function:
3

(MUX=3,
FER=1)

Function:
Input Tap
(MUX=x,
FER=x)

MUX0 PB_00 PWM0_DH TRACE_CLK SPT0_ACLK SMC0_D08 CNT0_ZM

MUX1 PB_01 PWM0_DL TRACE_D00 SPT0_AFS SMC0_D09 CNT0_UD

MUX2 PB_02 PWM1_DH TRACE_D01 SPT0_AD0 SMC0_D10 CNT0_DG

MUX3 PB_03 PWM1_DL TRACE_D02 SPT0_AD1 SMC0_D11 CNT1_ZM

MUX4 PB_04 PWM2_SYNC UART0_RTS SPT0_ATDV SMC0_D12 CNT1_UD

MUX5 PB_05 PWM2_TRIP0 UART0_CTS TM0_TMR7 SMC0_D13 CNT1_DG

MUX6 PB_06 PWM2_AH TM0_CLK SPI1_SEL2 SMC0_D14

MUX7 PB_07 PWM2_AL TM0_TMR0 SPI1_SEL3 SMC0_D15

MUX8 PB_08 PWM2_BH TM0_TMR1 UART1_RX SMC0_ARDY TM0_ACI2

MUX9 PB_09 PWM2_BL TM0_TMR2 UART1_TX SMC0_ARE

MUX10 PB_10 SINC0_CLK0 SPI0_D2 CAN1_RX SMC0_AWE TM0_ACI1

MUX11 PB_11 SINC0_D0 SPI0_D3 CAN1_TX SMC0_AMS0 TM0_ACLK1

MUX12 PB_12 SINC0_D1 SPT0_BTDV UART2_RX SMC0_AOE TM0_ACI3

MUX13 PB_13 SINC0_D2 CNT0_OUTA SPI0_SEL2 SMC0_A01 TM0_ACLK0/
SYS_DSWAKE3

MUX14 PB_14 SINC0_D3 CNT0_OUTB SPI0_SEL3 SMC0_A02 SPI0_SS/SYS_
DSWAKE2

MUX15 PB_15 CAN0_RX SPT1_ATDV UART1_RX SMC0_A03 TM0_ACI4

Table 12-7: PORT Signal Muxing Table Port C

PORTC_MUX.
MUXn

Bit Field

Function:
GPIO

(MUX=x,
FER=0)

Function:
0

(MUX=0,
FER=1)

Function:
1

(MUX=1,
FER=1)

Function:
2

(MUX=2,
FER=1)

Function:
3

(MUX=3,
FER=1)

Function:
Input Tap
(MUX=x,
FER=x)

MUX0 PC_00 CAN0_TX SPT1_BTDV UART1_TX SMC0_A04

MUX1 PC_01 UART0_RX SMC0_A05 TM0_ACI5

MUX2 PC_02 UART0_TX TRACE_D03 SPI0_RDY

MUX3 PC_03 SPI0_CLK PWM2_CH

MUX4 PC_04 SPI0_MISO PWM2_CL

MUX5 PC_05 SPI0_MOSI PWM2_DH

MUX6 PC_06 SPI0_SEL1 PWM2_DL SYS_DSWAKE0

MUX7 PC_07 SINC0_CLK1 UART2_TX UART1_RTS SYS_DSWAKE1

MUX8 PC_08 SPT0_BCLK SMC0_D00

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

12–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

MUX9 PC_09 SPT0_BFS SMC0_D01

MUX10 PC_10 SPT0_BD0 SMC0_D02

MUX11 PC_11 SMC0_AMS3 SPT0_BD1 SMC0_D03

MUX12 PC_12 SPI1_CLK SMC0_D04

MUX13 PC_13 SPI1_MISO SMC0_D05

MUX14 PC_14 SPI1_MOSI SMC0_D06

MUX15 PC_15 SPI1_SEL1 SMC0_D07 SPI1_SS

Table 12-8: PORT Signal Muxing Table Port D

PORTD_MUX.
MUXn

Bit Field

Function:
GPIO

(MUX=x,
FER=0)

Function:
0

(MUX=0,
FER=1)

Function:
1

(MUX=1,
FER=1)

Function:
2

(MUX=2,
FER=1)

Function:
3

(MUX=3,
FER=1)

Function:
Input Tap
(MUX=x,
FER=x)

MUX0 PD_00 SMC0_D08

MUX1 PD_01 SMC0_D09

MUX2 PD_02 SMC0_D10

MUX3 PD_03 SMC0_D11

MUX4 PD_04 SMC0_D12

MUX5 PD_05 SMC0_D13

MUX6 PD_06 SMC0_D14

MUX7 PD_07 SMC0_D15

MUX8 PD_08 SMC0_A06

MUX9 PD_09 SMC0_A07

MUX10 PD_10 SMC0_A08

MUX11 PD_11 SMC0_A09

MUX12 PD_12 SMC0_A10

MUX13 PD_13 SMC0_A11

MUX14 PD_14 SMC0_A12

MUX15 PD_15 SMC0_A13

Table 12-7: PORT Signal Muxing Table Port C (Continued)

PORTC_MUX.
MUXn

Bit Field

Function:
GPIO

(MUX=x,
FER=0)

Function:
0

(MUX=0,
FER=1)

Function:
1

(MUX=1,
FER=1)

Function:
2

(MUX=2,
FER=1)

Function:
3

(MUX=3,
FER=1)

Function:
Input Tap
(MUX=x,
FER=x)

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–9

Table 12-9: PORT Signal Muxing Table Port E

PORTE_MUX.
MUXn

Bit Field

Function:
GPIO

(MUX=x,
FER=0)

Function:
0

(MUX=0,
FER=1)

Function:
1

(MUX=1,
FER=1)

Function:
2

(MUX=2,
FER=1)

Function:
3

(MUX=3,
FER=1)

Function:
Input Tap
(MUX=x,
FER=x)

MUX0 PE_00 SMC0_A14

MUX1 PE_01 SMC0_A15

MUX2 PE_02 SMC0_A16

MUX3 PE_03 SMC0_A17

MUX4 PE_04 SMC0_A18

MUX5 PE_05 SMC0_A19

MUX6 PE_06 SMC0_A20

MUX7 PE_07 ETH0_
PTPAUXIN

SMC0_A21

MUX8 PE_08 ETH0_PTPPPS SMC0_A22 CNT2_ZM

MUX9 PE_09 ETH0_CRS SMC0_A23 CNT2_UD

MUX10 PE_10 ETH0_MDIO SMC0_AMS1 CNT2_DG

MUX11 PE_11 ETH0_MDC SMC0_A24 CNT3_ZM

MUX12 PE_12 ETH0_TXD0 SMC0_ABE0 CNT3_UD

MUX13 PE_13 ETH0_TXD1 SMC0_ABE1 CNT3_DG

MUX14 PE_14 ETH0_TXEN CNT1_OUTA

MUX15 PE_15 ETH0_REFCLK CNT1_OUTB

Table 12-10: PORT Signal Muxing Table Port F

PORTF_MUX.
MUXn

Bit Field

Function:
GPIO

(MUX=x,
FER=0)

Function:
0

(MUX=0,
FER=1)

Function:
1

(MUX=1,
FER=1)

Function:
2

(MUX=2,
FER=1)

Function:
3

(MUX=3,
FER=1)

Function:
Input Tap
(MUX=x,
FER=x)

MUX0 PF_00 ETH0_RXD0 CNT0_OUTA

MUX1 PF_01 ETH0_RXD1 CNT0_OUTB

MUX2 PF_02 USB0_VBC TRACE_D3

MUX3 PF_03 SMC0_AOE

MUX4 PF_04 SMC0_ARDY

MUX5 PF_05 SMC0_A01

MUX6 PF_06 SMC0_A02

MUX7 PF_07 SMC0_A03

MUX8 PF_08 SMC0_A04

MUX9 PF_09 SMC0_A05

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

12–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x PINT Register List

The pin-interrupt assignment (PINT) module controls the pin-to-interrupt assignment in a byte-wide
manner. The pin-interrupt assignment registers do not consist of 32 individual bits. They consist of four
control bytes, each functioning as a multiplexer control.

All PINT registers are 32 bits wide and can be accessed by 32-bit load/store instructions. They also support
16-bit operation where the upper 16 bits are ignored and the application uses the lower 16 bits only. Conse-
quently, all PINT registers support 32-bit accesses as well as 16-bit accesses for the lower half words. Appli-
cations may use faster 16-bit accesses as long as they do not require functionality of upper register halves.

MUX10 PF_10 ETH0_
PTPCLKIN

Table 12-11: ADSP-CM40x PINT Register List

Name Description

PINT_MSK_SET Pint Mask Set Register

PINT_MSK_CLR Pint Mask Clear Register

PINT_REQ Pint Request Register

PINT_ASSIGN Pint Assign Register

PINT_EDGE_SET Pint Edge Set Register

PINT_EDGE_CLR Pint Edge Clear Register

PINT_INV_SET Pint Invert Set Register

PINT_INV_CLR Pint Invert Clear Register

PINT_PINSTATE Pint Pinstate Register

PINT_LATCH Pint Latch Register

Table 12-10: PORT Signal Muxing Table Port F (Continued)

PORTF_MUX.
MUXn

Bit Field

Function:
GPIO

(MUX=x,
FER=0)

Function:
0

(MUX=0,
FER=1)

Function:
1

(MUX=1,
FER=1)

Function:
2

(MUX=2,
FER=1)

Function:
3

(MUX=3,
FER=1)

Function:
Input Tap
(MUX=x,
FER=x)

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–11

ADSP-CM40x PINT Interrupt List

ADSP-CM40x PINT Trigger List

ADSP-CM40x PADS Register List

The PADS controls signal hysteresis and other system interface signal features for a number of module
interfaces.

Table 12-12: ADSP-CM40x PINT Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

18 PINT0_BLOCK PINT0 Block Interrupt Generated LEVEL

19 PINT1_BLOCK PINT1 Block Interrupt Generated LEVEL

20 PINT2_BLOCK PINT2 Block Interrupt Generated LEVEL

21 PINT3_BLOCK PINT3 Block Interrupt Generated LEVEL

22 PINT4_BLOCK PINT4 Block Interrupt Generated LEVEL

Table 12-13: ADSP-CM40x PINT Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

10 PINT0_BLOCK PINT0 Block Interrupt Generated LEVEL

11 PINT1_BLOCK PINT1 Block Interrupt Generated LEVEL

12 PINT2_BLOCK PINT2 Block Interrupt Generated LEVEL

13 PINT3_BLOCK PINT3 Block Interrupt Generated LEVEL

14 PINT4_BLOCK PINT4 Block Interrupt Generated LEVEL

Table 12-14: ADSP-CM40x PINT Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

None

Table 12-15: ADSP-CM40x PADS Register List

Name Description

PADS_PCFG0 Peripheral Configuration0 Register

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

12–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

PORT Definitions

This section provides definitions relating to the GPIO ports.

x (PORTx)

The naming convention for bits uses a lowercase "x" to represent one of the existing ports alphabetically
named beginning with A,B,C,... For example, the name PORTx_REG represents any one or all of PORTA_REG,
PORTB_REG, PORTC_REG, and so on. The bit name Px0 represents PA0, PB0, and so on.

PORT Architectural Concepts

This sections describes in more detail how the PORT module is connected externally to pins and is
connected internally to the MMR bus. Port groups are named alphabetically beginning with A.

• Internal Interfaces

• External Interfaces

• GPIO Functionality

• Port Multiplexing Control

Internal Interfaces

All MMR registers of the pin multiplexing, GPIO and pin interrupt control blocks can be accessed through
the MMR bus. There is no DMA support. Every one of the pin interrupt modules has its own and dedicated
interrupt request output signal that connects directly to the SIC controller.

External Interfaces

The pin multiplexing hardware can be seen as a layer between the on-chip peripherals and the pads of the
silicon. All port groups are controlled by this unit.

GPIO Functionality

By default, every GPIO is set to input mode. The input drivers are not enabled, which avoids the need for
unnecessary current sinks and the external pulling of resistors on unused or do not care pins.

Input Mode

The default mode of every GPIO pin after reset is input mode, but the input drivers are not enabled. To
enable any GPIO input drivers, set the corresponding bits in the input enable register PORTx_INEN. When
enabled, a read from the PORTx register returns the logical state of the input pin. The input signal does not
overwrite the state of the flip-flop used for the output case. That state can only be altered by software. If

GENERAL-PURPOSE PORTS (PORT)
PORT FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–13

the input driver is enabled, a write to the PORTxregister can alter the state of the flip-flop, but the change
cannot be read back.

Output Mode

Any GPIO pin can be configured for output mode. The GPIO output drivers are enabled by setting the
corresponding bits in the direction registers. Direction registers are implemented as a pair of write-1-to-
set (W1S) and write-1-to-clear (W1C) MMRs, called PORTx_DIR_SETand PORTx_DIR_CLEAR. This way,
the direction of the signal flow of individual GPIO pins can be altered by separate software threads without
mutually impacting other GPIOs on the same port.

Both PORTx_DIR_SET and PORTx_DIR_CLEAR registers return the same value when read and a logical 1
indicates an enabled output. The state of output pins is controlled by the PORTx registers. A logical 0 drives
the output low while a logical 1 drives the output high.

While the PORTx register can be written to alter all GPIOs of a specific port at once, there is also a pair of
W1S and W1C MMRs, called PORTx_SET and PORTx_CLEAR that enable manipulation of individual GPIO
outputs. The state of the outputs can be obtained by reading the PORTx registers. Because the state of the
GPIO output can already be controlled before the output driver is enabled, it is recommended to first set
or clear the flip-flop to avoid any volatile levels on the output.

Open-Drain Mode

Every GPIO can also be used in open-drain mode. To accomplish this, first, clear the respective bit in the
PORTx or PORTx_CLEAR register then set the one bit in the PORTx_INEN register. Read from the PORTx
register then return the status from the pin and do not return the state of the internal flip-flop.

By toggling the output driver through the PORTx_DIR_SETand PORTx_DIR_CLEAR register pair, the output
signal can be pulled low or three-stated as required. Note that the polarity of the driven signal can be
inverted when the internal flip-flop is set. When a GPIO port is used in open-drain mode, care must be
taken not to exceed the VIH operating condition associated with the respective pins.

Port Multiplexing Control

To configure pins properly, it is necessary to determine which bits in the PORT_FER and PORT_MUX register
map to the pin of interest, and set them appropriately according to the desired function.

By default, after reset, all port pins are in GPIO input mode with their output and input drivers disabled.
As a result, all unused port pins can be left unconnected. Disabled pins appear in high-impedance mode
to external circuits and are pulled low to internal logic.

Each port has two dedicated MMRs that control the port multiplexing, the 16-bit Function Enable (PORT_
FER) registers and the 32-bit Port Multiplexing (PORT_MUX) registers.

NOTE: In this chapter, the naming convention for registers and bits omits the alphabetic group enumera-
tion to refer to all/any of the port groups. For example PORT_FER represents PORTA_FER, PORTB_
FER, and so on. Likewise P1 represents PA1, PB1, and so on.

GENERAL-PURPOSE PORTS (PORT)
PORT EVENT CONTROL

12–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The Function Enable register specifies whether the pin is being used as a GPIO pin, or another function,
but does not specifies what that other function is. Each bit in the 16-bit PORT_FER register represents one
port pin. For example, bit 1 of the PORT_FER register set the PA1 pin to GPIO operations mode when
cleared. When set, one of the available peripheral functions becomes active.

Every pair of bits in the PORT_MUX register controls the multiplexing between the peripheral functions
available to a pin. This is a 2-bit field because some pins provide up to four options. The truth table of the
bit field is identical to all family derivatives, regardless all options are available on the specific part.

Refer to the Signal Muxing table in the data sheet for the specific PORT_MUX settings.

PORT Event Control

The following sections describe event generation in the PORT module.

PORT Interrupt Signals

The pin interrupts are completely decoupled from GPIO functionality which has the following advantages.

• Flexible mapping scheme enables pins from up to four different ports to be grouped into one common
interrupt scheme.

• Interrupts work on input and output pins regardless of whether in GPIO or functional mode.

The processor has a number of interrupt channels dedicated to pin interrupts. These channels are
managed by a set of hardware blocks named PINTx. Every PINTx block can sense up to 32 GPIO pins as
described in the following list and shown in the figure below.

• PINT0 can sense pins of PORTA and PORTB

• PINT1 can sense pins of PORTB and PORTC

• PINT2 can sense pins from PORTC and PORTD

• PINT3 can sense pins from PORTD and PORTE

• PINT4 can sense pins from PORTE and PORTF

Both 32-bit and 16-bit peripheral bus accesses to PINTx registers are supported.

GENERAL-PURPOSE PORTS (PORT)
PORT EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–15

Figure 12-2: ADSP-CM40x GPIO to PINTx Assignment

Pins are connected to the PINTx module and then to the system event controller. Special attention is
required with regard to how the pins are assigned to the PINTx modules as shown in the PINTx block
diagram below.

Figure 12-3: PINTx Block Diagram

The ports are subdivided into 8-bit half ports, with lower and upper half 8-bit units. The PINTx_ASSIGN
registers control the 8-bit multiplexers shown in the Block Diagram. Lower half units of eight pins can be
forwarded to either byte 0 or byte 2 of either associated PINTx block. Upper half units can be forwarded
to either byte 1 or byte 3 of the pin interrupts blocks, without further restrictions.

When a half port is assigned to a byte in any PINTx block, the state of the eight pins (regardless of GPIO
or function, input or output) can be seen in the PINTx_PINSTATE register. When neither input nor output
drivers of the pin are enabled, the pin state is read as zero. The PINTx_PINSTATE register reports the
inverted state of the pin if the signal inverter is activated by the PINTx_INVERT_SET register. The inverter
can be enabled on a individual bit by bit basis. Every bit in the PINTx_INVERT_SET/ PINTx_INVERT_
CLEAR register pair represents a pin signal.

An interrupt can be generated on an active high level of the signal or a rising edge of the signal. The default
behavior is level sensitivity. The PINTx_EDGE_SET register can be used to change the behavior to edge
sensitivity. By enabling the inverter using the PINTx_INVERT_SET register, the interrupt behavior can be
altered to trigger on active-low signals or falling edges.

GENERAL-PURPOSE PORTS (PORT)
PORT PROGRAMMING MODEL

12–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The PINTx modules also assist if both signals are required to generate interrupts. If two different interrupt
requests are required, the PINTx_ASSIGN registers can route a signal to two different PINTx blocks, where
one block inverts the signal and the other one does not. If both signal edges can report over the same inter-
rupt, every signal can be routed through to different bit positions within a single PINTx block, where the
inverted signal should be enabled for either one. The servicing software routine can then tell from the
PINTx_LATCH register whether a falling, a rising, or both edges have occurred.

Regardless of whether using level-sensitive or edge-sensitive mode, an interrupt is always latched by the
hardware. Latched signals can be read from the PINTx_LATCH registers. Latches can only be cleared by a
software or a hardware reset. To clear, W1C the PINTx_REQUEST or the PINTx_LATCH register. If the pin
state does not change by the time the interrupt service routine returns, the interrupt is requested again
when in level-sensitive mode.

Because every PINTx block groups up to 32 pin signals, the PINTx_MASK_SET/ PINTx_INVERT_CLEAR
register pair can control which of the signals can request an interrupt at the system level. Software may
interrogate the PINTx_REQUEST register for signaling pins. The PINTx_REQUEST bits represent a logical
AND between the mask and the latch. When any of these bits is set, an interrupt is forwarded to the SIC
controller.

All MMR registers in the pin interrupt module are 32 bits wide. Individual bits of the PINTx registers repre-
sent the associated pins. Nevertheless, the 32 bits can also be seen as four groups of eight pins. Each group
can manage up to eight pins out of either the lower or an upper half of any associated port.

PORT Programming Model

The following sections description of the overall program model of the general purpose ports.

GPIO Programming Model Flow (Part 1), GPIO Programming Model Flow (Part 2), and GPIO
Programming Model Flow (Part 3) show the programming model of the general-purpose ports. This
includes the GPIO input and output operation, open-drain mode, and the pin interrupt PINTx modules.

NOTE: These process flow diagrams connect where callout letters appear. For example, callout "A" on the
GPIO Programming Model Flow (Part 1) diagram connects to callout "A" on the GPIO
Programming Model Flow (Part 2) diagram.

The following flow charts describe the processes for setting up pins for different available functionality.
Begin the process from the GPIO Programming Model Flow (Part 1) chart. The first decision effect the
value of the PORT_FER register, shown at "1", for peripheral functions this should be set. For more infor-
mation on setting up for peripheral functions refer to the Port Multiplexing Control.

If the pin is to be a GPIO pin, a series of decisions then need to be made. There are several configuration
registers that need to be considered: PORT_DATA, PORT_INV, PORT_DIR, and PORT_INEN. Depending on the
type of GPIO pin desired, the configurations may or may not be applicable, and can have different mean-
ings. The following paragraphs describe in brief the function of the different settings for each of the pin
functions in GPIO mode: Input, Output, and Open-drain. For all registers the SET/CLR versions of the
register are recommended to be used. For more detailed descriptions of the configurations, see ADSP-
CM40x PORT Register Descriptions.

GENERAL-PURPOSE PORTS (PORT)
PORT PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–17

For Output mode, all the pins should always first be made low using PORT_DATA register. The PORT_DIR
register is used to define the direction of each pin (output). In this mode, the other registers aren't of any
consequence. This flow can be seen starting at label "2" in GPIO Programming Model Flow (Part 1) chart.

Figure 12-4: GPIO Programming Model Flow (Part 1)

For Input mode, the polarity must be first decided for each pin using the PINT_INV register. The PORT_DIR
register of course must be set to define the appropriate pins for input. If interrupts are desirable a serious
of steps must be taken to configure the PINT module according. These steps are shown starting at "B" in
the GPIO Programming Model Flow (Part 3) chart. Finally, the PORT_INEN register used to enable the
associated input drivers. This entire flow can be seen starting at "3" in the GPIO Programming Model
Flow (Part 2) chart.

For Open Drain mode, all the pins should always be first made low using PORT_DATA. PORT_INEN should
then be used to enable the appropriate input drivers. PORT_DIR should be set in this mode to indicate

GENERAL-PURPOSE PORTS (PORT)
PORT PROGRAMMING MODEL

12–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

whether the pin is in active state or not (active being 0). This flow can be seen starting at "4" in the GPIO
Programming Model Flow (Part 2) chart.

Figure 12-5: GPIO Programming Model Flow (Part 2)

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–19

Figure 12-6: GPIO Programming Model Flow (Part 3)

ADSP-CM40x PORT Register Descriptions

General Purpose Input/Output (PORT) contains the following registers.

Table 12-16: ADSP-CM40x PORT Register List

Name Description

PORT_FER Port x Function Enable Register

PORT_FER_SET Port x Function Enable Set Register

PORT_FER_CLR Port x Function Enable Clear Register

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Port x Function Enable Register

The PORT_FER register bits indicate each port bit's operating mode: general purpose I/O mode or periph-
eral mode. After reset, all pins default to GPIO mode. Setting a bit in the PORT_FER registers enables a
peripheral module to take ownership of the pin. The function enable bits impact output control only.
Regardless of the setting of the function enable bits, both GPIO and peripherals can still sense the pin
input. After a function is enabled, it is up to the PORT_MUX registers as to which peripheral takes control.

PORT_DATA Port x GPIO Data Register

PORT_DATA_SET Port x GPIO Data Set Register

PORT_DATA_CLR Port x GPIO Data Clear Register

PORT_DIR Port x GPIO Direction Register

PORT_DIR_SET Port x GPIO Direction Set Register

PORT_DIR_CLR Port x GPIO Direction Clear Register

PORT_INEN Port x GPIO Input Enable Register

PORT_INEN_SET Port x GPIO Input Enable Set Register

PORT_INEN_CLR Port x GPIO Input Enable Clear Register

PORT_MUX Port x Multiplexer Control Register

PORT_DATA_TGL Port x GPIO Input Enable Toggle Register

PORT_POL Port x GPIO Polarity Invert Register

PORT_POL_SET Port x GPIO Polarity Invert Set Register

PORT_POL_CLR Port x GPIO Polarity Invert Clear Register

PORT_LOCK Port x GPIO Lock Register

Table 12-16: ADSP-CM40x PORT Register List (Continued)

Name Description

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–21

Figure 12-7: PORT_FER Register Diagram

Table 12-17: PORT_FER Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

PX15 Port x Bit 15 Mode.

0 GPIO Mode

1 Peripheral Mode

14
(R/W)

PX14 Port x Bit 14 Mode.

0 GPIO Mode

1 Peripheral Mode

13
(R/W)

PX13 Port x Bit 13 Mode.

0 GPIO Mode

1 Peripheral Mode

12
(R/W)

PX12 Port x Bit 12 Mode.

0 GPIO Mode

1 Peripheral Mode

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

11
(R/W)

PX11 Port x Bit 11 Mode.

0 GPIO Mode

1 Peripheral Mode

10
(R/W)

PX10 Port x Bit 10 Mode.

0 GPIO Mode

1 Peripheral Mode

9
(R/W)

PX9 Port x Bit 9 Mode.

0 GPIO Mode

1 Peripheral Mode

8
(R/W)

PX8 Port x Bit 8 Mode.

0 GPIO Mode

1 Peripheral Mode

7
(R/W)

PX7 Port x Bit 7 Mode.

0 GPIO Mode

1 Peripheral Mode

6
(R/W)

PX6 Port x Bit 6 Mode.

0 GPIO Mode

1 Peripheral Mode

5
(R/W)

PX5 Port x Bit 5 Mode.

0 GPIO Mode

1 Peripheral Mode

4
(R/W)

PX4 Port x Bit 4 Mode.

0 GPIO Mode

1 Peripheral Mode

3
(R/W)

PX3 Port x Bit 3 Mode.

0 GPIO Mode

1 Peripheral Mode

2
(R/W)

PX2 Port x Bit 2 Mode.

0 GPIO Mode

1 Peripheral Mode

1
(R/W)

PX1 Port x Bit 1 Mode.

0 GPIO Mode

1 Peripheral Mode

Table 12-17: PORT_FER Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–23

Port x Function Enable Set Register

The PORT_FER_SET register permits enabling peripheral mode for each bit and corresponding GPIO pin.
Writing 1 to a bit in PORT_FER_SET enables peripheral mode for the corresponding pin.

Figure 12-8: PORT_FER_SET Register Diagram

0
(R/W)

PX0 Port x Bit 0 Mode.

0 GPIO Mode

1 Peripheral Mode

Table 12-17: PORT_FER Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 12-18: PORT_FER_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1S)

PX15 Port x Bit 15 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

14
(R/W1S)

PX14 Port x Bit 14 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

13
(R/W1S)

PX13 Port x Bit 13 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

12
(R/W1S)

PX12 Port x Bit 12 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

11
(R/W1S)

PX11 Port x Bit 11 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

10
(R/W1S)

PX10 Port x Bit 10 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

9
(R/W1S)

PX9 Port x Bit 9 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

8
(R/W1S)

PX8 Port x Bit 8 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

7
(R/W1S)

PX7 Port x Bit 7 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

6
(R/W1S)

PX6 Port x Bit 6 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

5
(R/W1S)

PX5 Port x Bit 5 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–25

Port x Function Enable Clear Register

The PORT_FER_CLR register permits enabling GPIO mode for each bit and corresponding GPIO pin.
Writing 1 to a bit in PORT_FER_CLR enables GPIO mode for the corresponding pin.

4
(R/W1S)

PX4 Port x Bit 4 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

3
(R/W1S)

PX3 Port x Bit 3 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

2
(R/W1S)

PX2 Port x Bit 2 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

1
(R/W1S)

PX1 Port x Bit 1 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

0
(R/W1S)

PX0 Port x Bit 0 Mode Set.

0 No Effect

1 Set Bit for Peripheral Mode

Table 12-18: PORT_FER_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 12-9: PORT_FER_CLR Register Diagram

Table 12-19: PORT_FER_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

PX15 Port x Bit 15 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

14
(R/W1C)

PX14 Port x Bit 14 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

13
(R/W1C)

PX13 Port x Bit 13 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–27

12
(R/W1C)

PX12 Port x Bit 12 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

11
(R/W1C)

PX11 Port x Bit 11 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

10
(R/W1C)

PX10 Port x Bit 10 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

9
(R/W1C)

PX9 Port x Bit 9 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

8
(R/W1C)

PX8 Port x Bit 8 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

7
(R/W1C)

PX7 Port x Bit 7 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

6
(R/W1C)

PX6 Port x Bit 6 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

5
(R/W1C)

PX5 Port x Bit 5 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

4
(R/W1C)

PX4 Port x Bit 4 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

3
(R/W1C)

PX3 Port x Bit 3 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

2
(R/W1C)

PX2 Port x Bit 2 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

Table 12-19: PORT_FER_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Port x GPIO Data Register

The PORT_DATA register operates differently for port bits/pins, depending on whether the bit/pin is in
output mode or input mode. In both modes, a set bit in the PORT_DATA register corresponds to a signal high
on a GPIO pin, and a cleared bit in the PORT_DATA register corresponds to a signal low on a GPIO pin.

The PORT_DATA, PORT_DATA_SET, and PORT_DATA_CLR registers control the state of GPIO pins in output
mode. To enable output mode (and output drivers), use the PORT_DIR_SET and PORT_DIR_CLR registers.

Writes to the PORT_DATA register affect the state of all pins of the port that are in output mode. To set or
clear specific pins without impacting other pins of the port, use the PORT_DATA_SET and PORT_DATA_CLR
registers.

When the GPIO pins are in input mode (input driver is enabled with the PORT_INEN register), reads from
the PORT_DATA, PORT_DATA_SET, and PORT_DATA_CLR registers return the state of the respective GPIO
pins.

Note that when the input driver is not enabled, reads from the PORT_DATA, PORT_DATA_SET, and PORT_
DATA_CLR registers return the value previously written to the registers.

1
(R/W1C)

PX1 Port x Bit 1 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

0
(R/W1C)

PX0 Port x Bit 0 Mode Clear.

0 No Effect

1 Set Bit for GPIO Mode

Table 12-19: PORT_FER_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–29

Figure 12-10: PORT_DATA Register Diagram

Table 12-20: PORT_DATA Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

PX15 Port x Bit 15 Data.

0 Signal Low

1 Signal High

14
(R/W)

PX14 Port x Bit 14 Data.

0 Signal Low

1 Signal High

13
(R/W)

PX13 Port x Bit 13 Data.

0 Signal Low

1 Signal High

12
(R/W)

PX12 Port x Bit 12 Data.

0 Signal Low

1 Signal High

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

11
(R/W)

PX11 Port x Bit 11 Data.

0 Signal Low

1 Signal High

10
(R/W)

PX10 Port x Bit 10 Data.

0 Signal Low

1 Signal High

9
(R/W)

PX9 Port x Bit 9 Data.

0 Signal Low

1 Signal High

8
(R/W)

PX8 Port x Bit 8 Data.

0 Signal Low

1 Signal High

7
(R/W)

PX7 Port x Bit 7 Data.

0 Signal Low

1 Signal High

6
(R/W)

PX6 Port x Bit 6 Data.

0 Signal Low

1 Signal High

5
(R/W)

PX5 Port x Bit 5 Data.

0 Signal Low

1 Signal High

4
(R/W)

PX4 Port x Bit 4 Data.

0 Signal Low

1 Signal High

3
(R/W)

PX3 Port x Bit 3 Data.

0 Signal Low

1 Signal High

2
(R/W)

PX2 Port x Bit 2 Data.

0 Signal Low

1 Signal High

1
(R/W)

PX1 Port x Bit 1 Data.

0 Signal Low

1 Signal High

Table 12-20: PORT_DATA Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–31

Port x GPIO Data Set Register

The PORT_DATA_SET register operates differently for port bits/pins, depending on whether the bit/pin is
output mode or input mode. For more information, see the PORT_DATA register description.

Figure 12-11: PORT_DATA_SET Register Diagram

0
(R/W)

PX0 Port x Bit 0 Data.

0 Signal Low

1 Signal High

Table 12-20: PORT_DATA Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 12-21: PORT_DATA_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1S)

PX15 Port x Bit 15 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

14
(R/W1S)

PX14 Port x Bit 14 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

13
(R/W1S)

PX13 Port x Bit 13 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

12
(R/W1S)

PX12 Port x Bit 12 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.Write 1 for
signal high in output mode.

11
(R/W1S)

PX11 Port x Bit 11 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit

10
(R/W1S)

PX10 Port x Bit 10 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

9
(R/W1S)

PX9 Port x Bit 9 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–33

8
(R/W1S)

PX8 Port x Bit 8 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

7
(R/W1S)

PX7 Port x Bit 7 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

6
(R/W1S)

PX6 Port x Bit 6 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

5
(R/W1S)

PX5 Port x Bit 5 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

4
(R/W1S)

PX4 Port x Bit 4 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

3
(R/W1S)

PX3 Port x Bit 3 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

2
(R/W1S)

PX2 Port x Bit 2 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

Table 12-21: PORT_DATA_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Port x GPIO Data Clear Register

The PORT_DATA_CLR register operates differently for port bits/pins, depending on whether the bit/pin is
output mode or input mode. For more information, see the PORT_DATA register description.

1
(R/W1S)

PX1 Port x Bit 1 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

0
(R/W1S)

PX0 Port x Bit 0 Data Set.

0 No Effect
Write 0 has no effect in output mode.

1 Set Bit
Write 1 for signal high in output mode.

Table 12-21: PORT_DATA_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–35

Figure 12-12: PORT_DATA_CLR Register Diagram

Table 12-22: PORT_DATA_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

PX15 Port x Bit 15 Data Clear.

0 No Effect

1 Clear Bit
Write 1 for signal low in output mode.

14
(R/W1C)

PX14 Port x Bit 14 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

13
(R/W1C)

PX13 Port x Bit 13 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

12
(R/W1C)

PX12 Port x Bit 12 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

11
(R/W1C)

PX11 Port x Bit 11 Data Clear.

0 No Effect

1 Clear Bit
Write 1 for signal low in output mode.

10
(R/W1C)

PX10 Port x Bit 10 Data Clear.

0 No Effect
Write 0 has no effect in output mode.Write 0 has no
effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

9
(R/W1C)

PX9 Port x Bit 9 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

8
(R/W1C)

PX8 Port x Bit 8 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

7
(R/W1C)

PX7 Port x Bit 7 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

Table 12-22: PORT_DATA_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–37

6
(R/W1C)

PX6 Port x Bit 6 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

5
(R/W1C)

PX5 Port x Bit 5 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

4
(R/W1C)

PX4 Port x Bit 4 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

3
(R/W1C)

PX3 Port x Bit 3 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

2
(R/W1C)

PX2 Port x Bit 2 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

1
(R/W1C)

PX1 Port x Bit 1 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

0
(R/W1C)

PX0 Port x Bit 0 Data Clear.

0 No Effect
Write 0 has no effect in output mode.

1 Clear Bit
Write 1 for signal low in output mode.

Table 12-22: PORT_DATA_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Port x GPIO Direction Register

The PORT_DIR, PORT_DIR_SET, and PORT_DIR_CLR registers select output or input mode for GPIO pins
and enable output drivers. Use the PORT_INEN, PORT_INEN_SET, and PORT_INEN_CLR registers to enable
or disable input drivers.

Writes to the PORT_DIR register affect the state of all pins of the port. To select direction for specific pins
without impacting other pins of the port, use the PORT_DIR_SET and PORT_DIR_CLR registers.

Setting a bit in the PORT_DIR register enables output mode on the corresponding a GPIO pin, and a
clearing a bit in the PORT_DIR register disables output mode on the corresponding GPIO pin.

Input Mode - The default mode of every GPIO pin after reset is input mode, but the input drivers are not
enabled. To enable any GPIO input drivers, set the corresponding bits in PORT_INEN register. When
enabled, a read from the PORT_DATA register returns the logical state of the input pin. The input signal does
not overwrite the state of the bit used for the output case. That state can only be altered by software. If the
input driver is enabled, a write to the PORT_DATA register can alter the state of the bit, but the change cannot
be read back.

Output Mode - Any GPIO pin can be configured for output mode. The GPIO output drivers are enabled
by setting the corresponding bits in the PORT_DIR, PORT_DIR_SET, or PORT_DIR_CLR registers. By using
the PORT_DIR_SET and PORT_DIR_CLR registers, direction of the signal flow of individual GPIO pins can
be altered by separate software threads without mutually impacting other GPIOs on the same port. Both
registers return the same value when read. Because the state of the GPIO output can already be controlled
before the output driver is enabled, it is recommended to first set or clear the bit (using the PORT_DATA,
PORT_DATA_SET, or PORT_DATA_CLR registers) to avoid any volatile levels on the output.

Open-Drain Mode- Every GPIO can also be used in open-drain mode. To accomplish this, first, clear the
respective bit in the PORT_DATA or PORT_DATA_CLR register then set the one bit in the PORT_INEN register.
Reads from the PORT_DATA register then return the status from the pin and do not return the state of the
internal flip-flop. By toggling the output driver through the PORT_DIR_SET and PORT_DIR_CLR register
pair, the output signal can be pulled low or three-stated as required. Note that the polarity of the driven
signal can be inverted when the internal flip-flop is set instead. When a GPIO port is used in open-drain
mode, care must be taken not to exceed the VIH operating condition associated with the respective pin.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–39

Figure 12-13: PORT_DIR Register Diagram

Table 12-23: PORT_DIR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

PX15 Port x Bit 15 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

14
(R/W)

PX14 Port x Bit 14 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

13
(R/W)

PX13 Port x Bit 13 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

12
(R/W)

PX12 Port x Bit 12 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

11
(R/W)

PX11 Port x Bit 11 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

10
(R/W)

PX10 Port x Bit 10 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

9
(R/W)

PX9 Port x Bit 9 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

8
(R/W)

PX8 Port x Bit 8 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

7
(R/W)

PX7 Port x Bit 7 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

Table 12-23: PORT_DIR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–41

6
(R/W)

PX6 Port x Bit 6 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

5
(R/W)

PX5 Port x Bit 5 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

4
(R/W)

PX4 Port x Bit 4 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

3
(R/W)

PX3 Port x Bit 3 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

2
(R/W)

PX2 Port x Bit 2 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

1
(R/W)

PX1 Port x Bit 1 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

0
(R/W)

PX0 Port x Bit 0 Direction.

0 Input mode
Output driver disabled.

1 Output mode
Output driver enabled.

Table 12-23: PORT_DIR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Port x GPIO Direction Set Register

The PORT_DIR_SET register enable output mode and enables output drivers for GPIO pins. For more
information, see the PORT_DIR register description.

Figure 12-14: PORT_DIR_SET Register Diagram

Table 12-24: PORT_DIR_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1S)

PX15 Port x Bit 15 Direction Set.
The PORT_DIR_SET.PX15 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

14
(R/W1S)

PX14 Port x Bit 14 Direction Set.
The PORT_DIR_SET.PX14 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–43

13
(R/W1S)

PX13 Port x Bit 13 Direction Set.
The PORT_DIR_SET.PX13 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

12
(R/W1S)

PX12 Port x Bit 12 Direction Set.
The PORT_DIR_SET.PX12 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

11
(R/W1S)

PX11 Port x Bit 11 Direction Set.
The PORT_DIR_SET.PX11 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

10
(R/W1S)

PX10 Port x Bit 10 Direction Set.
The PORT_DIR_SET.PX10 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

9
(R/W1S)

PX9 Port x Bit 9 Direction Set.
The PORT_DIR_SET.PX9 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

8
(R/W1S)

PX8 Port x Bit 8 Direction Set.
The PORT_DIR_SET.PX8 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

7
(R/W1S)

PX7 Port x Bit 7 Direction Set.
The PORT_DIR_SET.PX7 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

6
(R/W1S)

PX6 Port x Bit 6 Direction Set.
The PORT_DIR_SET.PX6 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

5
(R/W1S)

PX5 Port x Bit 5 Direction Set.
The PORT_DIR_SET.PX5 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

Table 12-24: PORT_DIR_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Port x GPIO Direction Clear Register

The PORT_DIR_CLR register disables output mode and disables output drivers for GPIO pins. For more
information, see the PORT_DIR register description.

4
(R/W1S)

PX4 Port x Bit 4 Direction Set.
The PORT_DIR_SET.PX4 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

3
(R/W1S)

PX3 Port x Bit 3 Direction Set.
The PORT_DIR_SET.PX3 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

2
(R/W1S)

PX2 Port x Bit 2 Direction Set.
The PORT_DIR_SET.PX2 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

1
(R/W1S)

PX1 Port x Bit 1 Direction Set.
The PORT_DIR_SET.PX1 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

0
(R/W1S)

PX0 Port x Bit 0 Direction Set.
The PORT_DIR_SET.PX0 bit enables the output mode/driver for port x.

0 No Effect

1 Enable output mode/driver

Table 12-24: PORT_DIR_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–45

Figure 12-15: PORT_DIR_CLR Register Diagram

Table 12-25: PORT_DIR_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

PX15 Port x Bit 15 Direction Clear.
The PORT_DIR_CLR.PX15 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

14
(R/W1C)

PX14 Port x Bit 14 Direction Clear.
The PORT_DIR_CLR.PX14 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

13
(R/W1C)

PX13 Port x Bit 13 Direction Clear.
The PORT_DIR_CLR.PX13 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

12
(R/W1C)

PX12 Port x Bit 12 Direction Clear.
The PORT_DIR_CLR.PX12 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

11
(R/W1C)

PX11 Port x Bit 11 Direction Clear.
The PORT_DIR_CLR.PX11 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

10
(R/W1C)

PX10 Port x Bit 10 Direction Clear.
The PORT_DIR_CLR.PX10 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

9
(R/W1C)

PX9 Port x Bit 9 Direction Clear.
The PORT_DIR_CLR.PX9 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

8
(R/W1C)

PX8 Port x Bit 8 Direction Clear.
The PORT_DIR_CLR.PX8 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

7
(R/W1C)

PX7 Port x Bit 7 Direction Clear.
The PORT_DIR_CLR.PX7 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

6
(R/W1C)

PX6 Port x Bit 6 Direction Clear.
The PORT_DIR_CLR.PX6 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

5
(R/W1C)

PX5 Port x Bit 5 Direction Clear.
The PORT_DIR_CLR.PX5 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

Table 12-25: PORT_DIR_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–47

Port x GPIO Input Enable Register

The PORT_INEN, PORT_INEN_SET, and PORT_INEN_CLR registers enable or disable input drivers, which are
required for using a GPIO pin in input mode.

Writes to the PORT_INEN register affect the input drivers for all pins of the port. To set or clear specific pin
drivers without impacting other pin drivers of the port, use the PORT_INEN_SET and PORT_INEN_CLR regis-
ters.

If the input is enabled, reads from the PORT_DATA, PORT_DATA_SET, or PORT_DATA_CLR registers return the
state of the pins. However, the state of the output is not overwritten by the input. It is altered by software
writes only. Input and output drivers can be enabled at the same time. In this case, a read of the data
register returns the true value of the data register and not the pin state.

For more information see the PORT_DATA register description and the PORT_DIR register description.

4
(R/W1C)

PX4 Port x Bit 4 Direction Clear.

0 No Effect

1 Disable output mode/driver

3
(R/W1C)

PX3 Port x Bit 3 Direction Clear.
The PORT_DIR_CLR.PX3 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

2
(R/W1C)

PX2 Port x Bit 2 Direction Clear.
The PORT_DIR_CLR.PX2 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

1
(R/W1C)

PX1 Port x Bit 1 Direction Clear.
The PORT_DIR_CLR.PX1 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

0
(R/W1C)

PX0 Port x Bit 0 Direction Clear.
The PORT_DIR_CLR.PX0 bit disables output mode/driver for port x.

0 No Effect

1 Disable output mode/driver

Table 12-25: PORT_DIR_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 12-16: PORT_INEN Register Diagram

Table 12-26: PORT_INEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

PX15 Port x Bit 15 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

14
(R/W)

PX14 Port x Bit 14 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

13
(R/W)

PX13 Port x Bit 13 Input Enable.

0 Input disabled

1 Enable Input Driver

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–49

12
(R/W)

PX12 Port x Bit 12 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

11
(R/W)

PX11 Port x Bit 11 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

10
(R/W)

PX10 Port x Bit 10 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

9
(R/W)

PX9 Port x Bit 9 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

8
(R/W)

PX8 Port x Bit 8 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

7
(R/W)

PX7 Port x Bit 7 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

6
(R/W)

PX6 Port x Bit 6 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

5
(R/W)

PX5 Port x Bit 5 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

4
(R/W)

PX4 Port x Bit 4 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

3
(R/W)

PX3 Port x Bit 3 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

2
(R/W)

PX2 Port x Bit 2 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

Table 12-26: PORT_INEN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Port x GPIO Input Enable Set Register

The PORT_INEN_SET register enables input drivers for GPIO pins. For more information, see the PORT_
INEN register description.

1
(R/W)

PX1 Port x Bit 1 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

0
(R/W)

PX0 Port x Bit 0 Input Enable.

0 Disable Input Driver

1 Enable Input Driver

Table 12-26: PORT_INEN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–51

Figure 12-17: PORT_INEN_SET Register Diagram

Table 12-27: PORT_INEN_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1S)

PX15 Port x Bit 15 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

14
(R/W1S)

PX14 Port x Bit 14 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–52 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

13
(R/W1S)

PX13 Port x Bit 13 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

12
(R/W1S)

PX12 Port x Bit 12 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

11
(R/W1S)

PX11 Port x Bit 11 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

10
(R/W1S)

PX10 Port x Bit 10 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

9
(R/W1S)

PX9 Port x Bit 9 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

8
(R/W1S)

PX8 Port x Bit 8 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

7
(R/W1S)

PX7 Port x Bit 7 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

6
(R/W1S)

PX6 Port x Bit 6 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

5
(R/W1S)

PX5 Port x Bit 5 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

Table 12-27: PORT_INEN_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–53

Port x GPIO Input Enable Clear Register

The PORT_INEN_CLR register disables input drivers for GPIO pins. For more information, see the PORT_
INEN register description.

4
(R/W1S)

PX4 Port x Bit 4 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

3
(R/W1S)

PX3 Port x Bit 3 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

2
(R/W1S)

PX2 Port x Bit 2 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

1
(R/W1S)

PX1 Port x Bit 1 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

0
(R/W1S)

PX0 Port x Bit 0 Input Enable Set.

0 No Effect

1 Set Bit
Set to enable input driver.

Table 12-27: PORT_INEN_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–54 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 12-18: PORT_INEN_CLR Register Diagram

Table 12-28: PORT_INEN_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

PX15 Port x Bit 15 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

14
(R/W1C)

PX14 Port x Bit 14 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–55

13
(R/W1C)

PX13 Port x Bit 13 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

12
(R/W1C)

PX12 Port x Bit 12 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

11
(R/W1C)

PX11 Port x Bit 11 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

10
(R/W1C)

PX10 Port x Bit 10 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

9
(R/W1C)

PX9 Port x Bit 9 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

8
(R/W1C)

PX8 Port x Bit 8 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

7
(R/W1C)

PX7 Port x Bit 7 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

6
(R/W1C)

PX6 Port x Bit 6 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

5
(R/W1C)

PX5 Port x Bit 5 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

Table 12-28: PORT_INEN_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–56 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Port x Multiplexer Control Register

When a pin is in peripheral mode (not GPIO mode), the PORT_MUX register controls which peripheral takes
ownership of a pin. Ports may have multiple, different peripheral functions. Two bits are required to
describe every multiplexer on an individual pin-by-pin scheme. For example, Bit 0 and Bit 1 of the PORT_
MUX register control the multiplexer of Pin 0, Bit 2 and Bit 3 of PORT_MUX control the multiplexer of Pin 1,
and so on. The value of any PORT_MUX bit has no effect on the port pins when the associated bit in the PORT_
FER register is 0 (selects GPIO mode). Even if a port has only one function, the PORT_MUX register is still
present. For single function ports (no multiplexing is needed), leave the PORT_MUX bits at 0 (default). For
all PORT_MUX bit fields: 00 = default/reset peripheral option, 01 = first alternate peripheral option, 10 =
second alternate peripheral option, and 11 = third alternate peripheral option.

4
(R/W1C)

PX4 Port x Bit 4 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

3
(R/W1C)

PX3 Port x Bit 3 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

2
(R/W1C)

PX2 Port x Bit 2 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

1
(R/W1C)

PX1 Port x Bit 1 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

0
(R/W1C)

PX0 Port x Bit 0 Input Enable Clear.

0 No Effect

1 Clear Bit
Set to disable input driver.

Table 12-28: PORT_INEN_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–57

Figure 12-19: PORT_MUX Register Diagram

Table 12-29: PORT_MUX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:30
(R/W)

MUX15 Mux for Port x Bit 15.
Multiplexer control for Port x bit 15.

29:28
(R/W)

MUX14 Mux for Port x Bit 14.
Multiplexer control for Port x bit 14.

27:26
(R/W)

MUX13 Mux for Port x Bit 13.
Multiplexer control for Port x bit 13.

25:24
(R/W)

MUX12 Mux for Port x Bit 12.
Multiplexer control for Port x bit 12.

23:22
(R/W)

MUX11 Mux for Port x Bit 11.
Multiplexer control for Port x bit 11.

21:20
(R/W)

MUX10 Mux for Port x Bit 10.
Multiplexer control for Port x bit 10.

19:18
(R/W)

MUX9 Mux for Port x Bit 9.
Multiplexer control for Port x bit 9.

17:16
(R/W)

MUX8 Mux for Port x Bit 8.
Multiplexer control for Port x bit 8.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–58 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Port x GPIO Input Enable Toggle Register

The PORT_DATA_TGL register permits toggling the state of output GPIO pins. Setting bits in the PORT_
DATA_TGL register affects the state of specific pins without impacting other pins of the port.

Reading the PORT_DATA_TGL returns the state of the PORT_DATA register output pin state, but does not
return the input pin/signal state.

15:14
(R/W)

MUX7 Mux for Port x Bit 7.
Multiplexer control for Port x bit 7.

13:12
(R/W)

MUX6 Mux for Port x Bit 6.
Multiplexer control for Port x bit 6.

11:10
(R/W)

MUX5 Mux for Port x Bit 5.
Multiplexer control for Port x bit 5.

9:8
(R/W)

MUX4 Mux for Port x Bit 4.
Multiplexer control for Port x bit 4.

7:6
(R/W)

MUX3 Mux for Port x Bit 3.
Multiplexer control for Port x bit 3.

5:4
(R/W)

MUX2 Mux for Port x Bit 2.
Multiplexer control for Port x bit 2.

3:2
(R/W)

MUX1 Mux for Port x Bit 1.
Multiplexer control for Port x bit 1.

1:0
(R/W)

MUX0 Mux for Port x Bit 0.
Multiplexer control for Port x bit 0.

Table 12-29: PORT_MUX Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–59

Figure 12-20: PORT_DATA_TGL Register Diagram

Table 12-30: PORT_DATA_TGL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1A)

PX15 Port x Bit 15 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

14
(R/W1A)

PX14 Port x Bit 14 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

13
(R/W1A)

PX13 Port x Bit 13 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–60 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

12
(R/W1A)

PX12 Port x Bit 12 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

11
(R/W1A)

PX11 Port x Bit 11 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

10
(R/W1A)

PX10 Port x Bit 10 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

9
(R/W1A)

PX9 Port x Bit 9 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

8
(R/W1A)

PX8 Port x Bit 8 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

7
(R/W1A)

PX7 Port x Bit 7 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

6
(R/W1A)

PX6 Port x Bit 6 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

5
(R/W1A)

PX5 Port x Bit 5 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

4
(R/W1A)

PX4 Port x Bit 4 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

Table 12-30: PORT_DATA_TGL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–61

Port x GPIO Polarity Invert Register

The PORT_POL, PORT_POL_SET, and PORT_POL_CLR registers enable or disable inverting polarity of GPIO
signals. To invert polarity of peripheral signals, use the inversion selection programming in the signal's
corresponding module.

Writes to the PORT_POL register affect the polarity inversion selection of all pins of the port. To enable or
disable polarity inversion for specific pins without impacting other pins of the port, use the PORT_POL_SET
and PORT_POL_CLR registers.

Setting a bit in the PORT_POL register enables polarity inversion on the corresponding inversion GPIO pin,
making the pin active-low or falling-edge sensitive. Clearing a bit in the PORT_POL register disables polarity
(default state) on the corresponding GPIO pin, making it active-high or rising-edge sensitive.

3
(R/W1A)

PX3 Port x Bit 3 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

2
(R/W1A)

PX2 Port x Bit 2 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

1
(R/W1A)

PX1 Port x Bit 1 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

0
(R/W1A)

PX0 Port x Bit 0 Toggle.

0 No Effect

1 Toggle Bit
Set to toggle output GPIO bit/pin state.

Table 12-30: PORT_DATA_TGL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–62 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 12-21: PORT_POL Register Diagram

Table 12-31: PORT_POL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

PX15 Port x Bit 15 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

14
(R/W)

PX14 Port x Bit 14 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–63

13
(R/W)

PX13 Port x Bit 13 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

12
(R/W)

PX12 Port x Bit 12 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

11
(R/W)

PX11 Port x Bit 11 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

10
(R/W)

PX10 Port x Bit 10 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

9
(R/W)

PX9 Port x Bit 9 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

8
(R/W)

PX8 Port x Bit 8 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

7
(R/W)

PX7 Port x Bit 7 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

Table 12-31: PORT_POL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–64 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

6
(R/W)

PX6 Port x Bit 6 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

5
(R/W)

PX5 Port x Bit 5 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

4
(R/W)

PX4 Port x Bit 4 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

3
(R/W)

PX3 Port x Bit 3 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

2
(R/W)

PX2 Port x Bit 2 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

1
(R/W)

PX1 Port x Bit 1 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

0
(R/W)

PX0 Port x Bit 0 Polarity Invert.

0 No Invert
GPIO is active high or rising edge sensitive.

1 Invert
GPIO is active low or falling edge sensitive.

Table 12-31: PORT_POL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–65

Port x GPIO Polarity Invert Set Register

The PORT_POL_SET register enables polarity inversion for GPIO pins. For more information, see the PORT_
POL register description.

Figure 12-22: PORT_POL_SET Register Diagram

Table 12-32: PORT_POL_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1S)

PX15 Port x Bit 15 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–66 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

14
(R/W1S)

PX14 Port x Bit 14 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

13
(R/W1S)

PX13 Port x Bit 13 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

12
(R/W1S)

PX12 Port x Bit 12 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

11
(R/W1S)

PX11 Port x Bit 11 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

10
(R/W1S)

PX10 Port x Bit 10 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

9
(R/W1S)

PX9 Port x Bit 9 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

8
(R/W1S)

PX8 Port x Bit 8 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

7
(R/W1S)

PX7 Port x Bit 7 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

6
(R/W1S)

PX6 Port x Bit 6 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

Table 12-32: PORT_POL_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–67

Port x GPIO Polarity Invert Clear Register

The PORT_POL_CLR register disables polarity inversion for GPIO pins. For more information, see the
PORT_POL register description.

5
(R/W1S)

PX5 Port x Bit 5 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

4
(R/W1S)

PX4 Port x Bit 4 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

3
(R/W1S)

PX3 Port x Bit 3 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

2
(R/W1S)

PX2 Port x Bit 2 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

1
(R/W1S)

PX1 Port x Bit 1 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

0
(R/W1S)

PX0 Port x Bit 0 Polarity Invert Set.

0 No Effect

1 Set Bit
Set to enable GPIO pin polarity invert.

Table 12-32: PORT_POL_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–68 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 12-23: PORT_POL_CLR Register Diagram

Table 12-33: PORT_POL_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

PX15 Port x Bit 15 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

14
(R/W1C)

PX14 Port x Bit 14 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–69

13
(R/W1C)

PX13 Port x Bit 13 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

12
(R/W1C)

PX12 Port x Bit 12 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

11
(R/W1C)

PX11 Port x Bit 11 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

10
(R/W1C)

PX10 Port x Bit 10 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

9
(R/W1C)

PX9 Port x Bit 9 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

8
(R/W1C)

PX8 Port x Bit 8 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

7
(R/W1C)

PX7 Port x Bit 7 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

6
(R/W1C)

PX6 Port x Bit 6 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

5
(R/W1C)

PX5 Port x Bit 5 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

Table 12-33: PORT_POL_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

12–70 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Port x GPIO Lock Register

The PORT_LOCK register enables (unlocks) or disables (locks) write access selectively for the PORT control
registers.

4
(R/W1C)

PX4 Port x Bit 4 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

3
(R/W1C)

PX3 Port x Bit 3 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

2
(R/W1C)

PX2 Port x Bit 2 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

1
(R/W1C)

PX1 Port x Bit 1 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

0
(R/W1C)

PX0 Port x Bit 0 Polarity Invert Clear.

0 No Effect

1 Clear Bit
Set to disable GPIO pin polarity invert.

Table 12-33: PORT_POL_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–71

Figure 12-24: PORT_LOCK Register Diagram

Table 12-34: PORT_LOCK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the PORT_LOCK.LOCK bit
is set, the PORT_LOCK register is read only (locked).

0 Unlock

1 Lock

5
(R/W)

POLAR Polarity Lock.
The PORT_LOCK.POLAR disables write access to the PORT_POL, PORT_POL_
SET, and PORT_POL_CLR registers.

0 Unlock POL

1 Lock POL

4
(R/W)

INEN Input Enable Lock.
The PORT_LOCK.INEN disables write access to the PORT_INEN, PORT_INEN_
SET, and PORT_INEN_CLR registers.

0 Unlock INEN

1 Lock INEN

3
(R/W)

DIR Direction Lock.
The PORT_LOCK.DIR disables write access to the PORT_DIR, PORT_DIR_SET,
PORT_DIR_CLR registers.

0 Lock DIR

1 Unlock DIR

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–72 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x PINT Register Descriptions

PINT (PINT) contains the following registers.

2
(R/W)

DATA Data, TGL Lock.
The PORT_LOCK.DATA disables write access to the PORT_DATA, PORT_DATA_
SET, PORT_DATA_CLR, and PORT_DATA_TGL registers.

0 Unlock DATA

1 Lock DATA

1
(R/W)

MUX Function Multiplexer Lock.
The PORT_LOCK.MUX disables write accesses to the PORT_MUX register.

0 Unlock MUX

1 Lock MUX

0
(R/W)

FER Function Enable Lock.
The PORT_LOCK.FER disables write access to the PORT_FER, PORT_FER_SET,
and PORT_FER_CLR registers.

0 Unlock FER

1 Lock FER

Table 12-35: ADSP-CM40x PINT Register List

Name Description

PINT_MSK_SET Pint Mask Set Register

PINT_MSK_CLR Pint Mask Clear Register

PINT_REQ Pint Request Register

PINT_ASSIGN Pint Assign Register

PINT_EDGE_SET Pint Edge Set Register

PINT_EDGE_CLR Pint Edge Clear Register

PINT_INV_SET Pint Invert Set Register

PINT_INV_CLR Pint Invert Clear Register

PINT_PINSTATE Pint Pinstate Register

PINT_LATCH Pint Latch Register

Table 12-34: PORT_LOCK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–73

Pint Mask Set Register

The PINT_MSK_SET register permits unmasking (enabling) of interrupts. Writing 1 to a bit in PINT_MSK_
SET unmasks the corresponding pin interrupt.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–74 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 12-25: PINT_MSK_SET Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–75

Table 12-36: PINT_MSK_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1S)

PIQ31 Pin Interrupt 31 Unmask.
Set to enable interrupt.

30
(R/W1S)

PIQ30 Pin Interrupt 30 Unmask.
Set to enable interrupt.

29
(R/W1S)

PIQ29 Pin Interrupt 29 Unmask.
Set to enable interrupt.

28
(R/W1S)

PIQ28 Pin Interrupt 28 Unmask.
Set to enable interrupt.

27
(R/W1S)

PIQ27 Pin Interrupt 27 Unmask.
Set to enable interrupt.

26
(R/W1S)

PIQ26 Pin Interrupt 26 Unmask.
Set to enable interrupt.

25
(R/W1S)

PIQ25 Pin Interrupt 25 Unmask.
Set to enable interrupt.

24
(R/W1S)

PIQ24 Pin Interrupt 24 Unmask.
Set to enable interrupt.

23
(R/W1S)

PIQ23 Pin Interrupt 23 Unmask.
Set to enable interrupt.

22
(R/W1S)

PIQ22 Pin Interrupt 22 Unmask.
Set to enable interrupt.

21
(R/W1S)

PIQ21 Pin Interrupt 21 Unmask.
Set to enable interrupt.

20
(R/W1S)

PIQ20 Pin Interrupt 20 Unmask.
Set to enable interrupt.

19
(R/W1S)

PIQ19 Pin Interrupt 19 Unmask.
Set to enable interrupt.

18
(R/W1S)

PIQ18 Pin Interrupt 18 Unmask.
Set to enable interrupt.

17
(R/W1S)

PIQ17 Pin Interrupt 17 Unmask.
Set to enable interrupt.

16
(R/W1S)

PIQ16 Pin Interrupt 16 Unmask.
Set to enable interrupt.

15
(R/W1S)

PIQ15 Pin Interrupt 15 Unmask.
Set to enable interrupt.

14
(R/W1S)

PIQ14 Pin Interrupt 14 Unmask.
Set to enable interrupt.

13
(R/W1S)

PIQ13 Pin Interrupt 13 Unmask.
Set to enable interrupt.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–76 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Pint Mask Clear Register

The PINT_MSK_CLR register permits masking (disabling) of interrupts. Writing 1 to a bit in PINT_MSK_CLR
masks the corresponding pin interrupt.

12
(R/W1S)

PIQ12 Pin Interrupt 12 Unmask.
Set to enable interrupt.

11
(R/W1S)

PIQ11 Pin Interrupt 11 Unmask.
Set to enable interrupt.

10
(R/W1S)

PIQ10 Pin Interrupt 10 Unmask.
Set to enable interrupt.

9
(R/W1S)

PIQ9 Pin Interrupt 9 Unmask.
Set to enable interrupt.

8
(R/W1S)

PIQ8 Pin Interrupt 8 Unmask.
Set to enable interrupt.

7
(R/W1S)

PIQ7 Pin Interrupt 7 Unmask.
Set to enable interrupt.

6
(R/W1S)

PIQ6 Pin Interrupt 6 Unmask.
Set to enable interrupt.

5
(R/W1S)

PIQ5 Pin Interrupt 5 Unmask.
Set to enable interrupt.

4
(R/W1S)

PIQ4 Pin Interrupt 4 Unmask.
Set to enable interrupt.

3
(R/W1S)

PIQ3 Pin Interrupt 3 Unmask.
Set to enable interrupt.

2
(R/W1S)

PIQ2 Pin Interrupt 2 Unmask.
Set to enable interrupt.

1
(R/W1S)

PIQ1 Pin Interrupt 1 Unmask.
Set to enable interrupt.

0
(R/W1S)

PIQ0 Pin Interrupt 0 Unmask.
Set to enable interrupt.

Table 12-36: PINT_MSK_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–77

Figure 12-26: PINT_MSK_CLR Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–78 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 12-37: PINT_MSK_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

PIQ31 Pin Interrupt 31 Mask.
Set to disable interrupt.

30
(R/W1C)

PIQ30 Pin Interrupt 30 Mask.
Set to disable interrupt.

29
(R/W1C)

PIQ29 Pin Interrupt 29 Mask.
Set to disable interrupt.

28
(R/W1C)

PIQ28 Pin Interrupt 28 Mask.
Set to disable interrupt.

27
(R/W1C)

PIQ27 Pin Interrupt 27 Mask.
Set to disable interrupt.

26
(R/W1C)

PIQ26 Pin Interrupt 26 Mask.
Set to disable interrupt.

25
(R/W1C)

PIQ25 Pin Interrupt 25 Mask.
Set to disable interrupt.

24
(R/W1C)

PIQ24 Pin Interrupt 24 Mask.
Set to disable interrupt.

23
(R/W1C)

PIQ23 Pin Interrupt 23 Mask.
Set to disable interrupt.

22
(R/W1C)

PIQ22 Pin Interrupt 22 Mask.
Set to disable interrupt.

21
(R/W1C)

PIQ21 Pin Interrupt 21 Mask.
Set to disable interrupt.

20
(R/W1C)

PIQ20 Pin Interrupt 20 Mask.
Set to disable interrupt.

19
(R/W1C)

PIQ19 Pin Interrupt 19 Mask.
Set to disable interrupt.

18
(R/W1C)

PIQ18 Pin Interrupt 18 Mask.
Set to disable interrupt.

17
(R/W1C)

PIQ17 Pin Interrupt 17 Mask.
Set to disable interrupt.

16
(R/W1C)

PIQ16 Pin Interrupt 16 Mask.
Set to disable interrupt.

15
(R/W1C)

PIQ15 Pin Interrupt 15 Mask.
Set to disable interrupt.

14
(R/W1C)

PIQ14 Pin Interrupt 14 Mask.
Set to disable interrupt.

13
(R/W1C)

PIQ13 Pin Interrupt 13 Mask.
Set to disable interrupt.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–79

Pint Request Register

The PINT_REQ register indicates interrupt request status for pin interrupts. When set, an interrupt request
is pending. When cleared, there is no interrupt request pending.

Both the PINT_REQ and PINT_LATCH registers indicate whether an interrupt request is latched on the
respective pin. The PINT_LATCH register is a latch that operates regardless of the interrupt masks. Bits of
the PINT_REQ register depend on the mask register. The PINT_REQ register is a logical AND of the PINT_
LATCH register and the interrupt mask.

12
(R/W1C)

PIQ12 Pin Interrupt 12 Mask.
Set to disable interrupt.

11
(R/W1C)

PIQ11 Pin Interrupt 11 Mask.
Set to disable interrupt.

10
(R/W1C)

PIQ10 Pin Interrupt 10 Mask.
Set to disable interrupt.

9
(R/W1C)

PIQ9 Pin Interrupt 9 Mask.
Set to disable interrupt.

8
(R/W1C)

PIQ8 Pin Interrupt 8 Mask.
Set to disable interrupt.

7
(R/W1C)

PIQ7 Pin Interrupt 7 Mask.
Set to disable interrupt.

6
(R/W1C)

PIQ6 Pin Interrupt 6 Mask.
Set to disable interrupt.

5
(R/W1C)

PIQ5 Pin Interrupt 5 Mask.
Set to disable interrupt.

4
(R/W1C)

PIQ4 Pin Interrupt 4 Mask.
Set to disable interrupt.

3
(R/W1C)

PIQ3 Pin Interrupt 3 Mask.
Set to disable interrupt.

2
(R/W1C)

PIQ2 Pin Interrupt 2 Mask.
Set to disable interrupt.

1
(R/W1C)

PIQ1 Pin Interrupt 1 Mask.
Set to disable interrupt.

0
(R/W1C)

PIQ0 Pin Interrupt 0 Mask.
Set to disable interrupt.

Table 12-37: PINT_MSK_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–80 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 12-27: PINT_REQ Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–81

Table 12-38: PINT_REQ Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

PIQ31 Pin Interrupt 31 Request.
If set, request pending.

30
(R/W1C)

PIQ30 Pin Interrupt 30 Request.
If set, request pending.

29
(R/W1C)

PIQ29 Pin Interrupt 29 Request.
If set, request pending.

28
(R/W1C)

PIQ28 Pin Interrupt 28 Request.
If set, request pending.

27
(R/W1C)

PIQ27 Pin Interrupt 27 Request.
If set, request pending.

26
(R/W1C)

PIQ26 Pin Interrupt 26 Request.
If set, request pending.

25
(R/W1C)

PIQ25 Pin Interrupt 25 Request.
If set, request pending.

24
(R/W1C)

PIQ24 Pin Interrupt 24 Request.
If set, request pending.

23
(R/W1C)

PIQ23 Pin Interrupt 23 Request.
If set, request pending.

22
(R/W1C)

PIQ22 Pin Interrupt 22 Request.
If set, request pending.

21
(R/W1C)

PIQ21 Pin Interrupt 21 Request.
If set, request pending.

20
(R/W1C)

PIQ20 Pin Interrupt 20 Request.
If set, request pending.

19
(R/W1C)

PIQ19 Pin Interrupt 19 Request.
If set, request pending.

18
(R/W1C)

PIQ18 Pin Interrupt 18 Request.
If set, request pending.

17
(R/W1C)

PIQ17 Pin Interrupt 17 Request.
If set, request pending.

16
(R/W1C)

PIQ16 Pin Interrupt 16 Request.
If set, request pending.

15
(R/W1C)

PIQ15 Pin Interrupt 15 Request.
If set, request pending.

14
(R/W1C)

PIQ14 Pin Interrupt 14 Request.
If set, request pending.

13
(R/W1C)

PIQ13 Pin Interrupt 13 Request.
If set, request pending.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–82 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Pint Assign Register

The PINT_ASSIGN register controls the pin-to-interrupt assignment in a byte-wide manner. This register
consists of four control bytes that each function as a multiplexer control.

The PINT ports are subdivided into 8-bit half ports, resulting in lower and upper half 8-bit units. Using
the multiplexers controlled by the PINT_ASSIGN register, the lower half units of eight pins can be
forwarded to either byte 0 or byte 2 of either associated PINT block, and the upper half units can be
forwarded to either byte 1 or byte 3 of the PINT block, without further restrictions.

12
(R/W1C)

PIQ12 Pin Interrupt 12 Request.
If set, request pending.

11
(R/W1C)

PIQ11 Pin Interrupt 11 Request.
If set, request pending.

10
(R/W1C)

PIQ10 Pin Interrupt 10 Request.
If set, request pending.

9
(R/W1C)

PIQ9 Pin Interrupt 9 Request.
If set, request pending.

8
(R/W1C)

PIQ8 Pin Interrupt 8 Request.
If set, request pending.

7
(R/W1C)

PIQ7 Pin Interrupt 7 Request.
If set, request pending.

6
(R/W1C)

PIQ6 Pin Interrupt 6 Request.
If set, request pending.

5
(R/W1C)

PIQ5 Pin Interrupt 5 Request.
If set, request pending.

4
(R/W1C)

PIQ4 Pin Interrupt 4 Request.
If set, request pending.

3
(R/W1C)

PIQ3 Pin Interrupt 3 Request.
If set, request pending.

2
(R/W1C)

PIQ2 Pin Interrupt 2 Request.
If set, request pending.

1
(R/W1C)

PIQ1 Pin Interrupt 1 Request.
If set, request pending.

0
(R/W1C)

PIQ0 Pin Interrupt 0 Request.
If set, request pending.

Table 12-38: PINT_REQ Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–83

Figure 12-28: PINT_ASSIGN Register Diagram

Pint Edge Set Register

The PINT_EDGE_SET register permits selecting edge-sensitive interrupts. Writing 1 to a bit in PINT_EDGE_
SET enables edge sensitivity for the corresponding pin interrupt.

Table 12-39: PINT_ASSIGN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R/W)

B3MAP Byte 3 Mapping.

0 B3MAP_PAH
Byte 3 = PA.H

1 B3MAP_PBH
Byte 3 = PB.H

23:16
(R/W)

B2MAP Byte 2 Mapping.

0 B2MAP_PAL
Byte 2 = PA.L

1 B2MAP_PBL
Byte 2 = PB.L

15:8
(R/W)

B1MAP Byte 1 Mapping.

0 B1MAP_PAH
Byte 1 = PA.H

1 B1MAP_PBH
Byte 1 = PB.H

7:0
(R/W)

B0MAP Byte 0 Mapping.

0 B0MAP_PAL
Byte 0 = PA.L

1 B0MAP_PBL
Byte 0 = PB.L

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–84 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 12-29: PINT_EDGE_SET Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–85

Table 12-40: PINT_EDGE_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1S)

PIQ31 Pin Interrupt 31 Edge.
Set to enable edge sensitivity.

30
(R/W1S)

PIQ30 Pin Interrupt 30 Edge.
Set to enable edge sensitivity.

29
(R/W1S)

PIQ29 Pin Interrupt 29 Edge.
Set to enable edge sensitivity.

28
(R/W1S)

PIQ28 Pin Interrupt 28 Edge.
Set to enable edge sensitivity.

27
(R/W1S)

PIQ27 Pin Interrupt 27 Edge.
Set to enable edge sensitivity.

26
(R/W1S)

PIQ26 Pin Interrupt 26 Edge.
Set to enable edge sensitivity.

25
(R/W1S)

PIQ25 Pin Interrupt 25 Edge.
Set to enable edge sensitivity.

24
(R/W1S)

PIQ24 Pin Interrupt 24 Edge.
Set to enable edge sensitivity.

23
(R/W1S)

PIQ23 Pin Interrupt 23 Edge.
Set to enable edge sensitivity.

22
(R/W1S)

PIQ22 Pin Interrupt 22 Edge.
Set to enable edge sensitivity.

21
(R/W1S)

PIQ21 Pin Interrupt 21 Edge.
Set to enable edge sensitivity.

20
(R/W1S)

PIQ20 Pin Interrupt 20 Edge.
Set to enable edge sensitivity.

19
(R/W1S)

PIQ19 Pin Interrupt 19 Edge.
Set to enable edge sensitivity.

18
(R/W1S)

PIQ18 Pin Interrupt 18 Edge.
Set to enable edge sensitivity.

17
(R/W1S)

PIQ17 Pin Interrupt 17 Edge.
Set to enable edge sensitivity.

16
(R/W1S)

PIQ16 Pin Interrupt 16 Edge.
Set to enable edge sensitivity.

15
(R/W1S)

PIQ15 Pin Interrupt 15 Edge.
Set to enable edge sensitivity.

14
(R/W1S)

PIQ14 Pin Interrupt 14 Edge.
Set to enable edge sensitivity.

13
(R/W1S)

PIQ13 Pin Interrupt 13 Edge.
Set to enable edge sensitivity.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–86 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Pint Edge Clear Register

The PINT_EDGE_CLR register permits selecting level-sensitive interrupts. Writing 1 to a bit in PINT_EDGE_
CLR enables level sensitivity for the corresponding pin interrupt.

12
(R/W1S)

PIQ12 Pin Interrupt 12 Edge.
Set to enable edge sensitivity.

11
(R/W1S)

PIQ11 Pin Interrupt 11 Edge.
Set to enable edge sensitivity.

10
(R/W1S)

PIQ10 Pin Interrupt 10 Edge.
Set to enable edge sensitivity.

9
(R/W1S)

PIQ9 Pin Interrupt 9 Edge.
Set to enable edge sensitivity.

8
(R/W1S)

PIQ8 Pin Interrupt 8 Edge.
Set to enable edge sensitivity.

7
(R/W1S)

PIQ7 Pin Interrupt 7 Edge.
Set to enable edge sensitivity.

6
(R/W1S)

PIQ6 Pin Interrupt 6 Edge.
Set to enable edge sensitivity.

5
(R/W1S)

PIQ5 Pin Interrupt 5 Edge.
Set to enable edge sensitivity.

4
(R/W1S)

PIQ4 Pin Interrupt 4 Edge.
Set to enable edge sensitivity.

3
(R/W1S)

PIQ3 Pin Interrupt 3 Edge.
Set to enable edge sensitivity.

2
(R/W1S)

PIQ2 Pin Interrupt 2 Edge.
Set to enable edge sensitivity.

1
(R/W1S)

PIQ1 Pin Interrupt 1 Edge.
Set to enable edge sensitivity.

0
(R/W1S)

PIQ0 Pin Interrupt 0 Edge.
Set to enable edge sensitivity.

Table 12-40: PINT_EDGE_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–87

Figure 12-30: PINT_EDGE_CLR Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–88 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 12-41: PINT_EDGE_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

PIQ31 Pin Interrupt 31 Level.
Set to enable level sensitivity.

30
(R/W1C)

PIQ30 Pin Interrupt 30 Level.
Set to enable level sensitivity.

29
(R/W1C)

PIQ29 Pin Interrupt 29 Level.
Set to enable level sensitivity.

28
(R/W1C)

PIQ28 Pin Interrupt 28 Level.
Set to enable level sensitivity.

27
(R/W1C)

PIQ27 Pin Interrupt 27 Level.
Set to enable level sensitivity.

26
(R/W1C)

PIQ26 Pin Interrupt 26 Level.
Set to enable level sensitivity.

25
(R/W1C)

PIQ25 Pin Interrupt 25 Level.
Set to enable level sensitivity.

24
(R/W1C)

PIQ24 Pin Interrupt 24 Level.
Set to enable level sensitivity.

23
(R/W1C)

PIQ23 Pin Interrupt 23 Level.
Set to enable level sensitivity.

22
(R/W1C)

PIQ22 Pin Interrupt 22 Level.
Set to enable level sensitivity.

21
(R/W1C)

PIQ21 Pin Interrupt 21 Level.
Set to enable level sensitivity.

20
(R/W1C)

PIQ20 Pin Interrupt 20 Level.
Set to enable level sensitivity.

19
(R/W1C)

PIQ19 Pin Interrupt 19 Level.
Set to enable level sensitivity.

18
(R/W1C)

PIQ18 Pin Interrupt 18 Level.
Set to enable level sensitivity.

17
(R/W1C)

PIQ17 Pin Interrupt 17 Level.
Set to enable level sensitivity.

16
(R/W1C)

PIQ16 Pin Interrupt 16 Level.
Set to enable level sensitivity.

15
(R/W1C)

PIQ15 Pin Interrupt 15 Level.
Set to enable level sensitivity.

14
(R/W1C)

PIQ14 Pin Interrupt 14 Level.
Set to enable level sensitivity.

13
(R/W1C)

PIQ13 Pin Interrupt 13 Level.
Set to enable level sensitivity.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–89

Pint Invert Set Register

The PINT_INV_SET register enables inverting input polarity. Writing 1 to a bit in PINT_INV_SET enables
an inverter for input on the corresponding pin.

12
(R/W1C)

PIQ12 Pin Interrupt 12 Level.
Set to enable level sensitivity.

11
(R/W1C)

PIQ11 Pin Interrupt 11 Level.
Set to enable level sensitivity.

10
(R/W1C)

PIQ10 Pin Interrupt 10 Level.
Set to enable level sensitivity.

9
(R/W1C)

PIQ9 Pin Interrupt 9 Level.
Set to enable level sensitivity.

8
(R/W1C)

PIQ8 Pin Interrupt 8 Level.
Set to enable level sensitivity.

7
(R/W1C)

PIQ7 Pin Interrupt 7 Level.
Set to enable level sensitivity.

6
(R/W1C)

PIQ6 Pin Interrupt 6 Level.
Set to enable level sensitivity.

5
(R/W1C)

PIQ5 Pin Interrupt 5 Level.
Set to enable level sensitivity.

4
(R/W1C)

PIQ4 Pin Interrupt 4 Level.
Set to enable level sensitivity.

3
(R/W1C)

PIQ3 Pin Interrupt 3 Level.
Set to enable level sensitivity.

2
(R/W1C)

PIQ2 Pin Interrupt 2 Level.
Set to enable level sensitivity.

1
(R/W1C)

PIQ1 Pin Interrupt 1 Level.
Set to enable level sensitivity.

0
(R/W1C)

PIQ0 Pin Interrupt 0 Level.
Set to enable level sensitivity.

Table 12-41: PINT_EDGE_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–90 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 12-31: PINT_INV_SET Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–91

Table 12-42: PINT_INV_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1S)

PIQ31 Pin Interrupt 31 Invert.
Set to enable inverted input.

30
(R/W1S)

PIQ30 Pin Interrupt 30 Invert.
Set to enable inverted input.

29
(R/W1S)

PIQ29 Pin Interrupt 29 Invert.
Set to enable inverted input.

28
(R/W1S)

PIQ28 Pin Interrupt 28 Invert.
Set to enable inverted input.

27
(R/W1S)

PIQ27 Pin Interrupt 27 Invert.
Set to enable inverted input.

26
(R/W1S)

PIQ26 Pin Interrupt 26 Invert.
Set to enable inverted input.

25
(R/W1S)

PIQ25 Pin Interrupt 25 Invert.
Set to enable inverted input.

24
(R/W1S)

PIQ24 Pin Interrupt 24 Invert.
Set to enable inverted input.

23
(R/W1S)

PIQ23 Pin Interrupt 23 Invert.
Set to enable inverted input.

22
(R/W1S)

PIQ22 Pin Interrupt 22 Invert.
Set to enable inverted input.

21
(R/W1S)

PIQ21 Pin Interrupt 21 Invert.
Set to enable inverted input.

20
(R/W1S)

PIQ20 Pin Interrupt 20 Invert.
Set to enable inverted input.

19
(R/W1S)

PIQ19 Pin Interrupt 19 Invert.
Set to enable inverted input.

18
(R/W1S)

PIQ18 Pin Interrupt 18 Invert.
Set to enable inverted input.

17
(R/W1S)

PIQ17 Pin Interrupt 17 Invert.
Set to enable inverted input.

16
(R/W1S)

PIQ16 Pin Interrupt 16 Invert.
Set to enable inverted input.

15
(R/W1S)

PIQ15 Pin Interrupt 15 Invert.
Set to enable inverted input.

14
(R/W1S)

PIQ14 Pin Interrupt 14 Invert.
Set to enable inverted input.

13
(R/W1S)

PIQ13 Pin Interrupt 13 Invert.
Set to enable inverted input.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–92 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Pint Invert Clear Register

The PINT_INV_CLR register disables inverting input polarity. Writing 1 to a bit in PINT_INV_CLR disables
an inverter for input on the corresponding pin.

12
(R/W1S)

PIQ12 Pin Interrupt 12 Invert.
Set to enable inverted input.

11
(R/W1S)

PIQ11 Pin Interrupt 11 Invert.
Set to enable inverted input.

10
(R/W1S)

PIQ10 Pin Interrupt 10 Invert.
Set to enable inverted input.

9
(R/W1S)

PIQ9 Pin Interrupt 9 Invert.
Set to enable inverted input.

8
(R/W1S)

PIQ8 Pin Interrupt 8 Invert.
Set to enable inverted input.

7
(R/W1S)

PIQ7 Pin Interrupt 7 Invert.
Set to enable inverted input.

6
(R/W1S)

PIQ6 Pin Interrupt 6 Invert.
Set to enable inverted input.

5
(R/W1S)

PIQ5 Pin Interrupt 5 Invert.
Set to enable inverted input.

4
(R/W1S)

PIQ4 Pin Interrupt 4 Invert.
Set to enable inverted input.

3
(R/W1S)

PIQ3 Pin Interrupt 3 Invert.
Set to enable inverted input.

2
(R/W1S)

PIQ2 Pin Interrupt 2 Invert.
Set to enable inverted input.

1
(R/W1S)

PIQ1 Pin Interrupt 1 Invert.
Set to enable inverted input.

0
(R/W1S)

PIQ0 Pin Interrupt 0 Invert.
Set to enable inverted input.

Table 12-42: PINT_INV_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–93

Figure 12-32: PINT_INV_CLR Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–94 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 12-43: PINT_INV_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

PIQ31 Pin Interrupt 31 No Invert.
Set to disable inverted input.

30
(R/W1C)

PIQ30 Pin Interrupt 30 No Invert.
Set to disable inverted input.

29
(R/W1C)

PIQ29 Pin Interrupt 29 No Invert.
Set to disable inverted input.

28
(R/W1C)

PIQ28 Pin Interrupt 28 No Invert.
Set to disable inverted input.

27
(R/W1C)

PIQ27 Pin Interrupt 27 No Invert.
Set to disable inverted input.

26
(R/W1C)

PIQ26 Pin Interrupt 26 No Invert.
Set to disable inverted input.

25
(R/W1C)

PIQ25 Pin Interrupt 25 No Invert.
Set to disable inverted input.

24
(R/W1C)

PIQ24 Pin Interrupt 24 No Invert.
Set to disable inverted input.

23
(R/W1C)

PIQ23 Pin Interrupt 23 No Invert.
Set to disable inverted input.

22
(R/W1C)

PIQ22 Pin Interrupt 22 No Invert.
Set to disable inverted input.

21
(R/W1C)

PIQ21 Pin Interrupt 21 No Invert.
Set to disable inverted input.

20
(R/W1C)

PIQ20 Pin Interrupt 20 No Invert.
Set to disable inverted input.

19
(R/W1C)

PIQ19 Pin Interrupt 19 No Invert.
Set to disable inverted input.

18
(R/W1C)

PIQ18 Pin Interrupt 18 No Invert.
Set to disable inverted input.

17
(R/W1C)

PIQ17 Pin Interrupt 17 No Invert.
Set to disable inverted input.

16
(R/W1C)

PIQ16 Pin Interrupt 16 No Invert.
Set to disable inverted input.

15
(R/W1C)

PIQ15 Pin Interrupt 15 No Invert.
Set to disable inverted input.

14
(R/W1C)

PIQ14 Pin Interrupt 14 No Invert.
Set to disable inverted input.

13
(R/W1C)

PIQ13 Pin Interrupt 13 No Invert.
Set to disable inverted input.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–95

Pint Pinstate Register

When a half port is assigned to a byte in any PINT block, the state of the eight pins (regardless of GPIO or
function, input or output) can be seen in the PINT_PINSTATE register. While neither input nor output
drivers of the pin are enabled, reads of the pin state in PINT_PINSTATE return zero. The PINT_PINSTATE
register reports the inverted state of the pin if the signal inverter is activated by the PINT_INV_SET register.
The inverter can be enabled on a individual bit by bit basis. Every bit in the PINT_INV_SET and PINT_INV_
CLR register pair represents a pin signal.

The pin interrupt pin state registers enable the service routine to read the current state of the pin without
reading from GPIO space. If there was an edge-sensitive interrupt, the service routine can check whether
the state of the pin is still high or turned low.

12
(R/W1C)

PIQ12 Pin Interrupt 12 No Invert.
Set to disable inverted input.

11
(R/W1C)

PIQ11 Pin Interrupt 11 No Invert.
Set to disable inverted input.

10
(R/W1C)

PIQ10 Pin Interrupt 10 No Invert.
Set to disable inverted input.

9
(R/W1C)

PIQ9 Pin Interrupt 9 No Invert.
Set to disable inverted input.

8
(R/W1C)

PIQ8 Pin Interrupt 8 No Invert.
Set to disable inverted input.

7
(R/W1C)

PIQ7 Pin Interrupt 7 No Invert.
Set to disable inverted input.

6
(R/W1C)

PIQ6 Pin Interrupt 6 No Invert.
Set to disable inverted input.

5
(R/W1C)

PIQ5 Pin Interrupt 5 No Invert.
Set to disable inverted input.

4
(R/W1C)

PIQ4 Pin Interrupt 4 No Invert.
Set to disable inverted input.

3
(R/W1C)

PIQ3 Pin Interrupt 3 No Invert.
Set to disable inverted input.

2
(R/W1C)

PIQ2 Pin Interrupt 2 No Invert.
Set to disable inverted input.

1
(R/W1C)

PIQ1 Pin Interrupt 1 No Invert.
Set to disable inverted input.

0
(R/W1C)

PIQ0 Pin Interrupt 0 No Invert.
Set to disable inverted input.

Table 12-43: PINT_INV_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–96 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 12-33: PINT_PINSTATE Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–97

Table 12-44: PINT_PINSTATE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/NW)

PIQ31 Pin Interrupt 31 State.
Read returns pin state.

30
(R/NW)

PIQ30 Pin Interrupt 30 State.
Read returns pin state.

29
(R/NW)

PIQ29 Pin Interrupt 29 State.
Read returns pin state.

28
(R/NW)

PIQ28 Pin Interrupt 28 State.
Read returns pin state.

27
(R/NW)

PIQ27 Pin Interrupt 27 State.
Read returns pin state.

26
(R/NW)

PIQ26 Pin Interrupt 26 State.
Read returns pin state.

25
(R/NW)

PIQ25 Pin Interrupt 25 State.
Read returns pin state.

24
(R/NW)

PIQ24 Pin Interrupt 24 State.
Read returns pin state.

23
(R/NW)

PIQ23 Pin Interrupt 23 State.
Read returns pin state.

22
(R/NW)

PIQ22 Pin Interrupt 22 State.
Read returns pin state.

21
(R/NW)

PIQ21 Pin Interrupt 21 State.
Read returns pin state.

20
(R/NW)

PIQ20 Pin Interrupt 20 State.
Read returns pin state.

19
(R/NW)

PIQ19 Pin Interrupt 19 State.
Read returns pin state.

18
(R/NW)

PIQ18 Pin Interrupt 18 State.
Read returns pin state.

17
(R/NW)

PIQ17 Pin Interrupt 17 State.
Read returns pin state.

16
(R/NW)

PIQ16 Pin Interrupt 16 State.
Read returns pin state.

15
(R/NW)

PIQ15 Pin Interrupt 15 State.
Read returns pin state.

14
(R/NW)

PIQ14 Pin Interrupt 14 State.
Read returns pin state.

13
(R/NW)

PIQ13 Pin Interrupt 13 State.
Read returns pin state.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–98 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Pint Latch Register

The PINT_LATCH register indicates interrupt latch status for pin interrupts. When set, an interrupt request
is latched. When cleared, there is no interrupt request latched.

Both the PINT_REQ and PINT_LATCH registers indicate whether an interrupt request is latched on the
respective pin. The PINT_LATCH register is a latch that operates regardless of the interrupt masks. Bits of
the PINT_REQ register depend on the mask register. The PINT_REQ register is a logical AND of the PINT_
LATCH register and the interrupt mask.

Having two separate registers here enables the user to interrogate certain pins in polling mode while others
work in interrupt mode. The PINT_LATCH registers can be used for edge detection or pin activity detection.

12
(R/NW)

PIQ12 Pin Interrupt 12 State.
Read returns pin state.

11
(R/NW)

PIQ11 Pin Interrupt 11 State.
Read returns pin state.

10
(R/NW)

PIQ10 Pin Interrupt 10 State.
Read returns pin state.

9
(R/NW)

PIQ9 Pin Interrupt 9 State.
Read returns pin state.

8
(R/NW)

PIQ8 Pin Interrupt 8 State.
Read returns pin state.

7
(R/NW)

PIQ7 Pin Interrupt 7 State.
Read returns pin state.

6
(R/NW)

PIQ6 Pin Interrupt 6 State.
Read returns pin state.

5
(R/NW)

PIQ5 Pin Interrupt 5 State.
Read returns pin state.

4
(R/NW)

PIQ4 Pin Interrupt 4 State.
Read returns pin state.

3
(R/NW)

PIQ3 Pin Interrupt 3 State.
Read returns pin state.

2
(R/NW)

PIQ2 Pin Interrupt 2 State.
Read returns pin state.

1
(R/NW)

PIQ1 Pin Interrupt 1 State.
Read returns pin state.

0
(R/NW)

PIQ0 Pin Interrupt 0 State.
Read returns pin state.

Table 12-44: PINT_PINSTATE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–99

Both registers have W1C behavior. Writing a 1 to either clears respective bits in both registers. For inter-
rupt operation, the user may prefer to W1C the PINT_REQ register (address still loaded in Px pointer). In
polling mode it might be cleaner to W1C the PINT_LATCH register.

Regardless whether in edge-sensitive mode or level-sensitive mode, PINT_LATCH bits are never cleared by
hardware except at system reset. Even in level-sensitive mode, the PINT_LATCH register functions as latch.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

12–100 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 12-34: PINT_LATCH Register Diagram

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PINT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–101

Table 12-45: PINT_LATCH Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

PIQ31 Pin Interrupt 31 Latch.
If set, request latched.

30
(R/W1C)

PIQ30 Pin Interrupt 30 Latch.
If set, request latched.

29
(R/W1C)

PIQ29 Pin Interrupt 29 Latch.
If set, request latched.

28
(R/W1C)

PIQ28 Pin Interrupt 28 Latch.
If set, request latched.

27
(R/W1C)

PIQ27 Pin Interrupt 27 Latch.
If set, request latched.

26
(R/W1C)

PIQ26 Pin Interrupt 26 Latch.
If set, request latched.

25
(R/W1C)

PIQ25 Pin Interrupt 25 Latch.
If set, request latched.

24
(R/W1C)

PIQ24 Pin Interrupt 24 Latch.
If set, request latched.

23
(R/W1C)

PIQ23 Pin Interrupt 23 Latch.
If set, request latched.

22
(R/W1C)

PIQ22 Pin Interrupt 22 Latch.
If set, request latched.

21
(R/W1C)

PIQ21 Pin Interrupt 21 Latch.
If set, request latched.

20
(R/W1C)

PIQ20 Pin Interrupt 20 Latch.
If set, request latched.

19
(R/W1C)

PIQ19 Pin Interrupt 19 Latch.
If set, request latched.

18
(R/W1C)

PIQ18 Pin Interrupt 18 Latch.
If set, request latched.

17
(R/W1C)

PIQ17 Pin Interrupt 17 Latch.
If set, request latched.

16
(R/W1C)

PIQ16 Pin Interrupt 16 Latch.
If set, request latched.

15
(R/W1C)

PIQ15 Pin Interrupt 15 Latch.
If set, request latched.

14
(R/W1C)

PIQ14 Pin Interrupt 14 Latch.
If set, request latched.

13
(R/W1C)

PIQ13 Pin Interrupt 13 Latch.
If set, request latched.

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PADS REGISTER DESCRIPTIONS

12–102 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x PADS Register Descriptions

Pads Controller (PADS) contains the following registers.

12
(R/W1C)

PIQ12 Pin Interrupt 12 Latch.
If set, request latched.

11
(R/W1C)

PIQ11 Pin Interrupt 11 Latch.
If set, request latched.

10
(R/W1C)

PIQ10 Pin Interrupt 10 Latch.
If set, request latched.

9
(R/W1C)

PIQ9 Pin Interrupt 9 Latch.
If set, request latched.

8
(R/W1C)

PIQ8 Pin Interrupt 8 Latch.
If set, request latched.

7
(R/W1C)

PIQ7 Pin Interrupt 7 Latch.
If set, request latched.

6
(R/W1C)

PIQ6 Pin Interrupt 6 Latch.
If set, request latched.

5
(R/W1C)

PIQ5 Pin Interrupt 5 Latch.
If set, request latched.

4
(R/W1C)

PIQ4 Pin Interrupt 4 Latch.
If set, request latched.

3
(R/W1C)

PIQ3 Pin Interrupt 3 Latch.
If set, request latched.

2
(R/W1C)

PIQ2 Pin Interrupt 2 Latch.
If set, request latched.

1
(R/W1C)

PIQ1 Pin Interrupt 1 Latch.
If set, request latched.

0
(R/W1C)

PIQ0 Pin Interrupt 0 Latch.
If set, request latched.

Table 12-46: ADSP-CM40x PADS Register List

Name Description

PADS_PCFG0 Peripheral Configuration0 Register

Table 12-45: PINT_LATCH Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PADS REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 12–103

Peripheral Configuration0 Register

The PADS_PCFG0 register provides several configuration options for various peripherals.

Figure 12-35: PADS_PCFG0 Register Diagram

Table 12-47: PADS_PCFG0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12
(R/W)

PUE Pull-Up Enable.
The PADS_PCFG0.PUE bit overrides the input enable and enables the pull-up on
the GPIO, SPI2 and AFC pads.

10
(R/W)

TWI0VSEL TWI Voltage Select.
The PADS_PCFG0.TWI0VSEL bit selects the drive/tolerate voltage for the TWI_
SCL and TWI_SDA pins.

4
(R/W)

PWMGPSEL PWM Global Precision Select.
The PADS_PCFG0.PWMGPSEL bit selects between mixed precision and full
precision on the PWM output.

0 Mixed precision on High vs Low outputs

1 Heightened precision on High and Low outputs

1:0
(R/W)

EMAC0 PTP Clock Source 0.
The PADS_PCFG0.EMAC0 selects the clock source for the PTP Block in EMAC0.

0 EMAC0_RMII CLK

1 SCLK

2 External Clock

3 SCLK

GENERAL-PURPOSE PORTS (PORT)
ADSP-CM40X PADS REGISTER DESCRIPTIONS

12–104 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–1

13 General-Purpose Timer (TIMER)

The general-purpose timer (GP Timer) module serves as a collection of system timers that support various
system-level functions. These functions include synchronized PWM waveform output capability, external
signal capture, external event count, and general time base functionality. Additionally, a variety of inter-
rupts can be generated upon completion of timer events. Moreover, GP timers can act both as trigger
masters and trigger slaves.

GP Timer Features

Each timer can be individually configured in any of these modes:

• Pin interrupt capture mode

• Windowed Watchdog mode

• Pulse-width Count and Capture (WDTH_CAP) mode

• External Event (EXT_CLK) mode

• Pulse-width Modulation (PWM_OUT) mode

Other features include:

• Synchronous operation

• Consistent management of period and pulse width values

• Autobaud detection for UART module (where available)

• Graceful bit pattern termination when stopping

• Support for center-aligned PWM patterns

• Error detection on implausible pattern values

• All read and write accesses to 32-bit registers are atomic

• Every timer has its dedicated interrupt request output

• Unused timers can function as edge-sensitive pin interrupts

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER LIST

13–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NOTE:

Each timer has a EMURUN bit in its TIMER_TMRn_CFG register which controls whether to run or stop the
timer during emulation. The emulation event is controlled by the SDU (System Debug Unit). Please
refer to the SDU chapter for more details on generation of an emulation event.

ADSP-CM40x TIMER Register List

Table 13-1: ADSP-CM40x TIMER Register List

Name Description

TIMER_RUN Run Register

TIMER_RUN_SET Run Set Register

TIMER_RUN_CLR Run Clear Register

TIMER_STOP_CFG Stop Configuration Register

TIMER_STOP_CFG_SET Stop Configuration Set Register

TIMER_STOP_CFG_CLR Stop Configuration Clear Register

TIMER_DATA_IMSK Data Interrupt Mask Register

TIMER_STAT_IMSK Status Interrupt Mask Register

TIMER_TRG_MSK Trigger Master Mask Register

TIMER_TRG_IE Trigger Slave Enable Register

TIMER_DATA_ILAT Data Interrupt Latch Register

TIMER_STAT_ILAT Status Interrupt Latch Register

TIMER_ERR_TYPE Error Type Status Register

TIMER_BCAST_PER Broadcast Period Register

TIMER_BCAST_WID Broadcast Width Register

TIMER_BCAST_DLY Broadcast Delay Register

TIMER_TMRn_CFG Timer n Configuration Register

TIMER_TMRn_CNT Timer n Counter Register

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER INTERRUPT LIST

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–3

ADSP-CM40x TIMER Interrupt List

ADSP-CM40x TIMER Trigger List

TIMER_TMRn_PER Timer n Period Register

TIMER_TMRn_WID Timer n Width Register

TIMER_TMRn_DLY Timer n Delay Register

Table 13-2: ADSP-CM40x TIMER Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

50 TIMER0_STAT TIMER0 Status LEVEL

51 TIMER0_TMR0 TIMER0 Timer 0 Expiration or Event LEVEL

52 TIMER0_TMR1 TIMER0 Timer 1 Expiration or Event LEVEL

53 TIMER0_TMR2 TIMER0 Timer 2 Expiration or Event LEVEL

54 TIMER0_TMR3 TIMER0 Timer 3 Expiration or Event LEVEL

55 TIMER0_TMR4 TIMER0 Timer 4 Expiration or Event LEVEL

56 TIMER0_TMR5 TIMER0 Timer 5 Expiration or Event LEVEL

57 TIMER0_TMR6 TIMER0 Timer 6 Expiration or Event LEVEL

58 TIMER0_TMR7 TIMER0 Timer 7 Expiration or Event LEVEL

Table 13-3: ADSP-CM40x TIMER Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

2 TIMER0_TMR0 TIMER0 Timer 0 Expiration or Event PULSE/EDGE

3 TIMER0_TMR1 TIMER0 Timer 1 Expiration or Event PULSE/EDGE

4 TIMER0_TMR2 TIMER0 Timer 2 Expiration or Event PULSE/EDGE

5 TIMER0_TMR3 TIMER0 Timer 3 Expiration or Event PULSE/EDGE

6 TIMER0_TMR4 TIMER0 Timer 4 Expiration or Event PULSE/EDGE

7 TIMER0_TMR5 TIMER0 Timer 5 Expiration or Event PULSE/EDGE

8 TIMER0_TMR6 TIMER0 Timer 6 Expiration or Event PULSE/EDGE

9 TIMER0_TMR7 TIMER0 Timer 7 Expiration or Event PULSE/EDGE

Table 13-1: ADSP-CM40x TIMER Register List (Continued)

Name Description

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER INTERNAL INTERFACE

13–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

GP Timer Internal Interface

Timer registers are always accessed by the processor core through the MMR access bus. Hardware ensures
that all read and write operations from and to 32-bit timer registers are atomic. Every timer has its dedi-
cated data interrupt request. There is also one common timer status/error interrupt request output that
connects to the System Event Controller. Whenever a data interrupt is generated, a data Trigger Master
pulse is also driven out, if enabled. Each timer has an individual trigger input line, and each timer can be
either started or stopped as a Trigger Slave.

In total, the GP timer module can have up to (N + 1) interrupt output lines and N data trigger lines.

GP Timer External Interface

Each GP timer module can support up to 16 individual timers. However, most processors have less than
this number. The exact number of timers available on a given processor is available in that processor’s data
sheet.

Every timer has one main input/output signal (TMRx) and, usually, one auxiliary input pin, used as an alter-
nate capture input (TM_ACIx). Each TMR can either run with a time base of SCLK or can reference an
external clock on one of two TMR_ALT_CLKx pins. The TMR_ALT_CLK0 signal maps to individual alternate
clock (TM_ACLKx) pins for one or more timers. For instance, a TM_ACLK3 pin would provide an alternate
site to supply an external signal that would serve as TMR3’s reference clock. Likewise, the TMR_ALT_CLK1
signal from each timer unit is connected together internally to provide a single global timer clock pin (TM_
CLK) for the GP timer module, for use as an additional time base.

When clocked internally from SCLK, the maximum period for the timer count is ((232)-1) / SCLK (in
MHz)). The TM_ACLK and TM_ACI capture input pins are sampled every SCLK cycle. The duration of every
low or high state must be slightly more than one SCLK cycle. Therefore the maximum allowed frequency
of timer input signals is slightly less than SCLK/2. For exact timing requirements, please refer to the
processor's data sheet).

Table 13-4: ADSP-CM40x TIMER Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

2 TIMER0_TMR0 TIMER0 Timer 0 Slave

3 TIMER0_TMR1 TIMER0 Timer 1 Slave

4 TIMER0_TMR2 TIMER0 Timer 2 Slave

5 TIMER0_TMR3 TIMER0 Timer 3 Slave

6 TIMER0_TMR4 TIMER0 Timer 4 Slave

7 TIMER0_TMR5 TIMER0 Timer 5 Slave

8 TIMER0_TMR6 TIMER0 Timer 6 Slave

9 TIMER0_TMR7 TIMER0 Timer 7 Slave

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER GENERAL OPERATION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–5

GP Timer General Operation

The core of every timer is a 32-bit counter that can be interrogated through the read-only TIMER_TMRn_
CNT register. Once a timer has been enabled, its TIMER_TMRn_CNT register is loaded with a starting value.

A timer can operate in one of several different modes, configured through the TIMER_TMRn_CFG register
for that timer. These modes are known as PWMOUT, EXTCLK, WIDCAP, WATCHDOG, PININT and
IDLE, and are summarized in the following table.

Period, Width and Delay Register Interaction

When the timer is started, writes to the buffer registers are immediately copied through to the double buff-
ered period, pulsewidth, and delay registers. These values are then ready for use in the first timer period.
When a timer is already running, software can write new values to the TIMER_TMRn_PER, TIMER_TMRn_WID
and TIMER_TMRn_DLY registers. The written values are buffered and do not update into the registers until
the end of the current period (when the value in the TIMER_TMRn_CNT register equals the value in the
TIMER_TMRn_PER register).

If new values are not written to these registers, the value from the previous period is re-used. Writes to
these registers are atomic; it is not possible for the high word to be written without the low word also being
written. Values written to the period, pulsewidth, and delay registers are always stored in the buffer regis-
ters. Reads from the same register always return the current, active value of period, pulse width or delay
value. Written values are not read back until they become active.

The usage of the TIMER_TMRn_PER, TIMER_TMRn_WID and TIMER_TMRn_DLY registers varies, depending on
the mode of the timer specified by the TIMER_TMRn_CFG.TMODE bits. See the following table for more infor-
mation.

Table 13-5: Timer Mode Descriptions

Timer Mode Description

PWMOUT Generates single or continuous PWM waveforms with programmable pulse width, period and
delay

EXTCLK Counts “clock ticks” from the system clock (SCLK) or an externally applied waveform

WIDCAP Captures pulse width or period of an externally applied waveform

WATCHDOG Monitors pulse width or period of an external signal and compares against a window of
acceptable values, optionally generating an interrupt if it falls inside or outside of that window

PININT Can generate an interrupt on an active edge applied to a timer pin

IDLE Idle; no activity

Table 13-6: Usage of the Period, Width and Delay Registers in Different Timer Modes

Timer Mode Period Width DELAY

IDLE Not writable Not writable Not writable

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

13–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NOTE: If any of the period, pulsewidth, and delay registers is not used, then programs are not allowed to
write into that register. For example, in WIDCAP mode the delay registers are not used so program
is not allowed to write any value to the TIMER_TMRn_DLY register. To prevent undesired operation,
program the TIMER_TMRn_CFG.TMODE bits before programming the period, width or delay regis-
ters.

If a program changes the TIMER_TMR_CFG.TMODE bits from a status register to writable register (for
example in PWMOUT mode), hardware does not clear these registers. These values are automati-
cally overwritten by new values specified by software.

In PWM_OUT mode with very small periods, there may not be enough time between updates from
the buffer registers to write these registers; the next period may use one old value and one new
value. In order to prevent (width + pulse delay) > period errors, write the width and delay registers
before the period register when decreasing the values, and write the period register before the width
and delay registers when increasing the value.

GP Timer Operating Modes

The following sections provide information on the various operating modes of the GP timer.

Single-Pulse PWMOUT Mode

In single-pulse PWMOUT mode, the timer generates a single pulse on the TIMER_TMRn pin. This mode is
frequently used to implement a precise delay, often in conjunction with generating an output trigger. The

WATCHDOG Can be updated on-the-fly. New
value takes effect either upon timer
start or when an asserting edge on
the input signal is sensed.

Read-only. Retains value of last
measured width or period of the
input signal.

Can be updated on-the-fly. New value
takes effect either upon timer start or
when an asserting edge on the input
signal is sensed.

WIDCAP Read-only. Period value captured at
the appropriate time and updated
from its buffer register
simultaneously with the Width
register.

Read-only. Width value captured at
the appropriate time and updated
from its buffer register
simultaneously with the Period
register.

Not used

PWMOUT Can be updated on-the-fly. New
value takes effect either upon timer
start or at the end of the current
period. A write followed by
immediate read returns the current
operating values.

Can be updated on-the-fly. New
value takes effect either upon timer
start or at the end of the current
period. A write followed by
immediate read returns the current
operating values.

Can be updated on-the-fly. New value
takes effect either upon timer start or
at the end of the current period. A
write followed by immediate read
returns the current operating values.

EXTCLK Can be updated on-the-fly. Not used Not used

PININT Not used Not used Not used

Table 13-6: Usage of the Period, Width and Delay Registers in Different Timer Modes (Continued)

Timer Mode Period Width DELAY

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–7

assertion of a pulse is controlled by the value in the TIMER_TMRn_DLY register, and the pulse width is
defined by the value in the TIMER_TMRn_WID register. The TIMER_TMRn_PER is not used and cannot be
written in this mode. After completion of the pulse the timer is automatically stopped, and optionally
generates an interrupt. Pulse polarity is controlled through the TIMER_TMRn_CFG.PULSEHI bit.

The timer can be configured to generate a data interrupt after satisfying various conditions specified by the
TIMER_TMRn_CFG.IRQMODE bits.

It is not necessary to clear the relevant TIMER_RUN bit in order to stop the timer cleanly. At the end of the
pulse, the timer stops automatically and the corresponding TIMER_RUN bit is cleared. To generate multiple
discrete pulses (as opposed to a continuous PWM waveform), write a 1 to the appropriate TIMER_RUN bit,
wait for the timer to stop, and then write another 1 to the same TIMER_RUN bit.

Continuous PWMOUT Mode

In continuous PWMOUT mode, the timer generates a repetitive pulse with a well-defined period, duty
cycle and pulse position. The TIMER_TMRn_DLY, TIMER_TMRn_PER and TIMER_TMRn_WID registers are
programmed with the values of the required PWM pulse. After the timer is started, the counter counts
towards the value programmed in the TIMER_TMRn_PER register. Initially, the TIMER_TMRn pin remains in
a de-asserted state. The pin toggles to an asserted state when the value in the TIMER_TMRn_CNT register =
the value in the TIMER_TMRn_DLY register.

The assertion sense of the TIMER_TMRn pin can be controlled with the TIMER_TMRn_CFG.PULSEHI bit. The
TIMER_TMRn pin holds this value for the number of clock cycles specified in the TIMER_TMRn_WID register,
after which the pin de-asserts and holds this value until the completion of the programmed period. The
same waveform is generated repeatedly until the timer is disabled.

The timer can be configured to generate a data interrupt after satisfying any of various conditions specified
by the TIMER_TMRn_CFG.IRQMODE bits.

It is important to guarantee that the programmed Period ≥ (Width + Delay). Similarly, delay must be less
than period. Violating either of these criteria results in an unpredictable waveform on the TIMER_TMRn pin
until the situation is rectified by writing proper values to these registers.

The maximum frequency possible to generate on the TIMER_TMRn pin is achieved by setting TIMER_TMRn_
PER to 2 and TIMER_TMRn_WID to 1. This makes the TIMER_TMRn pin toggle each SCLK clock cycle
(assuming the timer is configured to clock internally), producing a duty cycle of 50%.

When a timer's TIMER_STOP_CFG.TMRnn bit is 0, the timer treats a stop operation as a stop is pending
condition. When terminated with this setting, the timer automatically completes the current waveform
and then stops cleanly, remaining in a deasserted state. This prevents truncation of the current pulse and
unwanted PWM patterns at the TIMER_TMRn pin. The processor can determine when the timer stops
running by polling the corresponding TIMER_RUN.TMRnn bit until it reads 0 or by waiting for the last inter-
rupt (if enabled).

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

13–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 13-1: Signal Generation in Continuous PWMOUT Mode

Note that the TIMER_TMRn_CFG register cannot be reconfigured until after the timer stops and the TIMER_
RUN register reads 0.

Programs can force a timer to stop immediately in PWM_OUT mode by writing a 1 to the TIMER_STOP_
CFG register followed by writing a 1 to the TIMER_RUN_CLR register (or by writing a 0 to the appropriate
TIMER_RUN.TMRnn bit). This stops the timer whether the pending stop was waiting for the end of the
current period or the end of the current pulse width. This feature may be used to regain immediate control
of a timer during an error recovery sequence.

Use this feature carefully, as it may corrupt the PWM pattern generated at the TIMER_TMRn pin, though
after such a stop the pin de-asserts automatically. Each timer samples its TIMER_RUN.TMRnn bit at the end
of each period. It stops cleanly at the end of the first period after the TIMER_RUN.TMRnn bit is low. This
implies that a timer that is disabled and then re-started, (before the end of the current period), continues
to run as if nothing happened. Typically, the program should disable a PWMOUT timer and then wait for
it to stop itself.

Width Capture (WIDCAP) Mode

The WIDCAP mode, often simply called capture mode, is used to measure pulse widths on the TIMER_
TMRn or TIMER_ACIn inputs. The polarity (active high/low) of the input signal can be selected with the
TIMER_TMRn_CFG.PULSEHI bit. The following figure shows the control signal flow for WIDCAP_CAP
mode.

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–9

Figure 13-2: Timer Signal Flow in Width Capture Mode

In this mode, the TIMER_TMRn_CFG.TINSEL bit selects between the TIMER_TMRn or TIMER_ACIn input. The
internally clocked timer is used to determine the period and pulse width of the externally applied rectan-
gular waveforms.

NOTE: In WIDCAP_CAP mode, when TMR_AUX_IN input is selected, a number of the timers sense
internal signals from the GP counter module through their alternate input. (These internal signals
appear as "TO GP TIMER TMR_AUX_IN (IF ENABLED)" on the GP Counter Block Diagram in
the Counter chapter) This feature lets the timer capture the period between counter events.

When a timer is enabled in this mode, the timer resets the count in its TIMER_TMRn_CNT register to 0x0000
0001 and does not start counting until it detects a leading edge on the selected input pin.

When the timer detects the first leading edge, it starts incrementing. When it detects a trailing edge of a
waveform, it captures the current 32-bit value of its TIMER_TMRn_CNT register into its width buffer register.
At the next leading edge, the timer transfers the current 32-bit value of its TIMER_TMRn_CNT register into
its period buffer register. The TIMER_TMRn_CNT register is reset to 0x0000 0001 again, and the timer
continues counting and capturing until it is disabled.

Table 13-7: ADSP-CM40x WIDCAP_CAP Mode Alternate Inputs from Counter

Timer Alternate Input Counter Timer Output

TMR6_ACI CNT0_TO

TMR7_ACI CNT1_TO

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

13–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

In this mode, programs can measure both the pulse width and the pulse period of a waveform. The TIMER_
TMRn_DLY register is not used in this mode. The TIMER_TMRn_CFG.PULSEHI bit controls the definition of
leading edge and trailing edge of the TIMER_TMRn/TIMER_ACIn pin.

In WIDCAP mode, the following events always occur at the same time as one unit:

1. The TIMER_TMRn_PER register is updated from the period buffer register.

2. The TIMER_TMRn_WID register is updated from the width buffer register.

3. The TIMER_DATA_ILAT.TMRnn bit is set (if enabled).

4. A timer data trigger pulse is generated (if enabled).

The TIMER_TMRn_CFG.TMODE bit 0 controls the point in time at which this set of events is executed. Taken
together, these four events are called a measurement report. The TIMER_STAT_ILAT register is not set at a
measurement report. A measurement report occurs, at most, once per input signal period. The current
TIMER_TMRn_CNT value is always copied to the width buffer and period buffer registers at the trailing and
leading edges of the input signal, respectively, but these values are not visible to software. A measurement
report event samples the captured values into visible registers and sets the timer interrupt to signal that the
TIMER_TMRn_PER and the TIMER_TMRn_WID registers are ready to be read.

When the TIMER_TMRn_CFG.TMODE bit =b#1011, the measurement report occurs just after the width buffer
register captures its value at a falling edge. Subsequently, the TIMER_TMRn_WID register reports the pulse
width measured in the pulse that has just ended, but the TIMER_TMRn_PER register reports the pulse period
measured at the end of the previous period. This is because, if only the first trailing edge occurred, then the
first period value has not yet been measured at the first measurement report, so the period value is not
valid. A read of the TIMER_TMRn_PER value in this case returns 0. See the following figure for more infor-
mation.

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–11

Figure 13-3: Example of Width Capture Deasserted Mode (TMODE=b#1011)

When the TIMER_TMRn_CFG.TMODE bit =b#1010, the measurement report occurs just after the period
buffer register captures its value at a leading edge. Subsequently, the TIMER_TMRn_PER and TIMER_TMRn_
WID registers report the pulse period and pulse width measured in the period that has just ended. Refer to
the following figure for more information.

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

13–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 13-4: Example of Width Capture Asserted Mode (TMODE=b#1010)

To measure the pulse width of a waveform that has only one leading edge and one trailing edge, set TMODE
= b#1011. If TMODE = b#1010 for this case, no period value is captured in the period buffer register. Instead,
an error report interrupt is generated (if enabled) when the TMR_CNT range is exceeded and the counter
wraps around. In this case, both the TIMER_TMRn_PER and TIMER_TMRn_WID registers read 0 (because no
measurement report occurred to copy the value captured in the width buffer register to the TIMER_TMRn_
WID register).

If using the TIMER_TMRn_CFG.TMODE bit =b#1010 mode to measure the width of a single pulse, programs
should disable the timer after taking the interrupt that ends the measurement interval. If desired, the timer
can then be restarted as appropriate in preparation for another measurement. This procedure prevents the
timer from free-running after the width measurement and logging errors generated by the timer count
overflowing.

Width Capture Mode Overflow

A timer status interrupt (if enabled) is generated if the TIMER_TMRn_CNT register wraps around from
0xFFFF FFFF to 0 in the absence of a leading edge. At that point, the TIMER_STAT_ILAT bit is set and the

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–13

TIMER_ERR_TYPE bits change to indicate a count overflow due to a period greater than the counter's range.
This indication is referred to as an error report. A data interrupt in WIDCAP mode indicates a new
measurement is ready to be read (a measurement report). Similarly, an interrupt on the timer status inter-
rupt line (shared interrupt for all timers) indicates an overflow if generated in this mode.

The TIMER_TMRn_PER and TIMER_TMRn_WID registers are never updated at the time an overflow is
signaled. If the timer overflows and the TIMER_TMRn_CFG.TMODE bit =b#1010, neither the TIMER_TMRn_
PER nor the TIMER_TMRn_WID register are updated. If the timer overflows and the TIMER_TMRn_CFG.TMODE
bit =b#1011, the TIMER_TMRn_PER and TIMER_TMRn_WID registers are updated only if a trailing edge is
detected at a previous measurement report.

Software can count the number of error reports between measurement report interrupts to measure input
signal periods longer than 0xFFFF FFFF. Each error report interrupt adds a full 232SCLK counts to the total
for the period, but the width is ambiguous. Ensure that if only the status interrupt is monitored by soft-
ware, then status interrupts from all other timers are masked.

For example, in the following figure, the period is 0x1 0000 0004, but the pulse width could be either 0x0
0000 0002 or 0x1 0000 0002.

Figure 13-5: Example Timing for Width Capture Followed by Period Overflow (TMR_CFG.TMODE=b#1010)

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

13–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The waveform applied to the TIMER_TMRn (or TIMER_ACIn) pin is not required to have a 50% duty cycle,
but the minimum input low time is little more than one SCLK period and the minimum input high time
is little more than one SCLK period (refer to the product data sheet for details). This implies the maximum
TIMER_TMRn input frequency is somewhat less than SCLK/2, with a 50% duty cycle. Under these condi-
tions, the WIDCAP mode timer measures Period =2 and Pulse Width =1.

Figure 13-6: Example Timing for Width Capture Followed by Period Overflow (TMR_CFG.TMODE=b#1011)

Windowed Watchdog (WATCHDOG) Modes

In windowed watchdog (WATCHDOG) modes, a timer can take inputs from either the TIMER_TMRn pin
or the TIMER_ACIn pin. With this mode, the timer can monitor pulse width (width watchdog mode) or
pulse period (period watchdog mode) on the input line. It also compares the measured value against a
minimum required value and maximum allowed value and generates an interrupt appropriately. Polarity
selection of the input signal is performed by the TIMER_TMRn_CFG.PULSEHI bit.

The waveform applied to the input pin in watchdog mode is not required to have a 50% duty cycle, but the
minimum input pulse low time is slightly more than one SCLK period, and the minimum input pulse high

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–15

time is slightly more than one SCLK period (refer to the product data sheet for details). This implies the
maximum input frequency is somewhat less than SCLK/2 in this mode.

Windowed Watchdog Width Mode

In windowed watchdog width mode, the timer counter monitors the pulse width of an input signal on
either the TIMER_TMRn pin or one of the alternate clock pins (TM_ACLK0 through TM_ACLK7). Program the
minimum pulse width (pMIN) in the TIMER_TMRn_DLY register and the maximum pulse width (pMAX) in
the TIMER_TMRn_PER register. Both values are programmed in terms of number of clock cycles (SCLK or
alternate clock). The timer can generate an interrupt if the de-asserting pulse edge occurs inside the
window (pMIN < Pulse Width ≤ pMAX) or outside the window (Pulse Width ≤ pMIN or Pulse Width >
pMAX).

After enabling the timer in this mode, it always starts counting at the asserting edge of the input signal.
This means any pulse that is already active when the timer is enabled is ignored.

With the TIMER_TMRn_CFG.IRQMODE bit =b#11, the timer generates an interrupt if the timed pulse width
exceeds pMAX, or if the pulse width is less than pMIN. After attaining pMAX, the pulse still remains at an
active level, and the counter keeps on counting until it sees a de-asserting edge. When the input pulse is
not active, the counter holds its current value until it again sees an asserting edge, or it restarts. An inter-
rupt can also be generated for when the pulse occurs within the specified window condition, by setting
TIMER_TMRn_CFG.IRQMODE =b#10.

In this mode, a trailing edge on the input pin triggers capturing of pulse width into the TIMER_TMRn_WID
register. During the inactive portion of the input signal, the internal counter does not increment. The
following figure shows the signal flow in this mode.

Figure 13-7: Watchdog Width Mode Timing

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

13–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

To check only the upper limit on pulse width (pMAX but not pMIN) then pMIN must be programmed as 0
or 1. In such a case, it is better to use TIMER_TMRn_CFG.IRQMODE =b#11. With TIMER_TMRn_CFG.IRQMODE
= b#10, a pulse width of 1 clock cycle results in an interrupt. For details see the following table.

Windowed Watchdog Period Mode

In this mode, the timer monitors the number of clock cycles between two consecutive rising/falling edges
of an input signal on either the TIMER_TMRn or TIMER_ACIn pin. Program the required minimum number
of clock cycles (tMIN) in the TIMER_TMRn_DLY register and the required maximum allowed number of
clock cycles (tMAX) in the TIMER_TMRn_PER register. Both values are programmed in terms of number of
clock cycles (SCLK) or alternate time clock (TM_ACLK0 through TM_ACLK7). The timer can generate an
interrupt if two consecutive occurrences of an active edge are within a specified window (tMIN < Pulse
Period ≤ tMAX) or outside (Pulse Width ≤ (tMIN or tMAX < Pulse Width) a specified window.

When the TIMER_TMRn_CFG.IRQMODE bit =b#11 and the pulse period > tMAX or is ≤ tMIN, the timer gener-
ates an interrupt (if unmasked). After attaining the tMAX value, the counter keeps on counting until it sees
an active edge on the input line. An interrupt can also be generated for when the pulse occurs within the

Table 13-8: Windowed Watchdog Width Mode Interpretation

Timer Delay Timer Period
Incoming Pulse

Width IRQMODE= b#10 IRQMODE= b#11 Error Interrupt?

 0 or 1 Anything ≥ 1 PW = 1 Interrupt at de-
asserting edge of
input signal

No Interrupt No Error Interrupt

PW ≤ TMR_PER Interrupt at de-
asserting edge of
input signal

No Interrupt No Error Interrupt

PW > TMR_PER No Interrupt Interrupt when Pulse
with exceeds Pmax
(Period Register)
Value

No Error Interrupt

> 1 but ≤ (Period -1) Anything > 1 PW ≤ TMR_DLY No Interrupt Interrupt at De-
asserting edge of
input Signal

No Error Interrupt

TMR_DLY < PW≤
TMR_PER

Interrupt at de-
asserting edge of
input signal

No Interrupt No Error Interrupt

PW > TMR_PER No Interrupt Interrupt when Pulse
with exceeds Pmax
(Period Register)
Value

No Error Interrupt

≥ Period - PW ≤ TMR_PER Undefined Undefined No Error Interrupt

- PW > TMR_PER Undefined Undefined b#11 Error Type

 - 0 - Undefined Undefined b#10 Error Type

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–17

specified window condition, by setting TIMER_TMRn_CFG.IRQMODE =b#10. Refer to the figure below for
timer functionality in period watchdog mode.

Figure 13-8: Watchdog Period Mode Timing

If a program needs to check only the upper limit on period (the tMAX value, not the tMIN value) then tMIN
can be programmed as 0 or 1. For details refer to the table below.

Table 13-9: Windowed Watchdog Period Mode Interpretation

Timer Delay Timer Period
Incoming Pulse

Width IRQMODE=b#10 IRQMODE =b#11 Error Interrupt?

 0 or 1 Anything ≥ 2 Pulse Period ≤
TMR_PER

 Interrupt at de-
asserting edge of
input signal

No Interrupt No Error Interrupt

Pulse Period > TMR_
PER

 No Interrupt Interrupt when pulse
period crosses Pmax
(Period Register)
value

No Error Interrupt

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER OPERATING MODES

13–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Pin Interrupt (PININT) Mode

In PININT mode, any active edges on either the TIMER_TMRn pin or the TIMER_ACIn pin (whichever is
selected by the TIMER_TMRn_CFG.TINSEL) register can cause an edge-based interrupt if. The event on the
input pin can set the TIMER_DATA_ILAT.TMRnn bit and issue a system interrupt request. Active edge
polarity can be changed by programming the TIMER_TMRn_CFG.PULSEHI bit.

Since the interrupt is generated in the SCLK clock domain, the width of the input signal must be more than
one SCLK period. Along with generating the interrupt, the timer also generates a trigger pulse (configured
using the TIMER_TRG_MSK register). Due to the configuration of polarity, glitches may cause an undesired
interrupt to be generated at the input. To avoid this, programs must ensure that interrupts are unmasked
only after configuring the desired polarity.

External Clock (EXTCLK) Mode

The EXTCLK mode, sometimes referred to as the counter mode, is used to count external events, (signal
edges) on either the TIMER_TMRn or TIMER_ACIn input pin. The timer works as a counter clocked by an
external source (the signal at the pin), which can be asynchronous to SCLK. The current count in the
TIMER_TMRn_CNT register represents the number of leading edge events detected. The TIMER_TMRn_PER
register is programmed with the value of the maximum timer external count before stopping and/or
issuing an interrupt or trigger.

The TIMER_TMRn_CFG.PULSEHI bit determines the polarity of the leading edge on the input pin. The
TIMER_TMRn_CFG.TINSEL bit selects whether the event is counted on the TIMER_TMRn or on the TIMER_
ACIn pin. The TIMER_STAT_ILAT.TMRnn and TIMER_ERR_TYPE bits are set if TIMER_TMRn_CNT wraps

> 1 but ≤ Period -1 Anything ≥ 2 Pulse Period ≤
TMR_DLY

 No Interrupt Interrupt at de-
asserting edge of
input signal

No Error Interrupt

TMR_DLY < Pulse
Period ≤TMR_PER

Interrupt at de-
asserting edge of
input signal

No Interrupt No Error Interrupt

Pulse Period > TMR_
PER

 No Interrupt Interrupt when pulse
width exceeds Pmax
(Period Register)
value

No Error Interrupt

≥ Period - Pulse Period < TMR_
PER

 Undefined Undefined No Error Interrupt

Pulse Period ≥
TMR_PER

Undefined Undefined b#11 Error Type

 - 0 or 1 - Undefined Undefined b#10 Error Type

Table 13-9: Windowed Watchdog Period Mode Interpretation (Continued)

Timer Delay Timer Period
Incoming Pulse

Width IRQMODE=b#10 IRQMODE =b#11 Error Interrupt?

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER PROGRAMMING CONCEPTS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–19

around from 0xFFFF FFFF to 0 or if the period = 0 at startup or when TIMER_TMRn_CNT register rolls over
(from count = period to count = 0x1). The TIMER_TMRn_WID and TIMER_TMRn_DLY registers are unused in
this mode and should not be written.

The following figure below shows a flow diagram for EXTCLK mode.

Figure 13-9: EXTCLK Mode Control Flow

The waveform applied to the input pin is not required to have a 50% duty cycle, but the minimum input
low time and input high time are both slightly more than one SCLK period, (refer to the product data sheet
for details). This implies the maximum input frequency is slightly less than SCLK/2. The period may be
programmed to any value from 1 to (232 – 1), inclusive.

After the timer has started, it resets the TIMER_TMRn_CNT register to 0x0 and then waits for the first leading
edge on the input pin. This edge causes TIMER_TMRn_CNT to be incremented to the value 0x1, and every
subsequent leading edge increments it by one. After the TIMER_TMRn_CNT register reaches the value
programmed in the TIMER_TMRn_PER register, the corresponding TIMER_DATA_ILAT bit is set, and an
interrupt and trigger are both generated (if enabled). The next leading edge reloads the TIMER_TMRn_CNT
register with 0x1, and the timer continues counting until it is disabled.

GP Timer Programming Concepts

Using the features, operating modes, and event control for the GP timer to their greatest potential requires
an understanding of some GP Timer related concepts.

GENERAL-PURPOSE TIMER (TIMER)
GP TIMER PROGRAMMING CONCEPTS

13–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Setting Up Constantly Changing Timer Conditions

This task shows how to use different period, pulse width, and/or delay settings for each of the first three
timer periods after the timer is started.

1. Program the first set of TIMER_TMRn_PER, TIMER_TMRn_WID and TIMER_TMRn_DLY register values.

2. Enable the timer using the TIMER_RUN register.

3. Immediately program the second set of TIMER_TMRn_PER, TIMER_TMRn_WID and TIMER_TMRn_DLY
register values, as needed.

4. Wait for the first timer interrupt.

5. Program the third set of TIMER_TMRn_PER, TIMER_TMRn_WID and TIMER_TMRn_DLY register values.

RESULT:

Each new setting is then programmed when the preceding timer interrupt is received.

Configuring, Enabling and Disabling One or More Timers

1. Configure the relevant timer(s) for the operating mode and other properties using the TIMER_TMRn_
CFG register.

2. Write a 1 to the representative TIMER_RUN.TMRnn bit(s) or, alternately, use the TIMER_RUN_SET register
to avoid disturbing the settings of other timers that are not being presently configured.

STEP RESULT: The timer(s) should now be enabled and operating.

3. To stop one or more timers, first program the TIMER_STOP_CFG register to determine whether to stop
immediately or gracefully upon receiving a stop command.

ADDITIONAL INFORMATION: Note that PWMOUT modes are the only modes where a timer can be config-
ured for graceful termination.

4. Write a 0 to the representative TIMER_RUN.TMRnn bit(s) to stop the timer(s) according to their TIMER_
STOP_CFG settings. Alternately, write a 1 to the appropriate TIMER_RUN_CLR.TMRnn bits to avoid
disturbing the settings of other timers that are not being presently stopped.

STEP RESULT: The timer(s) stop.

Configuring Timer Data and Status Interrupts

1. Configure the TIMER_TMRn_CFG.IRQMODE bit field with the desired interrupt properties.

2. Unmask the interrupt source at the system event controller.

GENERAL-PURPOSE TIMER (TIMER)
TIMER ILLEGAL STATES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–21

3. Set the TIMER_TMRn_CFG.IRQMODE field but leave the interrupt masked at the system level to poll the
timer's TIMER_DATA_ILAT.TMRnn bit without generating an interrupt.

4. Use the TIMER_STAT_IMSK register to generate interrupt requests by overflow or error conditions
(incorrect programming values). These interrupt errors are reported by the TIMER_STAT_ILAT.TMRnn
bits, provided that the timer status interrupt source is unmasked at the system event controller.

5. To poll the timer's TIMER_STAT_ILAT.TMRnn bit without generating an interrupt, unmasked the corre-
sponding bit in the TIMER_STAT_IMSK register but leave the interrupt masked at the system level.

Using the Timer Broadcast Feature

The broadcast feature provides a means to update period, width and/or delay registers simultaneously
across more than one timer.

1. Enable the appropriate broadcast bits (TIMER_TMRn_CFG.BPEREN, TIMER_TMRn_CFG.BWIDEN and
TIMER_TMRn_CFG.BDLYEN) for the timers involved in the broadcast. The use of these bits depends on
which broad cast registers are used (TIMER_BCAST_PER, TIMER_BCAST_WID, or TIMER_BCAST_DLY).

2. Program the TIMER_BCAST_PER register (for example), assuming you want to broadcast the period
setting across the multiple timers enabled above.

STEP RESULT: This causes only those timers enabled above to load their TIMER_TMRn_PER registers with
the value specified in the TIMER_BCAST_PER register.

3. Repeat Step 2 as needed for the TIMER_BCAST_WID and TIMER_BCAST_DLY register settings.

Timer Illegal States

The following definitions are used in the following sections.

• Startup. The first clock period during which the timer counter is running after the timer is started by
writing the TIMER_RUN register.

• Rollover. The time when the current count in TIMER_TMRn_CNT matches the value in TIMER_TMRn_PER
and the counter is reloaded with the value 1.

• Overflow. The timer counter was incremented instead of doing a rollover when it was holding the
maximum possible count value of 0xFFFF FFFF. The counter does not have a large enough range to
express the next greater value and so erroneously loads a new value of 0x0000 0000.

• Unchanged. No new error.

When the TIMER_ERR_TYPE register is designated unchanged, it displays the previously reported error
code orb# 00 if there has been no error since this timer was enabled.

When the TIMER_STAT_ILAT register is unchanged, it reads 0 if there has been no error or overflow since
this timer was enabled, or if software has performed a W1C to clear any previous error. If a previous error

GENERAL-PURPOSE TIMER (TIMER)
TIMER ILLEGAL STATES

13–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

has not been acknowledged by software, the TIMER_STAT_ILAT register reads 1. Software should read the
TIMER_STAT_ILAT register to check for errors. If a particular timer's bit is set in this register, software can
then read the TIMER_ERR_TYPE register for more information. Once detected, software should W1C the
appropriate TIMER_STAT_ILAT bit to acknowledge the error.

The following tables can be read as:

• In mode __ at event __,

• if TIMER_TMRn_PER is __ and TIMER_TMRn_WID is __ and TIMER_TMRn_DLY is __,

• then TIMER_ERR_TYPE is __ and TIMER_STAT_ILAT is __.

Startup error conditions do not prevent the timer from starting. Similarly, overflow and rollover error
conditions do not stop the timer. Illegal cases may cause unwanted behavior of the TIMER_TMRn pin.

NOTE: For PININT mode error functionality is not used.

Continuous PWMOUT Mode

Table 13-10: Startup Event

 TMR_PER TMR_DLY MR_WID
TMR_WID +

TMR_DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

≤ 1 Anything other than
period[8]

Anything Anything b#10 Set

≥ 2 Anything including 0,
excluding TMR_PER
value

Anything
including 0

≤ PERIOD Unchanged Unchanged

Anything including 0 Anything
including 0

> PERIOD Unchanged[9]
(Detected at rollover)

Unchanged (Detected at
rollover)

Anything Anything > 232 - 1 b#11 Set

=Period =0 =Period No error Unchanged (Detected at
rollover)

Table 13-11: Rollover Event

 TMR_PER TMR_DLY TMR_WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_

ILAT (if enabled)

≥ 1 Anything Anything Anything b#10[timer running at
SCLK] b#11 [timer
running at ALT_CLKx]

Set

GENERAL-PURPOSE TIMER (TIMER)
TIMER ILLEGAL STATES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–23

Single Pulse PWMOUT Mode

For Single Pulse PWMOUT mode, there are no rollover events.

WID CAP Mode

For WID CAP mode, the TIMER_TMRn_PER and TIMER_TMRn_WID registers are read-only and the TIMER_
TMRn_DLY register is not used. Therefore no startup or rollover errors are possible.

≥ 2 Anything including 0,
excluding TMR_PER value

Anything including
0

≤PERIOD Unchanged Unchanged

Anything including 0,
excluding TMR_PER value

Anything >0 >PERIOD b#11 Set

Anything Anything > 232- 1 b#11 Set

= Period[10] =0 =Period b#11 Set

>Period =0 >Period Unchanged Unchanged

Table 13-12: Overflow Event (On TMR_PER Register Programming Error Only)

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
 TIMER_STAT_ILAT (if

enabled)

Anything Anything Anything Anything b#01 Set

Table 13-13: Startup Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY

ERR_TYPE
TIMER_STAT_

ILAT (if enabled)

NA Anything == 0 Anything b#11[11] Set

NA Anything including 0 ≥1 > 232 -1 Unchanged Unchanged

NA Anything including 0 ≥1 > 232 -1 b#11 Set

Table 13-14: Overflow Event (On another error, such as DELAY + WIDTH >= 232 -1)

 TMR_PER TMR_DLY TMR_ WID
TMR_ WID + TMR_

DLY ERR_TYPE
TIMER_STA_ILAT (if

enabled)

Anything Anything Anything Anything b#01 Set

Table 13-11: Rollover Event (Continued)

 TMR_PER TMR_DLY TMR_WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_

ILAT (if enabled)

GENERAL-PURPOSE TIMER (TIMER)
TIMER ILLEGAL STATES

13–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

EXTCLK Mode

WATCHDOG Events

Table 13-15: Overflow Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

Anything NA Anything NA b#01 Set

Table 13-16: Startup Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID + TMR_

DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

=0 NA NA NA b#01 Set

≥1 NA NA NA Unchanged Unchanged

Table 13-17: Rollover Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID + TMR_

DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

=0 NA NA NA b#01 Set

≥1 NA NA NA Unchanged Unchanged

Table 13-18: Overflow Event (On TMR_PER Register = 0 Only)

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID + TMR_

DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

Anything NA NA NA b#01 Set

Table 13-19: Startup Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

≤ Allowed MIN[12] Anything < PERIOD NA NA b#01 Set

> Allowed MIN Anything < PERIOD NA NA Unchanged Unchanged

> Allowed MIN Anything ≥ PERIOD Refer to WATCHDOG Mode tables

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–25

ADSP-CM40x TIMER Register Descriptions

General-Purpose Timer Block (TIMER) contains the following registers.

Table 13-20: Rollover Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE
TIMER_STAT_ILAT (if

enabled)

≤ Allowed MIN[10] Anything < PERIOD NA NA b#01 Set

> Allowed MIN Anything NA NA Unchanged Unchanged

> Allowed MIN Anything ≥ PERIOD Refer to WATCHDOG Mode tables

Table 13-21: Overflow Event

 TMR_ PER TMR_ DLY TMR_ WID
TMR_ WID +

TMR_ DLY ERR_TYPE TIMER_STAT_ILAT (if enabled)

Anything Anything NA NA b#01 Set

Table 13-22: ADSP-CM40x TIMER Register List

Name Description

TIMER_RUN Run Register

TIMER_RUN_SET Run Set Register

TIMER_RUN_CLR Run Clear Register

TIMER_STOP_CFG Stop Configuration Register

TIMER_STOP_CFG_SET Stop Configuration Set Register

TIMER_STOP_CFG_CLR Stop Configuration Clear Register

TIMER_DATA_IMSK Data Interrupt Mask Register

TIMER_STAT_IMSK Status Interrupt Mask Register

TIMER_TRG_MSK Trigger Master Mask Register

TIMER_TRG_IE Trigger Slave Enable Register

TIMER_DATA_ILAT Data Interrupt Latch Register

TIMER_STAT_ILAT Status Interrupt Latch Register

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

13–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Run Register

The TIMER_RUN allows all timers to be enabled simultaneously, permitting them to run synchronously. For
each timer, there is a single start/stop control bit. Writing a 1 to this bit starts the corresponding timer;
writing a 0 stops the timer with mechanism specified in the timer stop configuration TIMER_STOP_CFG
register.

The start/stop control bits can be set/reset individually or in any combination. While starting or stopping
one particular timer directly with this register, software must perform a read-modify write, so the bits
corresponding to other timers remain unchanged. To avoid this need, software can use the TIMER_RUN_
CLR register.

Reading the TIMER_RUN register shows the start status for the corresponding timer. A 1 indicates that the
timer is running.

If a timer is in run state (corresponding run bit is =1), a software write of 1 in this bit does not have any
effect on the timer state. The write does not result in restarting the timer.

Note that the TIMER_RUN register is not used in PININT mode. PININT mode starts as soon as the TIMER_
TMRn_CFG.TMODE bits are set to 111.

TIMER_ERR_TYPE Error Type Status Register

TIMER_BCAST_PER Broadcast Period Register

TIMER_BCAST_WID Broadcast Width Register

TIMER_BCAST_DLY Broadcast Delay Register

TIMER_TMRn_CFG Timer n Configuration Register

TIMER_TMRn_CNT Timer n Counter Register

TIMER_TMRn_PER Timer n Period Register

TIMER_TMRn_WID Timer n Width Register

TIMER_TMRn_DLY Timer n Delay Register

Table 13-22: ADSP-CM40x TIMER Register List (Continued)

Name Description

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–27

Figure 13-10: TIMER_RUN Register Diagram

Run Set Register

The TIMER_RUN_SET register is an alias register, providing a mechanism to set a specific start/stop bit in
the TIMER_RUN register without affecting other bits in TIMER_RUN. To start a particular timer, software
must write a 1 into the corresponding TIMER_RUN_SET bit. Writing a zero has no effect. For an example,
to start timer 3 without affecting any other timer, write 0x0008 into TIMER_RUN_SET. Because TIMER_RUN_
SET is a write-only register, the result of any write to this register must be checked by reading the TIMER_
RUN register. A read of the TIMER_RUN_SET returns 0x0000.

Table 13-23: TIMER_RUN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

TMRnn Start/Stop Timer n.
For all TIMER_RUN.TMRnn bits, write =0 for stop, and write =1 for start. Read =1
when timer is running.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

13–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 13-11: TIMER_RUN_SET Register Diagram

Run Clear Register

The TIMER_RUN_CLR register is an alias register, providing a mechanism to clear a specific start/stop bit in
the TIMER_RUN register without affecting other bits in TIMER_RUN. To stop a particular timer, software
must write a 1 into the corresponding TIMER_RUN_CLR bit. Writing a 0 has no effect. Because TIMER_RUN_
CLR is a write-only register, the result of any write to this register must be checked by reading the TIMER_
RUN register. A read of the TIMER_RUN_CLR returns 0x0000.

Note that the stopping mechanism of a timer may be abrupt or graceful (after completion of current wave-
form period) depending on the selection in the TIMER_STOP_CFG register.

Table 13-24: TIMER_RUN_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R0/W1S)

TMRnn RUN Set Alias.
For all TIMER_RUN_SET.TMRnn bits, write =0 has no effect, and write =1 for start
(setting the corresponding start/stop bit in the TIMER_RUN register). Using
TIMER_RUN_SET to set start/stop bits permits starting specific timers without
influencing the run status of other timers.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–29

Figure 13-12: TIMER_RUN_CLR Register Diagram

Stop Configuration Register

The TIMER_STOP_CFG register selects the stop mode for each timer. Timers may be stopped abruptly
(immediate halt - all modes) or gracefully in PWMOUT modes (single pulse and continuous). The halt is
achieved through either a write =0 to the corresponding bit in TIMER_RUN or a write =1 to the corre-
sponding bit in TIMER_RUN_CLR. A read of TIMER_STOP_CFG returns the last value written.

Figure 13-13: TIMER_STOP_CFG Register Diagram

Table 13-25: TIMER_RUN_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R0/W1C)

TMRnn RUN Clear Alias.
For all TIMER_RUN_CLR.TMRnn bits, write =0 has no effect, and write =1 for stop
(clearing the corresponding in start/stop bit in the TIMER_RUN register). Using
TIMER_RUN_CLR to clear start/stop bits permits stopping specific timers without
influencing run status of other timers.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

13–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Stop Configuration Set Register

This is an alias register, providing a mechanism to set a specific bit in the TIMER_STOP_CFG register without
affecting other bits in TIMER_STOP_CFG. To set a bit in the TIMER_STOP_CFG register, software must write
a 1 to the corresponding bit of the TIMER_STOP_CFG_SET register. Writing a zero has no effect. Because the
TIMER_STOP_CFG_SET register is a write-only register, the result of any write to this register must be
checked by reading the TIMER_STOP_CFG register. A read of the TIMER_STOP_CFG_SET register returns
0x0000.

Figure 13-14: TIMER_STOP_CFG_SET Register Diagram

Table 13-26: TIMER_STOP_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

TMRnn Stop Mode Select.
For all TIMER_STOP_CFG.TMRnn bits, write =0 for graceful termination
(PWMOUT modes only), and write =1 for abrupt (immediate halt) on stop.

Table 13-27: TIMER_STOP_CFG_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R0/W1S)

TMRnn STOP_CFG Set Alias.
For all TIMER_STOP_CFG_SET.TMRnn bits, write =0 has no effect, and write =1
for abrupt stop (setting the corresponding stop mode select bit in the TIMER_
STOP_CFG register). Using TIMER_STOP_CFG_SET to set stop mode bits permits
configuring specific timers without influencing the stop mode configuration of other
timers.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–31

Stop Configuration Clear Register

This is an alias register, providing a mechanism to clear a specific bit in the TIMER_STOP_CFG register
without affecting other bits in TIMER_STOP_CFG. To clear a bit in TIMER_STOP_CFG, software must write a
1 to the corresponding bit of TIMER_STOP_CFG_CLR register. Writing a zero has no effect. Because the
TIMER_STOP_CFG_CLR register is a write-only register, the result of any write to this register must be
checked by reading the TIMER_STOP_CFG register. A read of the TIMER_STOP_CFG_CLR register returns
0x0000.

Figure 13-15: TIMER_STOP_CFG_CLR Register Diagram

Data Interrupt Mask Register

Each timer may generate a unique processor data interrupt request signal. The TIMER_DATA_IMSK register
contains an interrupt mask for these requests, masking (disabling) or unmasking (enabling) the interrupts
as programmed. The reset value of the TIMER_DATA_IMSK register is 0xFFFF, masking these interrupts
after reset.

Table 13-28: TIMER_STOP_CFG_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R0/W1C)

TMRnn STOP_CFG Clear Alias.
For all TIMER_STOP_CFG_CLR.TMRnn bits, write =0 has no effect, and write =1
for graceful stop in PWMOUT modes (clearing the corresponding stop mode select
bit in the TIMER_STOP_CFG register). Using TIMER_STOP_CFG_CLR to clear
stop mode bits permits configuring specific timers without influencing the stop
mode configuration of other timers.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

13–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 13-16: TIMER_DATA_IMSK Register Diagram

Status Interrupt Mask Register

While each timer may generate a status interrupt request, these requests are OR'ed to generate a single
status interrupt signal to the System Event Controller. The TIMER_STAT_IMSK register contains an inter-
rupt mask for these requests, masking (disabling) or unmasking (enabling) the interrupts as programmed.
The reset value of the TIMER_STAT_IMSK register is 0xFFFF, masking these interrupts after reset.

Figure 13-17: TIMER_STAT_IMSK Register Diagram

Table 13-29: TIMER_DATA_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

TMRnn Data Interrupt Mask.
For all TIMER_DATA_IMSK.TMRnn bits, write =0 unmasks (enables) the
corresponding data interrupt request, and write =1 masks (disables) the
corresponding data interrupt request.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–33

Trigger Master Mask Register

As a trigger master, each timer can generate a unique data trigger pulse signal. The TIMER_TRG_MSK
register contains a trigger mask for these outputs, masking (disabling) or unmasking (enabling) the trig-
gers as programmed. The reset value of the TIMER_TRG_MSK register is 0xFFFF, masking these triggers after
reset.

Figure 13-18: TIMER_TRG_MSK Register Diagram

Table 13-30: TIMER_STAT_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

TMRnn Status Interrupt Mask.
For all TIMER_STAT_IMSK.TMRnn bits, write =0 unmasks (enables) the
corresponding status interrupt request, and write =1 masks (disables) the
corresponding status interrupt request.

Table 13-31: TIMER_TRG_MSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

TMRnn Trigger Output Mask.
For all TIMER_TRG_MSK.TMRnn bits, write =0 unmasks (enables) the
corresponding data trigger output, and write =1 masks (disables) the corresponding
data trigger output.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

13–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Trigger Slave Enable Register

As a trigger slave, each timer can generate a unique data trigger pulse signal. The TIMER_TRG_IE contains
trigger input enable bits for these signals, disabling or enabling the triggers as programmed. The reset value
of the TIMER_TRG_IE register is 0xFFFF, masking these triggers after reset.

Figure 13-19: TIMER_TRG_IE Register Diagram

Data Interrupt Latch Register

The TIMER_DATA_ILAT holds the latched interrupt status for interrupt requests that have been unmasked
(enabled) by the TIMER_DATA_IMSK register and generated according to the conditions selected by the
TIMER_TMRn_CFG.IRQMODE bits. If a bit in TIMER_DATA_ILAT is already set and the corresponding inter-
rupt is masked in TIMER_DATA_IMSK, the latch holds its old value, leaving the interrupt asserted until it is
reset by software with a W1C operation.

Note that interrupt service routines (ISRs) should clear the appropriate bits in TIMER_DATA_ILAT before
returning from the ISR, to ensure that the interrupt is not re-issued. To make sure that no timer event is
missed, the latch should be reset at the very beginning of the ISR when in EXTCLK mode.

Table 13-32: TIMER_TRG_IE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

TMRnn Trigger Input Enable.
For all TIMER_TRG_IE.TMRnn bits, write =0 disables the corresponding trigger
input, and write =1 enables the corresponding trigger input.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–35

Figure 13-20: TIMER_DATA_ILAT Register Diagram

Status Interrupt Latch Register

The TIMER_STAT_ILAT holds the latched interrupt status for error interrupts, indicating a timer overflow
condition or indicating that prohibited programming has occurred for a timer. These interrupt status bits
are sticky and are W1C. The bits in the TIMER_STAT_ILAT register provide information regarding each
timer interrupt source.

Table 13-33: TIMER_DATA_ILAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W1C)

TMRnn Data Interrupt Latch.
For all TIMER_DATA_ILAT.TMRnn bits, status of =0 indicates no interrupt is
latched, and status of =1 indicates a latched interrupt (indicating an unmasked
interrupt request from a timer with a condition matching the one selected with
corresponding TIMER_TMRn_CFG.IRQMODE bit has occurred).

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

13–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 13-21: TIMER_STAT_ILAT Register Diagram

Error Type Status Register

The TIMER_ERR_TYPE register contains Error Type status bits for each timer. These bits indicate the type
of error (if any) in a running timer. This register is read-only. These status bits are cleared at reset and when
a particular timer is enabled.

Each time an error interrupt is latched in the TIMER_STAT_ILAT register the corresponding TERRx bits in
the TIMER_ERR_TYPE register are loaded with a code that identifies the type of error that was detected. This
status value is held until the next error or until a particular timer is restarted. No bus error is generated if
a write is performed on the TIMER_ERR_TYPE register.

Table 13-34: TIMER_STAT_ILAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W1C)

TMRnn Status Interrupt Latch.
For all TIMER_STAT_ILAT.TMRnn bits, status of 0 indicates no error interrupt is
latched, and status of 1 indicates a timer counter overflow or programming error
interrupt is latched.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–37

Figure 13-22: TIMER_ERR_TYPE Register Diagram

Table 13-35: TIMER_ERR_TYPE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:14
(R/NW)

TERR7 Error type for Timer 7.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

13:12
(R/NW)

TERR6 Error type for Timer 6.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

11:10
(R/NW)

TERR5 Error type for Timer 5.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

13–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Broadcast Period Register

For timers with TIMER_TMRn_CFG.BPEREN enabled, a write to TIMER_BCAST_PER concurrently updates the
period (TIMER_TMRn_PER) registers of only those timers. A read of TIMER_BCAST_PER returns 0x00000000,
and no bus error is generated. To read back a written value, read that TMR's TIMER_TMRn_PER register.

9:8
(R/NW)

TERR4 Error type for Timer 4.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

7:6
(R/NW)

TERR3 Error type for Timer 3.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

5:4
(R/NW)

TERR2 Error type for Timer 2.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

3:2
(R/NW)

TERR1 Error type for Timer 1.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

1:0
(R/NW)

TERR0 Error type for Timer 0.

0 No Error

1 Counter Overflow Error

2 PER Register Programming Error

3 WID or DLY Register Programming Error

Table 13-35: TIMER_ERR_TYPE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–39

Figure 13-23: TIMER_BCAST_PER Register Diagram

Broadcast Width Register

For timers with TIMER_TMRn_CFG.BWIDEN enabled, a write to the TIMER_BCAST_WID register concurrently
updates the' width (TIMER_TMRn_WID) registers of only those timers. A read of the TIMER_BCAST_WID
register returns 0x00000000, and no bus error is generated. To read back a written value, read that TMR's
TIMER_TMRn_WID register.

Figure 13-24: TIMER_BCAST_WID Register Diagram

Table 13-36: TIMER_BCAST_PER Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R0/W)

VALUE Broadcast Period Value.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

13–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Broadcast Delay Register

For timers with TIMER_TMRn_CFG.BDLYEN enabled, a write to the TIMER_BCAST_DLY register concurrently
updates the delay (TIMER_TMRn_DLY) registers of only those timers. A read of the TIMER_BCAST_DLY
register returns 0x00000000, and no bus error is generated. To read back a written value, read that TMR's
TIMER_TMRn_DLY register.

Figure 13-25: TIMER_BCAST_DLY Register Diagram

Timer n Configuration Register

Each timer has a TIMER_TMRn_CFG register that specifies its operating mode. Only write to a TIMER_TMRn_
CFG register when the corresponding timer is not running.

After disabling a timer operating in PWMOUT mode, verify that the timer has stopped running by
checking the start/stop status of the timer in the TIMER_RUN register before writing to the timer's TIMER_
TMRn_CFG register.

Note that a timer's TIMER_TMRn_CFG register may be read at any time.

Table 13-37: TIMER_BCAST_WID Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R0/W)

VALUE Broadcast Width Value.

Table 13-38: TIMER_BCAST_DLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R0/W)

VALUE Broadcast Delay Value.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–41

Figure 13-26: TIMER_TMRn_CFG Register Diagram

Table 13-39: TIMER_TMRn_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

EMURUN Run Timer (Counter) During Emulation.

0 Stop Timer During Emulation

1 Run Timer During Emulation

14
(R/W)

BPEREN Broadcast Period Enable.
The TIMER_TMRn_CFG.BPEREN bit enables updates to the TIMER_TMRn_PER
register simultaneously across more than one timer.

0 Disable Broadcast to PER Register

1 Enable Broadcast to PER Register

13
(R/W)

BWIDEN Broadcast Width Enable.
The TIMER_TMRn_CFG.BWIDEN bit enables updates to the TIMER_TMRn_WID
register simultaneously across more than one timer.

0 Disable Broadcast to WID Register

1 Enable Broadcast to WID Register

12
(R/W)

BDLYEN Broadcast Delay Enable.
The TIMER_TMRn_CFG.BDLYEN bit enables updates to the TIMER_TMRn_DLY
register simultaneously across more than one timer.

0 Disable Broadcast to DLY Register

1 Enable Broadcast to DLY Register

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

13–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

11
(R/W)

OUTDIS Output Disable.

0 Enable TMR pin output buffer

1 Disable TMR pin output buffer

10
(R/W)

TINSEL Timer Input Select (for WIDCAP, WATCHDOG, PININT modes).

0 Use TMR pin input

1 Use TMR Alternate Capture Input

9:8
(R/W)

CLKSEL Clock Select.

0 Use SCLK

1 Use TMR_ALT_CLK0 as the TMR clock

3 Use TMR_ALT_CLK1 as the TMR clock

7
(R/W)

PULSEHI Polarity Response Select.
The TIMER_TMRn_CFG.PULSEHI bit defines specific behaviors of the timer
based on the operating mode. For more information, see the specific operating mode
in the Programming Guidelines section.

0 Negative Response/Pulse
Negative Edge Response or Negative Action Pulse on
TMR pin

1 Positive Response/Pulse
Positive Edge Response or Positive Action Pulse on
TMR pin

6
(R/W)

SLAVETRIG Slave Trigger Response.
Note that the trigger pulse has no effect (to stop or start the timer) if the timer is
already in the requested state.

0 Pulse stops timer if it is running

1 Pulse starts timer if it is stopped

Table 13-39: TIMER_TMRn_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–43

5:4
(R/W)

IRQMODE Interrupt Modes.
The TIMER_TMRn_CFG.IRQMODE bit field selects the interrupt request mode.
Note that any mismatched combination of TIMER_TMRn_CFG.IRQMODE and
TIMER_TMRn_CFG.TMODE results in no interrupt being generated.
Also note that in WIDCAP modes, the position of the interrupt is controlled with the
TIMER_TMRn_CFG.TMODE bit, and the TIMER_TMRn_CFG.IRQMODE bit is
ignored.

0 Active Edge Mode
The timer generates an interrupt at every active edge.
The active edge polarity depends on the state of the
TIMER_TMRn_CFG.PULSEHI bit). Valid for
PININT mode only.

1 Delay Expired Mode
The timer generates an interrupt when the TIMER_
TMRn_CNT value reaches the value in the TIMER_
TMRn_DLY register. This mode is valid for all
PWMOUT modes.

2 Width Plus Delay Expired Mode
The timer generates an interrupt when the TIMER_
TMRn_CNT value reaches the value in the TIMER_
TMRn_WID register plus the value in the TIMER_
TMRn_DLY register. (PWMOUT modes only).
The timer generates an interrupt if the de-asserting
edge is within the specified window. (WATCHDOG
modes only.)

3 Period Expired Mode
The timer generates an interrupt when the TIMER_
TMRn_CNT value reaches the value in the TIMER_
PER register. (Continuous PWMOUT and EXTCLK
modes only.)
The timer generates an interrupt if the de-asserting
edge is outside the specified window.(WATCHDOG
modes only.)

Table 13-39: TIMER_TMRn_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

13–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Timer n Counter Register

The TIMER_TMRn_CNT register holds the current timer count. After enabling, the count is re-initialized to
either 0x0 or 0x1, depending on the configuration and mode. The TIMER_TMRn_CNT is read only and may
be read at any time (whether the timer is running or stopped). Reading the TIMER_TMRn_CNT register
returns an atomic 32-bit value.

Depending on the timer operation mode, the counter increment can be clocked by a number of sources,
including SCLK, the TMR or Alternate Capture input pins, TMR_ALT_CLK0, or TMR_ALT_CLK1. The
counter retains its value after the timer is disabled.

Figure 13-27: TIMER_TMRn_CNT Register Diagram

3:0
(R/W)

TMODE Timer Mode Select.
The TIMER_TMRn_CFG.TMODE bit field selects the operating mode of each timer.

0000 - 0111 Idle Mode

8 Period Watchdog Mode

9 Width Watchdog Mode

10 Measurement report at asserting edge of waveform

11 Measurement report at de-asserting edge of waveform

12 Continuous PWMOUT mode

13 Single pulse PWMOUT mode

14 EXTCLK mode

15 PININT (pin interrupt) mode

Table 13-39: TIMER_TMRn_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 13–45

Timer n Period Register

The TIMER_TMRn_PER register holds the period value for the corresponding timer. This register's use is
based on the selected timer mode.

Figure 13-28: TIMER_TMRn_PER Register Diagram

Timer n Width Register

The TIMER_TMRn_WID register holds the width value for the corresponding timer. This register's use is
based on the selected timer mode.

Table 13-40: TIMER_TMRn_CNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Counter Value.

Table 13-41: TIMER_TMRn_PER Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Period Value.

GENERAL-PURPOSE TIMER (TIMER)
ADSP-CM40X TIMER REGISTER DESCRIPTIONS

13–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 13-29: TIMER_TMRn_WID Register Diagram

Timer n Delay Register

The TIMER_TMRn_DLY register holds the delay value for the corresponding timer. This register's use is
based on the selected timer mode.

Figure 13-30: TIMER_TMRn_DLY Register Diagram

Table 13-42: TIMER_TMRn_WID Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Width Value.

Table 13-43: TIMER_TMRn_DLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Delay Value.

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 14–1

14 Watchdog Timer (WDOG)

The processor includes a 32-bit timer for each core that can be used to implement a software watchdog
function. A software watchdog can improve system reliability by generating an event to the processor core
if the watchdog expires before being updated by software. The watchdog timers are clocked by the system
clock (SCLK).

WDOG Features

The watchdog timer has the following features.

• Two identical 32-bit watchdog timers

• 8-bit disable bit pattern

• Can generate a general-purpose event for the core

Typically, the watchdog timer is used to supervise stability of the system software. When used in this way,
software reloads the watchdog timer in a regular manner so that the downward counting timer never
expires (never becomes 0). An expiring timer then indicates that system software might be out of control.
At this point, based on the GP event generated by the WDOG, it is often better to reset and reboot the
system using the Reset Control Unit.

For easier debugging, the watchdog timer does not decrement (even if enabled) when the processor is in
emulation mode.

Watchdog Timer Functional Description

When enabled, the 32-bit watchdog timer counts downward every SCLK cycle. When the count becomes
0, the expiry event is generated. This generates an GP event to the processor. When the event is generated,
the core and the peripherals need to be reset using the software. The counter value can be read through the
32-bit WDOG_STAT register. The WDOG_STAT register cannot, however, be written directly. Rather, software
writes the watchdog period value into the 32-bit WDOG_CNT register before the watchdog is enabled. Once
the watchdog is started, the period value cannot be altered.

ADSP-CM40x WDOG Register List

WATCHDOG TIMER (WDOG)
WATCHDOG TIMER FUNCTIONAL DESCRIPTION

14–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x WDOG Interrupt List

WDOG Block Diagram

The following figure shows the detailed watchdog timer block diagram.

Figure 14-1: Watchdog Timer Block Diagram

Internal Interface

The watchdog timer does not directly interact with any pins of the chip.

Table 14-1: ADSP-CM40x WDOG Register List

Name Description

WDOG_CTL Control Register

WDOG_CNT Count Register

WDOG_STAT Watchdog Timer Status Register

Table 14-2: ADSP-CM40x WDOG Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

8 WDOG0_EXP WDOG0 Expiration LEVEL

WATCHDOG TIMER (WDOG)
WDOG CONFIGURATION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 14–3

External Interface

The watchdog timer is clocked by the system clock (SCLK) and its registers are accessed through the 16-
bit peripheral MMR access bus. The 32-bit WDOG_CNT and WDOG_STAT registers must always be accessed by
32-bit read/write operations. Hardware ensures that those accesses are atomic. When the counter expires,
the GP expiration event is generated.

WDOG Configuration

PREREQUISITE:

To start the watchdog timer, use the following procedure.

1. Set the count value for the watchdog timer by writing the count value into the watchdog count register
(WDOG_CNT). Note that loading the WDOG_CNT register while the timer is not enabled also pre-loads the
WDOG_STAT register.

2. Enable the watchdog timer by writing to the WDOG_CTL.WDEN bit field. The watchdog timer then begins
counting down, decrementing the value in the WDOG_STAT register. When the WDOG_STAT reaches 0, the
expiration event is generated.

ADDITIONAL INFORMATION: To prevent the event from being generated, software must reload the count
value from the WDOG_CNT register to the WDOG_STAT register by executing a write (of any value) to the
WDOG_STAT register, or must disable the watchdog timer in the WDOG_CTL register before the watchdog
timer expires.

a. If software does not serve the watchdog in time, the WDOG_STAT register continues decrementing
until it reaches 0 at which point it generates a GP interrupt (if enabled) and the software can
perform a core and/or a system reset.

ADDITIONAL INFORMATION: Once the counter reaches 0, it stops decrementing and remains at 0. Addition-
ally, the WDOG_CTL.WDRO bit is set.

b. If the watchdog is enabled with a zero value loaded to the counter and the WDOG_CTL.WDRO bit was
cleared, the WDOG_CTL.WDRO bit of the watchdog control register is set immediately and the counter
remains at zero without further decrements. If, however, the WDOG_CTL.WDRO bit was set by the time
the watchdog is enabled, the counter decrements to 0xFFFF FFFF and continues operation.

ADDITIONAL INFORMATION: Software can disable the watchdog timer only by writing a 0xAD value to the
WDOG_CTL.WDEN bit field.

ADSP-CM40x WDOG Register Descriptions

Watch Dog Timer Unit (WDOG) contains the following registers.

WATCHDOG TIMER (WDOG)
ADSP-CM40X WDOG REGISTER DESCRIPTIONS

14–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Control Register

The WDOG_CTL register controls the watch dog timer. This register supports enabling/disabling the watch
dog timer and supports checking the timer rollover status. Note that when the processor is in emulation
mode, the watch dog timer counter will not decrement even if it is enabled.

Figure 14-2: WDOG_CTL Register Diagram

Table 14-3: ADSP-CM40x WDOG Register List

Name Description

WDOG_CTL Control Register

WDOG_CNT Count Register

WDOG_STAT Watchdog Timer Status Register

Table 14-4: WDOG_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

WDRO Watch Dog Rollover.
Software can determine whether the timer has rolled over by interrogating the
WDOG_CTL.WDRO status bit. This is a sticky bit that is set whenever the watch dog
timer count reaches 0 and cleared only by disabling the watch dog timer and then
writing a 1 to the bit.

0 WDT has not expired

1 WDT has expired

WATCHDOG TIMER (WDOG)
ADSP-CM40X WDOG REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 14–5

Count Register

The WDOG_CNT register holds the programmable, unsigned count value. A valid write to this register also
pre-loads the WDOG counter. For added safety, the WDOG_CNT register can be updated only when the
WDOG timer is disabled. A write to the WDOG_CNT register while the timer is enabled does not modify the
contents of this register. This register must be accessed with 32-bit read/writes only.

Figure 14-3: WDOG_CNT Register Diagram

Watchdog Timer Status Register

The WDOG_STAT contains the current count value of the watch dog timer. Reads of this register return the
current count value. When the watch dog timer is enabled, WDOG_STAT is decremented by 1 on each SCLK

11:4
(R/W)

WDEN Watch Dog Enable.
The WDOG_CTL.WDEN field is used to enable and disable the watch dog timer.
Writing any value other than the disable value into this field enables the watch dog
timer. This multi-bit disable key minimizes the chance of inadvertently disabling the
watch dog timer.

173 Counter Disabled
All other values - counter enabled

Table 14-5: WDOG_CNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Count Value.

Table 14-4: WDOG_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

WATCHDOG TIMER (WDOG)
ADSP-CM40X WDOG REGISTER DESCRIPTIONS

14–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

cycle. When count value reaches 0, the watch dog timer stops counting, and the expiry event is generated.
WDOG_STAT is a 32-bit unsigned system MMR that must be accessed with 32-bit reads and writes.

Values cannot be stored directly in WDOG_STAT, but are instead copied from the WDOG_CNT register. This
copy process can happen in two ways:

• While the watch dog timer is disabled, writing the WDOG_CNT register pre-loads the WDOG_STAT register.

• While the watch dog timer is enabled, writing the WDOG_STAT register loads it with the value in WDOG_
CNT.

When the processor executes a write (of an arbitrary value) to WDOG_STAT, the value in WDOG_CNT is copied
into WDOG_STAT. Typically, software sets the value of WDOG_CNT at initialization, then periodically writes to
WDOG_STAT before the watch dog timer expires. This reloads the watch dog timer with the value from
WDOG_CNT and prevents generation of the expiry event.

If the user does not reload the counter before SCLK*Count register cycles, an expiry event is generated,
and the WDOG_CTL.WDRO bit is set. When this happens, the counter will stop decrementing and will remain
at zero.If the counter is enabled with a zero loaded to the counter, the WDOG_CTL.WDRO bit is set immedi-
ately and the counter remains at zero and does not decrement.

Figure 14-4: WDOG_STAT Register Diagram

Table 14-6: WDOG_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Current Count Value (Status).

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–1

15 General-Purpose Counter (CNT)

The GP counter converts pulses from incremental position encoders into data that is representative of the
actual position of the pulse. This is done by integrating (counting) pulses on one or two inputs. Since inte-
gration provides relative position, some devices also feature a zero position input (zero marker) that can
be used to establish a reference point to verify that the acquired position does not drift over time. In addi-
tion, the incremental position information can be used to determine speed, if the time intervals are
measured.

The GP counter provides flexible ways to establish position information. When used in conjunction with
the GP timer block, the GP counter may allow for the acquisition of coherent position/time-stamp infor-
mation that enables speed calculation.

GP Counter Features

The GP Counter includes the following features:

• 32-bit up/down counter

• Quadrature encode mode (Gray code)

• Binary encoder mode

• Alternative frequency-direction mode

• Timed direction and up/down counting modes

• Zero marker/push button support

• Capture event timing in association with GP Timer

• Boundary comparison and boundary setting features

• M/N frequency scaling of the inputs CUD/CDG

GP Counter Functional Description

A block diagram of the GP counter is shown below. The CNT_UD and CNT_DG pins accept various forms of
incremental inputs and are processed by the 32-bit counter, while the CNT_ZM pin can be used to sense the
pressing of a push button.

NOTE: When enabled, the GP counter requires 3 SCLK cycles of initialization before recognizing valid
toggles on its input pins.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER FUNCTIONAL DESCRIPTION

15–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The three input pins may be filtered (debounced) before being evaluated by the GP counter.

The GP counter also features a flexible boundary comparison. In all of the operating modes, the counter
can be compared to an upper and lower limit. A variety of actions can be taken when these limits are
reached.

The module can optionally generate an interrupt request to the system through its IRQ line. On many
processors, there is also an output that can be used by a GP timer module to generate timestamps on
certain events.

Figure 15-1: GP Timer Block Diagram

ADSP-CM40x CNT Register List

The counter (CNT) provides support for manually controlled rotary controllers, such as the volume wheel
on a radio device. This unit also supports industrial encoders.

The CNT converts pulses from incremental position encoders into data that is representative of the actual
position. To complete this task, the CNT integrates (counting) pulses on one or two inputs. Because inte-
gration provides relative position, some devices also feature a zero position input (zero marker) that estab-
lishes a reference point, verifying that the acquired position does not drift over time. The incremental
position information may also be used to determine speed, if the time intervals are measured. The CNT
provides flexible ways to establish position information. When used in with the General-Purpose Timer
(TIMER), the CNT allows acquisition of coherent position/time-stamp information, enabling speed calcu-
lation.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–3

A set of registers govern CNT operations. For more information on CNT functionality, see the CNT
register descriptions.

ADSP-CM40x CNT Interrupt List

ADSP-CM40x CNT Trigger List

Table 15-1: ADSP-CM40x CNT Register List

Name Description

CNT_CFG Configuration Register

CNT_IMSK Interrupt Mask Register

CNT_STAT Status Register

CNT_CMD Command Register

CNT_DEBNCE Debounce Register

CNT_CNTR Counter Register

CNT_MAX Maximum Count Register

CNT_MIN Minimum Count Register

CNT_MDIV M Value for Divider

CNT_NDIV N Value for Divider

Table 15-2: ADSP-CM40x CNT Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

59 CNT0_STAT CNT0 Count Status LEVEL

60 CNT1_STAT CNT1 Count Status LEVEL

61 CNT2_STAT CNT2 Count Status LEVEL

62 CNT3_STAT CNT3 Count Status LEVEL

Table 15-3: ADSP-CM40x CNT Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

15 CNT0_STAT CNT0 Counter Status LEVEL

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER OPERATING MODES

15–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

GP Counter Operating Modes

The GP counter has the following five modes of operation.

1. Quadrature Encoder

2. Binary Encoder

3. Up/Down Counter

4. Direction Counter

5. Timed Direction

With the exception of the timed direction mode, the GP counter can operate with the GP timer block to
capture additional timing information (time-stamps) associated with events detected by this block.

Quadrature Encoder Mode

In this mode, the CNT_UD and CNT_DG inputs expect a quadrature-encoded signal that is interpreted as a
two-bit Gray code. The order of transitions of the CNT_UD and CNT_DG inputs determines whether the
counter increments or decrements. The CNT_CNTR register contains the number of transitions that have
occurred as shown in the table below. Optionally, an interrupt is generated if both inputs change within
one SCLK cycle. Such transitions are not allowed by Gray coding. Therefore, the CNT_CNTR register remains
unchanged, and an error condition is signaled.

16 CNT1_STAT CNT1 Counter Status LEVEL

17 CNT2_STAT CNT2 Counter Status LEVEL

18 CNT3_STAT CNT3 Counter Status LEVEL

Table 15-4: ADSP-CM40x CNT Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

None

Table 15-5: Quadrature Events and Counting Mechanism

CNT_COUNTER
Register Value -4 -3 -2 -1 0 +1 +2 +3 +4

CDG, CUD Inputs 00 01 11 10 00 01 11 10 00

Table 15-3: ADSP-CM40x CNT Trigger List Trigger Masters (Continued)

Trigger ID Name Description Sensitivity

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–5

It is possible to reverse the count direction of the Gray coded signal by enabling the polarity inverter of
either the CNT_UD pin or the CNT_DG pin. Inverting both pins does not alter the behavior. This feature can
be enabled with the CNT_CFG.CDGINV and CNT_CFG.CUDINV bits.

As an example, if the CNT_DG and CNT_UD inputs are 00 and the next transition is to 01. This normally
increments the counter as is shown in the table. If the CNT_UD polarity is inverted, this generates a received
input of 01 followed by 00. This results in a decrement of the counter, altering the behavior of the
connected hardware.

Binary Encoder Mode

This mode is almost identical to quadrature encoder mode, with the exception that the CNT_UD: CNT_DG
inputs expect a binary-encoded signal. The order of transitions of the CNT_UD and CNT_DG inputs deter-
mines whether the counter increments or decrements. The CNT_CNTR register contains the number of tran-
sitions that have occurred as shown in the following table. Optionally, an interrupt is generated if the
detected code steps by more than 1 (in binary arithmetic) within one SCLK cycle. Such transitions are
considered erroneous. Therefore, the CNT_CNTR register remains unchanged, and an error condition is
signaled.

Reversing the CNT_UD and CNT_DG pin polarity has a different effect in binary encoder mode than for the
quadrature encoder mode. Inverting the polarity of the CNT_UD pin only, or inverting both the CNT_UD and
CNT_DG pins, results in reversing the count direction.

Up/Down Counter Mode

In this mode, the counter is incremented or decremented at every active edge of the input pins. The active
edge can be selected by the CNT_CFG.CUDINV bit and has the following results.

• If an active edge is detected at the CNT_UD input, the counter increments.

• If an active edge is detected at the CNT_DG input, the counter decrements.

• If simultaneous edges occur on the CNT_DG and CNT_UD pins, the counter remains unchanged, and both
up-count and down-count events are signaled in the CNT_STAT register.

Table 15-6: Binary Events and Counting Mechanism

CNT_COUNTER Register Value -4 -3 -2 -1 0 +1 +2 +3 +4

CDG:CUD Inputs 00 01 10 11 00 01 10 11 00

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER OPERATING MODES

15–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Direction Counter Mode

In this mode, the counter is incremented or decremented at every active edge of the CNT_DG input pin. The
state of the CNT_UD input determines whether the counter increments or decrements and the polarity is
selected by the CNT_CFG.CUDINV bit.

If an active edge is detected at the CNT_DG input, the counter value changes by one in the selected direction.

Timed Direction Mode

In this mode, the counter is incremented or decremented at each SCLK cycle. The state of the CNT_UD input
determines whether the counter increments or decrements. The polarity can be selected by the CNT_CFG.
CUDINV bit. The CNT_DG pin can be used to gate the clock. The polarity can be selected by the CNT_CFG.
CDGINV bit.

M/N Scaling

The GP counter provides programmable M/N frequency scaling of the CNT_UD and CNT_DG inputs.
Frequency scaling is supported only when the inputs are in quadrature encoded mode, with support for
both incrementing and decrementing gray code and with on the fly direction changing. The divided
outputs are available on the GP counter output pins CNT_A and CNT_B.

To use M/N frequency scaling set the CNT_CFG.DIVEN bit and by program the M and N values in the CNT_
MDIV and CNT_NDIV registers. With division enabled, the output frequency on the CNT_OUTA and CNT_OUTB
pins is:

fQOUT = fQIN × (M/N)

Where the frequency of the inputs on the CNT_UD and CNT_DG input pins is:

fQIN=1/tPERIOD

The following figure shows the M/N scaling implemented by the QEP dividers.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–7

Figure 15-2: M/N Scaling

The divided outputs (CNT_OUTA and CNT_OUTB pins) start after 1 QEP input pulse period as shown in the
above figure (and 1 or 2 system clocks (SCLK) based on the implementation). If de-bouncing is enabled
and the CNT_CFG.DIVNTV bit is not set, then the divided outputs start after 1 QEP pulse + the de-bouncing
period (tFILTER).

Even though the M/N Scaling figure shows the full period scaled M/N (tPERIOD/(M/N), the value
measured for scaling is from the rising edge of either of the inputs (CNT_UD or CNT_DG) to the rising edge
of the other input. This value gives the width of the QEP pulse and the value measured is scaled to create
the M/N version. Each QEP pulse is continuously measured and the values are constantly updated to create
the divided outputs. The QEP width seen on the output is not the exact M/N scaled version of a measured
QEP input width because the input frequency is change and there is not a one-to-one correspondence for
the QEP width measured and the actual QEP M/N output.

This is because the design constantly updated the measured values to the Dividers a sort of weighted
average of the multiple QEP pulses measured will be reflected on the output. This is depicted in the
diagram below which shows waveforms for an increasing input frequency as shown in the following figure.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER OPERATING MODES

15–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 15-3: Scaled Outputs with Increasing Frequency at Inputs (Increasing Motor Speed)

In the Scaled Outputs with Increasing Frequency at Inputs figure X1, X2, X3, X4, X5 are the input QEP
widths measured. (Note that after X5 the widths remain constant, also known as frequency stabilized) and
Y1, Y2, Y3, Y4 are the QEP output widths (and all outputs keep to Y4 as the input frequency stabilized).
Importantly,

• Y1 = X1/(M/N)

• Y2 = (Weighted Average of {X2,X3})/(M/N)

• Y3 = (Weighted Average of {X3,X4,X5})/(M/N)

• Y4 = X5/(M/N)

The weight applied for each measurement depends on when the measurement completes with respect to
the outputs—it is difficult to predict the exact weight. Similar behavior is seen with the decreasing
frequency of inputs.

The weighted averaging can be avoided by setting the CNT_CFG.DIVMODE bit. Once the bit is set the output
values are:

• Y1 = X1/(M/N)

• Y2 = X2/(M/N)

• Y3 = X3/(M/N)

• Y4 = X5/(M/N)

The default behavior of the QEP dividers is weighted averaging.

The maximum error in the input width measured by the QEP dividers is ± 1 SCLK cycles. The maximum
error on the QEP divided outputs is ± N/M SCLK cycles.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–9

NOTE: The count of output pulses created by this M/N scaling may not always be M/N times the input
pulses. The input pulse counts will be scaled N/M without much errors for very large values of M/
N, for small values there will be errors and these errors can accumulate as the number of input
pulses increases.

M/N Stop Detection

If there are no QEP input pulses after the last measured and translated QEP input pulse, then the QEP
divider considers that the input (and therefore the motor) has stopped. Once the stop condition is detected
the QEP divider outputs won’t switch, a W1C status bit (CNT_STAT.STP) is set in the status register, and
an interrupt is generated if the CNT_IMSK.STP bit is unmasked. Once the input QEP pulses restarts the
QEP output pulses restart after a delay of 1 QEP pulse.

Figure 15-4: M/N Stop Detection

Note: The figure is drawn depicting an N/M ratio of 3/2.

Y = X × N/M

If there are no QEP pulses seen during the period 2Y, then the QEP dividers assume that inputs have
stopped, and the QEP output does not toggle until a new input pulse is seen. Even if there are error such

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER OPERATING MODES

15–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

as trembles or Illegal Gray code that occur during this period, the stop condition is still detected because
the error cases are not treated as a valid QEP pulse.

If the input width varies from one QEP pulse to the other more by more than 2Y, then a false stop is
detected. Therefore the maximum supported deceleration rate is from X to 2Y. This translates to a width
change of X to 2X × N/M between two QEP pulses. Using a worst case of N/M = 1, the maximum a pulse
width can change is twice the size of the previous pulse. So the allowable width of a QEP pulse following a
20 μs pulse is <40 μs (with N/M=1). Similarly, if there is a 1 ms QEP, the pulse that follows is within 2 ms.
If this is not the case a stop condition is detected at N/M=1.

The stop detection interrupt/status is also raised if a QEP pulse is very wide and caused the internal counter
to overflow. The internal counter overflow occurs if the pulse is larger than 4,026,531,840 × M (or hex
(0xF000_0000) × M) system clock cycles.

NOTE: If new QEP pulses are seen with a different direction after a STOP is detected, no direction change
interrupt occurs (as the dividers assume it is new start after the STOP detection). However the QEP
dividers start providing the output with the new direction.

M/N Error Condition

If the CNT_UD/CNT_DG does not follow the quadrature encoder mode, then the outputs continue to run in
quadrature encoder mode using the QEP input width measured before the error condition. Even though
the output continues to run (the error is ignored), the counter raises an Illegal Gray Code interrupt if the
inputs are not in Quadrature Encode Mode with CNT_CFG.CNTMODE set to QUAD_ENC mode.

To stop the QEP dividers on an error condition, disable the CNT_CFG.DIVEN bit to immediately three-state
the CNT_OUTA/CNT_OUTB divided outputs.

M/N Restrictions

The following restrictions apply to the programmable M and N values.

a) M, N Values cannot be changed on the fly (when the CNT_CFG.DIVEN bit =1).

b) M<fSYSCLK/fQIN(max), where fQIN is input frequency, fSYSCLK is the frequency of the system clock.

c) N should be greater than or equal to M (n≥M)

d) N should always be greater than 1 (N>1)

e) M should always be greater than 1 (M>1)

If M>fSYSCLK/fQIN(max), then an error status bit (CNT_STAT.MERR) is set and an interrupt is generated (if
the interrupt enable bit (CNT_IMSK.MERR) is set). This occurs each time the QEP input pulse frequency
does not meet the above requirement after the end of each QEP input pulse.

The maximum M values for fSYSCLK = 100 MHz is shown in the following table.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–11

GP Counter Event Control

Eleven events can be signaled to the processor using status information and optional interrupt requests.
The interrupts are enabled by the respective bits in the CNT_IMSK register. Dedicated bits in the CNT_STAT
register report events. When an interrupt from the GP counter is acknowledged, the application software
is responsible for correct interpretation of the events. It is recommended to logically AND the content of
the CNT_IMSK and CNT_STAT registers to identify pending interrupts.

Interrupt requests are cleared by write-one-to-clear (W1C) operations to the CNT_STAT register. Hardware
does not clear the status bits automatically, unless the counter module is disabled.

The following sections describe the events associated with the GP counter.

Illegal Gray/Binary Code Events

When illegal transitions occur in quadrature encoder or binary encoder modes, the CNT_STAT.IC bit is set.
If enabled by the CNT_STAT.IC bit, an interrupt request is generated. The CNT_STAT.IC bit should only be
set in the quadrature encoder or binary encoder modes.

Up/Down Count Events

The CNT_STAT.UC bit indicates whether the counter has been incremented. Similarly, the CNT_STAT.DC bit
reports decrements. The two events are independent. For instance, if the counter first increments by one
and then decrements by two, both bits remain set, even though the resulting counter value shows a decre-
ment by one.

In up/down counter mode, hardware may detect simultaneous active edges on the CNT_UD and CNT_DG
inputs. In that case, the CNT_CNTR remains unchanged, but both the CNT_STAT.UC and CNT_STAT.DC bits
are set. Interrupt requests for these events may be enabled through the CNT_IMSK.UC and CNT_IMSK.DC
bits. This feature should be used carefully when the counter is clocked at high rates. This is especially crit-
ical when the counter operates in DIR_TMR mode, as interrupts are generated every SCLK cycle.

fQIN(KHz) M

6666.66 15

2000.0 50

333.33 300

166.67 600

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

15–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

These events can also be used for additional push buttons, if GP counter features are not needed. When
up/down counter mode is enabled, these count events can be used to report interrupts from push buttons
that connect to the CNT_UD and CNT_DG inputs.

Zero-Count Events

The CNT_STAT.CZERO status bit indicates that the CNT_CNTR has reached a value equal to 0x0000 0000 after
an increment or decrement. This bit is not set when the counter value is set to zero by a write to CNT_CNTR
or by setting the CNT_CMD.W1LCNTZERO bit. If enabled by the CNT_IMSK.CZERO bit, an interrupt request is
generated.

Overflow Events

There are two status bits that indicate whether the signed counter register has overflowed from a positive
to a negative value or vice versa. The CNT_STAT.COV31 bit reports that the 32-bit CNT_CNTR register has
either incremented from 0x7FFF FFFF to 0x8000 0000, or decremented from 0x8000 0000 to 0x7FFF FFFF.

If enabled by the CNT_IMSK.COV31 bit, an interrupt request is generated. Similarly, in applications where
only the lower 16 bits of the counter are of interest, the CNT_STAT.COV15 status bit reports counter transi-
tions from 0xXXXX 7FFF to 0xXXXX 8000, or from 0xXXXX 8000 to 0xXXXX 7FFF. If enabled by the
CNT_IMSK.COV15 bit, an interrupt request is generated.

Boundary Match Events

The CNT_STAT.MINC and CNT_STAT.MAXC status bits report boundary events as described in Configuring
Boundary Capture Mode. These bits are not set if the CNT_CNTR, CNT_MAX, or CNT_MIN registers are updated
by software or the CNT_CMD register is written to. The CNT_IMSK.MINC and CNT_IMSK.MAXC bits enable
interrupt generation on boundary events.

Zero Marker Events

The CNT_STAT.CZM, CNT_STAT.CZME and CNT_STAT.CZMZ bits are associated with zero marker events, as
described in Configuring GP Counter Push-Button Operation. Each of these events can optionally generate
an interrupt request, if enabled by the corresponding CNT_IMSK.CZM, CNT_IMSK.CZME and CNT_IMSK.
CZMZ bits.

GP Counter Programming Model

The following sections provide information used to assist in programming the interface.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–13

GP Counter General Programming Flow

The following are general guidelines for configuring and enabling the GP counter.

1. Initialize (but do not enable) the GP Counter for the desired mode and settings via the CNT_CFG
register.

2. Usually, events of interest are processed using interrupts rather than by polling status bits. If this is the
case, clear all status bits and activate the interrupt generation requests with the CNT_IMSK register.

3. Configure interrupts at the system level to insure desired interrupt signalling to the system event
controller.

4. If timing information is required, set up the relevant GP Timer in width capture mode.

5. Finally, enable interrupts and the GP Counter itself using the CNT_IMSK and CNT_CFG registers, respec-
tively.

M/N Scaling Programming Guidelines

To use the QEP dividers, set both the CNT_CFG.EN and CNT_CFG.DIVEN bits. Note that the counter must
be enabled at least two system clock (SCLK) cycles before enabling the rotary dividers (set CNT_CFG.EN at
least 2 SCLK cycles before setting the CNT_CFG.DIVEN bit. To detect an illegal gray code error condition,
program the CNT_CFG.CNTMODE for quadrature encode mode (QUAD_ENC).

The polarity bits (CNT_CFG.CDGINV and CNT_CFG.CUDINV) do not invert the QEP divider outputs, the QEP
divider output polarity is the same as the input polarity. However the polarity bits cannot be changed on
the fly when the rotary dividers are running (the polarity bits should not be changed when the CNT_CFG.
DIVEN bit =1). If this occurs, it may be treated as an error or a direction change by the QEP dividers. Do
not change the CNT_CFG bits on the fly when QEP dividers are enabled.

GP Counter Mode Configuration

The CNT_ZM input pin can be used to sense the zero marker output of a rotary device or to detect the
pressing of a push button. There are four programming schemes, which are functional in all counter
modes: push button mode, zero-marker-zeros-counter mode, zero-marker-error mode, and zero-once
mode.

Configuring GP Counter Push-Button Operation

Use the following procedure to configure push-button operation

1. Set CNT_IMSK.CZME to enable (unmask) the zero marker error interrupt.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

15–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

2. Select the active edge polarity through the CNT_CFG.CZMINV bit.

3. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

An active edge at the CNT_ZM input sets the CNT_STAT.CZME bit.

Configuring Zero-Marker-Zeros-Counter Mode

The following provides information on configuring Zero-Marker-Zeros-Counter mode for the GP
Counter.

1. Set CNT_IMSK.CZMZ to enable CNT_CNTR to be zeroed by a Zero Marker interrupt.

2. Set CNT_CFG.ZMZC to enable ZMZC mode.

3. Select the active edge polarity through the CNT_CFG.CZMINV bit.

4. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

This causes an active level at the CNT_ZM pin to clear the CNT_CNTR register and keep it cleared until the
CNT_ZM pin is deactivated. In addition, the CNT_STAT.CZMZ bit is set.

Configuring Zero-Marker-Error Mode

This mode is used to detect discrepancies between counter value and the zero marker output of certain
rotary encoder devices.

1. Set the CNT_STAT.CZME bit to enable this mode.

2. Select the active edge of the CNT_ZM pin through the CNT_CFG.CZMINV bit.

3. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

When an active edge is detected at the CNT_ZM input pin, the four LSBs of the CNT_CNTR register are
compared to zero. If they are not zero, a mismatch is signaled using the CNT_STAT.CZME bit.

Configuring Zero-Once Mode

This mode is used to perform an initial reset of the counter value when an active zero marker is detected.
After that, the zero marker is ignored (the counter is no longer reset).

1. Set the CNT_CMD.W1ZMONCE bit to enable this mode.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–15

2. Select the active edge of the CNT_ZM pin through the CNT_CFG.CZMINV bit.

3. Ensure that at least one of the following bits is enabled: CNT_IMSK.CZM, CNT_IMSK.CZME, CNT_IMSK.
CZMZ.

4. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

The CNT_CNTR register and the CNT_CMD.W1ZMONCE bit are cleared on the next active edge of the CNT_ZM
pin. Now the CNT_CMD.W1ZMONCE bit can be read to check whether the event has already occurred.

Configuring Boundary Auto-Extend Mode

In this mode, the boundary registers (CNT_MIN and CNT_MAX) are modified by hardware whenever the CNT_
CNTR value reaches either of them. This mode can be used to keep track of the widest angle a thumb wheel
even if the software did not generate interrupts.

1. Initialize CNT_CNTR with the desired value.

2. Set both CNT_MIN and CNT_MAX to this same value.

3. Configure the CNT_CFG.BNDMODE field for auto extend mode.

4. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

The CNT_MAX register is loaded with the current CNT_CNTR value if the latter increments beyond the CNT_
MAX value. Similarly, the CNT_MIN register is loaded with the CNT_CNTR value if the latter decrements below
the CNT_MIN value. The CNT_STAT.MAXC and CNT_STAT.MINC status bits are set when the CNT_CNTR value
matches the respective boundary register value.

Configuring Boundary Capture Mode

In this mode, the CNT_CNTR value is latched into the CNT_MIN register at one detected edge of the CNT_ZM
input pin, and latched into the CNT_MAX boundary register at the opposite edge.

1. To capture the CNT_ZM pin rising edge into CNT_MIN and the falling edge into CNT_MAX, program CNT_
CFG.CZMINV for active high polarity. Conversely, to capture the CNT_ZM pin falling edge into CNT_MIN
and the rising edge into CNT_MAX, program CNT_CFG.CZMINV for active low polarity.

2. Program the CNT_IMSK.MAXC and CNT_IMSK.MINC interrupt mask bits according to interrupt genera-
tion requirements.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

15–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

3. Configure the CNT_CFG.BNDMODE field for boundary capture mode.

4. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

The CNT_STAT.MAXC and CNT_STAT.MINC status bits report the capture event, depending on how interrupt
masks are configured.

Configuring Boundary Compare and Boundary Zero Modes

In these modes, the two boundary registers (CNT_MAX and CNT_MIN) are compared to the value in the CNT_
CNTR register.

1. Program CNT_MAX and CNT_MIN registers with appropriate upper and lower range values.

2. Program the CNT_IMSK.MAXC and CNT_IMSK.MINC interrupt mask bits according to interrupt genera-
tion requirements.

3. Configure the CNT_CFG.BNDMODE field for boundary compare mode.

4. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

If after incrementing, CNT_CNTR = CNT_MAX, then the CNT_STAT.MAXC bit is set. Similarly if after decre-
menting, CNT_CNTR = CNT_MIN, then the CNT_STAT.MINC bit is set.

Additionally, for boundary zero mode, the counter value in CNT_CNTR is set to zero. Note that the CNT_
STAT.MAXC and CNT_STAT.MINC bits are not set if the CNT_MAX and/or CNT_MIN registers are updated by
software.

Configuring GP Counter Push-Button Operation

Use the following procedure to configure push-button operation

1. Set CNT_IMSK.CZME to enable (unmask) the zero marker error interrupt.

2. Select the active edge polarity through the CNT_CFG.CZMINV bit.

3. Proceed with any other desired configuration steps and enable the peripheral.

RESULT:

An active edge at the CNT_ZM input sets the CNT_STAT.CZME bit.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–17

GP Counter Programming Concepts

Using the features, operating modes, and event control for the GP Counter to their greatest potential
requires an understanding of some GP Counter-related concepts. Some key aspects to consider are input
noise filtering and capturing timing information.

CNT Input Noise Filtering

In all modes, the three input pins can be filtered to present clean signals to the GP counter logic. This
filtering can be enabled or disabled by the CNT_CFG.DEBEN bit. The following figure shows the filtering
operation for the CNT_UD pin.

Figure 15-5: Programmable Noise Filtering

The filtering mechanism is implemented using counters for each GP counter pin, where each counter is
initialized from the CNT_DEBNCE.DPRESCALE field. When a transition is detected on a pin, the corre-
sponding counter starts counting up to the programmed number of SCLK cycles. The state of the pin is
latched after time tfilter and passed on to the GP counter logic.

The time tfilter is determined, given SCLK and the CNT_DEBNCE.DPRESCALE value, by the following formula,
where lower values of CNT_DEBNCE.DPRESCALE result in shorter debounce delays:

 tfilter = 128 × (2 DPRESCALE × SCLK)

Capturing Counter Interval and CNT_CNTR Read Timing

When the count speed is very low, it is often useful to capture the time elapsed since the last count event.
In order to do this, program the associated GP Timer’s TIMER_TMRn_CFG register in a width capture mode
with the following bit settings.

• TIMER_TMRn_CFG.PULSEHI = 0

• TIMER_TMRn_CFG.TMODE = b#1011

• TIMER_TMRn_CFG.TINSEL = 1

The following figure shows and the following list describes operation of the GP counter and the GP timer
in this mode.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

15–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 15-6: Capture Intervals

1. The CNT_TO signal generates a pulse every time a count event occurs. In addition, when the processor
reads the CNT_CNTR register, the CNT_TO signal presents a pulse which is extended (high) until the next
count event.

2. The GP timer updates its TIMER_TMRn_PER register with the period (measured from falling edge to
falling edge, because TIMER_TMRn_CFG.PULSEHI = 0) of the CNT_TO signal.

3. The TIMER_TMRn_WID register is updated with the pulse width (the portion where CNT_TO is low, again
because TIMER_TMRn_CFG.PULSEHI = 0).

4. Both registers are updated at every rising edge of the CNT_TO signal (because TIMER_TMRn_CFG.TMODE=
b#011).

Therefore, the TIMER_TMRn_PER register contains the period between the last two count events, and the
TIMER_TMRn_WID register contains the time since the last count event and the read of the CNT_CNTR
register, both measured in SCLK cycles.

Read the CNT_CNTR register to latch the two time measurements, providing a coherent triplet of informa-
tion to calculate speed and position.

GENERAL-PURPOSE COUNTER (CNT)
GP COUNTER PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–19

NOTE: Speed restrictions apply to the use of the CNT_TO signal. Therefore, programs must not operate at
very high count event rates. For instance, if CNT_CNTR is incremented/decremented every SCLK
cycle (timed direction mode), the CNT_TO signal will not be valid.

Capturing Time Interval Between Successive Counter Events

When the required timing information is the interval between successive count events, the associated
timer should be programmed in a width capture mode with TIMER_TMRn_CFG bit settings of TIMER_TMRn_
CFG.PULSEHI = 1, TIMER_TMRn_CFG.TMODE = b#1010 and TIMER_TMRn_CFG.TINSEL = 1. Typically, this
information is sufficient if the speed of GP counter events does not to reach very low values.

The following figure shows the operation of the GP counter and the GP timer in this mode.

Figure 15-7: Period Register Timing

The CNT_TO signal generates a pulse every time a count event occurs. The GP timer updates its TIMER_
TMRn_PER register with the period (measured from rising edge to rising edge) of the CNT_TO signal. The
TIMER_TMRn_PER register is updated at every rising edge of the CNT_TO signal and contains the number of
SCLK cycles that have elapsed since the previous rising edge.

Incidentally, the TIMER_TMRn_WID register is also updated at the same time, but is generally of no interest
in this mode of operation. If no reads of the CNT_CNTR register occur between counter events, the TIMER_
TMRn_WID register only contains the width of the CNT_TO pulse. If a read of CNT_CNTR has occurred between
events, the TIMER_TMRn_WID register contains the time between the read of CNT_CNTR and the next event.

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

15–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

This mode can also be used with TIMER_TMRn_CFG.PULSEHI = 0. In this case, the period of CNT_TO is
measured between falling edges. It results in the same values as in the previous case, only the latching
occurs one SCLK cycle later.

ADSP-CM40x CNT Register Descriptions

CNT (CNT) contains the following registers.

Configuration Register

The CNT_CFG register configures counter modes, configures input pins, and enable the CNT.

Table 15-7: ADSP-CM40x CNT Register List

Name Description

CNT_CFG Configuration Register

CNT_IMSK Interrupt Mask Register

CNT_STAT Status Register

CNT_CMD Command Register

CNT_DEBNCE Debounce Register

CNT_CNTR Counter Register

CNT_MAX Maximum Count Register

CNT_MIN Minimum Count Register

CNT_MDIV M Value for Divider

CNT_NDIV N Value for Divider

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–21

Figure 15-8: CNT_CFG Register Diagram

Table 15-8: CNT_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

INPDIS CUD and CDG Pin Input Disable.
The CNT_CFG.INPDIS disables or enables the CNT_UD input pin and the CNT_
DG pin.

0 Enable

1 Pin Input Disable

13:12
(R/W)

BNDMODE Boundary Register Mode.
The CNT_CFG.BNDMODE selects the mode for the CNT_MIN and CNT_MAX
boundary registers.

0 BND_COMP
Boundary compare mode

1 BIN_ENC
Binary encoder mode

2 BND_CAPT
Boundary capture mode

3 BND_AEXT
Boundary auto-extend mode

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

15–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

11
(R/W)

ZMZC CZM Zeroes Counter Enable.
The CNT_CFG.ZMZC enables or disables level sensitive - Active CNT_ZM pin
operation to zero the CNT_CNTR.

0 Disable

1 Enable

10:8
(R/W)

CNTMODE Counter Operating Mode.
The CNT_CFG.CNTMODE selects the operating mode for the CNT_UD input pin and
the CNT_DG pin.

0 QUAD_ENC
Quadrature encoder mode

1 BIN_ENC
Binary encoder mode

2 UD_CNT
Rotary counter mode

4 DIR_CNT
Direction counter mode

5 DIR_TMR
Direction timer mode

7
(R/W)

DIVMODE Divider mode.

0 Weighted Average Division

1 Non Weighted Division

6
(R/W)

CZMINV CZM Pin Polarity Invert.
The CNT_CFG.CZMINV selects the polarity for the CNT_ZM pin. This polarity must
be configured before the counter is enabled. It must not change on-the-fly while the
counter is enabled.

0 Active High, Rising Edge

1 Active Low, Falling Edge

5
(R/W)

CUDINV CUD Pin Polarity Invert.
The CNT_CFG.CUDINV selects the polarity for the CNT_UD pin. This polarity must
be configured before the counter is enabled. It must not change on-the-fly while the
counter is enabled.

0 Active High, Rising Edge

1 Active Low, Falling Edge

4
(R/W)

CDGINV CDG Pin Polarity Invert.
The CNT_CFG.CDGINV selects the polarity for the CNT_DG pin. This polarity must
be configured before the counter is enabled. It must not change on-the-fly while the
counter is enabled.

0 Active High, Rising Edge

1 Active Low, Falling Edge

Table 15-8: CNT_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–23

Interrupt Mask Register

The CNT_IMSK register supports enabling (unmasking) interrupt request generation from each of the CNT
events.

All bits in CNT_IMSK either disable/mask an interrupt (if bit cleared) or enable/unmask an interrupt (if bit
set).

3
(R/W)

DIVNTV Non-debounced Inputs to Divider Enable.
The CNT_CFG.DIVNTV bit enables non-debounced inputs to the divider.

0 Disable

1 Enable

2
(R/W)

DIVEN Divider Enable.
The CNT_CFG.DIVEN bit enables the divider.

0 Disable

1 Enable

1
(R/W)

DEBEN Debounce Enable.
The CNT_CFG.DEBEN enables or disables CNT input debounce filtering operation
selected with the CNT_DEBNCE register.

0 Disable

1 Enable

0
(R/W)

EN Counter Enable.
The CNT_CFG.EN enables or disables CNT operation.

0 Counter Disable

1 Counter Enable

Table 15-8: CNT_CFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

15–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 15-9: CNT_IMSK Register Diagram

Table 15-9: CNT_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

14
(R/W)

DCHNG Direction Change Interrupt Enable.
The CNT_IMSK.DCHNG bit enables (unmasks) the direction change interrupt.

0 Mask Interrupt

1 Unmask Interrupt

13
(R/W)

DERR Direction Error Interrupt Enable.

0 Mask Interrupt

1 Unmask Interrupt

12
(R/W)

MERR M Value Programming Error Interrupt Enable.
The CNT_IMSK.MERR bit enables (unmasks) the M value programming error
interrupt.

0 Mask Interrupt

1 Unmask Interrupt

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–25

11
(R/W)

STP Stop Detect Interrupt Enable.
The CNT_IMSK.STP bit enables (unmasks) the stop detect interrupt.

0 Mask Interrupt

1 Unmask Interrupt

10
(R/W)

CZMZ Counter Zeroed by Zero Marker Interrupt Enable.
The CNT_IMSK.CZMZ bit enables (unmasks) the counter zeroed by zero marker
interrupt.

0 Mask Interrupt

1 Unmask Interrupt

9
(R/W)

CZME Zero Marker Error Interrupt Enable.
The CNT_IMSK.CZME bit enables (unmasks) the zero marker error interrupt.

0 Mask Interrupt

1 Unmask Interrupt

8
(R/W)

CZM CZM Pin/Pushbutton Interrupt Enable.
The CNT_IMSK.CZM bit enables (unmasks) the CZM pin/pushbutton interrupt.

0 Mask Interrupt

1 Unmask Interrupt

7
(R/W)

CZERO CNT_CNTR Counts To Zero Interrupt Enable.
The CNT_IMSK.CZERO bit enables (unmasks) the counts to zero interrupt.

0 Mask Interrupt

1 Unmask Interrupt

6
(R/W)

COV15 Bit 15 Overflow Interrupt Enable.
The CNT_IMSK.COV15 bit enables (unmasks) the bit 15 overflow interrupt.

0 Mask Interrupt

1 Unmask Interrupt

5
(R/W)

COV31 Bit 31 Overflow Interrupt Enable.
The CNT_IMSK.COV31 bit enables (unmasks) the bit 31 overflow interrupt.

0 Mask Interrupt

1 Unmask Interrupt

4
(R/W)

MAXC Max Count Interrupt Enable.
The CNT_IMSK.MAXC bit enables (unmasks) the max count interrupt.

0 Mask Interrupt

1 Unmask Interrupt

3
(R/W)

MINC Min Count Interrupt Enable.
The CNT_IMSK.MINC bit enables (unmasks) the min count interrupt.

0 Mask Interrupt

1 Unmask Interrupt

Table 15-9: CNT_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

15–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Status Register

The CNT_STAT register provides status information for each of the CNT events as configured in the CNT_
IMSK register. When a CNT event is detected, the corresponding bit in this register is set. It remains set
until either software writes a 1 to the bit (write-1-to-clear) or the CNT is disabled.

All bits in CNT_STAT indicate either no interrupt pending (if bit cleared) or an interrupt pending (if bit set).

2
(R/W)

DC Downcount Interrupt Enable.
The CNT_IMSK.DC bit enables (unmasks) the down count interrupt.

0 Mask Interrupt

1 Unmask Interrupt

1
(R/W)

UC Upcount Interrupt Enable.
The CNT_IMSK.UC bit enables (unmasks) the up count interrupt.

0 Mask Interrupt

1 Unmask Interrupt

0
(R/W)

IC Illegal Gray/Binary Code Interrupt Enable.
The CNT_IMSK.IC bit enables (unmasks) the illegal Gray/Binary Code interrupt
and should only be used in these modes.

0 Mask Interrupt

1 Unmask Interrupt

Table 15-9: CNT_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–27

Figure 15-10: CNT_STAT Register Diagram

Table 15-10: CNT_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

14
(R/W1C)

DCHNG Direction Change Interrupt Enable.
The CNT_STAT.DCHNG bit is set if the direction change is valid. Direction change
status and interrupt are generated only if QEP dividers are enabled.

13
(R/W1C)

DERR Direction Error Interrupt.

12
(R/W1C)

MERR M Value Programming Error Interrupt.
The CNT_STAT.MERR bit indicates a M value programming error. This interrupt is
generated when a M value greater than SYSCLK frequency/QIN frequency is
programmed.

11
(R/W1C)

STP Stop Detect Interrupt.
The CNT_STAT.STP bit indicates a stop detect error. This interrupt is generated if
the QEP pulse is wider than 2 × X × N/M. The internal counter overflow also causes
STOP condition and it occurs if pulse was larger than 4,026,531,840 (0xF000_0000) ×
M) system clock cycles.

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

15–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

10
(R/W1C)

CZMZ Counter Zeroed By Zero Marker Interrupt.
The CNT_STAT.CZMZ bit indicates a Zero Marker error. If the CNT_CFG.ZMZC
bit =1, this interrupt is generated when the CZMII latch reports a significant edge on
the CZM input. Once cleared by software the CNT_STAT.CZM bit is not set again
when the CZM input remains active without pulsing.

9
(R/W1C)

CZME Zero Marker Error Interrupt.
The CNT_STAT.CZME bit behaves similarly to the CNT_STAT.CZM bit, with the
exception that CNT_STAT.CZME is not set on the CZM edge when the lower four
bits of the CNT_CNTR are not zero. In many applications this indicates an error
condition, as the zero marker might be out of sync with the counter.

8
(R/W1C)

CZM CZM Pin/Pushbutton Interrupt.
The CNT_STAT.CZM bit indicates a CZM pin/pushbutton error. This interrupt is
generated when a significant edge is seen on the CZM pin, regardless what mode the
counter is operating in. This is often used to sense push buttons (especially with the
debouncing circuit enabled).

7
(R/W1C)

CZERO CNT_CNTR Counts To Zero Interrupt.
The CNT_STAT.CZERO bit indicates a counts to zero error. This error is generated
when the CNT_CNTR register has incremented or decremented toward 0x0000.0000.
The latch is not set when software writes to the CNT_CNTR register directly or when
the counter is zeroed by writes to the CNT_CMD register.

6
(R/W1C)

COV15 Bit 15 Overflow Interrupt.
The CNT_STAT.COV15 bit indicates a bit 15 overflow error. This error is generated
when the 16-bit 2s-complement CNT_CNTR register has incremented from 0xxxxx.
7FFF to 0xxxxx.8000 or decremented from 0xxxxx.8000 to 0xxxxx.7FFF.

5
(R/W1C)

COV31 Bit 31 Overflow Interrupt.
The CNT_STAT.COV31 bit indicates a bit 31 overflow error. This error is generated
when the 32-bit 2s-complement CNT_CNTR register has incremented from 0x7FFF.
FFFF to 0x8000.0000 or decremented from 0x8000.0000 to 0x7FFF.FFFF.

4
(R/W1C)

MAXC Max Count Interrupt.
The CNT_STAT.MAXC bit indicates a max count error. This interrupt is used in
boundary compare (BND_COMP) mode. If after incrementing the CNT_CNTR
register equals CNT_MAX, the CNT_STAT.MAXC bit is set.

3
(R/W1C)

MINC Min Count Interrupt.
The CNT_STAT.MINC bit indicates a min count error. This interrupt is used in
boundary compare (BND_COMP) mode. If after decrementing the CNT_CNTR
register equals CNT_MIN, the CNT_STAT.MINC bit is set.

2
(R/W1C)

DC Down Count Interrupt.
The CNT_STAT.DC bit indicates a down count error. This interrupt is generated
when the CNT_CNTR register decrements.

1
(R/W1C)

UC Up Count Interrupt.
The CNT_STAT.UC bit indicates an up count interrupt. This interrupt is generated
when the CNT_CNTR register increments.

Table 15-10: CNT_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–29

Command Register

The CNT_CMD register configures the CNT, enabling operations such as zeroing a counter register and
copying or swapping boundary registers. These actions are taken by setting the appropriate bit.

Read operations from this register do not return meaningful values, with the exception of the CNT_CMD.
W1ZMONCE bit, where a set bit indicates that the bit has been set by software before, but a zero marker event
has not yet been detected on the CNT_ZM pin yet. For more information, see the CNT functional descrip-
tion.

The CNT_CNTR, CNT_MIN, and CNT_MAX registers can be initialized to zero by setting the CNT_CMD.
W1LCNTZERO, CNT_CMD.W1LMINZERO, and CNT_CMD.W1LMAXZERO bits. In addition to clearing registers,
CNT_CMD permits modifying the CNT_MIN and CNT_MAX boundary registers in a number of ways. The
current counter value in CNT_CNTR can be captured and loaded into either of the two boundary registers
to create new boundary limits. This operation is performed by setting the CNT_CMD.W1LMAXCNT and CNT_
CMD.W1LMINCNT bits. Alternatively, the counter can be loaded from CNT_MAX or CNT_MIN using the CNT_
CMD.W1LCNTMAX and CNT_CMD.W1LCNTMIN bits. It is also possible to transfer the current CNT_MAX value
into CNT_MIN (or vice versa) through the CNT_CMD.W1LMINMAX and CNT_CMD.W1LMAXMIN bits.

Another counter operation is the ability to only have the zero marker clear the CNT_CNTR register once. For
more information, see the CNT functional description.

It is possible for multiple actions to be performed simultaneously by setting multiple bits in the CNT_CMD
register, but there are restrictions. The bits associated with each command have been grouped together
such that all bits that involve a write to the CNT_CNTR, CNT_MAX, or CNT_MIN are located within bits 4-bit
groups of the CNT_CMD register.

Note that a maximum of three commands can be issued at any one time, excluding the CNT_CMD.W1ZMONCE
command. Also note that CNT_CMD.W1LCNTMIN, CNT_CMD.W1LCNTMAX, and CNT_CMD.W1LCNTZERO bits
have to be used exclusively. Never set more than one of them at the same time.

0
(R/W1C)

IC Illegal Gray/Binary Code Interrupt.
The CNT_STAT.IC bit indicates a illegal Gray/Binary Code interrupt and should
only be used in these modes. In normal operation those codes can increment or
decrement the CNT_CNTR register by one at a time. If the sensed inputs instruct the
counter to increment or decrement by two, the CNT_STAT.IC bit is set. Hardware
sets the CNT_STAT.IC bit in QUAD_ENC and BIN_ENC encoder modes only.

Table 15-10: CNT_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

15–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 15-11: CNT_CMD Register Diagram

Table 15-11: CNT_CMD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12
(R/W1A)

W1ZMONCE Write 1 Zero Marker Clear Once Enable.
The CNT_CMD.W1ZMONCE enables a single zero marker clear of CNT_CNTR.
Reading a 1 in this bit indicates that the bit has been set by software before, but no
zero marker event has been detected on the CNT_ZM pin yet.

10
(R0/W1A)

W1LMAXMIN Write 1 MAX Copy from MIN.
The CNT_CMD.W1LMAXMIN bit transfers the current CNT_MIN register value into
CNT_MAX register.

9
(R0/W1A)

W1LMAXCNT Write 1 MAX Capture from CNTR.
The CNT_CMD.W1LMAXCNT bit loads the current value in the CNT_CNTR register
into the CNT_MAX register to create a new boundary limit.

8
(R0/W1A)

W1LMAXZERO Write 1 MAX to Zero.
Writing a 1 to the CNT_CMD.W1LMAXZERO bit clears the CNT_MAX register.

7
(R0/W1A)

W1LMINMAX Write 1 MIN Copy from MAX.
The CNT_CMD.W1LMINMAX bit transfers the current CNT_MAX register value into
CNT_MIN register.

5
(R0/W1A)

W1LMINCNT Write 1 MIN Capture from CNTR.
The CNT_CMD.W1LMINCNT bit loads the current value in the CNT_CNTR register
into the CNT_MIN register to create a new boundary limit.

4
(R0/W1A)

W1LMINZERO Write 1 MIN to Zero.
Writing a 1 to the CNT_CMD.W1LMINZERO bit clears the CNT_MIN register.

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–31

Debounce Register

The CNT_DEBNCE register selects the noise filtering characteristic of the three input pins according to the
formula:

tfilter = 128 x (2DPRESCALE/SCLK)

Figure 15-12: CNT_DEBNCE Register Diagram

3
(R0/W1A)

W1LCNTMAX Write 1 CNTR Load from MAX.
The CNT_CMD.W1LCNTMAX bit loads the current value in the CNT_MAX register
into the CNT_CNTR register to create a new boundary limit.

2
(R0/W1A)

W1LCNTMIN Write 1 CNTR Load from MIN.
The CNT_CMD.W1LCNTMIN bit loads the current value in the CNT_MIN register
into the CNT_CNTR register to create a new boundary limit.

0
(R0/W1A)

W1LCNTZERO Write 1 CNTR to Zero.
Writing a 1 to the CNT_CMD.W1LCNTZERO bit clears the CNT_CNTR register.

Table 15-11: CNT_CMD Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

15–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Counter Register

The CNT_CNTR register holds the 32-bit, twos-complement count value. It can be read and written at any
time. Hardware ensures that reads and write are atomic, by providing respective shadow registers. This
register can be accessed with either 32-bit or 16-bit operations. This allows use of the CNTas a 16-bit
counter if sufficient for the application.

Table 15-12: CNT_DEBNCE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4:0
(R/W)

DPRESCALE Debounce Prescale.
The CNT_DEBNCE.DPRESCALE selects the desired number of input filtering cycles
(and resulting input debounce time) in multiples of SCLK.

0 1x cycles = 128 SCLK cycles

1 2x cycles

2 4x cycles

3 8x cycles

4 16x cycles

5 32x cycles

6 64x cycles

7 128x cycles

8 256x cycles

9 512x cycles

10 1024x cycles

11 2048x cycles

12 4096x cycles

13 8192x cycles

14 16384x cycles

15 32768x cycles

16 65536x cycles

17 131072x cycles

18 Reserved from this value
10010 - 11111: Reserved

31 Reserved till this value

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–33

Figure 15-13: CNT_CNTR Register Diagram

Maximum Count Register

The CNT_MAX register holds the 32-bit, twos-complement, higher boundary value. It can be read and
written at any time. Hardware ensures that reads and write are atomic, by providing respective shadow
registers. This register can be accessed with either 32-bit or 16-bit operations. This allows for using the
CNT as a 16-bit counter if sufficient for the application.

Figure 15-14: CNT_MAX Register Diagram

Table 15-13: CNT_CNTR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE CNTR Value.

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

15–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Minimum Count Register

The CNT_MIN register holds the 32-bit, twos-complement, lower boundary value. It can be read and written
at any time. Hardware ensures that reads and write are atomic, by providing respective shadow registers.
This register can be accessed with either 32-bit or 16-bit operations. This allows for using the CNT as a 16-
bit counter if sufficient for the application.

Figure 15-15: CNT_MIN Register Diagram

M Value for Divider

The CNT_MDIV register determines the M value for the M/N division of the QEP inputs that are provided
on the CNT_UD/CNT_DG pins.

Table 15-14: CNT_MAX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE MAX Value.

Table 15-15: CNT_MIN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE MIN Value.

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 15–35

Figure 15-16: CNT_MDIV Register Diagram

N Value for Divider

The CNT_NDIV register determines the N value for the M/N division of the QEP inputs that are provided
on the CNT_UD/CNT_DG pins.

Figure 15-17: CNT_NDIV Register Diagram

Table 15-16: CNT_MDIV Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MDIV M Value for Divider.
The CNT_MDIV.MDIV bit field determines the M value for the M/N division of the
QEP inputs that are provided on the CNT_UD/CNT_DG pins.

Table 15-17: CNT_NDIV Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

NDIV N Value for Divider.
The CNT_NDIV.NDIV bit field determines the N value for the M/N division of the
QEP inputs that are provided on the CNT_UD/CNT_DG pins.

GENERAL-PURPOSE COUNTER (CNT)
ADSP-CM40X CNT REGISTER DESCRIPTIONS

15–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–1

16 Pulse-Width Modulator (PWM)

The Pulse Width Modulator (PWM) module is a flexible and programmable waveform generator. With
minimal CPU intervention the PWM peripheral is capable of generating complex waveforms for motor
control, Pulse Coded Modulation (PCM), Digital to Analog Conversion (DAC), power switching and
power conversion. The PWM module has 4 PWM pairs capable of 3-phase PWM generation for source
inverters for AC induction and DC brushless motors.

PWM Features

The two 3-phase PWM generation units each feature:

• 16-bit center-based PWM generation unit

• Programmable PWM pulse width

• Single/double update modes

• Programmable dead time and switching frequency

• Twos-complement implementation which permits smooth transition to full ON and full OFF states

• Dedicated asynchronous PWM shutdown signal

Functional Description

The following sections provide details on the PWM's functionality.

• Architectural Concepts

• Timer Units

• Channel Timing Control Unit

• Output Disable and Cross-Over Functions

• Sync Operation

ADSP-CM40x PWM Register List

The pulse-width modulator (PWM) includes multiple timers (providing period flexibility) and channels
(provide mode, interrupt, and pulse shape flexibility), permitting a wide variety of PWM output options

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

for motor control and other applications. A set of registers govern PWM operations. For more information
on PWM functionality, see the PWM register descriptions.

Table 16-1: ADSP-CM40x PWM Register List

Name Description

PWM_CTL Control Register

PWM_CHANCFG Channel Config Register

PWM_TRIPCFG Trip Config Register

PWM_STAT Status Register

PWM_IMSK Interrupt Mask Register

PWM_ILAT Interrupt Latch Register

PWM_CHOPCFG Chop Configuration Register

PWM_DT Dead Time Register

PWM_SYNC_WID Sync Pulse Width Register

PWM_TM0 Timer 0 Period Register

PWM_TM1 Timer 1 Period Register

PWM_TM2 Timer 2 Period Register

PWM_TM3 Timer 3 Period Register

PWM_TM4 Timer 4 Period Register

PWM_DLYA Channel A Delay Register

PWM_DLYB Channel B Delay Register

PWM_DLYC Channel C Delay Register

PWM_DLYD Channel D Delay Register

PWM_ACTL Channel A Control Register

PWM_AH0 Channel A-High Duty-0 Register

PWM_AH1 Channel A-High Duty-1 Register

PWM_AH0_HP Channel A-High Heightened-Precision Duty-0 Register

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–3

PWM_AH1_HP Channel A-High Heightened-Precision Duty-1 Register

PWM_AL0 Channel A-Low Duty-0 Register

PWM_AL1 Channel A-Low Duty-1 Register

PWM_AL0_HP Channel A-Low Heightened-Precision Duty-0 Register

PWM_AL1_HP Channel A-Low Heightened-Precision Duty-1 Register

PWM_BCTL Channel B Control Register

PWM_BH0 Channel B-High Duty-0 Register

PWM_BH1 Channel B-High Duty-1 Register

PWM_BH0_HP Channel B-High Heightened-Precision Duty-0 Register

PWM_BH1_HP Channel B-High Heightened-Precision Duty-1 Register

PWM_BL0 Channel B-Low Duty-0 Register

PWM_BL1 Channel B-Low Duty-1 Register

PWM_BL0_HP Channel B-Low Heightened-Precision Duty-0 Register

PWM_BL1_HP Channel B-Low Heightened-Precision Duty-1 Register

PWM_CCTL Channel C Control Register

PWM_CH0 Channel C-High Pulse Duty Register 0

PWM_CH1 Channel C-High Pulse Duty Register 1

PWM_CH0_HP Channel C-High Pulse Heightened-Precision Duty Register 0

PWM_CH1_HP Channel C-High Pulse Heightened-Precision Duty Register 1

PWM_CL0 Channel C-Low Pulse Duty Register 0

PWM_CL1 Channel C-Low Duty-1 Register

PWM_CL0_HP Channel C-Low Pulse Duty Register 1

PWM_CL1_HP Channel C-Low Heightened-Precision Duty-1 Register

PWM_DCTL Channel D Control Register

Table 16-1: ADSP-CM40x PWM Register List (Continued)

Name Description

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

PWM_DH0 Channel D-High Duty-0 Register

PWM_DH1 Channel D-High Pulse Duty Register 1

PWM_DH0_HP Channel D-High Pulse Heightened-Precision Duty Register 0

PWM_DH1_HP Channel D High Pulse Heightened-Precision Duty Register 1

PWM_DL0 Channel D-Low Pulse Duty Register 0

PWM_DL1 Channel D-Low Pulse Duty Register 1

PWM_DL0_HP Channel D-Low Heightened-Precision Duty-0 Register

PWM_DL1_HP Channel D-Low Heightened-Precision Duty-1 Register

PWM_AH_DUTY0 Channel A-High Full Duty0 Register

PWM_AH_DUTY1 Channel A-High Full Duty1 Register

PWM_AL_DUTY0 Channel A-Low Full Duty0 Register

PWM_AL_DUTY1 Channel A-Low Full Duty1 Register

PWM_BH_DUTY0 Channel B-High Full Duty0 Register

PWM_BH_DUTY1 Channel B-High Full Duty1 Register

PWM_BL_DUTY0 Channel B-Low Full Duty0 Register

PWM_BL_DUTY1 Channel B-Low Full Duty1 Register

PWM_CH_DUTY0 Channel C-High Full Duty0 Register

PWM_CH_DUTY1 Channel C-High Full Duty1 Register

PWM_CL_DUTY0 Channel C-Low Full Duty0 Register

PWM_CL_DUTY1 Channel C-Low Full Duty1 Register

PWM_DH_DUTY0 Channel D-High Full Duty0 Register

PWM_DH_DUTY1 Channel D-High Full Duty1 Register

PWM_DL_DUTY0 Channel D-Low Full Duty0 Register

PWM_DL_DUTY1 Channel D-Low Full Duty1 Register

Table 16-1: ADSP-CM40x PWM Register List (Continued)

Name Description

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–5

ADSP-CM40x PWM Interrupt List

ADSP-CM40x PWM Trigger List

Table 16-2: ADSP-CM40x PWM Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

12 PWM0_TRIP PWM0 Trip Occurred LEVEL

13 PWM1_TRIP PWM1 Trip Occurred LEVEL

14 PWM2_TRIP PWM2 Trip Occurred LEVEL

15 PWM0_SYNC PWM0 PWMTMR Group Interrupt LEVEL

16 PWM1_SYNC PWM1 PWMTMR Group Interrupt LEVEL

17 PWM2_SYNC PWM2 PWMTMR Group Interrupt LEVEL

Table 16-3: ADSP-CM40x PWM Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

19 PWM0_SYNC PWM0 PWMTMR Group Trigger LEVEL

20 PWM1_SYNC PWM1 PWMTMR Group Trigger LEVEL

21 PWM2_SYNC PWM2 PWMTMR Group Trigger LEVEL

Table 16-4: ADSP-CM40x PWM Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

48 PWM0_TRIP_TRIG0 PWM0 Trip Trigger Slave 0

49 PWM0_TRIP_TRIG1 PWM0 Trip Trigger Slave 1

50 PWM0_TRIP_TRIG2 PWM0 Trip Trigger Slave 2

51 PWM1_TRIP_TRIG0 PWM1 Trip Trigger Slave 0

52 PWM1_TRIP_TRIG1 PWM1 Trip Trigger Slave 1

53 PWM1_TRIP_TRIG2 PWM1 Trip Trigger Slave 2

54 PWM2_TRIP_TRIG0 PWM2 Trip Trigger Slave 0

55 PWM2_TRIP_TRIG1 PWM2 Trip Trigger Slave 1

56 PWM2_TRIP_TRIG2 PWM2 Trip Trigger Slave 2

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Architectural Concepts

The PWM Controller is driven by a clock, whose period is tSCLK. The PWM generator produces four pairs
(four high-side and four low-side) of PWM signals on the eight PWM output pins. Each high and low pair
constitutes a channel. For example PWM_AL/PWM_AH make up channel A, and PWM_BLPWM_BH make up
channel B and so on. Each pair of channel outputs can be produced with reference to either a main timer
or to an independent timer. These timers operate on a switching frequency determined by the PWM_TM0
registers. There are 2 duty registers for every PWM output, which enable generation of symmetrical or
asymmetrical waveforms that produce lower harmonic distortion in three-phase PWM inverters, with
minimal CPU intervention.

Block Diagram

The following figure shows a block diagram that represents the main functional blocks of the PWM
controller.

Figure 16-1: PWM Block Diagram

The primary blocks are described below.

• Each pair of PWM signals is referenced either to the main timer or to the independent timer.

• PWMTMR0 is the main timer and can trigger the delayed start of the other timers.

• Timing Control Units, one for each channel, which together form the core of the PWM, generate the
required complex waveforms on the high side and low side outputs for the respective channel.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–7

• Dead Time insertion is done after the ideal PWM output pair is generated.

• The Gate Drive Unit generates the high-frequency chopping signal and subsequently mixes it with the
requisite PWM output signals.

• The PWM Shutdown and Interrupt Controller manages the various PWM shutdown modes for the
timing unit and generates the requisite interrupt signals.

• The PWM Sync Pulse Control Unit generates the internal PWM_SYNC pulse and also controls
whether the external PWM_SYNC input pulse is used.

Timer Units

Five timers make up the time base for the PWM module. The main timer, PWMTMR0 operates at a
switching frequency determined by the period register PWM_TM0. The four remaining timers (PWMTMR1
through PWMTMR4) can operate at independent switching frequencies determined by their respective
registers.

These four timers can be programmed to work at a multiple of the main timer’s frequency by program-
ming respective PWM_TMx appropriately. In this case, the PWM_DLYA registers can be used to provide for
lead-lag phase control of a given timer with respect to the main timer PWMTMR0.

NOTE: When delayed operation of a timer is enabled, its register value must either be equal to the PWM_
TM0 register value or PWM_TM0 must be an integer multiple of each timer's register to ensure correct
function. Non-integer multiples are not allowed.

PWM Timer Period (PWM_TM) Registers

The 16-bit read/write PWM period registers (PWM_TM0 through PWM_TM4) control the PWM switching
frequency. Because the fundamental timing unit of the PWM controller is t SCLK, the fundamental time
increment (t SCLK) is 10 ns for a 100 MHz system clock (SCLK) frequency, f SCLK. The value written to a
timer's register is effectively the number of t SCLK clock increments in one half of a PWM period. The
required timer register value as a function of the desired PWM switching frequency (f PWM) is given by the
equation:

PWM_TM = fSCLK/2 × fPWM

Therefore, the PWM switching period (Ts) can be written as:

Ts = 2 × PWM_TM × tSCLK

For example, for an fSCLK of 100 MHz and a desired PWM switching frequency (fPWM) of 10 kHz (Ts =
100 ms), the correct value to load into the timer register is:

PWM_TM = 100 × 10 6 ÷ 2 × 10 × 10 3 = 5000

The largest value that can be written to the 16-bit timer register is 0xFFFF = 65,535, which, for an f SCLK of
100 MHz, corresponds to a minimum PWM switching frequency of:

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

fPWM(min) = 100 × 10 6 ÷ 2 x 65535 = 762 Hz

NOTE: Timer register values of 0 and 1 are not defined and should not be used when the PWM outputs or
PWM is enabled.

Timer Unit Operation

The PWM timers are up-down counters, and they operates on the peripheral clock with a period of tCK.
The period of the PWM timer is divided into two halves. In the first half, the timer roughly counts down
from PWM_TMx/2 to –PWM_TMx/2. During this half, the PWM_STAT.TMR0PHASE bit is held at 0 In the
second half of the period, the timer roughly counts up from –PWM_TMx/2 to PWM_TMx/2. The PWM_
STAT.TMR0PHASE bit indicates a 1 during this half.

The actual partition of the periods varies slightly between odd and even values of the half-period, PWM_TMx.

When the timer register value is odd, for example 11, then that timer loads +5 at the beginning of the
period, counts down from +5 to –5 in the first half, reloads –5 at the midpoint and counts up from –5 to
+5 in the second half. The reload values at the period and mid-period boundaries are the same as the
previous count. It counts 2 × 11 = 22 total counts in the entire period. This is shown in the figure below.
Note that both half-periods have a count of 11 each.

Figure 16-2: Operation of Timer for Odd Value of PWM_TM

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–9

When the timer register value is even, for example 12, then that timer loads +5 at the beginning of the
period, counts from +5 to –6 in the first half, reloads –5 at the midpoint and counts up from –5 to +6 in
the second half. The reload values at the period and mid-period boundaries are different from the previous
count. It counts 2 × 12 = 24 total counts in the entire period. This is shown in the figure below. Note that
both half-periods have a count of 12 each.

Figure 16-3: Operation of Timer for Even Value of PWM_TM

Note that in the operation discussed in this section, double buffering of all channel registers and the timer
registers take place at the period boundary of the respective timers.

Phase Offset Control

The PWM timers (PWMTMR1 through PWMTMR4) can operate with a programmable phase lag with
respect to the main timer, PWMTMR0. Using the channel delay counter registers (PWM_DLYA through
PWM_DLYD) in conjunction with the PWMTMR0 and setting the PWM_CTL.DLYAEN bit implements this
feature for a given channel.

If phase lag is used for channel A (and channel A is using PWMTMR1 for generating a duty cycle), when
PWMTMR0 reaches its period boundary, it triggers the PWM_DLYA register which counts out the number
SCLK cycles that are equal to the value programmed in the PWM_DLYA register. At the end of this count, the

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

PWM_DLYA register sends out a trigger to PWMTMR1 so that it receives a synchronization pulse in every
period of PWMTMR0 at a point delayed from its period boundary by the value in the PWM_DLYA register.
For more information on how channels can reference different timers for their outputs, see Channel
Timing Control Unit.

NOTE: The following conditions must be satisfied when this feature is used on PWMTMRy for channel Y
with respect to PWMTMRx.

• The PWM_DLYA register must be programmed to a value less than 2 × TMy.

• PWM_TM0 = N × PWM_TMy where N is an integer.

The function of PWMTMRy (PWMTMR1 in the example above) differs in cases where PWM_TM0 = PWM_
TM1 (Case 1) to cases where PWM_TM0 = N × PWM_TM1 (Case 2). Both cases are examined below.

Case 1: PWM_TM0 = PWM_TMy

When PWM_TM0 = PWM_TMy, PWMTMRy restarts its period when the synchronization pulse from the
channel delay register (PWM_DLYx) is received. If the trigger from the PWM_DLYx register is late, PWMTMRy
holds its count until the trigger comes. If the trigger is a bit early, PWMTMRy reloads without regard to
whether it has completed its current period. As a result, PWMTMRy is re-synced with PWMTMR0 with
a phase lag that is programmed in the PWM_DLYA register in every one of its periods.

Note that in this case the expiration of the PWM_DLYx register is the period boundary of PWMTMRy.
Therefore, this is the point of update of all the double buffered registers related to the given channel (except
the delay registers which are double buffered at the period boundary of PWMTMR0).

 The Phase offset control using DELAY figure shows an example where:

• PWM_TM0, PWM_TM1 and PWM_TM2 are programmed with the same value.

• PWM_DLYA and PWM_DLYB are programmed values DELAY1 and DELAY2 respectively, such that
DELAY2 > DELAY1.

• Channel A's outputs are referenced to PWMTMR1 and channel B's outputs are referenced to
PWMTMR2.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–11

Figure 16-4: Phase Offset Control Using DELAY

The delay registers are double buffered and the new value of DELAY is reloaded at the period boundary of
PWMTMR0. The two options described below exist if the new value is different from the older one. The
behavior of PWMTMRy in both these cases is discussed, and is shown in the Impact of New DELAY
Value on Timer Count for Equal Timer Periods figure. It is assumed that channel B references its outputs
to PWMTMR0 and channel A references its outputs to PWMTMR1.

1. The new delay value is higher than the previous value. Here the corresponding PWMTMRy is allowed
more than one period's time between consecutive triggers from the channel delay (PWM_DLYx) register.
In this case, after reaching its period boundary, PWMTMRy holds its count at the period boundary and
waits for the trigger from the PWM_DLYx register. This is shown in Case 1 in the Impact of New DELAY
Value on Timer Count for Equal Timer Periods figure.

2. The next delay value programmed is smaller than the previous value. Here, the corresponding
PWMTMRy is allowed only less than one period’s time between consecutive triggers from the PWM_
DLYx register. Though the trigger comes earlier in this case, before PWMTMRy has counted out one
full period, it reloads and starts its period again. This is shown in Case 2 in the Impact of New DELAY
Value on Timer Count for Equal Timer Periods figure.

Therefore, PWMTMR1 waits and obeys a synchronization pulse from the PWM_DLYA register in every one
of its periods.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-5: Impact of New DELAY Value on Timer Count for Equal Timer Periods

Case 2: PWM_TM0 = N x PWM_TMy

In this case, within a single period of PWMTMR0 a program can fit multiple periods (N) of PWMTMRy.
Additionally, the channel delay register (PWM_DLYx) is triggered only once every N periods of PWMTMRy.

The operation is as follows: Every Nth period of PWMTMRy, PWMTMRy expects a synchronization pulse
from the PWM_DLYx register. When this register counts out that period and the trigger hasn't yet arrived,
PWMTMRy waits at the end of the period for the trigger, and starts counting down once the trigger arrives.
If the trigger comes earlier than that, PWMTMRy restarts immediately without waiting to complete the
period count.

In the intervening periods, PWMTMRy operates independently. As the period ends, PWMTMRy is
reloaded and starts the next period without intervention from the PWM_DLYx register.

The Impact of DELAY Value Change for the Multiple Timer Periods shows an example with N = 2. Note
that PWMTMRy syncs up with PWMTMR0 every 2nd period, and is free running across every odd period
boundary.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–13

Figure 16-6: Impact of DELAY Value Change for Multiple Timer Periods

Channel Timing Control Unit

The channel timing control unit is the core of the PWM. There are four separate channels, each channel
controlling a pair of output signals – the high side output and the low side output.

Channel Control

The PWM_CHANCFG register controls the static configuration of all the channels and is initialized once before
the beginning of a PWM operation.

NOTE: The PWM_CHANCFG register is not double buffered and the contents of it must not be changed once
the PWM is enabled.

Each channel works with a reference timer base. The time base can be either the main timer PWMTMR0
or the appropriate PWMTMRx and is configured with the PWM_CHANCFG.REFTMRA bit field as shown
below.

• Channel A can work with PWMTMR0 or PWMTMR1.

• Channel B can work with PWMTMR0 or PWMTMR2.

• Channel C can work with PWMTMR0 or PWMTMR3.

• Channel D can work with PWMTMR0 or PWMTMR4.

The double buffered channel control registers (PWM_ACTL through PWM_DCTL) contain bits that control the
dynamic pulse behavior of the channel outputs. These registers also have bits that enable and disable and
pulse positioning of the outputs (explained in the following section).

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Pulse Positioning and Duty Cycle Registers

The PWM_ACTL.PULSEMODEHI and PWM_ACTL.PULSEMODELO bit fields define the region within the timer
period where the output pulses should be positioned. When the PWM_CHANCFG.MODELSC bit is 0, the PWM_
ACTL.PULSEMODEHI field specifies the pulse positioning for both the high-side and low-side outputs of the
channel. When the bit is 1, PWM_ACTL.PULSEMODELO defines the pulse positioning for the low side channel
output, while PWM_ACTL.PULSEMODEHI defines the pulse positioning for the high side channel output.

Two duty-cycle registers are provided for each channel output: PWM_AH0 and PWM_AH1 for the high side
output, and PWM_AL0 and PWM_AL1 for the low side output. These registers determine the width of the
output pulses. When the PWM_CHANCFG.MODELSC bit is 0, the high side duty-cycle registers are also used for
the low side output pulse width determination. The duty cycle range that can be programmed into these
registers is between –PWMTMx/2 and +PWMTMx/2 when dead-time is not considered.

When dead-time is considered, for pulse mode 00 and 01, the programmed duty cycle is modified in such
a way that the range is limited between the values [–PWMTMx/2 + PWM_DT] to [+PWMTMx/2 +
PWMDT] considering the high-side output. For PULSEMODEs 10 and 11, the high-side duty cycle regis-
ters are limited to between [PWM_TMx/2 + PWM_DT] and [–PWM_TMx/2 – PWM_DT].

Dead-time is explained in detail in Switching Dead Time (PWM_DT) Register.

NOTE: Values programmed into these registers that fall outside these limits result in over/under modula-
tion.

Duty Cycle and Pulse Positioning Control

The PWM_ACTL.PULSEMODEHI and PWM_ACTL.PULSEMODELO fields control how the duty cycle registers
modify the waveform of the high and low side outputs. (The PWM_ACTL.PULSEMODEHI and PWM_ACTL.
PULSEMODELO fields are referred to as pulse mode in the subsequent discussion.)

• Pulse mode = 00 – Produce a symmetrical pulse waveform around the center of the PWM period. In
this mode, only one of the duty cycle registers is used for an output. For example, for the AH output,
only the PWM_AH0 register is used. Note that in this mode, the values in the duty cycle registers are scaled
such that a value of 0 produces a 50% duty cycle.

• Pulse mode = 01 – Produce an asymmetrical pulse waveform around the center of the PWM period. In
this mode both duty cycle registers are used. For example for the PWM_AH output the PWM_AH0 and
PWM_AH1 registers are used. In this mode, if the PWM_AH1 register is programmed with the same value as
the PWM_AH0 register, the output is identical to that when pulse mode =00.

• Pulse mode = 10 or 11 – Produce pulse waveforms either on the first half or the second half of the PWM
period respectively; both PWM_AH0 and PWM_AH1 registers are used.

Pulse mode = 10. If the low side works from the low side duty-cycle registers, the condition PWM_AL0>
PWM_AL1 should be strictly adhered to.

In pulse mode = 11. If the low side works from the low side duty-cycle registers, the condition PWM_
AL0< PWM_AL1 should be strictly adhered to.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–15

The Pulse Positioning Modes figure shows the pulse positioning modes as described above for PWM_
AH. In the figure, DUTY0 is the value in the PWM_AL0 register and DUTY1, the value in the PWM_AH1
register. The step signal, count, indicates the output of the timer that channel A is working from. In the
example the signal is configured as active high and dead-time is zero.

Figure 16-7: Pulse Positioning Modes

Channel Low Side Output Dependent Operation Mode and Dead-Time

The low-side output waveform can be programmed to be dependent on the high side output waveform or
be totally independent. This is controlled using the PWM_CHANCFG.MODELSC bit.

For example, channel A produces the high side output PWM_AH and the low side output PWM_AL.
When the PWM_CHANCFG.MODELSC bit =0, the low-side output is also generated using the high-side duty-

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

cycle registers for pulse width, the PWM_ACTL.PULSEMODEHI bits for pulse positioning and the PWM_
CHANCFG.POLAH bit for polarity. If the PWM_DT register is 0, the low-side output is an inverted version of
the high-side output.

When the PWM_DT register is programmed with a non-zero value, both the high-side and low-side outputs
are scaled symmetrically about the points of transition in the zero dead-time case by the value
programmed in the PWM_DT register.

The high and low-side outputs for the case with zero and non-zero dead-time for PWM_ACTL.PULSEMODEHI
=00 and 01 are shown in the following figures. In the figures, DUTY0 is the value programmed into the
PWM_AH0 register and DUTY1 is the value programmed into the PWM_AH1 register. The PWM_CHANCFG.
POLAH bit =1, indicating that both signals are active high. The PWM_DT register holds the value DT.

Figure 16-8: Channel Outputs in Dependent Mode for Pulse Mode = 00

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–17

Figure 16-9: Channel Outputs in Dependent Mode for Pulse Mode = 01

The high and low-side outputs for the case with zero and non-zero dead-time for PWM_ACTL.PULSEMODEHI
=10 and 11 are shown in the following figures. In the figures, DUTY0 is the value programmed into PWM_
AH0 register and DUTY1 is the value programmed into the PWM_AH1 register. PWM_CHANCFG.POLAH is 1
indicating that both signals are active high. PWM_DT holds the value DT.

NOTE: Bringing dead-time into the picture, the guidelines for programming the duty-cycle registers in
pulse modes 10 and 11 given in Duty Cycle and Pulse Positioning Control are modified as follows:

Pulse mode 10: PWM_xH0 – DT > PWM_xH1 + DT

Pulse mode 11: PWM_xH0 + DT < PWM_xH1 – DT

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-10: Channel Outputs in Dependent Mode for Pulse Mode = 10

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–19

Figure 16-11: Channel Outputs in Dependent Mode for Pulse Mode = 11

Channel High Side and Low Side Outputs, Independent Operation Mode

Independent control of the PWM_AH0 and PWM_AL0 channel outputs is possible by setting the PWM_
CHANCFG.MODELSA bit to 1. In this case:

• PWM_AH is generated using the PWM_AH0 register.

• ThePWM_AH1 register is used to configure pulse width.

• The PWM_ACTL.PULSEMODEHI bit is used to configure pulse position.

• The PWM_CHANCFG.POLAH bit is used to configure polarity.

• PWM_AL is generated using PWM_AL0.

• The PWM_AL1 register is used to configure pulse width.

• The PWM_ACTL.PULSEMODELO bit is used to configure pulse position.

• The PWM_CHANCFG.POLAL bit is used to configure polarity.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NOTE: In independent mode, the dead-time insertion is not applicable and dead-time is forced to zero by
the hardware.

The following figure shows an example of the independent mode of operation where PWM_AH and
PWM_AL work from different register bits.

Figure 16-12: PWM_AH and PWM_AL in Independent Operation Mode

Note that PWM_AH and PWM_AL can be positioned in the timer period with a given phase difference
between them. This is achieved by programming the PWM_ACTL.PULSEMODEHI and PWM_ACTL.
PULSEMODELO bits to different values as shown in the following figure.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–21

Figure 16-13: Channel Outputs Controlled Independently

Switched Reluctance Motors Application

In the typical power converter configuration for switched or variable reluctance motors, motor winding is
connected between the two power switches of a given inverter leg. To allow for a complete circuit in the
motor winding, both switches must be turned on at the same time.

Switched reluctance motors are used in the following configurations: hard chop, alternate chop, soft
chop—bottom on, and soft chop—top on.

The following figure shows the four SR mode types as active high PWM output signals.

Hard chop mode contains independently programmed rising edges of a channel's high and low signals in
the same PWM half cycle and both contain independently programmed falling edges in the next PWM half
cycle. The PWM_CHANCFG.POLAH and PWM_CHANCFG.POLAL bits are programmed to same values.

Alternate chop mode is similar to normal PWM operation except that the PWM channel high and low
signal edges are always opposite and are independently programmed. The PWM_CHANCFG.POLAH and PWM_
CHANCFG.POLAL bits are programmed to opposite values. The low side invert is the only difference between
hard chop mode and alternate chop mode.

Soft chop—bottom on uses a 100% duty on the low side of the channel and soft chop—top on uses a 100%
duty on the high side of the channel. Similar to hard chop mode, the PWM_AH0 duty register is used for the
high channel and the PWM_AL0 duty register is used for the low channel.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-14: Four SR Mode Types, Active High PWM Output Signals

Switching Dead Time (PWM_DT) Register

The second important parameter that must be set up in the initial configuration of the PWM controller is
the switching dead time. Dead time is a short delay introduced between turning off one PWM signal (for
example, AH) and turning on the complementary signal (for example, AL). This short time delay permits
turning off power switch (AH in this case) to completely recover its blocking capability before the comple-
mentary switch is turned on. This time delay prevents a potentially destructive short-circuit condition
from developing across the dc link capacitor of a typical voltage source inverter.

The 10-bit, read/write PWM_DT register controls the dead time inserted into the three pairs of PWM output
signals. Dead time (Td) is related to the value in the PWM_DT register using the following equation.

Td = PWM_DT × 2 × tSCLK

Therefore, a PWM_DT value of 0x00A introduces a 200 ns delay (for a SCLK of 100 MHz) between turning
off any PWM signal (for example, AH) and then turning on its complementary signal (for example, AL).
The length of dead time can be programmed in increments of 2 × tSCLK (or 20 ns for an SCLK of 100 MHz).
The PWM_DT register has a maximum value of 0x3FF (1023 decimal) and corresponds to a maximum
programmed dead time of:

Td(max) = 1023 × 2 × tSCLK = 1023 × 2 × 10 × 10-9 = 20.5 μs

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–23

for an fSCLK rate of 100 MHz. The dead time can be programmed to zero by writing 0 to the PWM_DT
register.

Duty Cycle with Dead-Time Control: Calculations for PULSEMODE 00

The duty cycle registers are scaled so that a value of 0 represents a 50% PWM duty cycle. The switching
signals produced are also adjusted to incorporate the programmed dead time value using the PWM_DT
register. The unit in this case produces active low signals so that a low level corresponds to a command to
turn on the associated power device.

A typical pair of PWM outputs, PWM_AH and PWM_AL, is shown in the following figure. The time
values in the figure indicate the integer value in the associated register and can be converted to time by
multiplying by the fundamental time increment, tCK. In the example channel A is working from
PWMTMR0.

In the example the pulse mode is set to 00 so that the switching patterns are perfectly symmetrical about
the mid-point of the switching period. The dead time is incorporated by moving the switching instants of
both PWM signals away from the instant set by the PWM_AH0 register. Both switching edges are moved by
an equal amount (PWMDT × tCK) to preserve the symmetrical output patterns. Also shown is the PWM_
SYNC output pulse whose rising edge denotes the beginning of the switching period, and the PWM_STAT.
TMR0PHASE bit.

Figure 16-15: Dead-Time Between Outputs in Dependent Mode

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The resulting on-times (active low) of the PWM signals over the full PWM period (two half-periods)
produced by the PWM timing unit and illustrated in the figure may be written as shown in the following
equation.

TAH = (PWM_TM0 + 2 × (PWM_AH0 - PWM_DT)) × tCK;

Range of TAH is [0:2 × PWM_TM0 × tCK]

TAL = (PWM_TM0 - 2 × (PWM_AH0 + PWM_DT)) × tCK;

Range of TAL is [0:2 × PWM_TM0 × tCK]

The negative values of TAH and TAL are not permitted and the minimum permissible value is zero, corre-
sponding to a 0% duty cycle. In a similar fashion, the maximum value is Ts, the PWM switching period,
corresponding to a 100% duty cycle. Calculation of duty for other pulse modes can be similarly carried out.

Special Consideration for PWM Operation in Over-Modulation

The PWM timing unit is capable of producing PWM signals with variable duty cycle values at the PWM
output pins. In pulse modes 00 and 01, at the extremities of the modulation process, duty cycles of 0% and
100% occur. In pulse modes 01 and 10, at the extremities of the modulation process, duty cycles of 0% and
50% occur. The modulation is called full off when the lower extremity of modulation is set for any PWM
timer period for the corresponding channel. The modulation is called full on when the higher extremity of
modulation is set for any PWM timer period for the corresponding channel. In between, for other duty
cycle values, the operation is termed normal modulation.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–25

Full On Modulation

In pulse modes 00 and 01, a PWM channel is in full on modulation if the high-side output of that channel
is asserted for the whole duration of the period of the PWM timer that channel is referencing. The condi-
tions for full on modulation are:

• PWM_xH0 - DT > PWM_TMy/2 for pulse mode 00

• PWM_xH1 - DT > PWM_TMy/2 for pulse modes 00 and 01

In pulse mode 10, a PWM channel is in full on modulation if the high-side output of that channel is
asserted for the whole duration of the first half period of the PWM timer that the channel is referencing.
The condition for full on modulation are:

• PWM_xH0 - DT > PWM_TMy/2 for pulse mode 10

• PWM_xH1 + DT < -PWM_TMy/2 for pulse mode 10

In pulse mode 11, a PWM channel is in FULL ON modulation if the high-side output of that channel is
asserted for the whole duration of the second half period of the PWM timer that the channel is referencing.
The condition for full_on modulation are:

• PWM_xH0 + DT < -PWM_TMy/2 for pulse mode 11

• PWM_xH1 - DT > PWM_TMy/2 for pulse mode 11

Full Off Modulation

In pulse modes 00 and 01, a PWM channel is in full off modulation if the high-side output of that channel
is de-asserted for the whole duration of the period of the PWM timer that channel is referencing. The
condition for full off modulation are:

• PWM_xH0 - DT < -PWM_TMy/2 for pulse mode 00

• PWM_xH1 - DT < -PWM_TMy/2 for pulse modes 00 and 01

In pulse mode 10, a PWM channel is in full off modulation if the high-side output of that channel is de-
asserted for the whole duration of the first half period of the PWM timer that the channel is referencing In
the second half-period, it is anyway de-asserted. The condition for full off modulation are:

• PWM_xH0 - DT < -PWM_TMy/2 for pulse mode 10

• PWM_xH1 + DT < PWM_xH0 - DT for pulse mode 10

In pulse mode 11, a PWM channel IS in full off modulation if the high-side output of that channel is de-
asserted for the whole duration of the second half period of the PWM timer that the channel is referencing
In the first half of the period, it is anyway de-asserted. The condition for full off modulation are:

• PWM_xH0 + DT > PWM_TMy/2 for pulse mode 11

• PWM_xH1 - DT > PWM_xH0 + DT for pulse mode 11

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Normal Modulation

All other cases of modulation fall under this category.

Emergency Dead Time Delays

There are certain situations, on transition either into or out of either full on or full off modulation, where
it is necessary to insert additional emergency dead time delays to prevent potential shoot through condi-
tions in the inverter. Disable and enable usage (related to the PWM_ACTL.DISHI and PWM_ACTL.DISLO bits)
also can potentially cause outputs to violate shoot through condition criteria. Another case is when the
phase delay of a PWM timer is varied by large values. These transitions are detected automatically and if
appropriate for safety, an emergency dead-time is inserted to prevent shoot through conditions.

The insertion of the additional emergency dead time into one of the PWM signals of a given pair during
these transitions is only needed if otherwise both PWM signals would be required not to toggle within a
dead time of each other. The additional emergency dead time delay is inserted into the PWM signal that is
toggling into the on state. In effect the turn on of this signal is delayed by an amount (2 × PWMDT × tCK)
from the rising edge of the opposite output. After this delay, the PWM signal is allowed to turn on provided
the desired output is still scheduled to be in the on state after the emergency dead time delay.

The following figure illustrates two example of such a transition. In the figure, PWM_ACTL.PULSEMODEHI is
kept at 1. The PWM_AH signal has been in full on modulation for some time and, during the current period,
its pulse mode is changed to 10, keeping the full on condition. At the half-period boundary, PWM_AH is
forced to transition to a de-asserted state because pulse mode is 10. An emergency dead-time is inserted
on the low-side output.

Figure 16-16: Over Modulation Transition Example

Output Disable and Cross-Over Functions

Each PWM_ACTL channel control register contains separate enable bits for the high and low side signals. The
PWM_ACTL.DISHI and PWM_ACTL.DISLO bits in the channel A control register control the enable/disable of
the PWM_AH and PWM_AL outputs respectively. If the disable bit is set (=1), then the corresponding PWM
output is disabled, irrespective of the value of the corresponding duty cycle register. This PWM output
signal remains in the OFF state as long as the corresponding enable/disable bit is set.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–27

The cross-over bit (PWM_ACTL.XOVR) allows programs to send the low-side output through the high-side
output pin and the high-side output through the low side output pin.

In one example, the PWM_AH0 register is programmed to zero and the PWM_CHANCFG.MODELSC bit =0, the
PWM_ACTL.DISLO bit =1, and the PWM_ACTL.XOVR bit =1. The low-side output remains off, as in the case
without crossover. The difference in cross-over is that the high-side output changes character and becomes
like the low-side. What actually occurs is that the low-side duty cycle is sent to the high-side output pins,
and the high-side duty cycle is sent to the low side pins. Because the PWM_ACTL.DISLO bit =1, the low-side
pin remains off (see Output Control Feature Precedence).

The following figure shows this example. In case 1, PWM_ACTL.XOVR =0; and in case 2, PWM_ACTL.XOVR =1.

Figure 16-17: XOVR and DISHI/DISLO Functionality

Brush-less DC Motor (Electronically Commutated Motor) Control

In the control of an electronically commutated motor (ECM), only two inverter legs are switched at any
time. Often, the high-side device in one leg must be switched on at the same time as the low-side driver in
a second leg. Therefore, by programming identical duty cycles values for two PWM channels (for example,
PWM_CH0 = PWM_CH1) and setting the PWM_BCTL.XOVR bit to crossover the BH/BL pair if PWM signals, it is
possible to turn on the high-side switch of phase A and the low-side switch of phase B at the same time.

To control ECM, normally the third inverter leg (phase C in this example) is disabled for a number of
PWM cycles. To implement this function, both the PWM_CH and PWM_CL outputs are disabled by setting the
PWM_CCTL.DISHI and PWM_CCTL.DISLO bits.

In normal ECM operation, each inverter leg is disabled for certain time periods so that the PWM channel
registers change based on the position of the rotor shaft (motor commutation).

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-18: ECM Control

For the situation illustrated in the figure, an appropriate value for the PWM_SEG register is 0x00A7. In
normal ECM operation, each inverter leg is disabled for certain lengths of time, such that the PWM_SEG
register is changed, based upon the position of the rotor shaft (motor commutation).

Emulation Mode Operation

The PWM module can continue to operate or stop when entering halt from the emulator based on the
PWM_CTL.EMURUN bit setting.

• PWM_CTL.EMURUN=1. When the processor is halted in emulation mode the outputs continue to toggle
and be driven out of the PWM block. The counters and status register bits are set/reset according the
PWM TIMER-count/period settings.

• PWM_CTL.EMURUN=0. When the processor is halted in emulation mode the outputs are shut down (enter
their inactive state based on polarity), and all counters that affect status register bits are paused.

The PWM_STAT.EMU bit is set.

• At restart, the PWM counters resume from their paused value. The outputs are still held in their inac-
tive state.

To re-activate the outputs, clear the PWM_STAT.EMU bit with a W1C operation.

NOTE: The PWM_STAT.EMU bit is not cleared by disabling the PWM or writing 0 to the PWM_CTL.EMURUN
bit.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–29

Emergency dead-time is not ensured on re-enabling the outputs by doing a W1C to the PWM_STAT.
EMU bit.

Sub SCLK heightened-precision edge placements may be off on the first output edge for every
channel on clearing the PWM_STAT.EMU bit.

Heightened-Precision Edge Placement

Heightened-precision edge placement allows a fine-grained edge placement within the system clock
period. The following figure shows how the SCLK aligned edge is moved to finer resolution.

Figure 16-19: Heightened-Precision Steps in a Single SCLK Period

The Defining Fractional Duty Cycle figure shows an application with a duty cycle that corresponds to a
fraction and shows how the duty cycle is defined for the PWM based on the timer-base.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-20: Defining Fractional Duty Cycle

In the Defining Fractional Duty Cycle figure, an analog time graph is juxtaposed on the digital time
graph, which is represented by a cut-out of the PWM timer that channel A is using. The analog time graph
is also shown to allow for better visualization. However, another graph could be used to get the same
results.

Note that in the example, in normal mode, the program can place an edge only at 0 and -1, both points
separated by a time interval of one period of the peripheral clock, tCK. This limits the number of bits of
resolution in the duty cycle that the program is allowed to control. In reality, the program may need to
place an edge that is delayed from the zero-duty mark by a time interval of 0.75 tCK.

This point is defined as -0.75 (by projecting the point back onto the analog time graph, the point is 3/4th
of a unit separated from 0, towards -1 on this linear graph). The heightened-precision edge placement
feature allows the program to specify such fractional duty cycles as -0.75, by providing additional register
bits to the channel duty registers (PWM_AH0). These bits are contained in the heightened-precision channel
duty registers (PWM_AH0_HP.) Note that the maximum time step precision that can be achieved is 2.5 ns.

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–31

A simple calculation provides the maximum fractional precision achievable for a particular clock
frequency. An operational frequency of 100 MHz implies tCK = 10 ns. Therefore, tCK/2.5 ns = 4.

Since 4 is represented using 2 bits, the program can represent fractions up to 2 bits wide (required for
certain applications) without a loss of precision.

The heightened-precision mode is enabled by setting the PADS_PCFG0.PWMGPSEL bit. The PWM_AH0_HP and
PWM_AH1_HP registers work alongside the PWM_AH0 and PWM_AH1 registers to provide the overall resolution.
The example below explains how signed decimal programming is implied for the heightened-precision
duty values.

For the PWM_AH output, the duty-cycle register-pair PWM_AH0 and PWM_AH0_HP work together in a Q15.8
signed two’s complement fixed-point format as shown in the following figure. The weight of bit position
at k is 2k.

Figure 16-21: Duty Cycle Notation for Heightened-Precision Edge Placement

In the normal modes of operation (not involving heightened-precision edge placement), only the PWM_AH0
register value is programmed. The duty value programmed is a two’s complement integer value. If a value
of -1 is desired, the PWM_AH0 register is programmed with the number 0xFFFF (which is the 2s complement
of 1 in 16 bits).

In the heightened-precision mode, if a duty value corresponding to -0.75 is required, the equivalent two’s
complement value of -0.75 in the Q15.8 format is computed: 1111_1111_1111_1111.0100_0000 = 0xFFFF.
40. In this case the PWM_AH0 register is programmed to 0xFFFF and the PWM_AH0_HP register is
programmed to 0x40.

Heightened-Precision Edge Placement Example

The following is an example of heightened precision edge placement.

On the positive side of the fractional of the duty cycle, at 2 tCK + 0.25 tCK, the values for the PWM_AH0 and
PWM_AH0_HP registers are calculated as follows.

The PWM_AH0 =0x0002 and PWM_AH0_HP =0x40 (bits 7:6).

The PWM_AH_DUTY0 register contains the bit fields from both the PWM_AH0 and PWM_AH0_HP registers. Bits
[15:14] represent the decimal part or heightened-precision value and bits [31:16] represent the coarse duty
cycle. The value for the combined registers is PWM_AH_DUTY0 =0x00024000.

On the negative side of the fractional of the duty cycle, at –2 tCK – 0.25 tCK, the values for the PWM_AH0 and
PWM_AH0_HP registers are calculated as follows:

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The coarse register represents the next count of the coarse value for negative values so that –2 becomes –3.
These are the 2’s complement of the positive offset (value = 3) PWM_AH0 = 0xFFFD and PWM_AH0_HP =0xC0
(bits 7:6).

To derive the correct format for a negative duty-cycle value, for example, –2.25, use: coarse value + 1 =3
for the coarse value and 1 for 0.25. Write out the absolute value as a 32-bit number first:

0000 0000 0000 0011 (.) 0100 0000 0000 0000

Then take the 2’s complement of the entire 32-bit number:

1111 1111 1111 1101 (.) 1100 0000 0000 0000

This value is also written into the full duty register (PWM_AH_DUTY0). The correct value for the combined
registers written in the PWM_AH_DUTY0 register is 0xFFFDC000.

Sample Waveforms for High- and Low-Side with Precision Placement

When heightened-precision is used in the dependent mode of operation, both high and low-side outputs
are shifted in the same direction. This may result in pulse-expansion of the high-side and pulse-contrac-
tion of the low-side or vice-versa.

The following figure shows an example of a case with DT =1, and pulse expansion occurs on the high-side
and pulse-contraction on the low-side. It juxtaposes a case where heightened-precision is not used and a
case where it is used.

Figure 16-22: Output Shift in The Same Direction

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–33

The following Precision Placement -– PULSEMODE figures illustrate the cases for pulse modes 1, 2, and
3 (pulse mode 00 is a trivial case of pulse mode 01) that are configured in the PWM_ACTL and PWM_BCTL
channel control registers. What is shown is what happens to the edges as a decimal part is added to a
programmed positive duty. In each case, assume that the original PWM_AH0.DUTY register value, which is
the coarse duty value, is changed to the PWM_AH1.DUTY value by programming the enhanced-resolution
(PWM_AH0_HP, PWM_AH1_HP) registers. For example changing 14 to 14.25 and 10 to 10.75. Note that the
figures are not drawn to these numbers. For negative duty values the shifts are in the opposite direction to
those shown.

Figure 16-23: Precision Placement -– PULSEMODE=01

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-24: Precision Placement -– PULSEMODE=10

Figure 16-25: Precision Placement -– PULSEMODE=11

Gate Drive Unit

The gate drive unit of the PWM adds features that simplify the design of isolated gate drive circuits for
PWM inverters. If a transformer coupled power device gate drive amplifier is used then the active PWM

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–35

signal must be chopped at a high frequency. The PWM_CHOPCFG register allows the programming of this
high frequency chopping mode. The chopped active PWM signals may be required for the high-side
drivers only, for the low-side drivers only or for both the high-side and low-side switches. Therefore, inde-
pendent control of this mode for both high and low-side switches is included with two separate control bits
in the PWM_CHANCFG register.

Typical PWM output signals with high-frequency chopping enabled on both high-side and low-side
signals are shown in the figure below. Chopping of the PWM outputs is enabled by setting bits in PWM_
CHANCFG register. The high frequency chopping frequency is controlled by the 8-bit PWM_CHOPCFG.VALUE
value. The period of this high frequency carrier is then given by the following equation.

Tchop = [4 × (CHOPDIV + 1)] × tCK

and the chopping frequency is therefore an integral subdivision of the peripheral clock frequency:

fchop = fCK/[4 × (CHOPDIV + 1)]

The PWM_CHOPCFG.VALUE value may range from 0 to 255, corresponding to a programmable chopping
frequency rate from 122 kHz to 31.25 MHz for a 125 MHz, fCK rate. The gate drive features must be
programmed before the PWM controller is enabled should not be changed during normal operation of the
controller. Following a reset, all bits of the PWM_CHANCFG register are cleared so that high frequency chop-
ping is disabled, by default.

Figure 16-26: Hi-Side and Lo-Side Outputs With Gate Chop Enabled

Output Control Feature Precedence

The order in which you apply output control features to the PWM signal is important and significant. Use
the following order for applying the signal features to the PWM output signal.

1. Duty Generation

2. Cross-over

3. High-side/Low-side disable

PULSE-WIDTH MODULATOR (PWM)
FUNCTIONAL DESCRIPTION

16–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

4. Emergency Dead-Time insertion

5. HPPWM Correction for wrong programming

6. Gate-Drive chopping

7. Polarity

8. Heightened-Precision PWM (HPPWM) edge placement

NOTE: When HPPWM operation is enabled, the cross-over feature and the gate-drive chopping feature
must be disabled.

Sync Operation

The PWM_SYNC signal can be internally generated as a function of PWM_TM0.VALUE and PWM_SYNC_WID.
VALUE or can be input externally. Multiple PWM configurations can be established with each PWM oper-
ating with its own independent PWM_SYNC signal or from its own or shared external PWM_SYNC signal. The
external PWM_SYNC can be synchronous to the internal clock as in the case of a primary PWM generating
an internal PWM_SYNC signal which drives the secondary PWM_SYNC_IN pin. The external PWM_SYNC can also
be asynchronous to the internal clock as is typically the case of an off-chip PWM_SYNC signal used to drive
each PWM’s PWM_SYNC_IN pin.

Internal PWM SYNC Generation

The PWM controller produces an output PWM synchronization pulse at a rate equal to period of a selected
PWM timer. Programming the PWM_CTL.INTSYNCREF field controls this selection.

If the other timers are running with a non-zero DELAY offset in relation to PWMTMR0 and the PWM_SYNC
pulse is referenced to any of these timers, then the PWM_SYNC pulses are generated at their respective period
boundaries which has the lag-lead offset compared to PWMTMR0.

This pulse is available for external use at the PWM_SYNC_OUT pin. The width of the PWM_SYNC pulse is
programmable by the 10-bit read/write PWM_SYNC_WID register. The width of the PWM_SYNC pulse, TPWM_
SYNC, is given by the following equation.

tPWMSYNC = tSCLK× (PWMSYNCWT + 1)

The width of the pulse is programmable from tCK to 1024tCK (corresponding to 8 ns to 8.19 μs for a fCK
rate of 125 MHz). Following a reset, the PWM_SYNC_WID register contains 0x3FF (1023 decimal) so that the
default PWM_SYNC width is 8.19 μs, for a 125 MHz fCK.

External PWM SYNC Generation

By setting the PWM_CTL.EXTSYNC bit, the PWM is set up in a mode to expect an external PWM_SYNC on the
PWM_SYNC_IN pin. The external PWM_SYNC signal only determines the operation of the main timer
PWMTMR0.

PULSE-WIDTH MODULATOR (PWM)
EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–37

The external sync should be synchronized by setting the PWM_CTL.EXTSYNCSEL bit to 0 (assumes the
external PWM_SYNC selected is asynchronous).

The external PWM_SYNC period is expected to be an integer multiple of the value of the PWM_TM0 period
register. When the rising edge of the external PWM_SYNC is detected, the PWMTMR0 timer is restarted at
the beginning of its period. If the external PWM_SYNC period is not exactly an integer multiple of the internal
PWM_SYNC, the behavior of the PWM channel outputs which are referenced to PWMTMR0 are clipped.

The effect latency from PWM_SYNC_IN to the PWM outputs is about three clock cycles in synchronous
mode, and five clock cycles in asynchronous mode.

Event Control

Event control in the PWM is controlled using bits in the PWM_IMSK and PWM_ILAT registers. These registers
allow masking and show masked interrupt status bits respectively. The interrupt bits are latched and held
on the interrupt event and the software must write a 1 to clear the interrupt bit, usually during the interrupt
service routine.

The timer period (TMRxPER) interrupts are configured using the PWM_ILAT.TMR0PER - PWM_ILAT.
TMR4PER bits and are used to periodically execute an Interrupt Service Routine (ISR), to update the PWM
channel control and duty registers (according to a control algorithm based on expected operation and
sampled existing operation). The TMRxPER interrupts also can trigger an ADC to sample data for use
during the ISR.

The PWM_SYNC interrupt is controlled using the PWM_CTL.INTSYNCREF bit field to assign the interrupt
to one of the core's user interrupts. The PWM_SYNC can be configured to be either internal or externally
driven using the PWM_CTL.EXTSYNC bit. When configured as an external sync, the signal can be further
configured as synchronous or asynchronous using the PWM_CTL.EXTSYNCSEL bit.

As an example, when the PWM_SYNC interrupt occurs, the ADC samples data, the data is algorithmically
interpreted, and new PWM channel duties are calculated and written to the PWM. More sophisticated
implementations include different start up, runtime, and shutdown algorithms to determine PWM
channel duties based on expected behavior and further features.

During the PWM_SYNC interrupt driven control loop, only the channel delay registers, the duty registers,
and the channel C high pulse duty register values are typically updated. To see programming limitations
on the PWM registers, see the Register Descriptions section.

Status information about the PWM is available in the PWM_STAT register, which stores all status bits,
including raw interrupt status bits. In particular, the period boundary of each timer is available, as well as
status bits that indicate whether the operation is in the first half or the second half of the timer. Addition-
ally the TRIP status is also available. For more information on TRIP interrupts, see Trip Control Unit .

PULSE-WIDTH MODULATOR (PWM)
EVENT CONTROL

16–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Trip Control Unit

The PWM output signals can be shut-off in a number of different ways. The trip inputs PWM_TRIPn can be
mapped to provide either a temporary or permanent shutdown on any pair of channel outputs. This shut-
down mechanism is asynchronous so that the associated PWM output disable circuitry does not go
through any clocked logic, ensuring correct PWM shutdown even in the event of a loss of the processor
clock. In addition to the hardware shutdown features, the PWM system may be shutdown in software by
means of the PWM_CTL.SWTRIP bit.

During any external trip event (if not disabled), the PWM outputs are turned off. When a PWM output is
turned off, it means that the output level is held at a polarity opposite that given in the PWM_CHANCFG.
POLDH bits. The PWM sync pulse continues to operate if it is already enabled. A PWMTRIP interrupt
occurs if unmasked, to notify the software of this event.

Note that even if the clock to the PWM is damaged, an external trip event turns off the PWM outputs, but
the PWMTRIP interrupt may not occur.

The PWM Trip unit processes hardware or software fault conditions and shuts down the PWM channel
outputs immediately on the occurrence of these conditions. This shut down mechanism can be enabled
separately for each channel. The design also allows for a self-restart mechanism to be enabled on a channel.
Self-restart re-enables the channel outputs following the fault condition (allowed only on hardware trips)
when the PWMTMRy that the channel is using reaches its period boundary.

There are 2 external hardware sources that can indicate a hardware fault condition:

1. PWM_TRIP0 input pin

2. PWM_TRIPn input pin

These are active low inputs where a falling edge on either of these pins indicates a fault condition.

To enable the trip unit to shut down a particular channel's output in response to the fault event on either
of these PWM_TRIPn pins, program the PWM_TRIPCFG.EN0A bit corresponding to that channel.

The PWM_TRIPCFG.MODE0A bits must be programmed to specify the restart mechanism for a channel that
has been tripped.

1. If the PWM_TRIPCFG.MODE0A bit =0, once tripped, a trip condition is registered on this channel in the
PWM_STAT.FLTTRIPA bit and the outputs of that channel are immediately shut down. This is called a
fault trip condition. To resume channel output when a fault trip occurs, clear the PWM_STAT.FLTTRIPA
bit by writing a 1 to it. Note that the bit cannot be cleared by a processor write if the trip condition is
still active. The raw trip status is available for both pins in the PWM_STAT.RAWTRIP0 register bits.

2. If the PWM_TRIPCFG.MODE0A bit =1, once tripped, a trip condition is registered on this channel in the
PWM_STAT.SRTRIPA bit and the outputs of that channel are immediately shut down. This is called a self-
restart trip condition. If the trip condition is not active at the next period boundary of the PWMTMRy
that the channel is using, the status register bit is cleared and the outputs are restored.

The trip input pins should have an external pull-down resistor on the chip pin, so that if the pin becomes
unconnected the PWM will be disabled.

PULSE-WIDTH MODULATOR (PWM)
EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–39

In addition to the hardware trip conditions, a global software trip bit in the PWM_CTL register allows for a
software forced fault trip condition. When the global software trip bit is set to 1, irrespective of the values
in the PWM_TRIPCFG register, it sets all the PWM_STAT.FLTTRIPA bits and also gates the channel outputs. To
remove the trip condition from the channel, a W1C should be performed on the particular channel'sPWM_
STAT.FLTTRIPA bit.

If the PWM_TRIPCFG.EN0A bit is set to 1 to, for any channel, then the occurrence of a fault condition on the
PWMTRIPy bit is logged in the PWM_STAT.FLTTRIPA register bit. If the corresponding PWM_IMSK.TRIP0 bit
= 1, then an interrupt is generated. Note that tripping a channel output doesn't interfere with PWM_SYNC
generation.

The following figure shows an example where PWMTRIP0 is enabled on channel A as self-restart trip.
Channel A works with the PWM_CHANCFG.POLAH bit =1. Note that in Period 2, the PWM_AH signal is full ON
modulated, and tries to rise at the period boundary where the self-restart occurs for the channel. However,
since the low-side output of the channel was only recently removed due to a trip, the rise edge on PWM_AH
is delayed until the emergency dead-time period is over. PWMTRIP1 is enabled on channel B as a fault
trip. Channel B works with the PWM_CHANCFG.POLAH bit =0. PWMTRIP1 stays low for an extended time
period and because of this the first processor write to re-enable the channel output fails. The second
processor write passes since the fault condition has gone away.

Figure 16-27: Operation Under Hardware Fault Conditions

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

16–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NOTE:

Dead-time is ensured on re-enabling the channel outputs after trip.

NOTE:

Programs should not allow changes in the configuration/enable bits of PWM_TRIPCFG register (which select
between trip enable and disable) within ± 10 clock cycles of when the external trip pulse toggles. If this time
frame is not followed, then unexpected behavior occurs.

Programming Model

The following sections provide general (and some application specific) programming steps for configuring
and using the PWM module.

• Programming Model for 3-Phase AC Motor Control

Programming Model for 3-Phase AC Motor Control

The PWM Module and Interaction with System figure shows how the PWM unit (green) interfaces to
both software (blue) and hardware (yellow). The software configures the unit, calculates duty cycles (Duty
A, Duty B, Duty C), and services the interrupts generated by the module (PWM Sync IRQ, TRIP IRQ). The
hardware applies the gate signals (AH, AL, BH, BL, CH, CL) to the inverter and provides an over current
trip signal back to the unit (TRIP0).

The typical 3-phase AC motor configuration shown in the PWM Module and Interaction with System
figure applies for both permanent magnet and induction motor types.

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–41

Figure 16-28: PWM Module and Interaction with System

System Parameters

The following system parameters (characteristics) influence the module configuration for this application.
This example system has/uses:

• One 3-phase AC machine

• B6 inverter

• SVPWM, including both linear- and over-modulation

• Switching frequency of 20 kHz

• Dead time of 1us

• Trip signal generated by hardware

• Active high level gate drive

• Core frequency of 200 MHz

• Peripheral clock of 100 MHz

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

16–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

System State Sequencing

Managing the system state and sequence of states is critically important when programming the PWM
module. The PWM System States figure provides an overview of these states.

Figure 16-29: PWM System States

As shown in the state diagram, the module configuration is updated on state transitions (indicated by the
arrows). The transitions are initialization, motor start, PWM sync interrupt (on each), and motor stop.
These transitions are discussed in detail in the following sections.

• PWM Initialization for Motor Control

• PWM Enable for Motor Control

• PWM Response to Sync Interrupt for Motor Control

• PWM Disable (and Stop the Motor) for Motor Control

PWM Initialization for Motor Control

The processor should do the following programming at power up and repeat this programming whenever
the PWM and system must be brought into a known (safe) state.

1. Place the PWM module in a safe state and set up synchronization of the module.

ADDITIONAL INFORMATION: To place the PWM module in a safe state and set up synchronization, use the
following bitwise operations on the PWM_CTL and PWM_CHANCFG registers:

PWM_CTL &= 0xFFE0FF08
PWM_CTL |= 0x20000

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–43

PWM_CHANCFG &= 0x80808080
PWM_CHANCFG |= 0x24242424

ADDITIONAL INFORMATION: These operations result in the following bit settings:
• Disable PWM (PWM_CTL.GLOBEN =0)
• All phases must run with same phase, disable delay for channels A, B, C, D (PWM_CTL.DLYAEN

through PWM_CTL.DLYDEN =0)
• Use internal synchronization by timer TMR0 (PWM_CTL.EXTSYNC =0, PWM_CTL.EXTSYNCSEL =1)
• All phases must be synchronized by the same timer, TMR0 (PWM_CTL.INTSYNCREF = b#000)
• Low side is always the inverse of High side (PWM_CHANCFG.POLAL through PWM_CHANCFG.POLDL =

1)
• System uses active high gate driver (PWM_CHANCFG.ENCHOPAH through PWM_CHANCFG.ENCHOPDH =1)
• Pulse transformer is not used: disable gate chopping (PWM_CHANCFG.ENCHOPAL through PWM_

CHANCFG.ENCHOPDL =0)

2. Set up the trip and associated interrupts.

ADDITIONAL INFORMATION: To set up the trip and associated interrupts use the following bitwise opera-
tions on the PWM_TRIPCFG and PWM_ILAT registers:

PWM_TRIPCFG &= 0xF0F0F0F0
PWM_TRIPCFG |= 0x1010101
PWM_ILAT &= 0xFFE0FFFC
PWM_ILAT |= 0x1

ADDITIONAL INFORMATION: These operations result in the following bit settings:
• All phases must shut down simultaneously in case of fault: (PWM_TRIPCFG.EN0A through PWM_

TRIPCFG.EN0D =0, PWM_TRIPCFG.MODE0A through PWM_TRIPCFG.MODE0D =0, PWM_TRIPCFG.EN1A
through PWM_TRIPCFG.EN1D =0, PWM_TRIPCFG.MODE1A through PWM_TRIPCFG.MODE1D =0)

• Enable TRIP0 as fault trigger for all channels. (PWM_TRIPCFG.EN0A through PWM_TRIPCFG.MODE1D
=1)

• For thermal control and synchronization, SW intervention is needed at trip. Do not use automatic
restart of any channels

• Generate an interrupt at trip on TRIP0. (PWM_ILAT.TMR0PER = 1)

3. Configure the PWM channels.

ADDITIONAL INFORMATION: To configure the PWM channels, use the following bitwise operations on the
PWM_TRIPCFG and PWM_ILAT registers:

PWM_DT = 0x32
PWM_TM0 = 0x9C4
PWM_ACTL = 0xFFFFF0000
PWM_BCTL = 0xFFFFF0000
PWM_CCTL = 0xFFFFF0000
PWM_AH0 = 0x0

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

16–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

PWM_BH0 = 0x0
PWM_CH0 = 0x0

ADDITIONAL INFORMATION: These operations result in the following bit settings:
• Configure a dead time of 1 μs (PWM_DT =0x32).
• Configure a PWM frequency of 20 kHz (PWM_TM0 =0x9C4).
• Disable all outputs (PWM_ACTL.DISHIthrough PWM_CCTL.DISHI =0, PWM_ACTL.DISLO through PWM_

CCTL.DISLO =0)
• Use conventional PWM, disable crossover (PWM_ACTL.XOVR through PWM_CCTL.XOVR =0)
• Use symmetrical pulse position on all outputs (PWM_ACTL.PULSEMODEHI through PWM_CCTL.

PULSEMODEHI =0, PWM_ACTL.PULSEMODELO through PWM_CCTL.PULSEMODELO =0)
• Set an initial duty-cycle of 50% (PWM_AH0 throughPWM_CH0 =0x0)

PWM Enable for Motor Control

The processor must do the following programming to enable the PWM before starting the motor.

1. Start the PWM timer TMR0.

ADDITIONAL INFORMATION: The following bitwise operation on the PWM_CTL register accomplishes this
task:

PWM_CTL |= 0x1

ADDITIONAL INFORMATION: This operation achieves the following bit setting:
• Enable PWM (PWM_CTL.GLOBEN =1)

2. Enable six PWM outputs.

ADDITIONAL INFORMATION: The following bitwise operations on the PWM_ACTL through PWM_CCTL regis-
ters accomplish this task:

PWM_ACTL| = 0x3
PWM_BCTL| = 0x3
PWM_CCTL| = 0x3

ADDITIONAL INFORMATION: These operations achieve the following bit settings:
• Enable high and low side channel outputs (PWM_ACTL.DISHI through PWM_CCTL.DISHI =1, PWM_

ACTL.DISLO through PWM_CCTL.DISLO =1)

3. Enable the PWM TRIP0 interrupt.

ADDITIONAL INFORMATION: The following bitwise operation on the PWM_ILAT register accomplishes this
task:

PWM_ILAT |= 0x1

ADDITIONAL INFORMATION: These operations achieve the following bit settings:

PULSE-WIDTH MODULATOR (PWM)
PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–45

• Enable PWM TRIP0 interrupt (PWM_ILAT.TRIP0 =1)

PWM Response to Sync Interrupt for Motor Control

When the PWM sync interrupt occurs, the processor may need to update to the PWM duty cycle with a
value calculated by the motor control algorithm. This application uses symmetric pulses position and uses
dependent High and Low side outputs, so only one register needs to be updated for each phase.

1. Write new duty cycle value (calculated by motor control algorithm) to the timer when the sync inter-
rupt occurs.

ADDITIONAL INFORMATION: The following bitwise operations on the PWM_AH0 through PWM_CH0 registers
accomplish this task:

PWM_AH0 = Duty_A_mc_algorithm_current_value

ADDITIONAL INFORMATION:
PWM_BH0 = Duty_B_mc_algorithm_current_value

ADDITIONAL INFORMATION:
PWM_CH0 = Duty_C_mc_algorithm_current_value

ADDITIONAL INFORMATION:

ADDITIONAL INFORMATION: These operations achieve the following bit settings:

PWM Disable (and Stop the Motor) for Motor Control

The processor should do the following programming to stop the motor, disable the PWM, and disable
PWM interrupts. These actions place the PWM and system in a safe, passive state.

1. Disable the PWM timer.

ADDITIONAL INFORMATION: The following bitwise operation on the PWM_CTL register accomplish this
PWM state:

PWM_CTL &= 0xFFFFFFFE

ADDITIONAL INFORMATION: This operation achieves the following bit setting:
• Disable PWM (PWM_CTL.GLOBEN =0)

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

2. Disable all PWM outputs.

ADDITIONAL INFORMATION: The following bitwise operations on the PWM_ACTL through PWM_CCTL regis-
ters accomplish this task:

PWM_ACTL &= 0xFFFFFFFFC
PWM_BCTL &= 0xFFFFFFFFC
PWM_CCTL &= 0xFFFFFFFFC

ADDITIONAL INFORMATION: These operations achieve the following bit settings:
• Disable PWM outputs PWM_ACTL.DISHI through PWM_CCTL.DISHI = 1, PWM_ACTL.DISLO through

PWM_CCTL.DISLO =0)

3. Set the PWM duty-cycle to 50%.

ADDITIONAL INFORMATION: The following bitwise operations on the PWM_AH0 through PWM_CH0 registers
accomplish this task:

PWM_AH0 = 0x0
PWM_BH0 = 0x0
PWM_CH0 = 0x0

ADDITIONAL INFORMATION: These operations achieve the following bit settings:
• Set PWM duty cycle to 50%. (PWM_AH0.DUTY through PWM_CH0.DUTY =0)

4. Disable the PWM TRIP0 interrupt.

ADDITIONAL INFORMATION: The following bitwise operation on the PWM_ILAT register accomplish this
PWM state:

PWM_ILAT &= 0xFFFFFFFE

ADDITIONAL INFORMATION: These operations achieve the following bit settings:
• Disable the PWM TRIP0 interrupt (PWM_ILAT.TRIP0 =0)

ADSP-CM40x PWM Register Descriptions

Pulse-Width Modulator (PWM) contains the following registers.

Table 16-5: ADSP-CM40x PWM Register List

Name Description

PWM_CTL Control Register

PWM_CHANCFG Channel Config Register

PWM_TRIPCFG Trip Config Register

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–47

PWM_STAT Status Register

PWM_IMSK Interrupt Mask Register

PWM_ILAT Interrupt Latch Register

PWM_CHOPCFG Chop Configuration Register

PWM_DT Dead Time Register

PWM_SYNC_WID Sync Pulse Width Register

PWM_TM0 Timer 0 Period Register

PWM_TM1 Timer 1 Period Register

PWM_TM2 Timer 2 Period Register

PWM_TM3 Timer 3 Period Register

PWM_TM4 Timer 4 Period Register

PWM_DLYA Channel A Delay Register

PWM_DLYB Channel B Delay Register

PWM_DLYC Channel C Delay Register

PWM_DLYD Channel D Delay Register

PWM_ACTL Channel A Control Register

PWM_AH0 Channel A-High Duty-0 Register

PWM_AH1 Channel A-High Duty-1 Register

PWM_AH0_HP Channel A-High Heightened-Precision Duty-0 Register

PWM_AH1_HP Channel A-High Heightened-Precision Duty-1 Register

PWM_AL0 Channel A-Low Duty-0 Register

PWM_AL1 Channel A-Low Duty-1 Register

PWM_AL0_HP Channel A-Low Heightened-Precision Duty-0 Register

PWM_AL1_HP Channel A-Low Heightened-Precision Duty-1 Register

Table 16-5: ADSP-CM40x PWM Register List (Continued)

Name Description

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

PWM_BCTL Channel B Control Register

PWM_BH0 Channel B-High Duty-0 Register

PWM_BH1 Channel B-High Duty-1 Register

PWM_BH0_HP Channel B-High Heightened-Precision Duty-0 Register

PWM_BH1_HP Channel B-High Heightened-Precision Duty-1 Register

PWM_BL0 Channel B-Low Duty-0 Register

PWM_BL1 Channel B-Low Duty-1 Register

PWM_BL0_HP Channel B-Low Heightened-Precision Duty-0 Register

PWM_BL1_HP Channel B-Low Heightened-Precision Duty-1 Register

PWM_CCTL Channel C Control Register

PWM_CH0 Channel C-High Pulse Duty Register 0

PWM_CH1 Channel C-High Pulse Duty Register 1

PWM_CH0_HP Channel C-High Pulse Heightened-Precision Duty Register 0

PWM_CH1_HP Channel C-High Pulse Heightened-Precision Duty Register 1

PWM_CL0 Channel C-Low Pulse Duty Register 0

PWM_CL1 Channel C-Low Duty-1 Register

PWM_CL0_HP Channel C-Low Pulse Duty Register 1

PWM_CL1_HP Channel C-Low Heightened-Precision Duty-1 Register

PWM_DCTL Channel D Control Register

PWM_DH0 Channel D-High Duty-0 Register

PWM_DH1 Channel D-High Pulse Duty Register 1

PWM_DH0_HP Channel D-High Pulse Heightened-Precision Duty Register 0

PWM_DH1_HP Channel D High Pulse Heightened-Precision Duty Register 1

PWM_DL0 Channel D-Low Pulse Duty Register 0

Table 16-5: ADSP-CM40x PWM Register List (Continued)

Name Description

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–49

Control Register

The PWM_CTL register enables the PWM, enables delay counters for the channels, and configures sync
features. This register also provides support for tripping a PWM fault condition through software.

PWM_DL1 Channel D-Low Pulse Duty Register 1

PWM_DL0_HP Channel D-Low Heightened-Precision Duty-0 Register

PWM_DL1_HP Channel D-Low Heightened-Precision Duty-1 Register

PWM_AH_DUTY0 Channel A-High Full Duty0 Register

PWM_AH_DUTY1 Channel A-High Full Duty1 Register

PWM_AL_DUTY0 Channel A-Low Full Duty0 Register

PWM_AL_DUTY1 Channel A-Low Full Duty1 Register

PWM_BH_DUTY0 Channel B-High Full Duty0 Register

PWM_BH_DUTY1 Channel B-High Full Duty1 Register

PWM_BL_DUTY0 Channel B-Low Full Duty0 Register

PWM_BL_DUTY1 Channel B-Low Full Duty1 Register

PWM_CH_DUTY0 Channel C-High Full Duty0 Register

PWM_CH_DUTY1 Channel C-High Full Duty1 Register

PWM_CL_DUTY0 Channel C-Low Full Duty0 Register

PWM_CL_DUTY1 Channel C-Low Full Duty1 Register

PWM_DH_DUTY0 Channel D-High Full Duty0 Register

PWM_DH_DUTY1 Channel D-High Full Duty1 Register

PWM_DL_DUTY0 Channel D-Low Full Duty0 Register

PWM_DL_DUTY1 Channel D-Low Full Duty1 Register

Table 16-5: ADSP-CM40x PWM Register List (Continued)

Name Description

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-30: PWM_CTL Register Diagram

Table 16-6: PWM_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

20:18
(R/W)

INTSYNCREF Timer reference for Internal Sync.
The PWM_CTL.INTSYNCREF bits select the timer reference for the internal sync.
Note that all other combinations reserved.

0 PWMTMR0 provides sync reference

1 PWMTMR1 provides sync reference

2 PWMTMR2 provides sync reference

3 PWMTMR3 provides sync reference

4 PWMTMR4 provides sync reference

17
(R/W)

EXTSYNCSEL External Sync Select.
The PWM_CTL.EXTSYNCSEL bit selects whether the external sync signal is
synchronous or asynchronous. Note that latency in PWM sync response differs
between asynchronous and synchronous external sync modes. For more information,
see the PWM functional description.

0 Asynchronous External Sync

1 Synchronous External Sync

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–51

16
(R/W)

EXTSYNC External Sync.
The PWM_CTL.EXTSYNC bit selects whether the PWM uses an external or internal
sync signal for the main timer (PWMTMR0). Do not change the value of the PWM_
CTL.EXTSYNC bit while the PWM is enabled (PWM_CTL.GLOBEN =1).

0 Internal sync used

1 External sync used

8
(R/W)

ADEN Asymmetric Dead-time Enable.
When symmetric dead-time is enabled, in the dependent mode, both the high-side
and low-side outputs are shrunk by DT cycles on both the assertion and de-assertion
edges. When symmetric dead-time is enabled, the falling edges of both high and low-
side outputs occur at the programmed duty value, but their rise-times are delayed by
2 times DT.

0 Dead-time is symmetric

1 Dead-time is asymmetric

7
(R/W)

DLYDEN Enable Delay Counter for Channel D.
The PWM_CTL.DLYDEN bit enables the Channel D delay counter, supporting phase-
offset control. Do not change the value of the PWM_CTL.DLYDEN bit while the
PWM is enabled (PWM_CTL.GLOBEN =1).

0 Disable

1 Enable

6
(R/W)

DLYCEN Enable Delay Counter for Channel C.
The PWM_CTL.DLYCEN bit enables the Channel C delay counter, supporting phase-
offset control. Do not change the value of the PWM_CTL.DLYCEN bit while the
PWM is enabled (PWM_CTL.GLOBEN =1).

0 Disable

1 Enable

5
(R/W)

DLYBEN Enable Delay Counter for Channel B.
The PWM_CTL.DLYBEN bit enables the Channel B delay counter, supporting phase-
offset control. Do not change the value of the PWM_CTL.DLYBEN bit while the
PWM is enabled (PWM_CTL.GLOBEN =1).

0 Disable

1 Enable

4
(R/W)

DLYAEN Enable Delay Counter for Channel A.
The PWM_CTL.DLYAEN bit enables the Channel A delay counter, supporting phase-
offset control. Do not change the value of the PWM_CTL.DLYAEN bit while the
PWM is enabled (PWM_CTL.GLOBEN =1).

0 Disable

1 Enable

Table 16-6: PWM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–52 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Channel Config Register

The PWM_CHANCFG register configures Channel A, B, C, and D reference timer selection, high and low side
output features, and enables high frequency chopping operation. Do not change the value of any bits in the
PWM register while the PWM is enabled (PWM_CTL.GLOBEN =1).

3
(R/W)

DUEN Double Update Mode Enable.
In Single Update Mode, double buffering of all registers happens at the period
boundary of the PWM timer. In Double Update Mode, double buffering of all
registers (except delay counter registers) happens at the middle of the period as well
as the beginning of the period.

0 Single Update Mode

1 Double Update Mode

2
(R0/W1A)

SWTRIP Software Trip.
The PWM_CTL.SWTRIP bit permits tripping a fault condition through software,
shutting down PWM output. This bit always read as 0. If the PWM_CTL.SWTRIP bit
and PWM_CTL.GLOBEN bit are set in the same write, the write does not trip the fault
condition.

1 Force a Fault Trip Condition

1
(R/W)

EMURUN Output Behavior During Emulation Mode.
The PWM_CTL.EMURUN bit selects PWM output behavior during emulation mode.

0 Disable Outputs

1 Enable Outputs

0
(R/W)

GLOBEN Module Enable.
The PWM_CTL.GLOBEN bit enables the PWM, enabling all timers and outputs.
While this bit is enabled, processor code should not change the value of the PWM_
CTL.DLYAEN bit, PWM_CTL.DLYBEN bit, PWM_CTL.DLYCEN bit, PWM_CTL.
DLYDEN bit, PWM_CTL.EXTSYNCSEL bit, or any bits in the PWM_CHANCFG
register. Note that there is a latency between PWM disable and the cessation of
output waveforms. There is also a latency between PWM enable and start of output
waveforms. For the latency description, see the PWM functional description.

0 Disable

1 Enable

Table 16-6: PWM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–53

Figure 16-31: PWM_CHANCFG Register Diagram

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–54 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 16-7: PWM_CHANCFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30
(R/W)

ENCHOPDL Channel D Gate Chopping Enable Low Side.
The PWM_CHANCFG.ENCHOPDL bit enables mixing of the Channel D low side
output signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel D Low Side

1 Enable Chopping Channel D Low Side

29
(R/W)

POLDL Channel D low side Polarity.
The PWM_CHANCFG.POLDL bit selects the Channel D low side output polarity
(active-high or active-low).

0 Active Low

1 Active High

28
(R/W)

ENHPDH Channel D heightened-precision enable for high side Output.
The PWM_CHANCFG.ENHPDH bit enables heightened-precision Channel D high
side output.

0 Disable HP Output Channel D High

1 Enable HP Output Channel D High

27
(R/W)

ENCHOPDH Channel D Gate Chopping Enable High Side.
The PWM_CHANCFG.ENCHOPDH bit enables mixing of the Channel D high side
output signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel D High Side

1 Enable Chopping Channel D High Side

26
(R/W)

POLDH Channel D High side Polarity.
The PWM_CHANCFG.POLDH bit selects the Channel D high side output polarity
(active-high or active-low).

0 Active Low

1 Active High

25
(R/W)

MODELSD Channel D Mode of low Side Output.
The PWM_CHANCFG.MODELSD bit selects whether the low side output waveform is
based on independent controls or whether the low side output depends on the high
side output controls. When PWM_CHANCFG.MODELSD =0, the low side output is an
inverted form of the high side output, which is generated using the PWM_BH0 and
PWM_BH1 registers for pulse width, using the PWM_BCTL.PULSEMODEHI bits for
pulse positioning, and PWM_CHANCFG.POLBH bits for polarity.

0 Invert of high output

1 Independent control

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–55

24
(R/W)

REFTMRD Channel D Timer Reference.
The PWM_CHANCFG.REFTMRD bit selects whether the PWM uses PWMTMR1 or
PWMTMR0 as the reference timer for Channel D operation.

0 PWMTMR0 is Channel D reference

1 PWMTMR1 is Channel D reference

22
(R/W)

ENCHOPCL Channel C Gate Chopping Enable Low Side.
The PWM_CHANCFG.ENCHOPCL bit enables mixing of the Channel C low side
output signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel C Low Side

1 Enable Chopping Channel C Low Side

21
(R/W)

POLCL Channel C low side Polarity.
The PWM_CHANCFG.POLCL bit selects the Channel C low side output polarity
(active-high or active-low).

0 Active Low

1 Active High

20
(R/W)

ENHPCH Channel C heightened-precision enable for high side Output.
The PWM_CHANCFG.ENHPCH bit enables heightened-precision Channel C high
side output.

0 Disable HP Output Channel C High

1 Enable HP Output Channel C High

19
(R/W)

ENCHOPCH Channel C Gate Chopping Enable High Side.
The PWM_CHANCFG.ENCHOPCH bit enables mixing of the Channel C high side
output signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel C High Side

1 Enable Chopping Channel C High Side

18
(R/W)

POLCH Channel C High side Polarity.
The PWM_CHANCFG.POLCH bit selects the Channel C high side output polarity
(active-high or active-low).

0 Active Low

1 Active High

Table 16-7: PWM_CHANCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–56 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

17
(R/W)

MODELSC Channel C Mode of low Side Output.
The PWM_CHANCFG.MODELSC bit selects whether the low side output waveform is
based on independent controls or whether the low side output depends on the high
side output controls. When PWM_CHANCFG.MODELSC =0, the low side output is an
inverted form of the high side output, which is generated using the PWM_BH0 and
PWM_BH1 registers for pulse width, using the PWM_BCTL.PULSEMODEHI bits for
pulse positioning, and PWM_CHANCFG.POLBH bits for polarity.

0 Invert of high output

1 Independent control

16
(R/W)

REFTMRC Channel C Timer Reference.
The PWM_CHANCFG.REFTMRC bit selects whether the PWM uses PWMTMR1 or
PWMTMR0 as the reference timer for Channel C operation.

0 PWMTMR0 is Channel C reference

1 PWMTMR1 is Channel C reference

14
(R/W)

ENCHOPBL Channel B Gate Chopping Enable Low Side.
The PWM_CHANCFG.ENCHOPBL bit enables mixing of the Channel B low side
output signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel B Low Side

1 Enable Chopping Channel B Low Side

13
(R/W)

POLBL Channel B low side Polarity.
The PWM_CHANCFG.POLBL bit selects the Channel B low side output polarity
(active-high or active-low).

0 Active Low

1 Active High

12
(R/W)

ENHPBH Channel B heightened-precision enable for high side Output.
The PWM_CHANCFG.ENHPBH bit enables heightened-precision Channel B high
side output.

0 Disable HP Output Channel B High

1 Enable HP Output Channel B High

11
(R/W)

ENCHOPBH Channel B Gate Chopping Enable High Side.
The PWM_CHANCFG.ENCHOPBH bit enables mixing of the Channel B high side
output signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel B High Side

1 Enable Chopping Channel B High Side

Table 16-7: PWM_CHANCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–57

10
(R/W)

POLBH Channel B High side Polarity.
The PWM_CHANCFG.POLBH bit selects the Channel B high side output polarity
(active-high or active-low).

0 Active Low

1 Active High

9
(R/W)

MODELSB Channel B Mode of low Side Output.
The PWM_CHANCFG.MODELSB bit selects whether the low side output waveform is
based on independent controls or whether the low side output depends on the high
side output controls. When PWM_CHANCFG.MODELSB =0, the low side output is an
inverted form of the high side output, which is generated using the PWM_BH0 and
PWM_BH1 registers for pulse width, using the PWM_BCTL.PULSEMODEHI bits for
pulse positioning, and PWM_CHANCFG.POLBH bits for polarity.

0 Invert of high output

1 Independent control

8
(R/W)

REFTMRB Channel B Timer Reference.
The PWM_CHANCFG.REFTMRB bit selects whether the PWM uses PWMTMR1 or
PWMTMR0 as the reference timer for Channel B operation.

0 PWMTMR0 is Channel B reference

1 PWMTMR1 is Channel B reference

6
(R/W)

ENCHOPAL Channel A Gate Chopping Enable Low Side.
The PWM_CHANCFG.ENCHOPAL bit enables mixing of the Channel A low side
output signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel A Low Side

1 Enable Chopping Channel A Low Side

5
(R/W)

POLAL Channel A low side Polarity.
The PWM_CHANCFG.POLAL bit selects the Channel A low side output polarity
(active-high or active-low).

0 Active Low

1 Active High

4
(R/W)

ENHPAH Channel A heightened-precision enable for high side Output.
The PWM_CHANCFG.ENHPAH bit enables heightened-precision Channel A high
side output.

0 Disable HP Output Channel A High

1 Enable HP Output Channel A High

Table 16-7: PWM_CHANCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–58 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Trip Config Register

The PWM_TRIPCFG register configures Channel A, B, C, and D trip operation for trip inputs TRIP0 and
TRIP1.

3
(R/W)

ENCHOPAH Channel A Gate Chopping Enable High Side.
The PWM_CHANCFG.ENCHOPAH bit enables mixing of the Channel A high side
output signals with a high-frequency chopping signal, which is configured with the
PWM_CHOPCFG register.

0 Disable Chopping Channel A High Side

1 Enable Chopping Channel A High Side

2
(R/W)

POLAH Channel A High side Polarity.
The PWM_CHANCFG.POLAH bit selects the Channel A high side output polarity
(active-high or active-low).

0 Active Low

1 Active High

1
(R/W)

MODELSA Channel A Mode of low Side Output.
The PWM_CHANCFG.MODELSA bit selects whether the low side output waveform is
based on independent controls or whether the low side output depends on the high
side output controls. When PWM_CHANCFG.MODELSA =0, the low side output is an
inverted form of the high side output, which is generated using the PWM_AH0 and
PWM_AH1 registers for pulse width, using the PWM_ACTL.PULSEMODEHI bits for
pulse positioning, and PWM_CHANCFG.POLAH bits for polarity.

0 Invert of high output

1 Independent control

0
(R/W)

REFTMRA Channel A Timer Reference.
The PWM_CHANCFG.REFTMRA bit selects whether the PWM uses PWMTMR1 or
PWMTMR0 as the reference timer for Channel A operation.

0 PWMTMR0 is Channel A reference

1 PWMTMR1 is Channel A reference

Table 16-7: PWM_CHANCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–59

Figure 16-32: PWM_TRIPCFG Register Diagram

Table 16-8: PWM_TRIPCFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27
(R/W)

MODE1D Mode of TRIP1 for Channel D.
The PWM_TRIPCFG.MODE1D bit selects the trip mode of TRIP1 for Channel D. For
more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP1 Input

1 Self Restart on TRIP1 Input

26
(R/W)

EN1D Enable TRIP1 as a trip source for Channel D.
The PWM_TRIPCFG.EN1D bit enables TRIP1 as a trip source for Channel D.

0 Disable TRIP1 for Channel D

1 Enable TRIP1 for Channel D

25
(R/W)

MODE0D Mode of TRIP0 for Channel D.
The PWM_TRIPCFG.MODE0D bit selects the trip mode of TRIP0 for Channel D. For
more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP0 Input

1 Self Restart on TRIP0 Input

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–60 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

24
(R/W)

EN0D Enable TRIP0 as a trip source for Channel D.
The PWM_TRIPCFG.EN0D bit enables TRIP0 as a trip source for Channel D.

0 Disable TRIP0 for Channel D

1 Enable TRIP0 for Channel D

19
(R/W)

MODE1C Mode of TRIP1 for Channel C.
The PWM_TRIPCFG.MODE1C bit selects the trip mode of TRIP1 for Channel C. For
more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP1 Input

1 Self Restart on TRIP1 Input

18
(R/W)

EN1C Enable TRIP1 as a trip source for Channel C.
The PWM_TRIPCFG.EN1C bit enables TRIP1 as a trip source for Channel C.

0 Disable TRIP1 for Channel C

1 Enable TRIP1 for Channel C

17
(R/W)

MODE0C Mode of TRIP0 for Channel C.
The PWM_TRIPCFG.MODE0C bit selects the trip mode of TRIP0 for Channel C. For
more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP0 Input

1 Self Restart on TRIP0 Input

16
(R/W)

EN0C Enable TRIP0 as a trip source for Channel C.
The PWM_TRIPCFG.EN0C bit enables TRIP0 as a trip source for Channel C.

0 Disable TRIP0 for Channel C

1 Enable TRIP0 for Channel C

11
(R/W)

MODE1B Mode of TRIP1 for Channel B.
The PWM_TRIPCFG.MODE1B bit selects the trip mode of TRIP1 for Channel B. For
more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP1 Input

1 Self Restart on TRIP1 Input

10
(R/W)

EN1B Enable TRIP1 as a trip source for Channel B.
The PWM_TRIPCFG.EN1B bit enables TRIP1 as a trip source for Channel B.

0 Disable TRIP1 for Channel B

1 Enable TRIP1 for Channel B

9
(R/W)

MODE0B Mode of TRIP0 for Channel B.
The PWM_TRIPCFG.MODE0B bit selects the trip mode of TRIP0 for Channel B. For
more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP0 Input

1 Self Restart on TRIP0 Input

Table 16-8: PWM_TRIPCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–61

Status Register

The PWM_STAT register indicates the PWM PWMTRIP1-0 fault and input level status, indicates the
Channel A-D fault and self-restart status, and indicates the PWMTMR4-0 phase.

8
(R/W)

EN0B Enable TRIP0 as a trip source for Channel B.
The PWM_TRIPCFG.EN0B bit enables TRIP0 as a trip source for Channel B.

0 Disable TRIP0 for Channel B

1 Enable TRIP0 for Channel B

3
(R/W)

MODE1A Mode of TRIP1 for Channel A.
The PWM_TRIPCFG.MODE1A bit selects the trip mode of TRIP1 for Channel A. For
more information, see the PWM_TRIPCFG.MODE0A bit description.

0 Fault Trip on TRIP1 Input

1 Self Restart on TRIP1 Input

2
(R/W)

EN1A Enable TRIP1 as a trip source for Channel A.
The PWM_TRIPCFG.EN1A bit enables TRIP1 as a trip source for Channel A.

0 Disable TRIP1 for Channel A

1 Enable TRIP1 for Channel A

1
(R/W)

MODE0A Mode of TRIP0 for Channel A.
The PWM_TRIPCFG.MODE0A bit selects the trip mode of TRIP0 for Channel A.
In fault-trip mode (PWM_TRIPCFG.MODE0A =0), after the input is tripped, the trip
status appears in the corresponding channels fault-trip status bit (for example, PWM_
STAT.FLTTRIPA), and the PWM immediately shuts down outputs of that channel.
After a fault trip occurs, when the trip condition is no longer active, the processor
may cause channel outputs to resume by completing a write-1-to-clear the
corresponding fault-trip status bit. The raw (input level) trip input state is available
from the PWM_STAT.RAWTRIP0 and PWM_STAT.RAWTRIP0 bits.
In self-restart mode (PWM_TRIPCFG.MODE0A =1), after the input is tripped, the
trip status appears in the corresponding channels self-restart status bit (for example,
PWM_STAT.SRTRIPA), and the PWM immediately shuts down outputs of that
channel. On the next timer period boundary (of the PWMTMRx used by that
channel), if the trip condition is not active, the PWM clears the status and restarts the
channels output.

0 Fault Trip on TRIP0 Input

1 Self Restart on TRIP0 Input

0
(R/W)

EN0A Enable TRIP0 as a trip source for Channel A.
The PWM_TRIPCFG.EN0A bit enables TRIP0 as a trip source for Channel A.

0 Disable TRIP0 for Channel A

1 Enable TRIP0 for Channel A

Table 16-8: PWM_TRIPCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–62 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-33: PWM_STAT Register Diagram

Table 16-9: PWM_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/NW)

HPRDY Heightened-Precision Ready Status.
The PWM_STAT.HPRDY bit indicates whether or not the PWM is ready for
heightened-precision operation.

0 HPPWM Not Ready For Operation

1 HPPWM Ready For Operation

30
(R/W1C)

EMU Emulator Status.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–63

28
(R/W1C)

TMR4PHASE PWMTMR4 Phase Status.
The PWM_STAT.TMR4PHASE bit indicates the current phase for the PWMTMR4
waveform.

0 1st Half Phase

1 2nd Half Phase

27
(R/W1C)

TMR3PHASE PWMTMR3 Phase Status.
The PWM_STAT.TMR3PHASE bit indicates the current phase for the PWMTMR3
waveform.

0 1st Half Phase

1 2nd Half Phase

26
(R/W1C)

TMR2PHASE PWMTMR2 Phase Status.
The PWM_STAT.TMR2PHASE bit indicates the current phase for the PWMTMR2
waveform.

0 1st Half Phase

1 2nd Half Phase

25
(R/W1C)

TMR1PHASE PWMTMR1 Phase Status.
The PWM_STAT.TMR1PHASE bit indicates the current phase for the PWMTMR1
waveform.

0 1st Half Phase

1 2nd Half Phase

24
(R/W1C)

TMR0PHASE PWMTMR0 Phase Status.
The PWM_STAT.TMR0PHASE bit indicates the current phase for the PWMTMR0
waveform.

0 1st Half Phase

1 2nd Half Phase

20
(R/W1C)

TMR4PER PWMTMR4 Period Boundary Status.
The PWM_STAT.TMR4PER bit indicates whether or not the PWMTMR4 period
boundary has been reached.

0 PWMTMR4 period boundary not reached

1 PWMTMR4 period boundary reached

19
(R/W1C)

TMR3PER PWMTMR3 Period Boundary Status.
The PWM_STAT.TMR3PER bit indicates whether or not the PWMTMR3 period
boundary has been reached.

0 PWMTMR3 period boundary not reached

1 PWMTMR3 period boundary reached

Table 16-9: PWM_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–64 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

18
(R/W1C)

TMR2PER PWMTMR2 Period Boundary Status.
The PWM_STAT.TMR2PER bit indicates whether or not the PWMTMR2 period
boundary has been reached.

0 PWMTMR2 period boundary not reached

1 PWMTMR2 period boundary reached

17
(R/W1C)

TMR1PER PWMTMR1 Period Boundary Status.
The PWM_STAT.TMR1PER bit indicates whether or not the PWMTMR1 period
boundary has been reached.

0 PWMTMR1 period boundary not reached

1 PWMTMR1 period boundary reached

16
(R/W1C)

TMR0PER PWMTMR0 Period Boundary Status.
The PWM_STAT.TMR0PER bit indicates whether or not the PWMTMR0 period
boundary has been reached.

0 PWMTMR0 period boundary not reached

1 PWMTMR0 period boundary reached

11
(R/NW)

SRTRIPD Self-Restart Trip Status for Channel D.
The PWM_STAT.SRTRIPD bit indicates whether the PWM Channel D self-restart
has been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit
description.

0 Channel D Self-Restart Trip Status is "not tripped"

1 Channel D Self-Restart Trip Status is "tripped"

10
(R/W1C)

FLTTRIPD Fault Trip Status for Channel D.
The PWM_STAT.FLTTRIPD bit indicates whether the PWM Channel D fault has
been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit
description.

0 Channel D Fault Trip Status is "not tripped"

1 Channel D Fault Trip Status is "tripped"

9
(R/NW)

SRTRIPC Self-Restart Trip Status for Channel C.
The PWM_STAT.SRTRIPC bit indicates whether the PWM Channel C self-restart
has been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit
description.

0 Channel C Self-Restart Trip Status is "not tripped"

1 Channel C Self-Restart Trip Status is "tripped"

8
(R/W1C)

FLTTRIPC Fault Trip Status for Channel C.
The PWM_STAT.FLTTRIPC bit indicates whether the PWM Channel C fault has
been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit
description.

0 Channel C Fault Trip Status is "not tripped"

1 Channel C Fault Trip Status is "tripped"

Table 16-9: PWM_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–65

7
(R/NW)

SRTRIPB Self-Restart Trip Status for Channel B.
The PWM_STAT.SRTRIPB bit indicates whether the PWM Channel B self-restart
has been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit
description.

0 Channel B Self-Restart Trip Status is "not tripped"

1 Channel B Self-Restart Trip Status is "tripped"

6
(R/W1C)

FLTTRIPB Fault Trip Status for Channel B.
The PWM_STAT.FLTTRIPB bit indicates whether the PWM Channel B fault has
been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit
description.

0 Channel B Fault Trip Status is "not tripped"

1 Channel A Fault Trip Status is "tripped"

5
(R/NW)

SRTRIPA Self-Restart Trip Status for Channel A.
The PWM_STAT.SRTRIPA bit indicates whether the PWM Channel A self-restart
has been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit
description.

0 Channel A Self-Restart Trip Status is "not tripped"

1 Channel A Self-Restart Trip Status is "tripped"

4
(R/W1C)

FLTTRIPA Fault Trip Status for Channel A.
The PWM_STAT.FLTTRIPA bit indicates whether the PWM Channel A fault has
been tripped. For more information, see the PWM_TRIPCFG.MODE0A bit
description.

0 Channel A Fault Trip Status is "not tripped"

1 Channel A Fault Trip Status is "tripped"

3
(R/NW)

RAWTRIP1 Raw Trip 1 Status.
The PWM_STAT.RAWTRIP1 bit indicates the raw input level for the PWM TRIP1
input.

0 TRIP1 Level is Low

1 TRIP1 Level is High

2
(R/NW)

RAWTRIP0 Raw Trip 0 Status.
The PWM_STAT.RAWTRIP0 bit indicates the raw input level for the PWM TRIP0
input.

0 TRIP0 Level is Low

1 TRIP0 Level is High

1
(R/W1C)

TRIP1 Status bit set when TRIP1 is active low.
The PWM_STAT.TRIP1 bit indicates whether the PWM TRIP1 fault has been
tripped with an active-low input.

0 TRIP1 status is "not tripped"

1 TRIP1 status is "tripped" (active low)

Table 16-9: PWM_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–66 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Interrupt Mask Register

The PWM_IMSK register masks (disables) or unmasks (enables) PWM interrupts. When an unmasked inter-
rupt occurs, the PWM latches the interrupt status in the PWM_ILAT register.

Figure 16-34: PWM_IMSK Register Diagram

0
(R/W1C)

TRIP0 Status bit set when TRIP0 is active low.
The PWM_STAT.TRIP0 bit indicates whether the PWM TRIP0 fault has been
tripped with an active-low input.

0 TRIP0 status is "not tripped"

1 TRIP0 status is "tripped" (active low)

Table 16-10: PWM_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

20
(R/W)

TMR4PER PWMTMR4 Period Boundary Interrupt Enable.
The PWM_IMSK.TMR4PER bit enables (unmasks) the PWMTMR4 period
boundary interrupt. This condition occurs when the timers period boundary is
reached (PWM_STAT.TMR4PER =1).

0 Mask PWMTMR4 Period Interrupt

1 Unmask PWMTMR4 Period Interrupt

Table 16-9: PWM_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–67

Interrupt Latch Register

The PWM_ILAT register latches the occurrence of unmasked (enabled) PWM interrupts. These interrupts
are unmasked or masked with the PWM_IMSK register.

19
(R/W)

TMR3PER PWMTMR3 Period Boundary Interrupt Enable.
The PWM_IMSK.TMR3PER bit enables (unmasks) the PWMTMR3 period
boundary interrupt. This condition occurs when the timers period boundary is
reached (PWM_STAT.TMR3PER =1).

0 Mask PWMTMR3 Period Interrupt

1 Unmask PWMTMR3 Period Interrupt

18
(R/W)

TMR2PER PWMTMR2 Period Boundary Interrupt Enable.
The PWM_IMSK.TMR2PER bit enables (unmasks) the PWMTMR2 period
boundary interrupt. This condition occurs when the timers period boundary is
reached (PWM_STAT.TMR2PER =1).

0 Mask PWMTMR2 Period Interrupt

1 Unmask PWMTMR2 Period Interrupt

17
(R/W)

TMR1PER PWMTMR1 Period Boundary Interrupt Enable.
The PWM_IMSK.TMR1PER bit enables (unmasks) the PWMTMR1 period
boundary interrupt. This condition occurs when the timers period boundary is
reached (PWM_STAT.TMR1PER =1).

0 Mask PWMTMR1 Period Interrupt

1 Unmask PWMTMR1 Period Interrupt

16
(R/W)

TMR0PER PWMTMR0 Period Boundary Interrupt Enable.
The PWM_IMSK.TMR0PER bit enables (unmasks) the PWMTMR0 period
boundary interrupt. This condition occurs when the timers period boundary is
reached (PWM_STAT.TMR0PER =1).

0 Mask PWMTMR0 Period Interrupt

1 Unmask PWMTMR0 Period Interrupt

1
(R/W)

TRIP1 TRIP1 Interrupt Enable.
The PWM_IMSK.TRIP1 bit enables (unmasks) the TRIP1 interrupt. This condition
occurs when fault input is tripped (PWM_STAT.TRIP1 =1).

0 Mask TRIP1 Interrupt

1 Unmask TRIP1 Interrupt

0
(R/W)

TRIP0 TRIP0 Interrupt Enable.
The PWM_IMSK.TRIP0 bit enables (unmasks) the TRIP0 interrupt. This condition
occurs when fault input is tripped (PWM_STAT.TRIP0 =1).

0 Mask TRIP0 Interrupt

1 Unmask TRIP0 Interrupt

Table 16-10: PWM_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–68 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-35: PWM_ILAT Register Diagram

Table 16-11: PWM_ILAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

20
(R/W1C)

TMR4PER PWMTMR4 Period Latched Interrupt Status.
The PWM_ILAT.TMR4PER bit indicates the latched status of the PWMTMR4
period boundary interrupt.

0 No Interrupt Latched

1 Interrupt Latched

19
(R/W1C)

TMR3PER PWMTMR3 Period Latched Interrupt Status.
The PWM_ILAT.TMR3PER bit indicates the latched status of the PWMTMR3
period boundary interrupt.

0 No Interrupt Latched

1 Interrupt Latched

18
(R/W1C)

TMR2PER PWMTMR2 Period Latched Interrupt Status.
The PWM_ILAT.TMR2PER bit indicates the latched status of the PWMTMR2
period boundary interrupt.

0 No Interrupt Latched

1 Interrupt Latched

17
(R/W1C)

TMR1PER PWMTMR1 Period Latched Interrupt Status.
The PWM_ILAT.TMR1PER bit indicates the latched status of the PWMTMR1
period boundary interrupt.

0 No Interrupt Latched

1 Interrupt Latched

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–69

Chop Configuration Register

The PWM_CHOPCFG register holds a divisor value that controls the chopping frequency. The PWM permits
a mixing of the output signals with a high-frequency chopping signal to aid with interfacing to pulse trans-
formers. Also note that high-frequency chopping may be independently enabled for each channel's high-
side and the low-side outputs using channel control bits. (For example, control chopping for Channel A
with the PWM_CHANCFG.ENCHOPAH and PWM_CHANCFG.ENCHOPAH bits.)

Figure 16-36: PWM_CHOPCFG Register Diagram

16
(R/W1C)

TMR0PER PWMTMR0 Period Boundary Interrupt Latched Status.
The PWM_ILAT.TMR0PER bit indicates the latched status of the PWMTMR0
period boundary interrupt.

0 No Interrupt Latched

1 Interrupt Latched

1
(R/W1C)

TRIP1 TRIP1 Interrupt Latched Status.
The PWM_ILAT.TRIP1 bit indicates the latched status of the TRIP1 interrupt.

0 No Interrupt Latched

1 Interrupt Latched

0
(R/W1C)

TRIP0 TRIP0 Interrupt Latched Status.
The PWM_ILAT.TRIP0 bit indicates the latched status of the TRIP0 interrupt.

0 No Interrupt Latched

1 Interrupt Latched

Table 16-11: PWM_ILAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–70 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Dead Time Register

The PWM_DT register controls the dead time, which the PWM inserts into the pairs of output signals. Note
that each channel has its own version of a double buffered dead time register, the double buffering of which
depends on the period boundary of the PWMTMRx that the channel could be currently using. The dead
time, Td, is related to the value in the PWM_DT register by:

Td = PWM_DT x 2 x tCK

Note that the PWM holds the buffered PWM_DT value for a channel at 0 if the channel's low side mode is
independent (for example, PWM_CHANCFG.MODELSA =1). Also, note that the PWM_DT value must be less than
half the respective timer period (for example, PWM_TM0/2). For more information about applying dead time
to PWM output pairs, see the PWM Functional Description section.

Figure 16-37: PWM_DT Register Diagram

Table 16-12: PWM_CHOPCFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Gate Chopping Divisor.
The PWM_CHOPCFG.VALUE bits provide the high frequency chopping divisor.
When the divisor value is changed, the new period takes effect from the next edge of
the chopping signal. The PWM_CHOPCFG.VALUE value may be calculated using
either of the following formulas:

CHOPDIV = [(TCHOP/TCK) / 4] - 1

CHOPDIV = [(fCK / fCHOP) / 4] - 1

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–71

Sync Pulse Width Register

The PWM_SYNC_WID register selects the pulse width for the external sync pulse available on the PWM_SYNC
pin. The relation between the PWM_SYNC_WID register value and the pulse width (TPWM_SYNC) is give by
the formula:

PWM_SYNC_WID = (TPWM_SYNC / tCK) -1

For more information about applying the sync pulse width, see the PWM Functional Description section.
Note that if the pulse width is changed in between sync pulses, the PWM applies the changed width on the
next internal sync pulse. If, while the sync pulse is active, the chosen timer reaches its period boundary, the
changed pulse width takes effect on that period boundary.

Figure 16-38: PWM_SYNC_WID Register Diagram

Table 16-13: PWM_DT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:0
(R/W)

VALUE Dead Time.
The PWM_DT.VALUE bits select the dead time that the PWM adds to the timing of
the output pairs.

Table 16-14: PWM_SYNC_WID Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:0
(R/W)

VALUE Sync Pulse Width.
The PWM_SYNC_WID.VALUE bits select the pulse width for the external sync pulse
available on the PWM_SYNC pin.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–72 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Timer 0 Period Register

The PWM_TM0 register controls the switch period (TSP of the PWMTMR0 timer. The PWM_TM0 value is in
units of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM0= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the
respective timer. For more information about applying the switch period, see the PWM Functional
Description section. Note that PWM_TM0 values of 0 and 1 are not defined and must not be used when the
PWM is enabled.

Figure 16-39: PWM_TM0 Register Diagram

Timer 1 Period Register

The PWM_TM1 register controls the switch period (TSP of the PWMTMR1 timer. The PWM_TM1 value is in
units of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM1= (TSP) / 2 x tCK

Table 16-15: PWM_TM0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Timer PWMTMR0 Period Value.
The PWM_TM0.VALUE bits select the period for the PWMTMR0 timer.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–73

The value written to the register is effectively the number of tCK clock increments in half the period of the
respective timer. For more information about applying the switch period, see the PWM Functional
Description section. Note that PWM_TM1 values of 0 and 1 are not defined and must not be used when the
PWM is enabled.

Figure 16-40: PWM_TM1 Register Diagram

Timer 2 Period Register

The PWM_TM2 register controls the switch period (TSP of the PWMTMR2 timer. The PWM_TM2 value is in
units of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM1= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the
respective timer. For more information about applying the switch period, see the PWM Functional
Description section. Note that PWM_TM2 values of 0 and 1 are not defined and must not be used when the
PWM is enabled.

Table 16-16: PWM_TM1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Timer PWMTMR1 Period Value.
The PWM_TM1.VALUE bits select the period for the PWMTMR1 timer.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–74 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-41: PWM_TM2 Register Diagram

Timer 3 Period Register

The PWM_TM3 register controls the switch period (TSP of the PWMTMR3 timer. The PWM_TM3 value is in
units of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM3= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the
respective timer. For more information about applying the switch period, see the PWM Functional
Description section. Note that PWM_TM3 values of 0 and 1 are not defined and must not be used when the
PWM is enabled.

Figure 16-42: PWM_TM3 Register Diagram

Table 16-17: PWM_TM2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Timer PWMTMR2 Period Value.
The PWM_TM2.VALUE bits select the period for the PWMTMR2 timer.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–75

Timer 4 Period Register

The PWM_TM4 register controls the switch period (TSP of the PWMTMR4 timer. The PWM_TM4 value is in
units of tCK (the period of the peripheral clock) and the and is given by the formula:

PWM_TM4= (TSP) / 2 x tCK

The value written to the register is effectively the number of tCK clock increments in half the period of the
respective timer. For more information about applying the switch period, see the PWM Functional
Description section. Note that PWM_TM4 values of 0 and 1 are not defined and must not be used when the
PWM is enabled.

Figure 16-43: PWM_TM4 Register Diagram

Table 16-18: PWM_TM3 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Timer PWMTMR3 Period Value.
The PWM_TM3.VALUE bits select the period for the PWMTMR3 timer.

Table 16-19: PWM_TM4 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Timer PWMTMR4 Period Value.
The PWM_TM4.VALUE bits select the period for the PWMTMR4 timer.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–76 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Channel A Delay Register

The PWM_DLYA register controls a delay for the Channel A timer (only PWMTMR1, PWMTMR2,
PWMTMR3 or PWMTMR4) with reference to the main timer (PWMTMR0). To use apply this delay, the
delay must be enabled (PWM_CTL.DLYAEN =1}. For more information about applying the delay, see the
PWM Functional Description section. Note that the PWM_DLYA delay value must be less that less that twice
the period value of the timer being used for the channel (for example, if PWMTMR1 is used, PWM_DLYA
must be less than 2xPWMTMR1). Also, note that the period of the main timer must be an integer multiple
of the timer being used for the channel (for example, if PWMTMR1 is used, PWMTMR0 = NxPW-
MTMR1, where N is an integer).

Figure 16-44: PWM_DLYA Register Diagram

Channel B Delay Register

The PWM_DLYB register controls a delay for the Channel B timer (only PWMTMR1, PWMTMR2,
PWMTMR3 or PWMTMR4) with reference to the main timer (PWMTMR0). To use apply this delay, the
delay must be enabled (PWM_CTL.DLYBEN =1}. For more information about applying the delay, see the
PWM Functional Description section. Note that the PWM_DLYB delay value must be less that less that twice
the period value of the timer being used for the channel (for example, if PWMTMR1 is used, PWM_DLYB
must be less than 2xPWMTMR1). Also, note that the period of the main timer must be an integer multiple
of the timer being used for the channel (for example, if PWMTMR1 is used, PWMTMR0 = NxPW-
MTMR1, where N is an integer).

Table 16-20: PWM_DLYA Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Channel A Delay Value.
The PWM_DLYA.VALUE bits select the phase delay between the main timer
(PWMTMR0) and the timer used for Channel A.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–77

Figure 16-45: PWM_DLYB Register Diagram

Channel C Delay Register

The PWM_DLYC register controls a delay for the Channel C timer (only PWMTMR1, PWMTMR2,
PWMTMR3 or PWMTMR4) with reference to the main timer (PWMTMR0). To use apply this delay, the
delay must be enabled (PWM_CTL.DLYCEN =1}. For more information about applying the delay, see the
PWM Functional Description section. Note that the PWM_DLYC delay value must be less that less that twice
the period value of the timer being used for the channel (for example, if PWMTMR1 is used, PWM_DLYC
must be less than 2xPWMTMR1). Also, note that the period of the main timer must be an integer multiple
of the timer being used for the channel (for example, if PWMTMR1 is used, PWMTMR0 = NxPW-
MTMR1, where N is an integer).

Figure 16-46: PWM_DLYC Register Diagram

Table 16-21: PWM_DLYB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Channel B Delay Value.
The PWM_DLYB.VALUE bits select the phase delay between the main timer
(PWMTMR0) and the timer used for Channel B.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–78 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Channel D Delay Register

The PWM_DLYD register controls a delay for the Channel D timer (only PWMTMR1, PWMTMR2,
PWMTMR3 or PWMTMR4) with reference to the main timer (PWMTMR0). To use apply this delay, the
delay must be enabled (PWM_CTL.DLYDEN =1}. For more information about applying the delay, see the
PWM Functional Description section. Note that the PWM_DLYD delay value must be less that less that twice
the period value of the timer being used for the channel (for example, if PWMTMR1 is used, PWM_DLYD
must be less than 2xPWMTMR1). Also, note that the period of the main timer must be an integer multiple
of the timer being used for the channel (for example, if PWMTMR1 is used, PWMTMR0 = NxPW-
MTMR1, where N is an integer).

Figure 16-47: PWM_DLYD Register Diagram

Channel A Control Register

The PWM_ACTL register selects the low and high side output pulse mode, enables low and high side output,
and enables low/high side output crossover.

Table 16-22: PWM_DLYC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Channel C Delay Value.
The PWM_DLYC.VALUE bits select the phase delay between the main timer
(PWMTMR0) and the timer used for Channel C.

Table 16-23: PWM_DLYD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Channel D Delay Value.
The PWM_DLYD.VALUE bits select the phase delay between the main timer
(PWMTMR0) and the timer used for Channel D.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–79

Figure 16-48: PWM_ACTL Register Diagram

Table 16-24: PWM_ACTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:10
(R/W)

PULSEMODELO Low Side Output Pulse Position.
The PWM_ACTL.PULSEMODELO bits select the pulse position for Channel A low
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_AL0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode,
the channel forms an asymmetrical pulse waveform around the center of the PWM
period. This mode uses both the duty cycle registers (PWM_AL0 and PWM_AL1). In
left half or right half mode, the channel forms the pulse waveforms on either the first
half (left) or the second half (right) of the PWM period. This mode uses both the
duty cycle registers (PWM_AL0 and PWM_AL1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–80 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Channel A-High Duty-0 Register

The PWM_AH0 and PWM_AH1 registers determine the width for the high side output pulses. The values in
these registers select the assertion count (in terms of tCK) of the high side output pulses for the Channel A
duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_ACTL.
PULSEMODEHI bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_AH0 register
to determine the assertion and de-assertion count for the high side output pulses. When the pulse mode is

9:8
(R/W)

PULSEMODEHI High Side Output Pulse Position.
The PWM_ACTL.PULSEMODEHI bits select the pulse position for Channel A high
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_AH0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode,
the channel forms an asymmetrical pulse waveform around the center of the PWM
period. This mode uses both the duty cycle registers (PWM_AH0 and PWM_AH1). In
left half or right half mode, the channel forms the pulse waveforms on either the first
half (left) or the second half (right) of the PWM period. This mode uses both the
duty cycle registers (PWM_AH0 and PWM_AH1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

2
(R/W)

XOVR high-low Crossover Enable.
The PWM_ACTL.XOVR bit enables crossover between the channels high and low side
outputs. When enabled, this bit directs the PWM to send the low-side output through
the high-side output pin and the high-side output through the low side output pin.

0 Disable Crossover

1 Enable Crossover

1
(R/W)

DISLO Channel Low Side Output Disable.
The PWM_ACTL.DISLO bit enables the channels low side output.

0 Disable Low Side Output

1 Enable Low Side Output

0
(R/W)

DISHI Channel High Side Output Disable.
The PWM_ACTL.DISHI bit enables the channels high side output.

0 Disable High Side Output

1 Enable High Side Output

Table 16-24: PWM_ACTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–81

asymmetrical, left half, or right half, the PWM asserts Channel A high pulse output for count less than
PWM_AH0 and de-asserts this output for count greater than PWM_AH1.

The value range for the PWM_AH0 and PWM_AH1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
AH0 and PWM_AH1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_AH0 or PWM_AH1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Figure 16-49: PWM_AH0 Register Diagram

Channel A-High Duty-1 Register

The PWM_AH0 and PWM_AH1 registers determine the width for the high side output pulses. For more infor-
mation, see the PWM_AH0 register description.

Table 16-25: PWM_AH0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_AH0.DUTY bits select the duty cycle asserted count for Channel A high
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–82 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-50: PWM_AH1 Register Diagram

Channel A-High Heightened-Precision Duty-0 Register

The PWM_AH0_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_AH0 register, allows programs to specify fractional duty cycles.The
PWM_AH0_HP register and the PWM_AH0 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_AH0_HP and the PWM_AH0 registers are also present in the single full duty
register (PWM_AH_DUTY0).

Figure 16-51: PWM_AH0_HP Register Diagram

Table 16-26: PWM_AH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.
The PWM_AH1.DUTY bits select the duty cycle de-asserted count for Channel A high
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–83

Channel A-High Heightened-Precision Duty-1 Register

The PWM_AH1_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_AH0 register, allows programs to specify fractional duty cycles.The
PWM_AH1_HP register and the PWM_AH1 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_AH1_HP and the PWM_AH1 registers are also present in the single full duty
register (PWM_AH_DUTY1).

Figure 16-52: PWM_AH1_HP Register Diagram

Channel A-Low Duty-0 Register

The PWM_AL0 and PWM_AL1 registers determine the width for the low side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the low side output pulses for the Channel A duty
cycle.

Table 16-27: PWM_AH0_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.

Table 16-28: PWM_AH1_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_AH1_HP.ENHDIV bits provide fractional duty cycles for Channel A high
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–84 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_ACTL.
PULSEMODELO bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_AL0 register
to determine the assertion and de-assertion count for the low side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel A low pulse output for count less than PWM_
AL0 and de-asserts this output for count greater than PWM_AL1.

The value range for the PWM_AL0 and PWM_AL1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
AL0 and PWM_AL1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_AL0 or PWM_AL1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Figure 16-53: PWM_AL0 Register Diagram

Table 16-29: PWM_AL0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_AL0.DUTY bits select the duty cycle asserted count for Channel A low
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–85

Channel A-Low Duty-1 Register

The PWM_AL0 and PWM_AL1 registers determine the width for the low side output pulses. For more infor-
mation, see the PWM_AL0 register description.

Figure 16-54: PWM_AL1 Register Diagram

Channel A-Low Heightened-Precision Duty-0 Register

The PWM_AL0_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_AL0 register, allows programs to specify fractional duty cycles.The
PWM_AL0_HP register and the PWM_AL0 register work together in a Q15.8 signed two's complement fixed-
point format. Note that the bit fields in the PWM_AL0_HP and the PWM_AL0 registers are also present in the
single full duty register (PWM_AL_DUTY0).

Figure 16-55: PWM_AL0_HP Register Diagram

Table 16-30: PWM_AL1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.
The PWM_AL1.DUTY bits select the duty cycle de-asserted count for Channel A low
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–86 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Channel A-Low Heightened-Precision Duty-1 Register

The PWM_AL1_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_AL1 register, allows programs to specify fractional duty cycles.The
PWM_AL1_HP register and the PWM_AL1 register work together in a Q15.8 signed two's complement fixed-
point format. Note that the bit fields in the PWM_AL1_HP and the PWM_AL1 registers are also present in the
single full duty register (PWM_AL_DUTY1).

Figure 16-56: PWM_AL1_HP Register Diagram

Channel B Control Register

The PWM_BCTL register selects the low and high side output pulse mode, enables low and high side output,
and enables low/high side output crossover.

Table 16-31: PWM_AL0_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_AL0_HP.ENHDIV bits provide fractional duty cycles for Channel A low
side output.

Table 16-32: PWM_AL1_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_AL1_HP.ENHDIV bits provide fractional duty cycles for Channel A low
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–87

Figure 16-57: PWM_BCTL Register Diagram

Table 16-33: PWM_BCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:10
(R/W)

PULSEMODELO Low Side Output Pulse Position.
The PWM_BCTL.PULSEMODELO bits select the pulse position for Channel B low
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_BL0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode,
the channel forms an asymmetrical pulse waveform around the center of the PWM
period. This mode uses both the duty cycle registers (PWM_BL0 and PWM_BL1). In
left half or right half mode, the channel forms the pulse waveforms on either the first
half (left) or the second half (right) of the PWM period. This mode uses both the
duty cycle registers (PWM_BL0 and PWM_BL1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–88 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Channel B-High Duty-0 Register

The PWM_BH0 and PWM_BH1 registers determine the width for the high side output pulses. The values in
these registers select the assertion count (in terms of tCK) of the high side output pulses for the Channel B
duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_BCTL.
PULSEMODEHI bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_BH0 register
to determine the assertion and de-assertion count for the high side output pulses. When the pulse mode is

9:8
(R/W)

PULSEMODEHI High Side Output Pulse Position.
The PWM_BCTL.PULSEMODEHI bits select the pulse position for Channel B high
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_BH0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode,
the channel forms an asymmetrical pulse waveform around the center of the PWM
period. This mode uses both the duty cycle registers (PWM_BH0 and PWM_BH1). In
left half or right half mode, the channel forms the pulse waveforms on either the first
half (left) or the second half (right) of the PWM period. This mode uses both the
duty cycle registers (PWM_BH0 and PWM_BH1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

2
(R/W)

XOVR high-low Crossover Enable.
The PWM_BCTL.XOVR bit enables crossover between the channels high and low side
outputs. When enabled, this bit directs the PWM to send the low-side output through
the high-side output pin and the high-side output through the low side output pin.

0 Disable Crossover

1 Enable Crossover

1
(R/W)

DISLO Channel Low Side Output Disable.
The PWM_BCTL.DISLO bit enables the channels low side output.

0 Disable Low Side Output

1 Enable Low Side Output

0
(R/W)

DISHI Channel High Side Output Disable.
The PWM_BCTL.DISHI bit enables the channels high side output.

0 Disable High Side Output

1 Enable High Side Output

Table 16-33: PWM_BCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–89

asymmetrical, left half, or right half, the PWM asserts Channel B high pulse output for count less than PWM_
BH0 and de-asserts this output for count greater than PWM_BH1.

The value range for the PWM_BH0 and PWM_BH1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
BH0 and PWM_BH1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_BH0 or PWM_BH1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Figure 16-58: PWM_BH0 Register Diagram

Channel B-High Duty-1 Register

The PWM_BH0 and PWM_BH1 registers determine the width for the high side output pulses. For more infor-
mation, see the PWM_BH0 register description.

Table 16-34: PWM_BH0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–90 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-59: PWM_BH1 Register Diagram

Channel B-High Heightened-Precision Duty-0 Register

The PWM_BH0_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_BH0 register, allows programs to specify fractional duty cycles. The
PWM_BH0_HP register and the PWM_BH0 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_BH0_HP and the PWM_BH0 registers are also present in the single full duty
register (PWM_BH_DUTY0).

Figure 16-60: PWM_BH0_HP Register Diagram

Table 16-35: PWM_BH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–91

Channel B-High Heightened-Precision Duty-1 Register

The PWM_BH1_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_BH1 register, allows programs to specify fractional duty cycles. The
PWM_BH1_HP register and the PWM_BH1 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_BH1_HP and the PWM_BH1 registers are also present in the single full duty
register (PWM_BH_DUTY1).

Figure 16-61: PWM_BH1_HP Register Diagram

Channel B-Low Duty-0 Register

The PWM_BL0 and PWM_BL1 registers determine the width for the low side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the low side output pulses for the Channel B duty
cycle.

Table 16-36: PWM_BH0_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_BH0_HP.ENHDIV bits provide fractional duty cycles for Channel B high
side output.

Table 16-37: PWM_BH1_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_BH1_HP.ENHDIV bits provide fractional duty cycles for Channel B high
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–92 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_BCTL.
PULSEMODELO bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_BL0 register
to determine the assertion and de-assertion count for the low side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel B low pulse output for count less than PWM_
BL0 and de-asserts this output for count greater than PWM_BL1.

The value range for the PWM_BL0 and PWM_BL1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
BL0 and PWM_BL1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_BL0 or PWM_BL1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Figure 16-62: PWM_BL0 Register Diagram

Table 16-38: PWM_BL0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_BL0.DUTY bits select the duty cycle asserted count for Channel B low side
output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–93

Channel B-Low Duty-1 Register

The PWM_BL0 and PWM_BL1 registers determine the width for the low side output pulses. For more infor-
mation, see the PWM_BL0 register description.

Figure 16-63: PWM_BL1 Register Diagram

Channel B-Low Heightened-Precision Duty-0 Register

The PWM_BL0_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_BL0 register, allows programs to specify fractional duty cycles. The
PWM_BL0_HP register and the PWM_BL0 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_BL0_HP and the PWM_BL0 registers are also present in the single full duty
register (PWM_BL_DUTY0).

Table 16-39: PWM_BL1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.
The PWM_BL1.DUTY bits select the duty cycle de-asserted count for Channel B low
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–94 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-64: PWM_BL0_HP Register Diagram

Channel B-Low Heightened-Precision Duty-1 Register

The PWM_BL1_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_BL1 register, allows programs to specify fractional duty cycles. The
PWM_BL1_HP register and the PWM_BL1 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_BL1_HP and the PWM_BL1 registers are also present in the single full duty
register (PWM_BL_DUTY1).

Figure 16-65: PWM_BL1_HP Register Diagram

Table 16-40: PWM_BL0_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_BL0_HP.ENHDIV bits provide fractional duty cycles for Channel B low
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–95

Channel C Control Register

The PWM_CCTL register selects the low and high side output pulse mode, enables low and high side output,
and enables low/high side output crossover.

Figure 16-66: PWM_CCTL Register Diagram

Table 16-41: PWM_BL1_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_BL1_HP.ENHDIV bits provide fractional duty cycles for Channel B low
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–96 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 16-42: PWM_CCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:10
(R/W)

PULSEMODELO Low Side Output Pulse Position.
The PWM_CCTL.PULSEMODELO bits select the pulse position for Channel C low
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_CL0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode,
the channel forms an asymmetrical pulse waveform around the center of the PWM
period. This mode uses both the duty cycle registers (PWM_CL0 and PWM_CL1). In
left half or right half mode, the channel forms the pulse waveforms on either the first
half (left) or the second half (right) of the PWM period. This mode uses both the
duty cycle registers (PWM_CL0 and PWM_CL1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

9:8
(R/W)

PULSEMODEHI High Side Output Pulse Position.
The PWM_CCTL.PULSEMODEHI bits select the pulse position for Channel C high
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_CH0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode,
the channel forms an asymmetrical pulse waveform around the center of the PWM
period. This mode uses both the duty cycle registers (PWM_CH0 and PWM_CH1). In
left half or right half mode, the channel forms the pulse waveforms on either the first
half (left) or the second half (right) of the PWM period. This mode uses both the
duty cycle registers (PWM_CH0 and PWM_CH1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

2
(R/W)

XOVR high-low Crossover Enable.
The PWM_CCTL.XOVR bit enables crossover between the channels high and low side
outputs. When enabled, this bit directs the PWM to send the low-side output through
the high-side output pin and the high-side output through the low side output pin.

0 Disable Crossover

1 Enable Crossover

1
(R/W)

DISLO Channel Low Side Output Disable.
The PWM_CCTL.DISLO bit enables the channels low side output.

0 Disable Low Side Output

1 Enable Low Side Output

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–97

Channel C-High Pulse Duty Register 0

The PWM_CH0 and PWM_CH1 registers determine the width for the high side output pulses. The values in
these registers select the assertion count (in terms of tCK) of the high side output pulses for the Channel C
duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_CCTL.
PULSEMODEHI bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_CH0 register
to determine the assertion and de-assertion count for the high side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel C high pulse output for count less than
PWM_CH0 and de-asserts this output for count greater than PWM_CH1.

The value range for the PWM_CH0 and PWM_CH1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
CH0 and PWM_CH1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_CH0 or PWM_CH1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

0
(R/W)

DISHI Channel High Side Output Disable.
The PWM_CCTL.DISHI bit enables the channels high side output.

0 Disable High Side Output

1 Enable High Side Output

Table 16-42: PWM_CCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–98 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-67: PWM_CH0 Register Diagram

Channel C-High Pulse Duty Register 1

The PWM_CH0 and PWM_CH1 registers determine the width for the high side output pulses. For more infor-
mation, see the PWM_CH0 register description.

Figure 16-68: PWM_CH1 Register Diagram

Table 16-43: PWM_CH0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_CH0.DUTY bits select the duty cycle asserted count for Channel C high
side output.

Table 16-44: PWM_CH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.
The PWM_CH1.DUTY bits select the duty cycle de-asserted count for Channel C high
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–99

Channel C-High Pulse Heightened-Precision Duty Register 0

The PWM_CH0_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_CH0 register, allows programs to specify fractional duty cycles. The
PWM_CH0_HP register and the PWM_CH0 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_CH0_HP and the PWM_CH0 registers are also present in the single full duty
register (PWM_CH_DUTY0).

Figure 16-69: PWM_CH0_HP Register Diagram

Channel C-High Pulse Heightened-Precision Duty Register 1

The PWM_CH1_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_CH1 register, allows programs to specify fractional duty cycles. The
PWM_CH1_HP register and the PWM_CH1 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_CH1_HP and the PWM_CH1 registers are also present in the single full duty
register (PWM_CH_DUTY1).

Table 16-45: PWM_CH0_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_CH0_HP.ENHDIV bits provide fractional duty cycles for Channel C high
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–100 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-70: PWM_CH1_HP Register Diagram

Channel C-Low Pulse Duty Register 0

The PWM_CL0 and PWM_CL1 registers determine the width for the low side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the low side output pulses for the Channel C duty
cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_CCTL.
PULSEMODELO bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_CL0 register
to determine the assertion and de-assertion count for the low side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel C low pulse output for count less than PWM_
CL0 and de-asserts this output for count greater than PWM_CL1.

The value range for the PWM_CL0 and PWM_CL1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
CL0 and PWM_CL1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_CL0 or PWM_CL1 registers that fall outside these limits causes PWM over
or under modulation.

Table 16-46: PWM_CH1_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_CH1_HP.ENHDIV bits provide fractional duty cycles for Channel C high
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–101

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Figure 16-71: PWM_CL0 Register Diagram

Channel C-Low Duty-1 Register

Figure 16-72: PWM_CL1 Register Diagram

Table 16-47: PWM_CL0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_CL0.DUTY bits select the duty cycle asserted count for Channel C low
side output.

Table 16-48: PWM_CL1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–102 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Channel C-Low Pulse Duty Register 1

The PWM_CL0_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_CL0 register, allows programs to specify fractional duty cycles. The
PWM_CL0_HP register and the PWM_CL0 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_CL0_HP and the PWM_CL0 registers are also present in the single full duty
register (PWM_CL_DUTY0).

Figure 16-73: PWM_CL0_HP Register Diagram

Channel C-Low Heightened-Precision Duty-1 Register

The PWM_CL1_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_CL1 register, allows programs to specify fractional duty cycles. The
PWM_CL1_HP register and the PWM_CL1 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_CL1_HP and the PWM_CL1 registers are also present in the single full duty
register (PWM_CL_DUTY1).

Table 16-49: PWM_CL0_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_CL0_HP.ENHDIV bits provide fractional duty cycles for Channel C low
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–103

Figure 16-74: PWM_CL1_HP Register Diagram

Channel D Control Register

The PWM_DCTL register selects the low and high side output pulse mode, enables low and high side output,
and enables low/high side output crossover.

Figure 16-75: PWM_DCTL Register Diagram

Table 16-50: PWM_CL1_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_CL1_HP.ENHDIV bits provide fractional duty cycles for Channel C low
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–104 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 16-51: PWM_DCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11:10
(R/W)

PULSEMODELO Low Side Output Pulse Position.
The PWM_DCTL.PULSEMODELO bits select the pulse position for Channel D low
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_DL0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode,
the channel forms an asymmetrical pulse waveform around the center of the PWM
period. This mode uses both the duty cycle registers (PWM_DL0 and PWM_DL1). In
left half or right half mode, the channel forms the pulse waveforms on either the first
half (left) or the second half (right) of the PWM period. This mode uses both the
duty cycle registers (PWM_DL0 and PWM_DL1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

9:8
(R/W)

PULSEMODEHI High Side Output Pulse Position.
The PWM_DCTL.PULSEMODEHI bits select the pulse position for Channel D high
side output. In symmetrical mode, the channel forms a symmetrical pulse waveform
around the center of the PWM period. Only one of the duty cycle registers is used for
an output in symmetrical mode. Note that in this mode, the values in the PWM_DH0
register is scaled, such that a value of 0 produces 50% duty. In asymmetrical mode,
the channel forms an asymmetrical pulse waveform around the center of the PWM
period. This mode uses both the duty cycle registers (PWM_DH0 and PWM_DH1). In
left half or right half mode, the channel forms the pulse waveforms on either the first
half (left) or the second half (right) of the PWM period. This mode uses both the
duty cycle registers (PWM_DH0 and PWM_DH1).

0 Symmetrical

1 Asymmetrical

2 Left Half

3 Right Half

2
(R/W)

XOVR high-low Crossover Enable.
The PWM_DCTL.XOVR bit enables crossover between the channels high and low side
outputs. When enabled, this bit directs the PWM to send the low-side output through
the high-side output pin and the high-side output through the low side output pin.

0 Disable Crossover

1 Enable Crossover

1
(R/W)

DISLO Channel Low Side Output Disable.
The PWM_DCTL.DISLO bit enables the channels low side output.

0 Disable Low Side Output

1 Enable Low Side Output

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–105

Channel D-High Duty-0 Register

The PWM_DH0 and PWM_DH1 registers determine the width for the high side output pulses. The values in
these registers select the assertion count (in terms of tCK) of the high side output pulses for the Channel D
duty cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_DCTL.
PULSEMODEHI bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_DH0 register
to determine the assertion and de-assertion count for the high side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel D high pulse output for count less than
PWM_DH0 and de-asserts this output for count greater than PWM_DH1.

The value range for the PWM_DH0 and PWM_DH1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
DH0 and PWM_DH1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_DH0 or PWM_DH1 registers that fall outside these limits causes PWM over
or under modulation.

For more information about pulse modes and duty cycle selection, see the Functional Description section.

0
(R/W)

DISHI Channel High Side Output Disable.
The PWM_DCTL.DISHI bit enables the channels high side output.

0 Disable High Side Output

1 Enable High Side Output

Table 16-51: PWM_DCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–106 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-76: PWM_DH0 Register Diagram

Channel D-High Pulse Duty Register 1

The PWM_DH0 and PWM_DH1 registers determine the width for the high side output pulses. For more infor-
mation, see the PWM_DH0 register description.

Figure 16-77: PWM_DH1 Register Diagram

Table 16-52: PWM_DH0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_DH0.DUTY bits select the duty cycle asserted count for Channel D high
side output.

Table 16-53: PWM_DH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.
The PWM_DH1.DUTY bits select the duty cycle de-asserted count for Channel D
high side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–107

Channel D-High Pulse Heightened-Precision Duty Register 0

The PWM_DH0_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_DH0 register, allows programs to specify fractional duty cycles. The
PWM_DH0_HP register and the PWM_DH0 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_DH0_HP and the PWM_DH0 registers are also present in the single full duty
register (PWM_DH_DUTY0).

Figure 16-78: PWM_DH0_HP Register Diagram

Channel D High Pulse Heightened-Precision Duty Register 1

The PWM_DH1_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_DH1 register, allows programs to specify fractional duty cycles. The
PWM_DH1_HP register and the PWM_DH1 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_DH1_HP and the PWM_DH1 registers are also present in the single full duty
register (PWM_DH_DUTY1).

Table 16-54: PWM_DH0_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_DH0_HP.ENHDIV bits provide fractional duty cycles for Channel D high
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–108 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-79: PWM_DH1_HP Register Diagram

Channel D-Low Pulse Duty Register 0

The PWM_DL0 and PWM_DL1 registers determine the width for the low side output pulses. The values in these
registers select the assertion count (in terms of tCK) of the low side output pulses for the Channel D duty
cycle.

The operation of the duty-cycle registers varies, depending on the pulse mode selected with the PWM_DCTL.
PULSEMODELO bits. When the pulse mode is symmetrical, the PWM uses the value in the PWM_DL0 register
to determine the assertion and de-assertion count for the low side output pulses. When the pulse mode is
asymmetrical, left half, or right half, the PWM asserts Channel D low pulse output for count less than PWM_
DL0 and de-asserts this output for count greater than PWM_DL1.

The value range for the PWM_DL0 and PWM_DL1 registers depends on the period of the timer being used by
the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_TM0/2 (two's
complement) and +PWM_TM0/2, when dead time (PWM_DT) is not considered.

When dead time is considered for symmetrical and asymmetrical pulse modes, the value range for PWM_
DL0 and PWM_DL1 depends on the period of the time being used by the channel and the amount of dead
time applied to the channel. For example, if PWM_TM0 is used, the duty cycle values may be between -PWM_
TM0/2 + PWM_DT (two's complement) to +PWM_TM0/2 + PWM_DT.

When dead time is considered for left half or right half pulse modes, if PWM_TM0 is used, the duty cycle
values may be between PWM_TM0/2 + PWM_DT (two's complement) to -PWM_TM0/2 - PWM_DT.

Note that using values in the PWM_DL0 or PWM_DL1 registers that fall outside these limits causes PWM over
or under modulation.

Table 16-55: PWM_DH1_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_DH1_HP.ENHDIV bits provide fractional duty cycles for Channel D high
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–109

For more information about pulse modes and duty cycle selection, see the Functional Description section.

Figure 16-80: PWM_DL0 Register Diagram

Channel D-Low Pulse Duty Register 1

The PWM_DL0 and PWM_DL1 registers determine the width for the low side output pulses. For more infor-
mation, see the PWM_DL0 register description.

Figure 16-81: PWM_DL1 Register Diagram

Table 16-56: PWM_DL0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle Asserted Count.
The PWM_DL0.DUTY bits select the duty cycle asserted count for Channel D low
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–110 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Channel D-Low Heightened-Precision Duty-0 Register

The PWM_DL0_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_DL0 register, allows programs to specify fractional duty cycles. The
PWM_DL0_HP register and the PWM_DL0 register work together in a Q15.8 signed two's complement fixed-
point format.

Note that the bit fields in the PWM_DL0_HP and the PWM_DL0 registers are also present in the single full duty
register (PWM_DL_DUTY0).

Figure 16-82: PWM_DL0_HP Register Diagram

Channel D-Low Heightened-Precision Duty-1 Register

The PWM_DL1_HP register provides a fine-grained edge placement within the system clock period. This
register, in conjunction with the PWM_DL1 register, allows programs to specify fractional duty cycles. The
PWM_DL1_HP register and the PWM_DL1 register work together in a Q15.8 signed two's complement fixed-
point format.

Table 16-57: PWM_DL1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

DUTY Duty Cycle De-Asserted Count.
The PWM_DL1.DUTY bits select the duty cycle de-asserted count for Channel D low
side output.

Table 16-58: PWM_DL0_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_DL0_HP.ENHDIV bits provide fractional duty cycles for Channel D low
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–111

Note that the bit fields in the PWM_DL1_HP and the PWM_DL1 registers are also present in the single full duty
register (PWM_DL_DUTY1).

Figure 16-83: PWM_DL1_HP Register Diagram

Channel A-High Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_AH_DUTY0 register contains the PWM_AH_DUTY0.DUTY bit field from the PWM_AH0 register and the
PWM_AH_DUTY0.ENHDIV bit field from the PWM_AH0_HP register.

Note that the PWM_AH_DUTY0 register reads the PWM_AH0 and the PWM_AH0_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-59: PWM_DL1_HP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_DL1_HP.ENHDIV bits provide fractional duty cycles for Channel D low
side output.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–112 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-84: PWM_AH_DUTY0 Register Diagram

Channel A-High Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_AH_DUTY1 register contains the PWM_AH_DUTY1.DUTY bit field from the PWM_AH1 register and the
PWM_AH_DUTY1.ENHDIV bit field from the PWM_AH1_HP register.

Note that the PWM_AH_DUTY1 register reads the PWM_AH1 and the PWM_AH1_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-60: PWM_AH_DUTY0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_AH_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
AH_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_AH_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–113

Figure 16-85: PWM_AH_DUTY1 Register Diagram

Channel A-Low Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_AL_DUTY0 register contains the PWM_AL_DUTY0.DUTY bit field from the PWM_AL0 register and the
PWM_AL_DUTY0.ENHDIV bit field from the PWM_AL0_HP register.

Note that the PWM_AL_DUTY0 register reads the PWM_AL0 and the PWM_AL0_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-61: PWM_AH_DUTY1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_AH_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
AH_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_AH_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–114 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-86: PWM_AL_DUTY0 Register Diagram

Channel A-Low Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_AL_DUTY1 register contains the PWM_AL_DUTY1.DUTY bit field from the PWM_AL1 register and the
PWM_AL_DUTY1.ENHDIV bit field from the PWM_AH0_HP register.

Note that the PWM_AL_DUTY1 register reads the PWM_AL1 and the PWM_AL1_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-62: PWM_AL_DUTY0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_AL_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
AL_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_AL_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–115

Figure 16-87: PWM_AL_DUTY1 Register Diagram

Channel B-High Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_BH_DUTY0 register contains the PWM_BH_DUTY0.DUTY bit field from the PWM_BH0 register and the
PWM_BH_DUTY0.ENHDIV bit field from the PWM_BH0_HP register.

Note that the PWM_BH_DUTY0 register reads the PWM_BH0 and the PWM_BH0_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-63: PWM_AL_DUTY1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_AL_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
AL_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_AL_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–116 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-88: PWM_BH_DUTY0 Register Diagram

Channel B-High Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_BH_DUTY1 register contains the PWM_BH_DUTY1.DUTY bit field from the PWM_BH1 register and the
PWM_BH_DUTY1.ENHDIV bit field from the PWM_BH1_HP register.

Note that the PWM_BH_DUTY1 register reads the PWM_BH1 and the PWM_BH1_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-64: PWM_BH_DUTY0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_BH_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
BH_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_BH_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–117

Figure 16-89: PWM_BH_DUTY1 Register Diagram

Channel B-Low Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_BL_DUTY0 register contains the PWM_BL_DUTY0.DUTY bit field from the PWM_BL0 register and the
PWM_BL_DUTY0.ENHDIV bit field from the PWM_BL0_HP register.

Note that the PWM_BL_DUTY0 register reads the PWM_BL0 and the PWM_BL0_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-65: PWM_BH_DUTY1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_BH_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
BH_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_BH_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–118 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-90: PWM_BL_DUTY0 Register Diagram

Channel B-Low Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_BL_DUTY1 register contains the PWM_BL_DUTY1.DUTY bit field from the PWM_BL1 register and the
PWM_BL_DUTY1.ENHDIV bit field from the PWM_BL1_HP register.

Note that the PWM_BL_DUTY1 register reads the PWM_BL1 and the PWM_BL1_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-66: PWM_BL_DUTY0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_BL_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
BL_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_BL_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–119

Figure 16-91: PWM_BL_DUTY1 Register Diagram

Channel C-High Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_CH_DUTY0 register contains the PWM_CH_DUTY0.DUTY bit field from the PWM_CH0 register and the
PWM_CH_DUTY0.ENHDIV bit field from the PWM_CH0_HP register.

Note that the PWM_CH_DUTY0 register reads the PWM_CH0 and the PWM_CH0_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-67: PWM_BL_DUTY1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_BL_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
BL_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_BL_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–120 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-92: PWM_CH_DUTY0 Register Diagram

Channel C-High Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_CH_DUTY1 register contains the PWM_CH_DUTY1.DUTY bit field from the PWM_CH1 register and the
PWM_CH_DUTY1.ENHDIV bit field from the PWM_CH1_HP register.

Note that the PWM_CH_DUTY1 register reads the PWM_CH1 and the PWM_CH1_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-68: PWM_CH_DUTY0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_CH_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
CH_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_CH_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–121

Figure 16-93: PWM_CH_DUTY1 Register Diagram

Channel C-Low Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_CL_DUTY0 register contains the PWM_CL_DUTY0.DUTY bit field from the PWM_CL0 register and the
PWM_CL_DUTY0.ENHDIV bit field from the PWM_CL0_HP register.

Note that the PWM_CL_DUTY0 register reads the PWM_CL0 and the PWM_CL0_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-69: PWM_CH_DUTY1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_CH_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
CH_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_CH_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–122 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-94: PWM_CL_DUTY0 Register Diagram

Channel C-Low Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_CL_DUTY1 register contains the PWM_CL_DUTY1.DUTY bit field from the PWM_CL1 register and the
PWM_CL_DUTY1.ENHDIV bit field from the PWM_CL1_HP register.

Note that the PWM_CL_DUTY1 register reads the PWM_CL1 and the PWM_CL1_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-70: PWM_CL_DUTY0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_CL_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
CL_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_CL_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–123

Figure 16-95: PWM_CL_DUTY1 Register Diagram

Channel D-High Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_DH_DUTY0 register contains the PWM_DH_DUTY0.DUTY bit field from the PWM_DH0 register and the
PWM_DH_DUTY0.ENHDIV bit field from the PWM_DH0_HP register.

Note that the PWM_DH_DUTY0 register reads the PWM_DH0 and the PWM_DH0_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-71: PWM_CL_DUTY1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_CL_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
CL_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_CL_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–124 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-96: PWM_DH_DUTY0 Register Diagram

Channel D-High Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_DH_DUTY1 register contains the PWM_DH_DUTY1.DUTY bit field from the PWM_DH1 register and the
PWM_DH_DUTY1.ENHDIV bit field from the PWM_DH1_HP register.

Note that the PWM_DH_DUTY1 register reads the PWM_DH1 and the PWM_DH1_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-72: PWM_DH_DUTY0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_DH_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
DH_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_DH_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–125

Figure 16-97: PWM_DH_DUTY1 Register Diagram

Channel D-Low Full Duty0 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_DL_DUTY0 register contains the PWM_DL_DUTY0.DUTY bit field from the PWM_DL0 register and the
PWM_DL_DUTY0.ENHDIV bit field from the PWM_DL0_HP register.

Note that the PWM_DL_DUTY0 register reads the PWM_DL0 and the PWM_DL0_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-73: PWM_DH_DUTY1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_DH_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
DH_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_DH_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–126 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 16-98: PWM_DL_DUTY0 Register Diagram

Channel D-Low Full Duty1 Register

The full duty registers can be used instead of the combined duty and heightened-precision duty registers.
The PWM_DL_DUTY1 register contains the PWM_DL_DUTY1.DUTY bit field from the PWM_DL1 register and the
PWM_DL_DUTY1.ENHDIV bit field from the PWM_DL1_HP register.

Note that the PWM_DL_DUTY1 register reads the PWM_DL1 and the PWM_DL1_HP register values and visa-
versa.

When heightened-precision edge placement is enabled, bits [15:8] of these registers form the decimal part
of a non-integer, fixed-point duty cycle value in Q15.8 format. The lowest bits are ignored.

Table 16-74: PWM_DL_DUTY0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_DL_DUTY0.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
DL_DUTY0.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_DL_DUTY0.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 16–127

Figure 16-99: PWM_DL_DUTY1 Register Diagram

Table 16-75: PWM_DL_DUTY1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

DUTY Coarse Duty Value.
The PWM_DL_DUTY1.DUTY bits determine the output pulse-widths in the normal
PWM operation. When heightened-precision edge placement is enabled, the PWM_
DL_DUTY1.DUTY bit field forms the integer part of a non-integer, fixed-point duty
cycle value in Q15.8 format.

15:14
(R/W)

ENHDIV Enhanced Precision Divider Bits.
The PWM_DL_DUTY1.ENHDIV bits form the decimal part of a non-integer, fixed-
point duty cycle value when heightened-precision edge placement is enabled in Q15.
8 format.

PULSE-WIDTH MODULATOR (PWM)
ADSP-CM40X PWM REGISTER DESCRIPTIONS

16–128 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–1

17 Universal Asynchronous Receiver/Transmitter
(UART)

The UART module is a full-duplex peripheral compatible with PC-style industry-standard UARTs. The
UART converts data between serial and parallel formats. The serial communication follows an asynchro-
nous protocol that supports various word lengths, stop bits, bit rates and parity generation options. The
UART includes interrupt-handling hardware. Interrupts can be generated from multiple events.

The UART is logically compliant to EIA-232E, EIA-422, EIA-485 and LIN standards, but usually requires
external transceiver devices to meet electrical requirements. In IrDA (Infrared Data Association) mode,
the UART meets the half-duplex IrDA SIR (9.6/115.2 Kbps rate) protocol. In multi-drop bus mode, the
UART meets the full-duplex MDB/ICP v2.0 protocol.

Partial modem status and control functionality is supported by the UART module to allow for hardware
flow control.

The UART is a DMA-capable peripheral with separate transmit and receive DMA master channels. The
use of DMA requires minimal software intervention as the DMA engine moves the data. The UART can
also use a programmed core mode of operation. The core mode requires software management of the data
flow using either interrupts or polling.

One of the peripheral timers can be used to provide a hardware-assisted auto-baud detection mechanism
for use with the UART. The timers are external to the UART.

UART Features

Each UART includes the following features.

• 5–8 data bits

• Programmable extra stop bit and programmable extra half-stop bit

• Even, odd, and sticky parity bit options

• Additional 8-stage receive FIFO with programmable threshold interrupt

• Flexible transmit and receive interrupt timing

• 3 interrupt outputs for receive, transmit, and status

• Independent DMA operation for receive and transmit

• Programmable automatic request to send (RTS)/clear to send (CTS) hardware flow control

• False start bit detection

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

17–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• SIR IrDA operation mode

• MDB/ICP v2.0 operation mode

• Internal loop back

• Improved bit rate granularity

• LIN break command/Inter-frame gap transmission support

UART Functional Description

The following sections provide details on the UARTs functionality.

ADSP-CM40x UART Register List

The universal asynchronous receiver/transmitter (UART) module is a full-duplex peripheral compatible
with PC-style industry-standard UARTs. The UARTs convert data between serial and parallel formats.
The serial communication follows an asynchronous protocol that supports various word length, stop bits,
and parity generation options. The UARTs include interrupt-handling hardware. Interrupts can be gener-
ated from multiple events. A set of registers govern UART operations. For more information on UART
functionality, see the UART register descriptions.

Table 17-1: UART Specifications

Feature Availability

Protocol

Master-Capable Yes

Slave-Capable Yes

Transmission Simplex Yes

Transmission Half-Duplex Yes

Transmission Full-Duplex Yes

Access Type

Data Buffer Yes

Core Data Access Yes

DMA Data Access Yes

DMA Channels 2 (per UART Port)

DMA Descriptor Yes

Boot Capable Yes (Slave Mode)

Local Memory No

Clock Operation SCLK/16

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–3

ADSP-CM40x UART Interrupt List

Table 17-2: ADSP-CM40x UART Register List

Name Description

UART_CTL Control Register

UART_STAT Status Register

UART_SCR Scratch Register

UART_CLK Clock Rate Register

UART_IMSK Interrupt Mask Register

UART_IMSK_SET Interrupt Mask Set Register

UART_IMSK_CLR Interrupt Mask Clear Register

UART_RBR Receive Buffer Register

UART_THR Transmit Hold Register

UART_TAIP Transmit Address/Insert Pulse Register

UART_TSR Transmit Shift Register

UART_RSR Receive Shift Register

UART_TXCNT Transmit Counter Register

UART_RXCNT Receive Counter Register

Table 17-3: ADSP-CM40x UART Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

67 UART0_STAT UART0 Status LEVEL

68 UART0_TXDMA UART0 Transmit DMA Transfer Complete LEVEL 4

69 UART0_RXDMA UART0 Receive DMA Transfer Complete LEVEL 5

78 UART1_STAT UART1 Status LEVEL

79 UART1_TXDMA UART1 Transmit DMA Transfer Complete LEVEL 10

80 UART1_RXDMA UART1 Receive DMA Transfer Complete LEVEL 11

87 UART2_STAT UART2 Status LEVEL

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

17–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x UART Trigger List

ADSP-CM40x UART DMA List

88 UART2_TXDMA UART2 Transmit DMA Transfer Complete LEVEL 12

89 UART2_RXDMA UART2 Receive DMA Operation Complete LEVEL 13

Table 17-4: ADSP-CM40x UART Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

42 UART0_TXDMA UART0 Transmit DMA Transfer Complete PULSE/EDGE

43 UART0_RXDMA UART0 Receive DMA Transfer Complete PULSE/EDGE

44 UART1_TXDMA UART1 Transmit DMA Transfer Complete PULSE/EDGE

45 UART1_RXDMA UART1 Receive DMA Transfer Complete PULSE/EDGE

46 UART2_TXDMA UART2 Transmit DMA Transfer Complete PULSE/EDGE

47 UART2_RXDMA UART2 Receive DMA Transfer Complete PULSE/EDGE

Table 17-5: ADSP-CM40x UART Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

33 UART0_TXDMA UART0 Transmit DMA Transfer Start

34 UART0_RXDMA UART0 Receive DMA Transfer Start

35 UART1_TXDMA UART1 Transmit DMA Transfer Start

36 UART1_RXDMA UART1 Receive DMA Transfer Start

37 UART2_TXDMA UART2 Transmit DMA Transfer Start

38 UART2_RXDMA UART2 Receive DMA Transfer Start

Table 17-6: ADSP-CM40x UART DMA List DMA Channel List

Description DMA Channel

UART0 Transmit DMA Transfer Complete DMA4

UART0 Receive DMA Transfer Complete DMA5

UART1 Transmit DMA Transfer Complete DMA10

UART1 Receive DMA Transfer Complete DMA11

Table 17-3: ADSP-CM40x UART Interrupt List Interrupt List (Continued)

Interrupt ID Name Description Sensitivity
DMA

Channel

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–5

UART Block Diagram

The following figure shows a simplified block diagram of one UART module and how it interconnects to
the processor system.

Figure 17-1: UART Block Diagram

UART Architectural Concepts

The following sections provide information about the UART architecture.

Internal Interface

The UART is a DMA-capable peripheral with support for separate transmit and receive DMA master
channels. It can be used in either DMA or programmed core modes of operation. The core mode requires

UART2 Transmit DMA Transfer Complete DMA12

UART2 Receive DMA Operation Complete DMA13

Table 17-6: ADSP-CM40x UART DMA List DMA Channel List (Continued)

Description DMA Channel

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

17–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

software management of the data flow using either interrupts or polling. The DMA method requires
minimal software intervention, as the DMA engine itself moves the data. The UART_RBR and UART_THR
registers also connect to one of the peripheral DMA buses (8-bit data width).

All UART registers are 32 bits wide and the registers connect to the peripheral MMR bus. Not all MMRs
may be used and unused bits are zero-filled. The UART has three interrupt outputs described below.

• The transmit request and receive request outputs can function as DMA requests and connect to the
DMA controller. Therefore, if the DMA is not enabled, the DMA controller simply forwards the
request to the system event controller (SEC).

• The status interrupt output connects directly to the SEC. On many processors, the UART_RX pin is also
sensed by the alternative capture input (TIMER_ACIn) of one of the GP timers. When configured in
capture mode, the GP timer can then be used to detect the bit rate of the received signal.

External Interface

Each UART features an UART_RX (receive) and an UART_TX (transmit) pin available through the general-
purpose ports. These two pins usually connect to an external transceiver device that meets the electrical
requirements of full duplex (for example, EIA-232, EIA-422, 4-wire EIA-485) or half duplex (for example,
2-wire EIA-485, LIN) standards. Additionally, the UART features a pair of clear to send, input pins (UART_
CTS) and request to send, output pins (UART_RTS) for hardware flow control. UART signals are usually
multiplexed with other functions at the pin level.

Hardware Flow Control

To prevent the UART transmitter from sending data while the receiving counterpart is not ready, a UART_
RTS/UART_CTS hardware flow control mechanism is supported. The UART_RTS signal is an output that
connects to the communication partner’s UART_CTS input. If data transfer is bidirectional, the handshake
is as shown in the figure below.

Figure 17-2: UART Hardware Flow

The receiver can de-assert the UART_RTS signal to indicate that its receive buffer is getting full in both DMA
and core mode because continued data transfers may cause an overrun error. Consequently, the trans-

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–7

mitter pauses when the UART_CTS input is in a de-asserted state. In this state the transmitter completes
transmission of the data currently held in the transmit shift register (UART_TSR) but it does not continue
with the data in the transmit hold register (UART_THR). If the UART_CTS pin is asserted again, the trans-
mitter resumes and loads the content of UART_THR register into the UART_TSR register.

NOTE: Only UART0 and UART1 support hardware flow control. UART2 does not support hardware flow
control.

UART Bit Rate Generation

The sample clock is characterized by the peripheral clock (SCLK) and the 16-bit divisor in the UART_CLK
register. The UART clock is enabled by the UART_CTL.EN bit. By default every serial bit is oversampled 16
times. The bit clock is 1/16th of the sample clock. If not in IrDA mode, the bit clock can equal the sample
clock if the UART_CLK.EDBO bit is set, so that the following equation applies:

Bit Rate = SCLK/16 (1-EDBO) × Divisor

ADSP-CM40x Processor Example

The following table provides example divide factors required to support standard baud rates at a SCLK of
100 MHz.

NOTE: Careful selection of SCLK frequencies—that is, even multiples of desired bit rates— can result in
lower error percentages.

Setting the bit clock equal to the sample clock (UART_CLK.EDBO=1) improves bit rate granularity
and enables the bit clock to more closely match the bit rate of the communication partner. The
disadvantage to this configuration is that the power dissipation is higher and the sample points may

Table 17-7: UART Bit Rate Examples with 100 MHz SCLK

D Factor = 16 D Factor = 1

Bit Rate DL Actual % Error DL Actual % Error

2400 2604 2400.15 0.006 41667 2399.98 0.001

4800 1302 4800.31 0.006 20833 4800.08 0.002

9600 651 9600.61 0.006 10417 9599.69 0.003

19200 326 19171.78 0.147 5208 19201.23 0.006

38400 163 38343.56 0.147 2604 38402.46 0.006

57600 109 57339.45 0.452 1736 57603.69 0.006

115200 54 115740.74 0.469 868 115207.37 0.006

921600 7 892857.14 3.119 109 917431.19 0.452

1500000 4 1562500 4.167 67 1492537.31 0.498

3000000 2 3125000 4.167 33 3030303.03 1.01

6250000 1 6250000 0 16 6250000 0

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

17–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

not be as accurate. Therefore, it is recommended to use UART_CLK.EDBO=1 mode only when bit
rate accuracy is not acceptable in UART_CLK.EDBO=0 mode.

The UART_CLK.EDBO=1 mode is not intended to increase operation speed beyond the electrical
limitations of the UART transfer protocol.

Autobaud Detection

At the chip level, the UART_RX pin is usually routed to an alternate capture input (TIMER_ACIn) of a
general-purpose timer. When working in width capture mode, this general-purpose timer can be used to
automatically detect the bit rate applied to the UART_RX pin by an external device. The capture capabilities
of the timer are often used to supervise the bit rate at runtime. If the UART was communicating with any
device supplied by a weak clock oscillator that drifts over time, the processor can then readjust its UART
bit rate dynamically as required.

Often, autobaud detection is used for initial bit rate negotiations where the processor is most likely a slave
device waiting for the host to send a predefined autobaud character. This is a common situation for UART
booting. The UART_CTL.EN bit should not be enabled while autobaud detection is performed, to prevent
the UART from starting a receive operation with incorrect bit rate matching. Alternatively, the UART can
be disconnected from its UART_RX pin by setting the UART_CTL.LOOP_EN bit.

A software routine can detect the pulse widths of serial stream bit cells. Because the sample base of the
timer is synchronous with the UART operation (all derived from the same SCLK) the pulse widths can be
used to calculate the bit rate divider for the UART by using the following formula.

A software routine can detect the pulse widths of serial stream bit cells. Because the sample base of the
timer is synchronous with the UART operation—all derived from the same SCLK—the pulse widths can
be used to calculate the bit rate divider for the UART by using the following formula.

Divisor = TIMER_TMRn_WID/16(1–EDBO) × Number of captured UART bits

In order to increase the number of timer counts and therefore the resolution of the captured signal, it is
recommended not to measure just the pulse width of a single bit, but to enlarge the pulse of interest over
more bits. Traditionally, a NULL character (ASCII 0x00) is used in autobaud detection, as shown below.

Figure 17-3: Autobaud Detection

Because the example frame encloses 8 data bits and 1 start bit, apply the following formula.

Divisor = TIMER_TMRn_WID/16(1–EDBO) × 9

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–9

Real receive signals often have asymmetrical falling and rising edges, and the sampling logic level is not
exactly in the middle of the signal voltage range. At higher bit rates, such pulse-width-based autobaud
detection might not return adequate results without additional analog signal conditioning. Measuring
signal periods works around this issue and is strongly recommended.

For example, predefine ASCII character “@” (0x40) as the autobaud detection character and measure the
period between two subsequent falling edges. As shown in the figure below, measure the period between
the falling edge of the start bit and the falling edge after bit 6. Since this period encloses 8 bits, apply the
following formula.

Divisor = TIMER_TMRn_PER/16(1–EDBO) × 8

Or:

• Divisor = TIMER_TMRn_PER>> 7 if UART_CLK.EDBO=0

• Divisor = TIMER_TMRn_PER>> 3 if UART_CLK.EDBO=1

The following figure shows the ASCII “@” (0x40) detection character.

Figure 17-4: Autobaud Detection Character 0x40

UART Debug Features

The UART has the option to automatically calculate and transmit a parity bit. The following table summa-
rizes parity behavior assuming 8-bit data words (UART_CTL.WLS=b#11).

Table 17-8: UART Parity

PEN STP EPS Data (hex)
Data (binary, LSB

first) Parity

0 x x x x None

1 0 0 0x60 0000 0110 1

1 0 0 0x57 1110 1010 0

1 0 1 0x60 0000 0110 0

1 0 1 0x57 1110 1010 1

1 1 0 x x 1

1 1 1 x x 0

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

17–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The two force error bits, UART_CTL.FPE and UART_CTL.FFE, are intended for test purposes. They are
useful for debugging software, especially in loop back mode.

The UART can be set to internal loop back mode (UART_CTL.LOOP_EN=1). Loop back mode disconnects
the receiver’s input from the receive pin and internally redirects the transmit output to the receiver. The
transmit pin remains active and continues to transmit data externally as well. Loop back mode also forces
the UART_RTS pin to de-assert, disconnects the UART_STAT.CTS bit from the UART_CTS input pin, and
connects the internal version of UART_RTS to the UART_STAT.CTS bit.

Additionally, the UART_TX pin can be forced to zero asynchronously using the UART_CTL.SB bit.

UART Operating Modes

The UART’s main operating modes are described in the following sections.

• UART Mode

• IrDA SIR Mode

• Multi-Drop Bus Mode

UART Mode

The UART Mode follows an asynchronous serial communication protocol with these options:

• 1 start bit

• 5-8 data bits

• Address bit (available in MDB mode only)

• None, even, odd or sticky parity

• 1, 1½, or 2 stop bits (1½ stop bits valid only in 5-bit word length)

The format of received and transmitted character frames is controlled by the UART_CTL register. Data is
always transmitted and received with the least significant bit (LSB) first.

The following figure shows a typical physical bit stream measured on a UART_TX pin.

Table 17-8: UART Parity (Continued)

PEN STP EPS Data (hex)
Data (binary, LSB

first) Parity

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–11

Figure 17-5: Bit Stream on a UART TX Pin Transmitting an “S” Character (0x53)

IrDA SIR Mode

The UART also supports serial data communication by way of infrared signals, according to the recom-
mendations of the Infrared Data Association (IrDA). The physical layer known as IrDA SIR (9.6/115.2
Kbps rate) is based on return-to-zero-inverted (RZI) modulation. Pulse position modulation is not
supported.

Using the 16x data rate clock, RZI modulation is achieved by inverting and modulating the non-return-to-
zero (NRZ) code normally transmitted by the UART. On the receive side, the 16x clock is used to deter-
mine an IrDA pulse sample window, from which the RZI modulated NRZ code is recovered.

NOTE: The UART_CLK.EDBO bit is not valid in IrDA mode—this bit should be cleared (=0) in this mode.

Multi-Drop Bus Mode

The UART protocol is not only used for point-to-point connections (defined in the EIA-232 standard),
but also in networks where the EIA-485 standard is a popular representative of UART-based bus systems.
In such networks node addressing is important.

In a multidrop bus (MDB) network for example, the UART frame is enhanced by an address bit. The
address bit is inserted between the data bits and the optional parity bit. To configure the UART for MDB
mode, the mode of operation bits (UART_CTL.MOD [5:4]) should be set to 01.

By convention the address bit is transmitted low for regular data bytes. If set it marks special address bytes
that require the attention of all nodes on the network.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

17–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 17-6: UART Frame with Address Bit

All transmit operations are processed through the transmit buffer register (UART_THR), so all DMA data
transmissions clear the address bit. If data is written to the transmit address/insert pulse register (UART_
TAIP) instead, the same transmit operation is initiated with the only exception that the address bit is sent
high.

The receiver’s UART_STAT.ADDR bit signals whether the frame that was just received had the address bit set
or not. It is updated by hardware every time a new frame has been received. When the enable address word
interrupt bit (UART_IMSK.EAWI) is set, the reception of an address byte triggers a special status interrupt.

The address sticky bit (UART_STAT.ASTKY) is the sticky version of the UART_STAT.ADDR bit. It is set by
hardware whenever the UART_STAT.ADDR bit is set. The UART_STAT.ASTKY bit can only be cleared by soft-
ware with a W1C operation.

In MDB mode, only address bytes progress to the receive FIFO by default. Data bytes are gated unless the
UART_STAT.ASTKY bit is set. The receiver ignores all traffic on the UART bus. This way, the processor can
go into low power mode and is not loaded by interrupt activity every time a frame is transmitted on the
UART bus. If, however, an address frame is transmitted, the receiver immediately samples all further
traffic. A software routine can analyze the received data, decide whether it was of relevance for the local
network node, and W1C the UART_STAT.ASTKY bit if it was not.

Software can overrule hardware address frame detection by setting the UART_STAT.ADDR bit and (indi-
rectly) the UART_STAT.ASTKY bit with a W1S operation.

The MDB mode follows an asynchronous serial communication protocol with the following options.

• 1 start bit

• 5-8 data bits

• Address bit

• None, even, odd or sticky parity

• 1, 1½, or 2 stop bits (1½ stop bits valid only in 5-bit word length)

NOTE: If the address bit and parity bit are both enabled, the parity check and generation includes the
address bit in its parity calculation.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–13

UART Data Transfer Modes

The UART is capable of transferring data using both the core and DMA. Receive and transmit paths
operate completely independently except that the bit rate and the frame format are identical for both
transfer directions. Transmit and receive channels are both buffered. The UART_THR register buffers the
transmit shift register (UART_TSR) and the UART_RBR register buffers the receive shift register (UART_RSR).

UART Mode Transmit Operation (Core)

In core mode, data is moved to and from the UART by the processor core. A write to the UART_THR register
initiates the transmit operation. If no former operation is pending, the data is immediately passed from the
UART_THR register to the UART_TSR register. There, it is shifted out at the bit rate characterized by the UART_
CTL register, with start, stop, and parity bits appended as defined by the UART_CTL register.

The UART_THR register and the UART_TSR register can be modeled as a two-stage transmit buffer. The least
significant bit (LSB) is always transmitted first. This is bit 0 of the value written to the UART_THR register.

UART Mode LIN Break Command

Some UART-based protocols demand synchronization methods that are not native to standard UART
implementations. For example, the Local Interconnect Network (LIN) protocol requires a low-pulse of
well-defined length to be transmitted as a prologue to every multi-byte message. It length needs to be at
least 13 bit times.

With previous UARTs there were two options to implement this protocol: either a null byte is transmitted
with a temporarily lowered bit rate, or the period is generated by a software counter and the transmit pin
is pulled low through the asynchronous set break (SB) mechanisms. Since both methods have their disad-
vantages, the newer UART introduces a new inter-frame gap technique.

The feature is not available in MDB or IrDA operating modes, but when in standard UART mode bits
(UART_CTL.MOD [5:4]=00) a write to the UART_TAIP register initiates the transmission of an inter-frame
pulse. If the transmit buffer is not empty, the UART first transmits all bytes in the queue and only initiates
with pulse generation after the last stop bit of the last byte has been shifted out.

The value written into the UART_TAIP register defines the nature and the duration of the transmitted pulse.
Bits [6:0] control the duration in bit times and bit [7] controls the value (duration = UART_TAIP[6:0] /
UART_CLK[15:0]). If UART_TAIP[7] is set, and an active high pulse is issued, the number of stop bits is
extended. If UART_TAIP[7] is cleared a low pulse is generated. Note that polarity can be inverted using the
UART_CTL.FCPOL bit. Writing a value of 13 into the UART_TAIP register generates the break command as
required by the LIN protocol.

NOTE: If the UART_CTL.TPOLC bit is enabled, an inverted most-significant bit may be transmitted.

NOTE: If another transmission is pending (in the UART_TSR register), the UART_TAIP initiated pulse is
queued until after all pending operations have finished and all stop bits are transmitted.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

17–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The transmission of break command/inter-frame gap is followed by transmission of the number of stop
bits as set in the UART_CTL.STB and UART_CTL.STBH bit fields.

The UART receiver can detect break commands through the break indicator (UART_STAT.BI) flag. This
flag reports that an entire UART frame has been received in low state. It does not report whether the dura-
tion of the received low pulse was exact or at least 13 bit times as LIN masters transmit. Typically, the break
indicator meets LIN requirements. If however the pulse width needs to be determined more precisely, the
GP timers can be used.

Each UART_RX pin is also routed to a GP timer through its alternate capture input (TACI). This is not only
useful for bit rate detection (autobaud) but also helps to precisely measure the pulse widths on the UART_
RX input. Additionally, the new windowed watchdog width mode of the GP timers can issue an interrupt
or a fault condition if the received pulse width is shorter than a bit time or longer than the worst case break
condition.

UART Mode Receive Operation (Core)

The receive operation uses the same data format as the transmit configuration, except that one valid stop
bit is always sufficient; that is, the UART_CTL.STB and UART_CTL.STBH bits have no impact to the receiver.

The UART receiver senses the falling edges of the receive input. When an edge is detected, the receiver
starts sampling the input according to settings in the UART_CLK register. The start bit is sampled (majority
sampling) close to its midpoint. If sampled low, a valid start condition is assumed. Otherwise, the detected
falling edge is discarded.

After detection of the start bit, the received word is shifted into the UART_RSR register.

After the corresponding stop bit is received, the content of the UART_RSR register is transferred to the 8-
deep receive FIFO and is accessible by reading the UART_RBR register.

The receive FIFOs and the UART_RBR register can be seen as a 9-stage receive buffer. If the stop bit of the
9th word is received before software reads the UART_RBR register, an overrun error is reported. Overruns
protect data in the UART_RBR register and the receive FIFO from being overwritten by further data until
the UART_STAT.OE bit is cleared by software. However, the data in the UART_RSR register is immediately
destroyed as soon as the overrun occurs.

The sampling clock is 16 times faster than the bit clock. The receiver over samples every bit 16 times and
makes a majority decision based on the middle three samples. This improves immunity against noise and
hazards on the line. Spurious pulses of less than two times the sampling clock period are disregarded.

Normally, every incoming bit is sampled at exactly the 7th, 8th and 9th sample clock. If, however, the
UART_CLK.EDBO bit is set to 1 to achieve better bit rate granularity and accuracy as required at high oper-
ation speeds, the bits are one roughly sampled at 7/16th, 8/16th and 9/16th of their period. Hardware
design should ensure that the incoming signal is stable between 6/16th and 10/16th of the nominal bit
period.

Reception starts when a falling edge is detected on the UART_RX input pin. The receiver attempts to see a
start bit. The data is shifted into the UART_RSR register. After the 9th sample of the first stop bit is

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–15

processed, the received data is copied to the 8-stage receive FIFO and the UART_RSR recovers for further
data reception.

The receiver samples data bits close to their midpoint. Because the receiver clock is usually asynchronous
to the transmitter's data rate, the sampling point may drift relative to the center of the data bits. The
sampling point is synchronized again with each start bit, so the error accumulates only over the length of
a single word. The polarity of received data is selectable, using the UART_CTL.RPOLC bit.

NOTE: The receiver checks for only a single stop bit. After the third sample of the first stop bit has been
received (at time 9/16th of the stop bit duration), the receiver immediately takes action (status
update) and prepares itself for new falling edge detection (start detection).

IrDA Transmit Operation

To generate the IrDA pulse transmitted by the UART, the normal NRZ output of the transmitter is first
inverted if the UART_CTL.TPOLC bit is configured for active-low operation, such that a 0 is transmitted as
a high pulse of 16 UART clock periods and a 1 is transmitted as a low pulse for 16 UART clock periods.
The leading edge of the pulse is then delayed by six UART clock periods. Similarly, the trailing edge of the
pulse is truncated by eight UART clock periods. For a 16-cycle UART clock period, this results in the final
representation of the original 0 as a high pulse of only 3/16 clock periods. The pulse is centered around the
middle of the bit time, as shown in the figure below. The final IrDA pulse is fed to the off-chip infrared
driver.

This modulation approach ensures a pulse width output from the UART of three cycles high out of every
16 UART clock cycles. As shown in the figure below, the error terms associated with the bit rate generator
are very small and well within the tolerance of most infrared transceiver specifications.

NOTE: In IrDA mode, writes to the UART_TAIP register are equivalent to writes to the UART_THR register.

Figure 17-7: IrDA Transmit Pulse

IrDA Receive Operation

The IrDA receiver function is more complex than the transmit function. The receiver must discriminate
the IrDA pulse and reject noise. To do this, the receiver looks for the IrDA pulse in a narrow window
centered around the middle of the expected pulse.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

17–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Glitch filtering is accomplished by counting 16 system clocks from the time an initial pulse is seen. If the
pulse is absent when the counter expires, it is considered a glitch. Otherwise, it is interpreted as a 0. This
is acceptable because glitches originating from on-chip capacitive cross-coupling typically do not last for
more than a fraction of the system clock (SCLK) period. Sources outside of the chip and not part of the
transmitter can be avoided by appropriate shielding. The only other source of a glitch is the transmitter
itself. The processor relies on the transmitter to perform within specification. If the transmitter violates the
specification, unpredictable results may occur. The 4-bit counter adds an extra level of protection at a
minimal cost.

NOTE: Because SCLK can change across systems, the longest glitch tolerated is inversely proportional to
the SCLK frequency.

The receive sampling window is determined by a counter that is clocked at the 16x bit-time sample clock.
The sampling window is re-synchronized with each start bit by centering the sampling window around the
start bit.

The polarity of receive data is selectable, using the UART_CTL.RPOLC bit. The following figure provides
examples of each polarity type.

Figure 17-8: IrDA Receiver Pulse Detection

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–17

MDB Transmit Operation

In MDB mode, receive and transmit paths operate completely independently from each other, except for
sharing bit rate and frame formats for both transfer directions.

Transmit operation is initiated by writing the UART_THR or UART_TAIP registers. A write to the UART_THR
register transmits the written word with the appending address bit set low, a write to the UART_TAIP
register transmits the written word with the appended address bit set high. The data is moved into the
UART_TSR register, where it is shifted out at the bit rate programmed by the UART_CLK register, with start,
stop, address, and parity bits appended as required.

If DMA is enabled, the DMA engine always writes the data into the UART_THR register, and the written
word is transmitted with the appending address bit set low.

The polarity of transmit data is selectable, using the UART_CTL.TPOLC bit.

MDB Receive Operation

Receive operations use the same data format as the transmit configuration, except that the number of stop
bits is always assumed to be 1. After detection of the start bit, the received word is shifted into the UART_
RSR register at the programmed bit.

Normally, every incoming bit is sampled at exactly the 7th, 8th and 9th sample clock. If, however, the
UART_CLK.EDBO bit is set to achieve better bit rate granularity and accuracy as required at high operation
speeds, the bits are roughly sampled at 7/16th, 8/16th and 9/16th of their period. Hardware design should
ensure that the incoming signal is stable between 6/16th and 10/16th of the nominal bit period.

After the appropriate number of bits (including address, parity, and stop bits) is received, the UART_RSR
register is transferred to the receive FIFO and accessible through the UART_RBR register.

The polarity of receive data is selectable, using the UART_CTL.RPOLC bit.

DMA Mode

In DMA mode, separate receive and transmit DMA channels move data between the UART and memory.
The software does not have to move data; it just has to set up the appropriate transfers either through the
descriptor mechanism or through autobuffer mode.

DMA channels provide a 4-deep FIFO, resulting in total buffer capabilities of 6 words at the transmit side
and 9 words at the receive side. In DMA mode, the latency is determined by the bus activity and arbitration
mechanism and not by the processor loading and interrupt priorities.

To enable UART DMA, first set up the system DMA control registers and then enable the UART_IMSK.
ERBFI and/or UART_IMSK.ETBEI interrupts. This is necessary because these interrupt request lines double
as DMA request lines. With DMA enabled, once these requests are received, the DMA control unit gener-
ates a direct memory access. If DMA is not enabled, the UART interrupt is passed on to the system inter-
rupt handling unit.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART OPERATING MODES

17–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NOTE: The UART’s status interrupt goes directly to the system event controller (SEC), bypassing the
DMA unit completely.

For transmit DMA, programs should set the DMA_CFG.SYNC bit. With this bit set, interrupt generation is
delayed until the entire DMA FIFO is drained to the UART module. The UART transmit DMA interrupt
service routine is allowed to disable the DMA or to clear the UART_IMSK.ETBEI control bit only when the
DMA_CFG.SYNC bit is set, otherwise up to four data bytes might be lost.

When the UART_IMSK.ETBEI bit is set, an initial transmit DMA request is issued immediately. The
program should then clear the UART_IMSK.ETBEI bit through the DMA service routine.

In DMA transmit mode, the UART_IMSK.ETBEI bit enables the peripheral request to the DMA FIFO. The
strobe on the memory side is still enabled by the DMA_CFG.EN bit. If the DMA count is less than the DMA
FIFO depth, which is 4, then the DMA interrupt might be requested before the UART_IMSK.ETBEI bit is
set. If this is behavior not wanted, set the DMA_CFG.SYNC bit.

Regardless of the DMA_CFG.SYNC setting, the DMA stream has not left the UART transmitter completely
at the time the interrupt is generated. Transmission may abort in the middle of the stream, causing data
loss, if the UART clock was disabled without additional synchronization with the UART_STAT.TEMT bit.

The UART provides functionality to avoid resource consuming polling of the UART_STAT.TEMT bit. The
UART_IMSK_SET.EDTPTI bit enables the UART_STAT.TEMT bit to trigger a DMA interrupt. To delay the
DMA completion interrupt until the last data word of a STOP DMA has left the UART, keep the DMA_CFG.
DI_EN bit cleared and set the UART_IMSK_SET.EDTPTI bit instead. Then, the normal DMA completion
interrupt is suppressed. Later, the UART_STAT.TEMT event triggers a DMA interrupt after the DMA’s last
word has left the UART transmit buffers. If DI_EN and UART_IMSK.EDTPTI are set, when finishing STOP
mode, the DMA requests two interrupts.

The UART’s DMA supports 8-bit and 16-bit operation, but not 32-bit operation. Sign extension is also not
supported.

Mixing DMA and Core Modes

Switching from DMA mode to core operation on the fly requires some consideration, especially for
transmit operations. By default, the interrupt timing of the DMA is synchronized with the memory side of
the DMA FIFOs. Normally, the transmit DMA completion interrupt is generated after the last byte is
copied from the memory into the DMA FIFO. The transmit DMA interrupt service routine is not yet
permitted to disable the DMA_CFG.EN bit. The interrupt is requested by the time the DMA_STAT.IRQDONE
bit is set. The DMA_STAT.RUN bit, however, remains set until the data has completely left the transmit DMA
FIFO.

Therefore, when planning to switch from a DMA to the core mode, always set the DMA_CFG.SYNC bit in the
word of the last descriptor or work unit before handing over control to core mode. Then, after the interrupt
occurs, software can write new data into the UART_THR register as soon as the UART_STAT.THRE bit permits.
If the DMA_CFG.SYNC bit cannot be set, software can poll the DMA_STAT.RUN bit instead. Alternatively, using
the UART_IMSK.EDTPTI bit can avoid expensive status bit polling.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–19

When switching from core to DMA operation, ensure that the very first DMA request is issued properly.
If the DMA is enabled while the UART is still transmitting, no precaution is required. If, however, the
DMA is enabled after the UART_STAT.TEMT bit is high, the UART_IMSK.ETBEI bit should be pulsed to
initiate DMA transmission.

Setting Up Hardware Flow Control

Use the following steps to setup UART hardware flow control.

1. Configure automatic or manual hardware flow control for the receiver through the UART_CTL.ARTS bit,
and/or the transmitter through the UART_CTL.ACTS bit.

2. Configure UART_CTS and UART_RTS polarity through the UART_CTL.FCPOL bit.

AFTER COMPLETING THIS TASK:

On reset, when the UART is not yet enabled and the port multiplexing has not been programmed, the
UART_RTS pin is not driven. Some applications may require the UART_RTS signal to be pulled to either state
by a resistor during reset.

UART Event Control

Status flags in the UART_STAT register are available to signal data reception, parity, and error conditions, if
required.

Interrupt Masks

Each UART features a set of interrupt mask registers: UART_IMSK, UART_IMSK_SET, and UART_IMSK_CLR.
The UART_IMSK register supports read/write operations. Writing ones to the UART_IMSK_SET register
enables interrupts, writing ones to the UART_IMSK_CLR register disables them. Reads from either register
return the enabled bits. This way, different interrupt service routines can control transmit, receive, and
status interrupts independently and easily.

The UART_IMSK registers are used to enable requests for system handling of empty or full states of UART
data registers. Unless polling is used as a means of action, the UART_IMSK.ERBFI and/or UART_IMSK.
ETBEI bits in this register are normally set.

Each UART module has three interrupt outputs. One is dedicated for transmission, one for reception, and
the third is used to report status events. Transmit and receive requests are routed through the DMA
controller. The status request goes directly to the system event controller (SEC).

If the associated DMA channel is enabled, the request functions as a DMA request. If the DMA channel is
disabled, it simply forwards the request to the SEC. Note that a DMA channel must be associated with the
UART module to enable transmit and receive interrupts. Otherwise, transmit and receive requests cannot
be forwarded.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART EVENT CONTROL

17–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NOTE: To operate in interrupt mode without using DMA channels, set the UART_IMSK.ELSI bit. This
redirects receive and transmit requests to the status interrupt output. The status interrupt goes
directly to the SEC without being routed through the DMA controller

Interrupt Servicing

UART writes and reads can be accomplished through interrupt service routines (ISRs). Separate interrupt
lines are provided for transmit, receive, and status. The independent interrupts can be enabled individually
by the UART_IMSK register group. The UART_CTL.EN bit must be set to enable UART transmit interrupts.

The ISRs can evaluate the status bits in the UART_STAT register to determine the signaling interrupt source.
Interrupts must also be assigned and unmasked by the processor's system event controller. The ISRs must
clear the interrupt latches explicitly. To reduce interrupt frequency on the receive side in core mode, the
UART_IMSK.ERFCI status interrupt may be used as an alternative to the regular UART_IMSK.ERBFI receive
interrupt. Hardware must ensure that at least two (if UART_CTL.RFIT=0) or four (if UART_CTL.RFIT=1)
words are available in the receive buffer by the time the interrupt is requested.

Transmit Interrupts

Transmit interrupts are enabled by the UART_IMSK_SET.ETBEI bit.

The UART_THR and UART_TAIP registers are the same physical register, and both affect the signaling of the
UART_STAT.TEMT, UART_STAT.TFI, and UART_STAT.THRE bits similarly.

Figure 17-9: Transmit Interrupts

The transmit request is asserted along with the UART_STAT.THRE bit, indicating that the transmit buffer is
ready for new data. Note that the UART_STAT.THRE bit resets to 1. When the UART_IMSK_SET.ETBEI bit is
set, the UART module immediately issues an interrupt or DMA request. This way, no special handling of
the first character is required when transmission of a string is initiated. Set the UART_IMSK_SET.ETBEI bit
and let the interrupt service routine load the first character from memory and write it to the UART_THR

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–21

register in the normal manner. Accordingly, the UART_IMSK.ETBEI bit can be cleared through the UART_
IMSK_CLR register if the string transmission has completed.

The UART_STAT.THRE bit is cleared by hardware when new data is written to the UART_THR register. These
writes also clear the transmit interrupt request. However, they also initiate further transmission. If
continued transmission is not desired, the transmit request can alternatively be cleared through the UART_
IMSK_CLR.ETBEI bit register. Transfers of data from the UART_THR register to the UART_TSR register re-set
this status flag in the UART_STAT register.

The UART_STAT.TEMT bit can be interrogated to discover any ongoing transmission. The UART_STAT.TEMT
bit’s sticky counterpart, UART_STAT.TFI, indicates if the transmit buffer has drained and can trigger a
status interrupt, if required. When data is pending in either one of these registers, the UART_STAT.TEMT
flag is low. As soon as all data has left the UART_TSR register, the UART_STAT.TEMT bit goes high again and
indicates that all pending transmit operations (including stop bits) have finished. At that time it is safe to
disable the UART_CTL.EN bit or to three-state off-chip line drivers. By this time an interrupt can be gener-
ated either through the status interrupt channel when the UART_IMSK.ETFI bit is set, or through the DMA
controller when enabled by the UART_IMSK.EDTPTI bit.

When enabled by the UART_IMSK.ETBEI bit, the UART_STAT.THRE flag requests data along the peripheral
command lines to the DMA controller (hereafter referred to as TXREQ). This signal is routed through the
DMA controller. If the associated DMA channel is enabled, the TXREQ signal functions as a DMA request,
otherwise the DMA controller simply forwards it to the SEC. Alternatively the UART_IMSK.ETXS bit can
redirect the transmit interrupts to the UART status interrupt.

With interrupts disabled, these status flags can be polled to determine when data is ready to move. Note
that because polling is processor intensive, it is not typically used in real-time signal processing environ-
ments. Since read operations from UART_STAT registers have no side effects, different software threads can
interrogate these registers without mutual impacts.

Receive Interrupts

Receive interrupts are enabled by the UART_IMSK_SET.ERBFI bit. If set, the UART_STAT.DR flag requests an
interrupt on the dedicated RXREQ output, indicating that new data is available in the UART_RBR register.
This signal is routed through the DMA controller. If the associated DMA channel is enabled, the RXREQ
signal functions as a DMA request; otherwise the DMA controller simply forwards it to the SEC. Alterna-
tively, if no DMA channel is assigned to the UART, the UART_IMSK.ERXS bit can redirect the receive inter-
rupts to the UART status interrupt. When software reads the UART_RBR register, hardware clears the UART_
STAT.DR bit again, which, in turn, clears the receive interrupt request.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART EVENT CONTROL

17–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 17-10: Receive Interrupts

The UART_STAT.DR, UART_STAT.ADDR, UART_STAT.ASTKY, UART_STAT.PE, UART_STAT.FE, and UART_
STAT.BI bits are updated along with UART_RBR register. The UART_STAT.OE bit updated as soon as an over-
flow condition occurs (for example when a frame’s stop bit is received and the receive FIFO is full). When
the UART_RBR register is not read in time, the received data is protected from being overwritten by new data
until the UART_STAT.OE bit is cleared by software. Only the content of the UART_RSR register can be over-
written in the overrun case.

The state of the 8-deep receive FIFO can be monitored by the UART_STAT.RFCS bit. The buffer’s behavior
is controlled by the UART_CTL.RFIT bit. If UART_CTL.RFIT is zero, the UART_STAT.RFCS bit is set when the
receive buffer holds four or more words. If UART_CTL.RFIT is set, the UART_STAT.RFCS bit is set when the
receive buffer holds seven or more words. The UART_STAT.RFCS bit is cleared by hardware when a core or
DMA reads the UART_RBR register and when the buffer is flushed below the level of four (UART_CTL.
RFIT=0) or seven (UART_CTL.RFIT=1). If the associated interrupt bit UART_IMSK.ERFCI is enabled, a
status interrupt is reported when the UART_STAT.RFCS bit is set.

If errors are detected during reception, an interrupt can be requested from the status interrupt output. This
status interrupt request goes directly to the SEC. Status interrupt requests are enabled by the bit.

The controller detects the following error conditions, shown with their associated bits in the UART_STAT
register.

• Overrun error (UART_STAT.OE bit)

• Parity error (UART_STAT.PE bit)

• Framing error/invalid stop bit (UART_STAT.FE bit)

• Break indicator (UART_STAT.BI bit)

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–23

Status Interrupts

The UART status interrupt channels are used for the following purposes.

• Line status interrupts

• Flow control interrupts

• Receive FIFO threshold interrupts

• Transmission finished interrupt

Line status interrupts are enabled by the UART_IMSK.ELSI bit. If set, the status interrupt request is asserted
with any of the UART_STAT.BI, UART_STAT.FE, UART_STAT.PE, or UART_STAT.OE receive errors bits. The
error bits in the UART_STAT register are cleared by W1C operation. Once all error conditions are cleared,
the interrupt request de-asserts.

The receive FIFO count interrupt is enabled by the UART_IMSK_SET.ERFCI bit. If set, a status interrupt is
generated when the UART_STAT.RFCS is active. The UART_STAT.RFCS bit indicates a receive buffer
threshold level. If the UART_CTL.RFIT bit is cleared, software can safely read two words out of the UART_
RBR register by the time the UART_STAT.RFCS interrupt occurs.

If the UART_CTL.RFIT bit is set, software can safely read four words. The interrupt and the UART_STAT.
RFCS bit clear when the UART_RBR is read a sufficient number of times, so that the receive buffer drains
below the threshold of two (UART_CTL.RFIT=0) or four (UART_CTL.RFIT=1). Because in DMA mode a
status service routine may not be permitted to read UART_RBR, this interrupt is only recommended in core
mode. In DMA mode, use this functionality for error recovery only.

The flow control interrupts are enabled by the UART_IMSK_SET.EDSSI bit. If active, a status interrupt is
generated when the sticky UART_STAT.SCTS bit register is set, indicating that the transmitter's UART_CTS
input been re-asserted. A W1C operation to the SCTS bit clears the interrupt request.

A transmission finished interrupt is enabled by the UART_IMSK_SET.ETFI bit. If active, a status interrupt
request is asserted when the UART_STAT.TFI bit is set. The UART_STAT.TFI is the sticky version of the
UART_STAT.TEMT bit, indicating that a byte that started transmission has completely finished. The inter-
rupt request is cleared by a W1C operation to the UART_STAT.TFI bit.

Multi-Drop Bus Events

Several status bits and interrupt features in the UART_STAT and UART_IMSK registers facilitate efficient data
handling in multi-drop bus mode. These include the address (UART_STAT.ADDR) bit, address sticky (UART_
STAT.ASTKY) bit and enable address word interrupt (UART_IMSK.EAWI). One of the key features of the
multi-drop bus protocol is its address bit, which signifies to the slaves that the master is transmitting an
address word (to be read by all) or a data word (to be read by the addressed slave only). The UART hard-
ware provides for an efficient method of handling the situation described above with the use of UART_
STAT.ASTKY bit.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
UART PROGRAMMING MODEL

17–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NOTE: The UART_STAT.ASTKY bit is used in multi-drop bus mode to indicate if a peripheral is currently
being addressed. The UART_STAT.ASTKY bit is a sticky version of the UART_STAT.ADDR bit and is
set by hardware whenever the UART_STAT.ADDR bit is set. It can only be cleared by software with a
W1C operation. With the ASTKY bit set, words are received irrespective of the mode bit/address bit
setting. With the UART_STAT.ASTKY bit cleared, only address words (mode bit=1) are received and
words with mode bit=0 is ignored (not moved from the UART_RSR to the Receive FIFO) in MDB
mode. This bit does not affect reception in non-MDB modes.

UART Programming Model

The following sections provide basic procedures for configuring various UART operations.

Detecting Autobaud

Please refer to Autobaud Detection for more information. The required steps are:

1. Ensure that the timer is disabled.

2. Configure the following bits: UART_CTL.MOD=00, UART_CTL.LOOP_EN=1, UART_CTL.WLS=11 (8-bit
data), and UART_CTL.EN=1

3. Configure the following bits: TIMER_TMRn_CFG.TMODE=1101, TIMER_TMRn_CFG.OUTDIS=1, TIMER_
TMRn_CFG.IRQMODE=10 and enable the timer.

4. Send test data through the host device and wait for the timer interrupt and disable the timer.

STEP RESULT: The bit rate can be derived from the timer period register value according to the formula
provided in the Autobaud Detection section.

Using Common Initialization Steps

Certain steps are common to all UART modes, regardless of using the core or the DMA running the trans-
fers.

1. All UART signals are multiplexed and compete with other functions at pin level. First, the port registers
need to be programmed according to the guidelines in the PORTs chapter.

2. Program the UART_CLK register. Refer to UART Bit Rate Generation.

3. Program the UART_CTL register and enable the UART clock.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–25

Using Core Transfers

A core transmit operation is accomplished by writing data into the UART_THR register, when the UART_
STAT.THRE bit is set. If the UART_STAT.DR bit is set, received data can be read from the UART_RBR register.

Using DMA Transfers

1. Make sure that the UART_IMSK.ETBEI or the UART_IMSK.ERBFI bits are cleared before configuring the
DMA.

2. Configure the dedicated DMA channel.

3. Set the UART_IMSK.ETBEI or UART_IMSK.ERBFI bits to start the transfer.

Using Interrupts

Each UART features three interrupt signal outputs.

1. Enable individual interrupts in the system event controller (SEC).

2. Register IRQ handlers.

3. Use the interrupts mask registers to enable specific IRQ events.

Setting Up Hardware Flow Control

1. Configure automatic or manual hardware flow control for the receiver through the UART_CTL.ARTS bit,
and/or the transmitter through the UART_CTL.ACTS bit.

2. Configure UART_CTS and UART_RTS polarity through the UART_CTL.FCPOL bit.

ADSP-CM40x UART Register Descriptions

UART (UART) contains the following registers.

Table 17-9: ADSP-CM40x UART Register List

Name Description

UART_CTL Control Register

UART_STAT Status Register

UART_SCR Scratch Register

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Control Register

The UART_CTL register provides enable/disable control for internal UART and for the IrDA mode of oper-
ation. This register also provides UART line control, permitting selection of the format of received and
transmitted character frames. Modem feature control also is available from this register, including partial
modem functionality to allow for hardware flow control and loopback mode.

UART_CLK Clock Rate Register

UART_IMSK Interrupt Mask Register

UART_IMSK_SET Interrupt Mask Set Register

UART_IMSK_CLR Interrupt Mask Clear Register

UART_RBR Receive Buffer Register

UART_THR Transmit Hold Register

UART_TAIP Transmit Address/Insert Pulse Register

UART_TSR Transmit Shift Register

UART_RSR Receive Shift Register

UART_TXCNT Transmit Counter Register

UART_RXCNT Receive Counter Register

Table 17-9: ADSP-CM40x UART Register List (Continued)

Name Description

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–27

Figure 17-11: UART_CTL Register Diagram

Table 17-10: UART_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30
(R/W)

RFRT Receive FIFO RTS Threshold.
The UART_CTL.RFRT bit controls UART_RTS pin assertion and de-assertion
timing. This bit is ignored if UART_CTL.ARTS is cleared. If set, the UART_RTS pin
is de-asserted when the receive buffer already holds seven words and an eighth start
bit is detected. It is re-asserted when the FIFO contains seven words or less. If cleared,
de-assert UART_RTS pin when the RX buffer already holds four words and a fifth
start bit is detected. The UART_RTS pin is re-asserted when the RX buffer contains
no more than 4 words.

0 De-assert RTS if RX FIFO word count > 4; assert if <= 4

1 De-assert RTS if RX FIFO word count > 7; assert if <= 7

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

29
(R/W)

RFIT Receive FIFO IRQ Threshold.
The UART_CTL.RFIT bit controls the timing of the UART_STAT.RFCS bit. If
UART_CTL.RFIT is cleared, the receive threshold is two. If UART_CTL.RFIT is
set, the threshold is four words in the receive buffer.

0 Set RFCS=1 if RX FIFO count >= 4

1 Set RFCS=1 if RX FIFO count >= 7

28
(R/W)

ACTS Automatic CTS.
The UART_CTL.ACTS bit must be set to enable the UART_CTS input pin for
UART_TX handshaking. If enabled, the UART_STAT.CTS bit holds the value (if
UART_CTL.FCPOL is set) or complement value (if UART_CTL.FCPOL is cleared)
of the UART_CTS input pin. The UART_STAT.CTS bit can be used to determine
whether the external device is ready to receive data (if UART_STAT.CTS set) or
whether it is busy (if UART_STAT.CTS cleared). If UART_CTL.ACTS is cleared,
the UART_TX handshaking protocol is disabled, and the UART_TX line transmits
data whenever there is data to send, regardless of the value of UART_CTS. Software
can pause ongoing transmission by setting the UART_CTL.XOFF bit.

0 Disable TX handshaking protocol

1 Enable TX handshaking protocol

27
(R/W)

ARTS Automatic RTS.
The UART_CTL.ARTS bit must be set to enable the UART_RTS input pin for
UART_TX handshaking.If set, hardware guarantees minimal UART_RTS pin de-
assertion pulse width of at least the number of data bits defined by the UART_CTL.
WLS bit field. If cleared, the UART_RTS pin is not generated automatically by
hardware. The UART_RTS pin can still be manually controlled by the UART_CTL.
MRTS bit, and software is responsible for UART_RTS pulse width control (if needed).

0 Disable RX handshaking protocol.

1 Enable RX handshaking protocol.

26
(R/W)

XOFF Transmitter off.
The UART_CTL.XOFF bit (if set) turns off transmission (XOFF) by preventing the
content of THR from being continued to TSR. When set, this bit turns on
transmission (XON). The state of the UART_CTL.XOFF bit is ignored if the UART_
CTL.ACTS bit is set.

0 Transmission ON, if ACTS=0

1 Transmission OFF, if ACTS=0

25
(R/W)

MRTS Manual Request to Send.
The UART_CTL.MRTS bit controls the state of the UART_RTS output pin when the
UART_CTL.ARTS bit is cleared. When UART_CTL.MRTS is cleared, the UART de-
asserts the UART_RTS pin, signaling to the external device that the UART is not
ready to receive. When UART_CTL.MRTS is set, the UART asserts the UART_RTS
pin, signaling to the external device that the UART is ready to receive.

0 De-assert RTS pin when ARTS=0

1 Assert RTS pin when ARTS=0

Table 17-10: UART_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–29

24
(R/W)

TPOLC IrDA TX Polarity Change.
The UART_CTL.TPOLC bit selects the active low/high polarity for IrDA
communications. This bit only is effective in IrDA mode. If set, in IrDA mode, the
UART_TX pin idles high. In UART or MDB mode, it is inverted-NRZ. If cleared, in
IrDA mode, the UART_TX pin idles low. In UART or MDB mode, it is NRZ.

0 Active-low TX polarity setting

1 Active-high TX polarity setting

23
(R/W)

RPOLC IrDA RX Polarity Change.
The UART_CTL.RPOLC bit selects the active low/high polarity for IrDA
communications. This bit only is effective in IrDA mode. If set, in IrDA mode, the
UART_RX pin idles high. In UART or MDB mode, it is inverted-NRZ. If cleared, in
IrDA mode, the UART_RX pin idles low. In UART or MDB mode, it is NRZ.

0 Active-low RX polarity setting

1 Active-high RX polarity setting

22
(R/W)

FCPOL Flow Control Pin Polarity.
The UART_CTL.FCPOL select the polarities of the UART_CTS and UART_RTS
pins. When UART_CTL.FCPOL is cleared, the UART_RTS and UART_CTS pins are
active low, and UART is halted when the UART_RTS and UART_CTS pin state is
high. When UART_CTL.FCPOL is set, the UART_RTS and UART_CTS pins are
active high, and UART is halted when the UART_RTS and UART_CTS pin state is
low.

0 Active low CTS/RTS

1 Active high CTS/RTS

19
(R/W)

SB Set Break.
If set, the UART_CTL.SB bit forces the UART_TX pin to low asynchronously,
regardless of whether or not data is currently transmitted. This bit functions even
when the UART clock is disabled. Because the UART_TX pin normally drives high, it
can be used as a flag output pin, if the UART is not used. (For example, if UART_
CTL.TPOLC is cleared, drive UART_TX pin low; or if UART_CTL.TPOLC is set,
drive UART_TX pin high.)

0 No force

1 Force TX pin to 0

18
(R/W)

FFE Force Framing Error on Transmit.
The UART_CTL.FFE bit is intended for test purposes. This bit is useful for
debugging software, especially in loopback mode.

0 Normal operation

1 Force error

Table 17-10: UART_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

17
(R/W)

FPE Force Parity Error on Transmit.
The UART_CTL.FPE bit is intended for test purposes. This bit is useful for
debugging software, especially in loopback mode.

0 Normal operation

1 Force parity error

16
(R/W)

STP Sticky Parity.
The UART_CTL.STP bit controls whether the parity is generated by hardware based
on the data bits or whether it is set to a fixed value. If this bit is cleared, the hardware
calculates the parity bit value based on the data bits. Then, the EPS bit determines
whether odd or even parity mode is chosen. If this bit is set, odd parity is used. That
means that the total count of logical-1 data bits including the parity bit must be an
odd value. Even parity is chosen by UART_CTL.STP cleared and UART_CTL.EPS
set. Then, the count of logical-1 bits must be a even value. If the UART_CTL.STP bit
is set, hardware parity calculation is disabled. In this case, the sent and received parity
equals the inverted UART_CTL.EPS bit.

0 No Forced Parity

1 Force (Stick) Parity to Defined Value (if PEN=1)

15
(R/W)

EPS Even Parity Select.

0 Odd parity

1 Even parity

14
(R/W)

PEN Parity Enable.
The UART_CTL.PEN enables parity transmission and parity check. The UART_
CTL.PEN bit inserts one additional bit between the most significant data bit and the
first stop bit. The polarity of this so-called parity bit depends on data and the UART_
CTL.STP and UART_CTL.EPS control bits. Both transmitter and receiver
calculate the parity value. The receiver compares the received parity bit with the
expected value and issues a parity error if they do not match. If UART_CTL.PEN is
cleared, the UART_CTL.STP and the UART_CTL.EPS bits are ignored.

0 Disable

1 Enable parity transmit and check

13
(R/W)

STBH Stop Bits (Half Bit Time).

0 0 half-bit-time stop bit

1 1 half-bit-time stop bit

12
(R/W)

STB Stop Bits.
The UART_CTL.STB bit controls how many stop bits are appended to transmitted
data.

0 1 stop bit

1 2 stop bits

Table 17-10: UART_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–31

Status Register

The UART_STAT register contains the UART line status and UART modem status, as indicated by the
current states of the UART's UART_CTS pin and internal receive buffers. Writes to this register can perform
write-one-to-clear (W1C) operations on most status bits. Reading this register has no side effects.

9:8
(R/W)

WLS Word Length Select.
The UART_CTL.WLS field determines whether the transmitted and received UART
word consists of 5, 6, 7, or 8 data bits.

0 5-bit Word

1 6-bit Word

2 7-bit Word

3 8-bit Word

5:4
(R/W)

MOD Mode of Operation.
The UART_CTL.MOD selects the UART operation mode (UMOD).

0 UART Mode

1 MDB Mode

2 IrDA SIR Mode

1
(R/W)

LOOP_EN Loopback Enable.
The UART_CTL.LOOP_EN enables UART loopback mode. When set, this bit
disconnects the receivers input from the UART_RX pin, and internally redirects the
transmit output to the receiver. The UART_TX pin remains active and continues to
transmit data externally as well. Loopback mode also forces the UART_RTS pin to its
de-assertive state, disconnects the UART_CTS bit from the UART_CTS input pin,
and directly connects the UART_CTL.MRTS bit to the UART_STAT.CTS bit. In
loopback mode, setting the UART_CTL.MRTS bit sets the UART_STAT.CTS bit
and enables the UARTs transmitter. Clearing to the UART_CTL.MRTS bit clears the
UART_STAT.CTS bit and disables the UARTs transmitter.

0 Disable

1 Enable

0
(R/W)

EN Enable UART.
The UART_CTL.EN enables UART clocks. This bit also resets the state machine and
control registers when cleared. Using this bit to disable the UART -- when not used --
reduces power consumption.

0 Disable

1 Enable

Table 17-10: UART_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 17-12: UART_STAT Register Diagram

Table 17-11: UART_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

17
(R/NW)

RFCS Receive FIFO Count Status.
The UART_STAT.RFCS bit is set when the receive buffer holds more or equal
entries than a certain threshold. The threshold is controlled by the UART_CTL.
RFIT bit. If UART_CTL.RFIT is cleared, the threshold is four entries. If UART_
CTL.RFIT is set, the threshold is seven entries. The UART_STAT.RFCS bit is
cleared when the UART_RBR register is read sufficient times until the buffer is
drained below the threshold. The UART_STAT.RFCS bit can trigger a status
interrupt if enabled by the UART_IMSK_SET.ERFCI bit.

0 RX FIFO has less than 4 (7) entries when RFIT=0 (1)

1 RX FIFO has at least 4 (7) entries when RFIT=0 (1)

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–33

16
(R/NW)

CTS Clear to Send.
The UART_STAT.CTS bit holds the value (if UART_CTL.FCPOL set) or the
complement value (if UART_CTL.FCPOL cleared) of the UART_CTS input pin. The
UART_CTL.ACTS bit must be set to enable this feature. The core can read the value
of the UART_STAT.CTS bit to determine whether the external device is ready to
receive (UART_STAT.CTS set) or if it is busy (UART_STAT.CTS cleared). If
UART_CTL.ACTS is cleared, the UART_TX handshaking protocol is disabled, and
the UART transmits data as long as there is data to transmit, regardless of the value of
UART_STAT.CTS. When UART_CTL.ACTS is cleared, the software can pause
transmission temporarily by setting the XOFF bit. Note that in loopback mode
(UART_CTL.LOOP_EN set), the UART_STAT.CTS bit is disconnected from the
UART_CTS input pin. Instead, the bit is directly connected to the UART_CTL.
MRTS bit.

0 Not clear to send (External device not ready to receive)

1 Clear to send (External device ready to receive)

12
(R/W1C)

SCTS Sticky CTS.
The UART_STAT.SCTS bit is a sticky bit that is set when UART_STAT.CTS
transitions from 0 to 1. The UART_STAT.SCTS bit is cleared by software with a
W1C operation. This bit can trigger a line status interrupt if enabled by the UART_
IMSK_SET.EDSSI bit.

0 CTS has not transitioned from low to high

1 CTS has transitioned from low to high

11
(R/NW)

RO Reception On-going.

0 No data reception in progress

1 Data reception in progress

10
(R/W1S)

ADDR Address Bit Status.
The UART_STAT.ADDR bit is used to mirror the address bit of the word in UART_
RBR in multi-drop bus protocol, and is enabled only in MDB mode. The UART_
STAT.ADDR bit is updated by hardware upon detecting a received word with the
address bit in UART_RBR set or cleared. Additionally, software can set the ADDR bit
with a write-1-to-set (W1S) operation.

0 Address bit is low

1 Address bit is high

Table 17-11: UART_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

9
(R/W1C)

ASTKY Address Sticky.
The UART_STAT.ASTKY bit is used in multi-drop bus mode to indicate whether a
peripheral is currently being addressed. This bit is a sticky version of the UART_
STAT.ADDR bit and is set by hardware when setting the UART_STAT.ADDR bit.
The UART_STAT.ASTKY bit can only be cleared by software with a write-one-to-
clear (W1C) operation. With the UART_STAT.ASTKY bit set, words will be
received irrespective of the UART_CTL.MOD bit or UART_STAT.ADDR bit
selection. With the UART_STAT.ASTKY bit cleared, only address words (UART_
CTL.MOD bit set) will be received and words with UART_CTL.MOD bit cleared are
ignored (not moved from the RSR to the RX FIFO) in MDB mode. The UART_
STAT.ASTKY bit does not affect reception in non-MDB modes.

0 ADDR bit has not been set

1 ADDR bit has been set

8
(R/W1C)

TFI Transmission Finished Indicator.
The UART_STAT.TFI bit is a sticky version of the UART_STAT.TEMT bit. While
UART_STAT.TEMT is automatically cleared by hardware when new data is written
to the UART_THR register, the sticky UART_STAT.TFI bit remains set, until it is
cleared by software (W1C). The UART_STAT.TFI bit enables more flexible
transmit interrupt timing.

0 TEMT did not transition from 0 to 1

1 TEMT transition from 0 to 1

7
(R/NW)

TEMT TSR and THR Empty.
The UART_STAT.TEMT bit indicates that the UART_THR and UART_TAIP
registers and the UART_TSR register are empty. In this case, the program is
permitted to write to the UART_THR and UART_TAIP registers twice without losing
data. The UART_STAT.TEMT bit can also be used as indicator that pending UART
transmission is completed. At that time, it is safe to disable the UART_CTL.EN bit or
to three-state the off-chip line driver.

0 Not empty TSR/THR

1 TSR/THR Empty

5
(R/NW)

THRE Transmit Hold Register Empty.
The UART_STAT.THRE bit indicates that the UART transmit channel is ready for
new data and software can write to the UART_THR and UART_TAIP registers.
Writes to the UART_THR and UART_TAIP registers clear the UART_STAT.THRE.
The bit is set again when the UART_THR and UART_TAIP registers are empty and
ready to accept data.

0 Not empty THR/TAIP

1 Empty THR/TAIP

Table 17-11: UART_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–35

4
(R/W1C)

BI Break Indicator.
The UART_STAT.BI bit indicates that the first stop bit is sampled low and the
entire data word, including parity bit, consists of low bits only. (This condition
indicates that UART_RX was held low for more than the maximum word length.)
The UART_STAT.BI bit is updated simultaneously with the UART_STAT.DR bit,
that is, by the time the first stop bit is received or when data is loaded from the receive
FIFO to the UART_RBR register. The bit is sticky and can be cleared by W1C
operations.

0 No break interrupt

1 Break interrupt
this indicates UARTxRX was held low(RPOLC=0) /
high (RPOLC=1) for more than the maximum word
length

3
(R/W1C)

FE Framing Error.
The UART_STAT.FE bit indicates that the first stop bit is sampled. This bit is
updated simultaneously with the UART_STAT.DR bit, that is, by the time the first
stop bit is received or when data is loaded from the receive FIFO to the UART_RBR
register. The UART_STAT.FE bit is sticky and can be cleared by W1C operations.
Note that invalid stop bits can be simulated by setting the UART_CTL.FFE bit.

0 No error

1 Invalid stop bit error

2
(R/W1C)

PE Parity Error.
The UART_STAT.PE bit indicates that the received parity bit does not match the
expected value. This bit is updated simultaneously with the UART_STAT.DR bit,
that is, by the time the first stop bit is received or when data is loaded from the receive
FIFO to the UART_RBR register. The UART_STAT.PE bit is sticky and can be
cleared by W1C operations. Note that invalid parity bits can be simulated by setting
the UART_CTL.FPE bit.

0 No parity error

1 Parity error

1
(R/W1C)

OE Overrun Error.
The UART_STAT.OE bit indicates that further data is received while the internal
receive buffer was full. This bit is set when sampling the stop bit of the sixth data
word. To avoid overruns, read the UART_RBR register in time. In DMA receive
mode, overruns are very unlikely to happen ever. After an overrun occurs, the
UART_RBR and receive FIFO are protected from being overwritten by new data until
the UART_STAT.OE bit is cleared by software. The content of the UART_RSR
register is lost as soon as the overrun occurs. The UART_STAT.OE bit is sticky and
can be cleared by W1C operations.

0 No overrun

1 Overrun error

Table 17-11: UART_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Scratch Register

The UART_SCR registers contain 8-bit scratch pad data. These registers are used for general purpose data
storage and do not control the UART hardware in any way.

Figure 17-13: UART_SCR Register Diagram

Clock Rate Register

The UART_CLK register divides the system clock (SCLK) down to the bit clock.

0
(R/NW)

DR Data Ready.
The UART_STAT.DR bit indicates that data is available in the receiver and can be
read from the UART_RBR register. The bit is set by hardware when the receiver
detects the first valid stop bit. The bit is cleared by hardware when the UART_RBR
register is read.

0 No new data

1 New data in RBR

Table 17-12: UART_SCR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Stored 8-bit Data.

Table 17-11: UART_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–37

Figure 17-14: UART_CLK Register Diagram

Interrupt Mask Register

The UART_IMSK indicates interrupt mask status (unmasked if set, masked if cleared) of UART status inter-
rupts. This register is not a data register. Instead it is controlled by the UART_IMSK_SET and UART_IMSK_
CLR register pair. Writing ones to UART_IMSK_SET enables (unmasks) interrupts, and writing ones to
UART_IMSK_CLR disables (masks) them. Reads from either register return the enabled bits.

The UART_IMSK register is used to enable requests for system handling of empty or full states of UART data
registers. Unless polling is used as a means of action, the UART_IMSK.ERBFI and/or UART_IMSK.ETBEI bits
are normally set. Setting this register without enabling system DMA causes the UART to notify the
processor of data inventory state by means of interrupts. For proper operation in this mode, system inter-
rupts must be enabled, and appropriate interrupt handling routines must be present.

Each UART features three separate interrupt channels to handle data transmit, data receive, and line status
events independently, regardless whether DMA is enabled or not. If no DMA channels are assigned to the

Table 17-13: UART_CLK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

EDBO Enable Divide By One.
The UART_CLK.EDBO bit enables bypassing of the divide-by-16 prescaler in bit
clock generation. This improves bit rate granularity, especially at high bit rates. Do
not set this bit in IrDA mode.

0 Bit clock prescaler = 16

1 Bit clock prescaler = 1

15:0
(R/W)

DIV Divisor.
The UART_CLK.DIV provides the divisor for the UART's clock bit rate calculation.
The bit rate is defined by:
Bit Rate = SCLK / (16(1-EDBo) x UART_CLK.DIV)

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

UART, set the UART_IMSK.ELSI bit to reroute transmit and receive interrupts to the status interrupt
output.

With system DMA enabled, the UART uses DMA to transfer data to or from the processor. Dedicated
DMA channels are available to receive and transmit operation. Line error handling can be configured
completely independently from the receive/transmit setup.

The UART's DMA is enabled by first setting up the system DMA control registers and then enabling the
UART_IMSK.ERBFI and/or UART_IMSK.ETBEI interrupts. This is because the interrupt request lines double
as DMA request lines. Depending on whether DMA is enabled or not, upon receiving these requests, the
DMA control unit either generates a direct memory access or passes the UART interrupt on to the system
interrupt handling unit. However, UART's error interrupt goes directly to the system interrupt handling
unit, bypassing the DMA unit completely.

Figure 17-15: UART_IMSK Register Diagram

Table 17-14: UART_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/W)

ETXS Enable TX to Status Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.ETXS bit indicates re-direction of the
TX interrupts to status interrupt output. If cleared, TX interrupts are routed to
normal interrupt outputs.

0 Interrupt is masked

1 Interrupt is unmasked

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–39

8
(R/W)

ERXS Enable RX to Status Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.ERXS bit indicates re-direction of RX
interrupts to status interrupt output. If cleared, RX interrupts are routed to normal
interrupt outputs.

0 Interrupt is masked

1 Interrupt is unmasked

7
(R/W)

EAWI Enable Address Word Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.EAWI bit indicates generation of a
status interrupt when an Address word in MDB-mode is present in the UART_RBR.
A received word is an address word if the UART_STAT.ADDR bit is set.

0 Interrupt is masked

1 Interrupt is unmasked

6
(R/W)

ERFCI Enable Receive FIFO Count Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.ERFCI bit indicates enabling of the
receive buffer threshold interrupt if signaled by the UART_STAT.RFCS bit. Read
the UART_RBR register sufficient times to clear the interrupt request.

0 Interrupt is masked

1 Interrupt is unmasked

5
(R/W)

ETFI Enable Transmission Finished Interrupt Mask Status.
If set (interrupt unmasked) the UART_IMSK.ETFI bit indicates enabling of
interrupt generation on the status interrupt channel when the transmit buffer
register, the transmit address register, and the transmit shift register are all empty as
indicated by the UART_STAT.TFI. The UART_IMSK.ETFI interrupt can be used
to avoid expensive polling of the UART_STAT.TEMT bit, when the UART clock or
line drivers should be disabled after transmission has completed. W1C the UART_
STAT.TFI bit to clear the interrupt request. In DMA operation, the UART_IMSK.
ETFI bits functionality might be preferred.

0 Interrupt is masked

1 Interrupt is unmasked

4
(R/W)

EDTPTI Enable DMA TX Peripheral Triggered Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.EDTPTI bit indicates enabling of the
DMA completion interrupt to be delayed until the data has left the UART completely.
This bit is required for DMA transmit operation only. If set, the UART can generate a
DMA interrupt by the time the UART_STAT.TEMT bit goes high after the last DMA
data word is transmitted.
When UART_IMSK.EDTPTI is set, usually the DDE_CFG_INT field is cleared to
00 in a STOP mode DMA. This set up suppresses the normal completion interrupt,
and the UART_STAT.TEMT event is signaled through the DMA controller and
triggers the DMA interrupt. If both (DDE_CFG_INT not 00 and UART_IMSK.
EDTPTI set), two interrupts are requested at the end of a STOP mode DMA.

0 Interrupt is masked

1 Interrupt is unmasked

Table 17-14: UART_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Interrupt Mask Set Register

The UART_IMSK indicates interrupt mask status (unmasked if set, masked if cleared) of UART status inter-
rupts. This register is not a data register. Instead it is controlled by the UART_IMSK_SET and UART_IMSK_
CLR register pair. Writing ones to UART_IMSK_SET enables (unmasks) interrupts, and writing ones to
UART_IMSK_CLR disables (masks) them. Reads from either register return the enabled bits. For more infor-
mation, see the UART_IMSK register description.

3
(R/W)

EDSSI Enable Modem Status Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.EDSSI bit indicates enabling of a
modem status interrupt on the same status interrupt channel when the UART_
STAT.SCTS bit is set. This indicates UART_CTS pin re-assertion. Write-1-to-clear
(W1C) the UART_STAT.SCTS bit to clear the interrupt request.

0 Interrupt is masked

1 Interrupt is unmasked

2
(R/W)

ELSI Enable Line Status Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.ELSI bit indicates that redirection of
TX and RX interrupt requests to the status interrupt output of the UART by OR'ing
them with the UART_STAT.OE, UART_STAT.PE, UART_STAT.FE, and UART_
STAT.BI interrupt requests. Set this bit when no DMA channel is associated with
the UART. Enabling UART_IMSK.ELSI disables the RX/TX interrupt channels and
negates the UART_IMSK.EDTPTI bit.

0 Interrupt is masked

1 Interrupt is unmasked

1
(R/W)

ETBEI Enable Transmit Buffer Empty Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.ETBEI bit indicates generation of a
TX interrupt if the UART_STAT.THRE bit is set.

0 Interrupt is masked

1 Interrupt is unmasked

0
(R/W)

ERBFI Enable Receive Buffer Full Interrupt Mask Status.
If set (interrupt unmasked), the UART_IMSK.ERBFI indicates generation of an RX
interrupt if the UART_STAT.DR bit is set.

0 Interrupt is masked

1 Interrupt is unmasked

Table 17-14: UART_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–41

Figure 17-16: UART_IMSK_SET Register Diagram

Table 17-15: UART_IMSK_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/W1S)

ETXS Enable TX to Status Interrupt Mask Set.

0 No action

1 Unmask interrupt

8
(R/W1S)

ERXS Enable RX to Status Interrupt Mask Set.

0 No action

1 Unmask interrupt

7
(R/W1S)

EAWI Enable Address Word Interrupt Mask Set.

0 No action

1 Unmask interrupt

6
(R/W1S)

ERFCI Enable Receive FIFO Count Interrupt Mask Set.

0 No action

1 Unmask interrupt

5
(R/W1S)

ETFI Enable Transmission Finished Interrupt Mask Set.

0 No action

1 Unmask interrupt

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Interrupt Mask Clear Register

The UART_IMSK indicates interrupt mask status (unmasked if set, masked if cleared) of UART status inter-
rupts. This register is not a data register. Instead it is controlled by the UART_IMSK_SET and UART_IMSK_
CLR register pair. Writing ones to UART_IMSK_SET enables (unmasks) interrupts, and writing ones to
UART_IMSK_CLR disables (masks) them. Reads from either register return the enabled bits. For more infor-
mation, see the UART_IMSK register description.

4
(R/W1S)

EDTPTI Enable DMA TX Peripheral Triggered Interrupt Mask Set.

0 No action

1 Unmask interrupt

3
(R/W1S)

EDSSI Enable Modem Status Interrupt Mask Set.

0 No action

1 Unmask interrupt

2
(R/W1S)

ELSI Enable Line Status Interrupt Mask Set.

0 No action

1 Unmask interrupt

1
(R/W1S)

ETBEI Enable Transmit Buffer Empty Interrupt Mask Set.

0 No action

1 Unmask interrupt

0
(R/W1S)

ERBFI Enable Receive Buffer Full Interrupt Mask Set.

0 No action

1 Unmask interrupt

Table 17-15: UART_IMSK_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–43

Figure 17-17: UART_IMSK_CLR Register Diagram

Table 17-16: UART_IMSK_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/W1C)

ETXS Enable TX to Status Interrupt Mask Clear.

0 No action

1 Mask interrupt

8
(R/W1C)

ERXS Enable RX to Status Interrupt Mask Clear.

0 No action

1 Mask interrupt

7
(R/W1C)

EAWI Enable Address Word Interrupt Mask Clear.

0 No action

1 Mask interrupt

6
(R/W1C)

ERFCI Enable Receive FIFO Count Interrupt Mask Clear.

0 No action

1 Mask interrupt

5
(R/W1C)

ETFI Enable Transmission Finished Interrupt Mask Clear.

0 No action

1 Mask interrupt

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Receive Buffer Register

The read-only UART_RBR register is the UART's receive buffer. It is updated when there is pending data in
the receive FIFO. Newly available data is signaled by the UART_STAT.DR bit.

Figure 17-18: UART_RBR Register Diagram

4
(R/W1C)

EDTPTI Enable DMA TX Peripheral Triggered Interrupt Mask Clear.

0 No action

1 Mask interrupt

3
(R/W1C)

EDSSI Enable Modem Status Interrupt Mask Clear.

0 No action

1 Mask interrupt

2
(R/W1C)

ELSI Enable Line Status Interrupt Mask Clear.

0 No action

1 Mask interrupt

1
(R/W1C)

ETBEI Enable Transmit Buffer Empty Interrupt Mask Clear.

0 No action

1 Mask interrupt

0
(R/W1C)

ERBFI Enable Receive Buffer Full Interrupt Mask Clear.

0 No action

1 Mask interrupt

Table 17-16: UART_IMSK_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–45

Transmit Hold Register

The write-only UART_THR register is the UART's transmit buffer. The UART_STAT.THRE bit indicates
whether data can be written to UART_THR. Writes to this register automatically propagate to the internal
UART_TSR register as soon as UART_TSR is ready. Then, transmit operation is initiated immediately.

Figure 17-19: UART_THR Register Diagram

Transmit Address/Insert Pulse Register

The UART_TAIP register and the UART_THR register share the same physical register, but UART_TAIP has
different effect than the UART_THR register when UART_TAIP is written to in MDB and UART modes.

In MDB mode, data written to the UART_TAIP register is transmitted as an address frame (as with the
UART_CTL.MOD bit set).

In UART mode, a write to UART_TAIP causes a pulse of value UART_TAIP [7] for a duration of UART_TAIP
[6:0] x bit time. (There is additional inversion if the UART_CTL.TPOLC bit is set).

Table 17-17: UART_RBR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/NW)

VALUE 8-bit data.

Table 17-18: UART_THR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE 8 bit data.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Bit time is defined by the UART_CLK register. The transmission of the pulse is followed by stop bit trans-
mission as specified by the UART_CTL.STB and UART_CTL.STBH bits. This could be used for supporting line
break command and inter-frame gap.

In IrDA mode, writes to UART_TAIP is treated the same as writes to UART_THR.

Accesses to the UART_TAIP register have the same affects as the UART_THR register with respect to the UART_
STAT.THRE, UART_STAT.TEMT, and UART_STAT.TFI flags.

Figure 17-20: UART_TAIP Register Diagram

Transmit Shift Register

The read only UART_TSR register which returns the content of the UART's transmit shift register.

Figure 17-21: UART_TSR Register Diagram

Table 17-19: UART_TAIP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE 8-bit data.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–47

Receive Shift Register

The read only UART_RSR register which returns the content of the UART's receive shift register.

The frame data is moved into this shift register after polarity inversion, if any (including the native polarity
inversion in the IrDA case).

In the case of the longest frame (MDB, with parity mode, and 8 bit data word-length), the start bit may be
shifted out and not available for reading at the end of the frame reception. This register is NOT reset at the
start of frame. If read, in the middle of a frame reception, data corresponding the previous frame may not
have entirely shifted out (for example, the read data that have been read may NOT correspond entirely to
the frame being received).

Because the UART is receiving only 1 stop bit, the UART_RSR contains only 1 stop bit even if more than one
stop bit is present in the actual transfer. This register may be considered as storing the 10 most recently
received bits (taking into consideration the stop bit receive limitation above).

Figure 17-22: UART_RSR Register Diagram

Table 17-20: UART_TSR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10:0
(R/NW)

VALUE Contents of TSR.

Table 17-21: UART_RSR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:0
(R/NW)

VALUE Contents of RSR.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Transmit Counter Register

The UART_TXCNT read only register returns the content of 16-bit counter in the UART transmitter. This
count is used for baud rate clock generation (the lower [15:0] is the count data).

Figure 17-23: UART_TXCNT Register Diagram

Receive Counter Register

The UART_RXCNT register returns the content of 16-bit counter in the UART receiver. This count is used
for baud rate clock generation (the lower [15:0] is the count data).

Figure 17-24: UART_RXCNT Register Diagram

Table 17-22: UART_TXCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/NW)

VALUE 16-bit Counter Value.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 17–49

Table 17-23: UART_RXCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/NW)

VALUE 16-bit Counter Value.

UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART)
ADSP-CM40X UART REGISTER DESCRIPTIONS

17–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–1

18 2-Wire Interface (TWI)

The processor has a 2-wire interface (TWI), that provides a simple exchange method of control data
between multiple devices. The TWI module is compatible with the widely used I2C bus standard. Addi-
tionally, the TWI module is fully compatible with serial camera control bus (SCCB) functionality for easier
control of various CMOS camera sensor devices.

The TWI module offers the capabilities of simultaneous master and slave operation and support for both
7-bit addressing and multimedia data arbitration. The TWI interface uses two pins for transferring clock
(TWI_SCL) and data (TWI_SDA) and supports the protocol at speeds up to 400K bits/sec. The TWI interface
pins are compatible with 5 V logic levels.

To preserve processor bandwidth, the TWI module can be set up with transfer initiated interrupts to only
service FIFO buffer data reads and writes. Protocol related interrupts are optional. The TWI externally
moves 8-bit data while maintaining compliance with the I2C bus protocol.

TWI Features

The TWI is fully compatible with the widely used I2C bus standard.

The TWI controller includes the following features.

• Simultaneous master and slave operation on multiple device systems

• Support for multi-master bus arbitration

• 7-bit addressing

• 100K bits/second and 400K bits/second data rates

• General call address support

• Master clock synchronization and support for clock low extension

• Separate multiple-byte receive and transmit FIFOs

• Low interrupt rate

• Individual override control of data and clock lines in the event of bus lock-up

• Input filter for spike suppression

• Serial camera control bus support as specified in the OmniVision Serial Camera Control Bus (SCCB)
Functional Specification

2-WIRE INTERFACE (TWI)
TWI FUNCTIONAL DESCRIPTION

18–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

TWI Functional Description

The TWI interface is a shift register that serially transmits and receives data bits, one bit at a time at the
SCL rate, to and from other TWI devices. The SCL signal synchronizes the shifting and sampling of the
data on the serial data pin.

ADSP-CM40x TWI Register List

The 2-wire interface TWI controller allows a device to interface to an inter IC bus as specified by the
Philips I2C Bus Specification version 2.1 dated January 2000. A set of registers govern TWI operations. For
more information on TWI functionality, see the TWI register descriptions.

Table 18-1: ADSP-CM40x TWI Register List

Name Description

TWI_CLKDIV SCL Clock Divider Register

TWI_CTL Control Register

TWI_SLVCTL Slave Mode Control Register

TWI_SLVSTAT Slave Mode Status Register

TWI_SLVADDR Slave Mode Address Register

TWI_MSTRCTL Master Mode Control Registers

TWI_MSTRSTAT Master Mode Status Register

TWI_MSTRADDR Master Mode Address Register

TWI_ISTAT Interrupt Status Register

TWI_IMSK Interrupt Mask Register

TWI_FIFOCTL FIFO Control Register

TWI_FIFOSTAT FIFO Status Register

TWI_TXDATA8 Tx Data Single-Byte Register

TWI_TXDATA16 Tx Data Double-Byte Register

TWI_RXDATA8 Rx Data Single-Byte Register

TWI_RXDATA16 Rx Data Double-Byte Register

2-WIRE INTERFACE (TWI)
TWI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–3

ADSP-CM40x TWI Interrupt List

TWI Block Diagram

The following figure shows the basic blocks of the TWI interface.

Figure 18-1: TWI Block Diagram

External Interface

The TWI_SDA (serial data) and TWI_SCL (serial clock) signals are open drain and require pull-up resistors.
These bidirectional signals externally interface the TWI controller to the I2C bus and no other external
connections or logic are required.

Table 18-2: ADSP-CM40x TWI Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

99 TWI0_DATA TWI0 Data Interrupt LEVEL

2-WIRE INTERFACE (TWI)
TWI FUNCTIONAL DESCRIPTION

18–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Serial Clock Signal (SCL)

The serial clock signal (TWI_SCL) is an input in slave mode. In master mode the TWI controller must set
this signal to the desired frequency.

The TWI controller supports the standard mode of operation (up to 100 kHz) or fast mode (up to 400
kHz). The TWI control register (TWI_CTL) is used to set the TWI_CTL.PRESCALE value which sets the rela-
tionship between the system clock (SCLK) and the TWI controller’s internally timed events. The internal
time reference is derived from SCLK using a prescaled value. The prescale value is the number of SCLK
periods used in the generation of one internal time reference. The value of prescale must be set to create
an internal time reference with a period of 10 MHz. It is represented as a 7-bit binary value as shown below.

PRESCALE = f SCLK/10MHz

NOTE: It is not always possible to achieve 10 MHz accuracy. In such cases, it is safe to round up the PRES-
CALE value to the next highest integer. For example, if SCLK is 100 MHz, the PRESCALE value is
calculated as 100 MHz/10 MHz = 10. A prescale value of 14 in this case ensures that all timing
requirements are met.

During master mode operation, the TWI_CLKDIV register values are used to create the minimum TWI_
CLKDIV.CLKHI and TWI_CLKDIV.CLKLO durations of the TWI_SCL signal. The TWI_CLKDIV.CLKHI field
specifies the minimum number of 10 MHz time reference periods (represented as an 8-bit binary value)
the TWI_SCL waits before a new clock low period begins, assuming a single master. The TWI_CLKDIV.
CLKLO field specifies the minimum number of internal time reference periods (represented as an 8-bit
binary value) the TWI_SCL signal is held low.

Serial clock frequencies can vary from 400 kHz to less than 20 kHz. The resolution of the clock generated
is 1/10 MHz or 100 ns as shown below.

TWI_CLKDIV = TWI_SCL period/10 MHz time reference.

For example, for an TWI_SCL of 400 kHz (period = 1/400 kHz = 2500 ns) and an internal time reference of
10 MHz (period = 100 ns) the following equation is used:

TWI_CLKDIV = 2500 ns/100 ns = 25

Therefore, a TWI_SCL signal with a 30% duty cycle has TWI_CLKDIV.CLKLO=17 and TWI_CLKDIV.CLKHI=8.
Note that TWI_CLKDIV.CLKLO and TWI_CLKDIV.CLKHI add up to TWI_CLKDIV.

NOTE: The TWI_CLKDIV.CLKHI and TWI_CLKDIV.CLKLO fields are not intended to guarantee a certain
frequency. Rather, they guarantee a certain minimum high and low duration for the TWI_SCL
signal. Falling edges are controlled by slew rate, and rising edges are governed by the RC time
constant formed by the pull-up resistor and the TWI_SCL capacitance. See the “Register Descrip-
tions” section for more details.

Serial Data Signal (SDA)

This is a bidirectional signal on which serial data is transmitted or received depending on the direction of
the transfer.

2-WIRE INTERFACE (TWI)
TWI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–5

Internal Interface

The peripheral bus interface supports the transfer of 16-bit wide data and is used by the processor in the
support of register and FIFO buffer reads and writes. The TWI internal interface is comprised of the blocks
described below.

Register block. Contains all control and status bits and reflects what can be written or read as outlined by
the programming model. Status bits can be updated by their respective functional blocks.

FIFO buffer. Configured as a1-byte-wide 2-deep transmit FIFO buffer and a 1-byte-wide 2-deep receive
FIFO buffer.

Transmit shift register. Serially shifts its data out externally off chip. The output can be controlled for
generation of acknowledgments or it can be manually overwritten.

Receive shift register. Receives its data serially from off chip. The receive shift register is 1 byte wide and
data received can either be transferred to the FIFO buffer or used in an address comparison.

Address compare block. Supports address comparison in the event the TWI controller module is accessed
as a slave.

Prescaler block. Must be programmed to generate a 10 MHz time reference relative to the system clock.
This time base is used for filtering of data and timing events specified by the electrical data sheet (See the
Philips specification), as well as for TWI_SCL clock generation.

Clock generation module. Generates an external TWI_SCL clock when in master mode. It includes the
logic necessary for synchronization in a multi-master clock configuration and clock stretching when
configured in slave mode.

TWI Architectural Concepts

The TWI controller follows the transfer protocol of the Philips I2C Bus Specification version 2.1 dated
January 2000.

TWI Protocol

The following figure shows a simple complete transfer.

Figure 18-2: Data Transfer

To better understand the mapping of TWI controller register contents to a basic transfer, The following
figure details the same transfer from the figure above noting the corresponding TWI controller bit names.

2-WIRE INTERFACE (TWI)
TWI FUNCTIONAL DESCRIPTION

18–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

In this illustration, the TWI controller successfully transmits one byte of data. The slave has acknowledged
both address and data.

Figure 18-3: Data Transfer with Bit Illustration

Clock Generation and Synchronization

The TWI controller implementation only issues a clock during master mode operation and only at the time
a transfer has been initiated. If arbitration for the bus is lost, the serial clock output immediately three-
states. If multiple clocks attempt to drive the serial clock line, the TWI controller synchronizes its clock
with the other remaining clocks. This is shown in the figure below.

Figure 18-4: Clock Synchronization

The TWI controller serial clock (TWI_SCL) output follows these rules:

• Once the clock high (TWI_CLKDIV.CLKHI) count is complete, the serial clock output is driven low and
the clock low (TWI_CLKDIV.CLKLO) count begins.

• Once the clock low count is complete, the serial clock line is three-stated, allowing the external pull-up
resistor to pull the TWI_SCL signal high, and the clock synchronization logic enters into a delay mode
(shaded area) until the TWI_SCL signal is detected at logic 1 level. At this time the clock high count
begins.

Bus Arbitration

The TWI controller initiates a master mode transmission only when the bus is idle. If the bus is idle and
two masters initiate a transfer, arbitration for the bus begins. This is shown in the figure below.

2-WIRE INTERFACE (TWI)
TWI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–7

Figure 18-5: Bus Arbitration

The TWI controller monitors the serial data bus (SDA) while the TWI_SCL signal is high and if the TWI_
SDA signal is determined to be an active logic 0 level while the TWI controller’s data is a logic 1 level, the
TWI controller has lost arbitration and stops generating the clock and data signals. Note that arbitration
is not only performed at the serial clock edges, but also during the entire time the TWI_SCL signal is high.

Start and Stop Conditions

Start and stop conditions involve serial data transitions while the serial clock is a logic 1 level. The TWI
controller generates and recognizes these transitions. Typically start and stop conditions occur at the
beginning and at the conclusion of a transmission with the exception of repeated start combined transfers,
as shown in the figure below.

Figure 18-6: Start and Stop Conditions

The TWI controller's special case start and stop conditions include the following.

• Controller addressed as a slave-receiver. If the master asserts a stop condition during the data phase of
a transfer, the TWI controller concludes the transfer (TWI_ISTAT.SCOMP).

• Controller addressed as a slave-transmitter. If the master asserts a stop condition during the data phase
of a transfer, the TWI controller concludes the transfer (TWI_ISTAT.SCOMP) and indicates a slave
transfer error (TWI_ISTAT.SERR).

2-WIRE INTERFACE (TWI)
TWI OPERATING MODES

18–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Controller as a master-transmitter or master-receiver. If the stop bit (TWI_MSTRCTL.STOP) is set during
an active master transfer, the TWI controller issues a stop condition as soon as possible avoiding any
error conditions (as if data transfer count had been reached).

General Call Support

The TWI controller always decodes and acknowledges a general call address if it is enabled as a slave and
if general call is enabled. General call addressing (0x00) is configured using the TWI_SLVCTL.GEN bit and
only when the TWI controller is a slave-receiver.

If the data associated with the transfer is to be NAK’ed, the TWI_SLVCTL.NAK bit can be set. If the TWI
controller is to issue a general call as a master-transmitter the appropriate address (TWI_MSTRADDR
register) and transfer direction (TWI_MSTRCTL.DIR bit) can be set along with loading transmit FIFO data.

NOTE: The byte following the General Call address usually defines what action needs to be taken by the
slaves in response to the call. The command in the second byte is interpreted based on the value of
its LSB. For a TWI slave device, this is not applicable, and the bytes received after the general call
address are considered data.

Fast Mode

Fast mode essentially uses the same mechanics as the standard mode of operation. It is the electrical spec-
ifications and timing that are most affected. When fast mode is enabled (FAST) timing is modified to meet
the electrical requirements as described below.

• Serial data rise times before arbitration evaluation (tr)

• Stop condition set-up time from serial clock to serial data (tSUSTO)

• Bus free time between a stop and start condition (tBUF)

TWI Operating Modes

The TWI has two modes of operation, repeated start and clock stretching. These are described in the
following sections.

Repeated Start

A repeated start condition is the absence of a stop condition between two transfers. The two transfers can
be of any direction type. Examples include a transmit followed by a receive, or a receive followed by a
transmit. The following sections guide the programmer in developing a service routine.

2-WIRE INTERFACE (TWI)
TWI OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–9

Transmit Receive Repeated Start

The following figure shows a repeated start followed by a data receive sequence. The shading in the figure
indicates that the slave has control of the bus.

Figure 18-7: Repeated Start Followed by Data Receive

The following tasks are performed at each interrupt.

• Transmit FIFO service (TWI_ISTAT.TXSERV) interrupt. This interrupt is generated due to a FIFO
access. Since this is the last byte of this transfer, the TWI_FIFOSTAT register indicates the transmit FIFO
is empty. When read, TWI_MSTRCTL.DCNT bit field=0. Set the TWI_MSTRCTL.RSTART bit to indicate a
repeated start and set the TWI_MSTRCTL.DIR bit if the following transfer will be a data receive.

• Master transfer complete (TWI_ISTAT.MCOMP) interrupt. This interrupt is generated when all data has
been transferred (TWI_MSTRCTL.DCNT bit field=0). If no errors are generated, a start condition is initi-
ated. Clear the TWI_MSTRCTL.RSTART bit and program the TWI_MSTRCTL.DCNT bits with the desired
number of bytes to receive.

• Receive FIFO service (TWI_ISTAT.RXSERV) interrupt. This interrupt is generated due to the arrival of
a byte in the receive FIFO. Simple data handling is all that is required.

• Master transfer complete (TWI_ISTAT.MCOMP) interrupt. The transfer is complete.

Receive Transmit Repeated Start

The following figure illustrates a repeated start data receive followed by a data transmit sequence. The
shading in the figure indicates that the slave has control of the bus.

Figure 18-8: Repeated Start Data Receive Followed by Data Transmit

2-WIRE INTERFACE (TWI)
TWI OPERATING MODES

18–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The tasks performed at each interrupt are:

• Receive FIFO service (TWI_ISTAT.RXSERV) interrupt. This interrupt is generated due to the arrival of
a data byte in the receive FIFO. Set the TWI_MSTRCTL.RSTART bit to indicate a repeated start and clear
the TWI_MSTRCTL.DIR bit if the following transfer will be a data transmit.

• Master transfer complete (TWI_ISTAT.MCOMP) interrupt. This interrupt has occurred due to the
completion of the data receive transfer. If no errors were generated, a start condition is initiated. Clear
the TWI_MSTRCTL.RSTART bit and program the TWI_MSTRCTL.DCNT bits with the desired number of
bytes to transmit.

• Transmit FIFO service (TWI_ISTAT.TXSERV) interrupt. This interrupt is generated due to a FIFO
access. Simple data handling is all that is required.

• Master transfer complete (TWI_ISTAT.MCOMP) interrupt. The transfer is complete.

NOTE: There is no timing constraint to meet the above conditions—program the bits as required. Refer to
Clock Stretching During Repeated Start section for more on how the controller stretches the clock
during repeated start transfers.

Clock Stretching

Clock stretching is an added function of the TWI controller in master mode operation. This behavior uses
self-induced stretching of the I 2C clock while waiting to service interrupts. Stretching is done automati-
cally by the hardware and no programming is required. The TWI controller as a master supports three
modes of clock stretching:

• Clock Stretching During FIFO Underflow

• Clock Stretching During FIFO Overflow

• Clock Stretching During Repeated Start

Clock Stretching During FIFO Underflow

During a master mode transmit, an interrupt is generated the instant the transmit FIFO becomes empty.
At this time, the most recent byte begins transmission. If the TWI_ISTAT.TXSERV interrupt is not serviced,
the concluding acknowledge phase of the transfer is stretched.

Stretching of the clock continues until new data bytes are written to the transmit FIFO (TWI_TXDATA8 or
TWI_TXDATA16 registers). No other action is required to release the clock and continue the transmission.
This behavior continues until the transmission is complete (TWI_MSTRCTL.DCNT=0) at which time the
transmission is concluded (TWI_ISTAT.MCOMP) as shown in the following figure and table.

2-WIRE INTERFACE (TWI)
TWI OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–11

Figure 18-9: Clock Stretching during FIFO Underflow

Clock Stretching During FIFO Overflow

During a master mode receive, an interrupt is generated at the instant the receive FIFO becomes full. It is
during the acknowledge phase of this received byte that clock stretching begins. No attempt is made to
initiate the reception of an additional byte. Stretching of the clock continues until the data bytes previously
received are read from the receive FIFO buffer (TWI_RXDATA8 or TWI_RXDATA16 registers). No other action
is required to release the clock and continue the reception of data. This behavior continues until the recep-
tion is complete (TWI_MSTRCTL.DCNT=0) at which time the reception is concluded (TWI_ISTAT.MCOMP) as
shown in the following figure and table.

TWI Controller Processor

Interrupt: XMTSERV – Transmit FIFO buffer is empty. Acknowledge: Clear interrupt source bits. Write transmit FIFO
buffer.

... ...

Interrupt: MCOMP – Master transmit complete (DCNT= 0x00). Acknowledge: Clear interrupt source bits.

2-WIRE INTERFACE (TWI)
TWI OPERATING MODES

18–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 18-10: Clock Stretching During FIFO Overflow

Clock Stretching During Repeated Start

The repeated start feature in I2C protocol requires a transition between two subsequent transfers. With the
use of clock stretching, the task of managing transitions becomes simpler and becomes common to all
transfer types.

Once an initial TWI master transfer has completed (transmit or receive) the clock initiates a stretch during
the repeated start phase between transfers. Concurrent with this event the initial transfer generates aTWI_
ISTAT.MCOMP interrupt to signify the initial transfer has completed (TWI_MSTRCTL.DCNT=0). This initial
transfer is handled without any special bit setting sequences or timing.

The clock stretching logic described above applies here. With no system related timing constraints the
subsequent transfer (receive or transmit) is setup and activated. This sequence can be repeated as many
times as required to string a series of repeated start transfers together. This is shown in the following figure
and table.

TWI Controller Processor

Interrupt: RCVSERV – Receive FIFO buffer is full. Acknowledge: Clear interrupt source bits. Read receive FIFO
buffer.

... ...

Acknowledge: Clear interrupt source bits. Interrupt: MCOMP – Master receive complete.

2-WIRE INTERFACE (TWI)
TWI PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–13

Figure 18-11: Clock Stretching during Repeated Start Condition

TWI Programming Model

The topics in this section provide information on the basic programming steps required to set up and run
the two wire interface.

The following sections provide general setup, and master and slave mode programming steps.

General Setup

General setup refers to register writes that are required for both slave mode and master mode operations.

TWI Controller Processor

Interrupt: MCOMP – Initial transmit has completed and DCNT =
0x00. Note: transfer in progress, RSTART previously set.

Acknowledge: Clear interrupt source bits. Write TWIx_MASTER_
CTL, setting MDIR (receive), clearing RSTART, and setting new
DCNT value (nonzero).

Interrupt: RCVSERV – Receive FIFO is full. Acknowledge: Clear interrupt source bits. Read receive FIFO
buffer.

... ...

Interrupt: MCOMP – Master receive complete Acknowledge: Clear interrupt source bits.

2-WIRE INTERFACE (TWI)
TWI PROGRAMMING MODEL

18–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

General setup should be performed before either the master or slave enable bits are set.

1. Program the TWI_CTL.EN bit to enable the TWI controller and set the prescale value (TWI_CTL.
PRESCALE bit).

2. Program the prescale value to the binary representation of fSCLK/10 MHz. All values should be rounded
up to the next whole number.

3. Set the TWI_CTL.EN bit to enable the controller.

RESULT:

Once the TWI controller is enabled a bus busy condition may be detected. This condition should clear after
tBUF has expired assuming no additional bus activity has been detected.

Slave Mode

When enabled, slave mode operation supports both receive and transmit data transfers.

It is not possible to enable only one data transfer direction and not acknowledge (NAK) the other. This is
reflected in the following setup.

1. Program the TWI_SLVADDR register. The appropriate 7 bits are used in determining a match during the
address phase of the transfer.

2. Program the TWI_TXDATA8.VALUE or TWI_TXDATA16 registers. These are the initial data values to be
transmitted in the event the slave is addressed and a transmit is required. This is an optional step. If no
data is written and the slave is addressed and a transmit is required, the serial clock (TWI_SCL) is
stretched and an interrupt is generated until data is written to the transmit FIFO.

3. Program the TWI_IMSK register. Enable bits are associated with the desired interrupt sources. As an
example, programming the value 0x000F results in an interrupt output to the processor in the event
that a valid address match is detected, a valid slave transfer completes, a slave transfer has an error, or
a subsequent transfer has begun yet the previous transfer has not been serviced.

4. Program the TWI_SLVCTL register. This prepares and enables slave mode operation. As an example,
programming the value 0x0005 enables slave mode operation, requires 7-bit addressing, and indicates
that data in the transmit FIFO buffer is intended for slave mode transmission.

RESULT:

The following table and flow diagram shows what the interaction between the TWI controller and the
processor might look like using this example.

2-WIRE INTERFACE (TWI)
TWI PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–15

Figure 18-12: TWI Slave Mode Program Flow

Master Mode Program Flow

The following figure shows the program for the TWI in master mode.

Table 18-3: Slave Mode Interaction

TWI Controller Processor

Interrupt: SINIT – Slave transfer in progress. Acknowledge: Clear interrupt source bits.

Interrupt: RCVSERV – Receive buffer is full. Acknowledge: Clear interrupt source bits. Read TWIx_FIFO_
STAT. Read receive FIFO buffer.

... ...

Interrupt: SCOMP – Slave transfer complete. Acknowledge: Clear interrupt source bits. Read receive FIFO
buffer.

2-WIRE INTERFACE (TWI)
TWI PROGRAMMING MODEL

18–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 18-13: Master Mode Program Flow

Master Mode Clock Setup

Master mode operation is set up and executed on a per-transfer basis.

An example of programming steps for a receive and for a transmit are given separately in following
sections. The clock setup programming step listed here is common to both transfer types.

1. Program the TWI_CLKDIV register to define the minimum clock high duration and minimum clock low
duration.

RESULT:

2-WIRE INTERFACE (TWI)
TWI PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–17

The TWI_CLKDIV.CLKHI and TWI_CLKDIV.CLKLO fields are not intended to guarantee a certain frequency.
Rather, they guarantee a certain minimum high and low duration for TWI_SCL. Falling edges are controlled
by the slew rate, and rising edges are governed by the RC time constant formed by the pull-up resistor and
the SCL capacitance. See the “Register Descriptions” section for more details.

Master Mode Transmit

Follow these programming steps for a single master mode transmit:

1. Program the TWI_MSTRADDR register. This defines the address transmitted during the address phase of
the transfer.

2. Program the TWI_TXDATA8 or TWI_TXDATA16 register. This is the initial data transmitted. It is consid-
ered an error to complete the address phase of the transfer and not have data available in the transmit
FIFO buffer.

3. Program the TWI_FIFOCTL register. Indicate if the transmit FIFO buffer interrupts should occur with
each byte transmitted (8-bits) or with each two bytes transmitted (16-bits).

4. Program the TWI_IMSK register. Enable the bits associated with the desired interrupt sources. As an
example, programming the value 0x0030 results in an interrupt output to the processor in the event
that the master transfer completes, and the master transfer has an error.

5. Program the TWI_MSTRCTL register. This prepares and enables master mode operation. As an example,
programming the value 0x0201 enables master mode operation, generates a 7-bit address, sets the
direction to master-transmit, uses standard mode timing, and transmits 8 data bytes before generating
a Stop condition.

RESULT:

The following table shows what the interaction between the TWI controller and the processor might look
like using this example.

Table 18-4: Master Mode Transmit Setup Interaction

TWI Controller Processor

Interrupt: XMTSERV – Transmit buffer is empty. Acknowledge: Clear interrupt source bits. Write transmit FIFO
buffer.

... ...

Interrupt: MCOMP – Master transfer complete. Acknowledge: Clear interrupt source bits.

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

18–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Master Mode Receive

Follow these programming steps for a single master mode receive.

1. Program the TWI_MSTRADDR register. This defines the address transmitted during the address phase of
the transfer.

2. Program the TWI_FIFOCTL register. Indicate if receive FIFO buffer interrupts should occur with each
byte received (8-bits) or with each two bytes received (16-bits).

3. Program the TWI_IMSK register. Enable bits associated with the desired interrupt sources. For example,
programming the value 0x0030 results in an interrupt output to the processor in the event that the
master transfer completes, and the master transfer has an error.

4. Program the TWI_MSTRCTL register. This prepares and enables master mode operation. As an example,
programming the value 0x0205 enables master mode operation, generates a 7-bit address, sets the
direction to master-receive, uses standard mode timing, and receives 8 data bytes before generating a
Stop condition.

RESULT:

The following table shows what the interaction between the TWI controller and the processor might look
like using this example.

NOTE: After the TWI_MSTRCTL.DCNT bit decrements to zero, the TWI master device sends a NAK to indi-
cate to the slave transmitter that the bus should be released. This allows the master to send the
STOP signal to terminate the transfer.

ADSP-CM40x TWI Register Descriptions

2-Wire Interface (TWI) contains the following registers.

Table 18-5: Master Mode Receive Setup Interaction

TWI Controller Processor

Interrupt: RCVSERV – Receive buffer is full. Acknowledge: Clear interrupt source bits. Read receive FIFO
buffer.

... ...

Interrupt: MCOMP – Master transfer complete. Acknowledge: Clear interrupt source bits. Read receive FIFO
buffer.

Table 18-6: ADSP-CM40x TWI Register List

Name Description

TWI_CLKDIV SCL Clock Divider Register

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–19

SCL Clock Divider Register

During master mode operation, the TWI_CLKDIV holds values, which the TWI uses to create the high and
low durations of the serial clock (SCL). The clock signal SCL is an output in master mode and an input in
slave mode. The values in the TWI_CLKDIV.CLKLO and TWI_CLKDIV.CLKHI fields add up to the CLKDIV
value the following equation.

CLKDIV = TWI SCL period / 10 MHz time reference

Serial clock frequencies can vary from 400 KHz to less than 20 KHz. The resolution of the clock generated
is 1/10 MHz or 100 ns. For example, for an SCL of 400 KHz (period = 1/400 KHz = 2500 ns) and an internal
time reference of 10 MHz (period = 100 ns):

CLKDIV = 2500 ns / 100 ns = 25

For an SCL with a 30% duty cycle, use TWI_CLKDIV.CLKLO = 17 and TWI_CLKDIV.CLKHI = 8.

TWI_CTL Control Register

TWI_SLVCTL Slave Mode Control Register

TWI_SLVSTAT Slave Mode Status Register

TWI_SLVADDR Slave Mode Address Register

TWI_MSTRCTL Master Mode Control Registers

TWI_MSTRSTAT Master Mode Status Register

TWI_MSTRADDR Master Mode Address Register

TWI_ISTAT Interrupt Status Register

TWI_IMSK Interrupt Mask Register

TWI_FIFOCTL FIFO Control Register

TWI_FIFOSTAT FIFO Status Register

TWI_TXDATA8 Tx Data Single-Byte Register

TWI_TXDATA16 Tx Data Double-Byte Register

TWI_RXDATA8 Rx Data Single-Byte Register

TWI_RXDATA16 Rx Data Double-Byte Register

Table 18-6: ADSP-CM40x TWI Register List (Continued)

Name Description

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

18–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 18-14: TWI_CLKDIV Register Diagram

Control Register

The TWI_CTL enables the TWI, establishes a relationship between the system clock (SCLK) and the TWI
controller's internally timed events, and enables SCCB compatibility.

Figure 18-15: TWI_CTL Register Diagram

Table 18-7: TWI_CLKDIV Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

CLKHI SCL Clock High Periods.
The TWI_CLKDIV.CLKHI specifies the number of 10 MHz time reference periods
the serial clock (SCL) waits before a new clock low period begins, assuming a single
master.

7:0
(R/W)

CLKLO SCL Clock Low Periods.
The TWI_CLKDIV.CLKLO specifies the number of internal time reference periods
the serial clock (SCL) is held low.

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–21

Slave Mode Control Register

The TWI_SLVCTL controls the logic associated with slave mode operation. Settings in this register do not
affect master mode operation and should not be modified to control master mode functionality.

Table 18-8: TWI_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/W)

SCCB SCCB Compatibility.
The TWI_CTL.SCCB enables SCCB compatible operation for the TWI. SCCB
compatibility is an optional feature and should not be used in an I2C bus system.
When this feature is enabled, all slave asserted acknowledgement bits are ignored by
this master. This feature is valid only during transfers where the TWI is mastering an
SCCB bus. Slave mode transfers should be avoided when this feature is enabled
because the TWI controller always generates an acknowledge in slave mode.

0 Disable SCCB compatibility
When disabled, Master transfers are not SCCB
compatible.

1 Enable SCCB compatibility
When enabled, Master transfers are SCCB compatible.
All slave-asserted acknowledgement bits are ignored by
this master.

7
(R/W)

EN Enable Module.
The TWI_CTL.EN enables TWI controller operation for either master and/or slave
mode of operation. It is recommended that this bit be set at the time TWI_CTL.
PRESCALE is initialized and remain set. This method guarantees accurate operation
of bus busy detection logic.

0 Disable

1 Enable

6:0
(R/W)

PRESCALE SCLK Prescale Value.
The TWI_CTL.PRESCALE holds the pre-scaled value for the TWI internal time
reference. This reference is derived from SCLK according to the formula:
TWI_CTL.PRESCALE = fSCLK/10MHz
The TWI_CTL.PRESCALE specifies the number of system clock (SCLK) periods
used in the generation of one internal time reference. The value of TWI_CTL.
PRESCALE must be set to create an internal time reference with a period of 10 MHz.
It is represented as a 7-bit binary value.

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

18–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 18-16: TWI_SLVCTL Register Diagram

Table 18-9: TWI_SLVCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

GEN General Call Enable.
The TWI_SLVCTL.GEN enables general call address matching. When enabled, a
general call slave receive transfer is accepted. All status and interrupt source bits
associated with transfers are updated. Note that general call address detection is
available only when slave mode is enabled.

0 Disable General Call Matching

1 Enable General Call Matching

3
(R/W)

NAK Not Acknowledge.
The TWI_SLVCTL.NAK directs the TWI to generate a NAK (if set) or an ACK (if
cleared) at the conclusion of data transfer for slave receive. For NAK, the slave is still
considered to be addressed at the conclusion of transfer.

0 Generate ACK

1 Generate NAK

2
(R/W)

TDVAL Transmit Data Valid for Slave.
The TWI_SLVCTL.TDVAL selects whether the data in the transmit FIFO is
available (valid) for slave transmission (TWI_SLVCTL.TDVAL set). If the FIFO data
is not available (invalid) for slave transmission (TWI_SLVCTL.TDVAL cleared), the
data in the transmit FIFO is for master mode transmits, and the data is not allowed to
be used during a slave transmit; the transmit FIFO is treated as if it is empty.

0 Data Invalid for Slave Tx

1 Data Valid for Slave Tx

0
(R/W)

EN Enable Slave Mode.
The TWI_SLVCTL.EN enables slave operation. Enabling slave and master modes of
operation concurrently is allowed. If disabled, no attempt is made to identify a valid
address. If TWI_SLVCTL.EN is cleared during a valid transfer, clock stretching
ceases, the serial data line is released, and the current byte is not acknowledged.

0 Disable

1 Enable

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–23

Slave Mode Status Register

During and at the conclusion of register slave mode transfers, the TWI_SLVSTAT holds information on the
current transfer. Generally slave mode status bits are not associated with the generation of interrupts.
Master mode operation does not affect slave mode status bits.

Figure 18-17: TWI_SLVSTAT Register Diagram

Slave Mode Address Register

The TWI_SLVADDR holds the slave mode address, which is the valid address to which the slave-enabled TWI
controller responds. The TWI controller compares this value with the received address during the
addressing phase of a transfer.

Table 18-10: TWI_SLVSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/NW)

GCALL General Call.
The TWI_SLVSTAT.GCALL indicates whether or not--at the time of addressing--
the address was determined to be a general call. This bit self clears if slave mode is
disabled (TWI_SLVCTL.EN =0).

0 Not a General Call Address

1 General Call Address

0
(R/NW)

DIR Transfer Direction for Slave.
The TWI_SLVSTAT.DIR indicates whether--at the time of addressing--the transfer
direction was determined to be slave transmit or receive. This bit self clears if slave
mode is disabled (TWI_SLVCTL.EN =0).

0 Slave Receive

1 Slave Transmit

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

18–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 18-18: TWI_SLVADDR Register Diagram

Master Mode Control Registers

The TWI_MSTRCTL controls the logic associated with master mode operation. Bits in this register do not
affect slave mode operation and should not be modified to control slave mode functionality.

Figure 18-19: TWI_MSTRCTL Register Diagram

Table 18-11: TWI_SLVADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

ADDR Slave Mode Address.

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–25

Table 18-12: TWI_MSTRCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

SCLOVR Serial Clock Override.
The TWI_MSTRCTL.SCLOVR provides direct control of the serial clock line when
required. Normal master and slave mode operation should not require override
operation. When TWI_MSTRCTL.SCLOVR is set, the TWI overrides normal serial
clock output, driving it to an active 0 level and overriding all other logic. This state is
held until this bit is cleared. When TWI_MSTRCTL.SCLOVR is cleared, the TWI
permits normal serial clock operation under the control of master mode clock
generation and slave mode clock stretching logic.

0 Permit Normal SCL Operation

1 Override Normal SCL Operation

14
(R/W)

SDAOVR Serial Data Override.
The TWI_MSTRCTL.SDAOVR provides direct control of the serial data line when
required. Normal master and slave mode operation should not require override
operation. When TWI_MSTRCTL.SDAOVR is set, the TWI overrides normal serial
data operation under the control of the transmit shift register and acknowledge logic,
driving serial data output to an active 0 level and overriding all other logic. This state
is held until this bit is cleared. When TWI_MSTRCTL.SDAOVR is cleared, the TWI
permits normal serial data operation.

0 Permit Normal SDA Operation

1 Override Normal SDA Operation

13:6
(R/W)

DCNT Data Transfer Count.
The TWI_MSTRCTL.DCNT indicates the number of data bytes to transfer. As each
data word is transferred, the TWI decrements this counter. When TWI_MSTRCTL.
DCNT decrements to 0, a stop condition is generated. Setting TWI_MSTRCTL.DCNT
to 0xFF disables the counter. In this transfer mode, data continues to be transferred
until it is concluded by setting the TWI_MSTRCTL.STOP bit. In the event a master
transmit is aborted due to a slave data NAK, the value of TWI_MSTRCTL.DCNT
equals the number of bytes not sent. The byte which was NAK'ed by the slave is
counted as a sent byte.

5
(R/W)

RSTART Repeat Start.
The TWI_MSTRCTL.RSTART enables the TWI to issue a repeat start condition at
the conclusion of the current transfer (TWI_MSTRCTL.DCNT =0) and begin the
next transfer. The current transfer concludes with updates to the appropriate status
and interrupt bits. If errors occurred during the previous transfer, a repeat start does
not occur. In the absence of any errors, master enable (TWI_MSTRCTL.EN) does
not self clear on a repeat start.

0 Disable Repeat Start

1 Enable Repeat Start

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

18–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Master Mode Status Register

The TWI_MSTRSTAT holds information during master mode transfers and at their conclusion. Generally,
master mode status bits are not directly associated with the generation of interrupts, but these bits offer
information on the current transfer. Slave mode operation does not affect master mode status bits.

Note that while TWI_MSTRSTAT.SCLSEN is set (this condition could be due to having no pull-up resistor on
TWI_SCL or another agent is driving TWI_SCL low), the acknowledge bits (TWI_MSTRSTAT.ANAK and TWI_
MSTRSTAT.DNAK) do not update. This result occurs because the acknowledge conditions are sampled
during the high phase of TWI_SCL.

4
(R/W)

STOP Issue Stop Condition.
The TWI_MSTRCTL.STOP directs the TWI to issue a stop condition. The transfer
concludes as soon as possible avoiding any error conditions (as if data transfer count
had been reached). At that time, the TWI_IMSK is updated along with any associated
status bits.

0 Permit Normal Operation

1 Issue Stop

3
(R/W)

FAST Fast Mode.
The TWI_MSTRCTL.FAST selects whether the TWI operates in fast mode or
standard mode. In fast mode, the TWI uses timing specifications for transfers at up
to 400K bits/s. In standard mode, the TWI uses timing specifications for transfers at
up to 100K bits/s.

0 Select Standard Mode

1 Select Fast Mode

2
(R/W)

DIR Transfer Direction for Master.
The TWI_MSTRCTL.DIR selects the transfer direction for the TWI as master
initiated receive or transmit.

0 Master Transmit

1 Master Receive

0
(R/W)

EN Enable Master Mode.
The TWI_MSTRCTL.EN enables master mode functionality. A start condition is
generated if the bus is idle. This bit self clears at the completion of a transfer (after the
TWI_MSTRCTL.DCNT bit decrements to zero), including transfers terminated due
to errors.
If disabled (bit cleared) during operation, the transfer is aborted, and all logic
associated with master mode transfers are reset. Serial data and serial clock (SDA,
SCL) are no longer driven. Write-1-to-clear status bits are not affected.

0 Disable

1 Enable

Table 18-12: TWI_MSTRCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–27

Figure 18-20: TWI_MSTRSTAT Register Diagram

Table 18-13: TWI_MSTRSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

8
(R/NW)

BUSBUSY Bus Busy.
The TWI_MSTRSTAT.BUSBUSY indicates whether the bus is currently busy or
free. This indication is not limited to only this device but is for all devices. On a start
condition, the setting of the register value is delayed due to the input filtering. On a
stop condition the clearing of the register value occurs after tBUF.

0 Bus Free
The bus is free. The clock and data bus signals have
been inactive for the appropriate bus free time.

1 Bus Busy
The bus is busy. Clock or data activity has been
detected.

7
(R/NW)

SCLSEN Serial Clock Sense.
The TWI_MSTRSTAT.SCLSEN indicates the active or inactive state of the serial
clock. Use this status bit when direct sensing of the serial clock line is required. The
register value is delayed due to the input filter (nominally 50 ns). Normal master and
slave mode operation should not require this feature.

0 SCL Inactive "One"
An inactive "one" is being sensed on the serial clock.

1 SCL Active "Zero"
An active "zero" is being sensed on the serial clock. The
source of the active driver is not known and can be
internal or external.

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

18–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

6
(R/NW)

SDASEN Serial Data Sense.
The TWI_MSTRSTAT.SDASEN indicates the active or inactive status of the serial
data. Use this status bit when direct sensing of the serial data line is required. The
register value is delayed due to the input filter (nominally 50 ns). Normal master and
slave mode operation should not require this feature.

0 SDA Inactive "One"
An inactive "one" is currently being sensed on the serial
data line.

1 SDA Active "Zero"
An active "zero" is currently being sensed on the serial
data line. The source of the active driver is not known
and can be internal or external.

5
(R/W1C)

BUFWRERR Buffer Write Error.
The TWI_MSTRSTAT.BUFWRERR indicates whether the current master transfer
was aborted due to a receive buffer write error. The receive buffer and receive shift
register were both full at the same time. This bit is W1C.

0 No Status

1 Buffer Write Error

4
(R/W1C)

BUFRDERR Buffer Read Error.
The TWI_MSTRSTAT.BUFRDERR indicates whether the current master transfer
was aborted due to the detection of a NAK during data transmission. This bit is W1C.

0 No Status

1 Buffer Read Error

3
(R/W1C)

DNAK Data Not Acknowledged.
The TWI_MSTRSTAT.DNAK indicates whether the current master transfer was
aborted due to the detection of a NAK during data transmission. This bit is W1C.

0 No Status

1 Data NAK

2
(R/W1C)

ANAK Address Not Acknowledged.
The TWI_MSTRSTAT.ANAK indicates whether the current master transfer was
aborted due to the detection of a NAK during the address phase of the transfer. This
bit is W1C.

0 No Status

1 Address NAK

1
(R/W1C)

LOSTARB Lost Arbitration.
The TWI_MSTRSTAT.LOSTARB indicates whether the current transfer was
aborted due to the loss of arbitration with another master. This bit is W1C.

0 No Status

1 Lost Arbitration

Table 18-13: TWI_MSTRSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–29

Master Mode Address Register

During the addressing phase of a transfer, the TWI controller, with its master enabled, transmits the
contents of TWI_MSTRADDR. When programming this register, omit the read/write bit. That is, only the
upper 7 bits that make up the slave address should be written to this register. For example, if the slave
address is b#1010000X, where X is the read/write bit, the TWI_MSTRADDR is programmed with b#1010000,
which corresponds to 0x50. When sending out the address on the bus, the TWI controller appends the
read/write bit as appropriate based on the state of the TWI_MSTRCTL.DIR bit.

Figure 18-21: TWI_MSTRADDR Register Diagram

Interrupt Status Register

The TWI_ISTAT contains information about functional areas requiring servicing. Many of the bits serve as
an indicator to further read and service various status registers. After servicing the interrupt source asso-
ciated with a bit, the user must clear that interrupt source bit by writing a 1 to it.

0
(R/NW)

MPROG Master Transfer in Progress.
The TWI_MSTRSTAT.MPROG indicates whether or not a master transfer is in
progress. If clear (TWI_MSTRSTAT.MPROG =0), currently no transfer is taking
place. This can occur after a transfer is complete or while an enabled master is
waiting for an idle bus.

0 No Status

1 Master Transfer in Progress

Table 18-14: TWI_MSTRADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

ADDR Master Mode Address.

Table 18-13: TWI_MSTRSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

18–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 18-22: TWI_ISTAT Register Diagram

Table 18-15: TWI_ISTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W1C)

SCLI Serial Clock Interrupt.
If the TWI is enabled (TWI_CTL.EN), SCLI is set on a high-to-low transition of the
serial clock pin (SCLx). Normally, this bit is not required for I2C bus transfers. It will
be initially set on an I2C transfer and does not require clearing.

0 No Interrupt
No transition was detected on the SCLx pin.

1 Interrupt Detected
A high-to-low transition was detected on the SCLx pin.
This bit is W1C.

14
(R/W1C)

SDAI Serial Data Interrupt.
If the TWI is enabled (TWI_CTL.EN), SDAI is set on a high-to-low transition of the
serial data pin (SDAx). Normally, this bit is not required for I2C bus transfers. It will
be initially set on an I2C transfer and does not require clearing.

0 No Interrupt
No transition was detected on the SDAx pin.

1 Interrupt Detected
A high-to-low transition was detected on the SDAx pin.
This bit is W1C.

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–31

7
(R/W1C)

RXSERV Rx FIFO Service.
If TWI_FIFOCTL.RXILEN =0, the TWI_ISTAT.RXSERV is set each time the
TWI_FIFOSTAT.RXSTAT field is updated to either 01 or 11. If TWI_FIFOCTL.
RXILEN =1, the TWI_ISTAT.RXSERV is set each time TWI_FIFOSTAT.
RXSTAT is updated to 11.

0 No Interrupt
The FIFO does not require servicing, or the TWI_
FIFOSTAT.RXSTAT field has not changed since this
bit was last cleared.

1 Interrupt Detected
The receive FIFO buffer has one or two 8-bit words of
data available to be read.

6
(R/W1C)

TXSERV Tx FIFO Service.
If TWI_FIFOCTL.TXILEN =0, the TWI_ISTAT.TXSERV is set each time the
TWI_FIFOSTAT.TXSTAT field is updated to either 01 or 00. If TWI_FIFOCTL.
TXILEN =1, the TWI_ISTAT.TXSERV is set each time TWI_FIFOSTAT.
TXSTAT is updated to 00.

0 No Interrupt
FIFO does not require servicing, or the TWI_
FIFOSTAT.TXSTAT field has not changed since this
bit was last cleared.

1 Interrupt Detected
The transmit FIFO buffer has one or two 8-bit locations
available to be written.

5
(R/W1C)

MERR Master Transfer Error.
The TWI_ISTAT.MERR indicates that a master error has occurred. The conditions
surrounding the error are indicated by the master status register (TWI_MSTRSTAT).

0 No Interrupt

1 Interrupt Detected

4
(R/W1C)

MCOMP Master Transfer Complete.
The TWI_ISTAT.MCOMP indicates that the initiated master transfer has completed.
In the absence of a repeat start, the bus has been released.

0 No Interrupt

1 Interrupt Detected

3
(R/W1C)

SOVF Slave Overflow.
The TWI_ISTAT.SOVF indicates that the TWI_ISTAT.SCOMP bit was set at the
time a subsequent transfer has acknowledged an address phase. The transfer
continues, however, it may be difficult to delineate data of one transfer from another.

0 No Interrupt

1 Interrupt Detected

Table 18-15: TWI_ISTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

18–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Interrupt Mask Register

The TWI_IMSK enables interrupt sources to assert the interrupt output. Each mask bit corresponds with
one interrupt source bit in TWI_ISTAT. Reading and writing TWI_IMSK does not affect the contents of the
TWI_ISTAT.

2
(R/W1C)

SERR Slave Transfer Error.
The TWI_ISTAT.SERR indicates that a slave error has occurred. A restart or stop
condition has occurred during the data receive phase of a transfer.

0 No Interrupt

1 Interrupt Detected

1
(R/W1C)

SCOMP Slave Transfer Complete.
The TWI_ISTAT.SCOMP indicates that the transfer is complete and either a stop, or
a restart was detected.

0 No Interrupt

1 Interrupt Detected

0
(R/W1C)

SINIT Slave Transfer Initiated.
The TWI_ISTAT.SINIT indicates whether or not a slave transfer is in progress.

0 No Interrupt
A transfer is not in progress, or an address match has
not occurred since the last time this bit was cleared.

1 Interrupt Detected
The slave has detected an address match, and a transfer
has been initiated.

Table 18-15: TWI_ISTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–33

Figure 18-23: TWI_IMSK Register Diagram

Table 18-16: TWI_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

SCLI Serial Clock Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

14
(R/W)

SDAI Serial Data Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

7
(R/W)

RXSERV Rx FIFO Service Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

6
(R/W)

TXSERV Tx FIFO Service Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

5
(R/W)

MERR Master Transfer Error Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

4
(R/W)

MCOMP Master Transfer Complete Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

18–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

FIFO Control Register

The TWI_FIFOCTL control bits affect only the FIFO and are not tied in any way with master or slave mode
operation.

Figure 18-24: TWI_FIFOCTL Register Diagram

3
(R/W)

SOVF Slave Overflow Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

2
(R/W)

SERR Slave Transfer Error Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

1
(R/W)

SCOMP Slave Transfer Complete Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

0
(R/W)

SINIT Slave Transfer Initiated Interrupt Mask.

0 Mask (Disable) Interrupt

1 Unmask (Enable) Interrupt

Table 18-16: TWI_IMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–35

FIFO Status Register

The TWI_FIFOSTAT fields indicate the state of the FIFO buffers' receive and transmit contents. The FIFO
buffers do not discriminate between master data and slave data. By using the status and control bits
provided, the FIFO can be managed to allow simultaneous master and slave operation.

Table 18-17: TWI_FIFOCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W)

RXILEN Rx Buffer Interrupt Length.
The TWI_FIFOCTL.RXILEN determines the rate at which receive buffer interrupts
are to be generated. Interrupts may be generated with each byte received or after two
bytes are received. Interrupt status is available in TWI_FIFOSTAT.RXSTAT.

0 RXSERVI on 1 or 2 Bytes in FIFO

1 RXSERVI on 2 Bytes in FIFO

2
(R/W)

TXILEN Tx Buffer Interrupt Length.
The TWI_FIFOCTL.TXILEN determines the rate at which transmit buffer
interrupts are to be generated. Interrupts may be generated with each byte
transmitted or after two bytes are transmitted. Interrupt status is available in TWI_
FIFOSTAT.TXSTAT.

0 TXSERVI on 1 Byte of FIFO Empty

1 TXSERVI on 2 Bytes of FIFO Empty

1
(R/W)

RXFLUSH Rx Buffer Flush.
The TWI_FIFOCTL.RXFLUSH directs the TWI to flush the contents of the receive
buffer and update TWI_FIFOSTAT.RXSTAT to indicate the buffer is empty. This
state is held until this bit is cleared. During an active receive, the receive buffer in this
state responds to the receive logic as if it is full.

0 Normal Operation of Rx Buffer

1 Flush Rx Buffer

0
(R/W)

TXFLUSH Tx Buffer Flush.
The TWI_FIFOCTL.TXFLUSH directs the TWI to flush the contents of the
transmit buffer and update TWI_FIFOSTAT.TXSTAT to indicate the buffer is
empty. This state is held until this bit is cleared. During an active transmit, the
transmit buffer in this state responds to the transmit logic as if it is empty.

0 Normal Operation of Tx Buffer

1 Flush Tx Buffer

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

18–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 18-25: TWI_FIFOSTAT Register Diagram

Table 18-18: TWI_FIFOSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:2
(R/NW)

RXSTAT Rx FIFO Status.
The read-only TWI_FIFOSTAT.RXSTAT indicates the number of valid data bytes
in the receive FIFO buffer. The status is updated with each FIFO buffer read using the
peripheral data bus or write access by the receive shift register. Simultaneous accesses
are allowed.

0 Empty
The FIFO is empty.

1 Contains 1 Byte
The FIFO contains one byte of data. A single byte
peripheral read of the FIFO is allowed.

2 Reserved

3 Full
The FIFO is full and contains two bytes of data. Either a
single or double byte peripheral read of the FIFO is
allowed.

1:0
(R/NW)

TXSTAT Tx FIFO Status.
The read-only TWI_FIFOSTAT.TXSTAT field indicates the number of valid data
bytes in the FIFO buffer. The status is updated with each FIFO buffer write using the
peripheral data bus or read access by the transmit shift register. Simultaneous
accesses are allowed.

0 Empty
The FIFO is empty. Either a single or double byte
peripheral write of the FIFO is allowed.

1 Contains 1 Byte
The FIFO contains one byte of data. A single byte
peripheral write of the FIFO is allowed.

2 Reserved

3 Full
The FIFO is full and contains two bytes of data.

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–37

Tx Data Single-Byte Register

The TWI_TXDATA8 holds an 8-bit data value written into the FIFO buffer. Transmit data is entered into the
corresponding transmit buffer in a first-in first-out order. For 16-bit peripheral bus writes, a write access
to TWI_TXDATA8 adds only one transmit data byte to the FIFO buffer. With each access, the transmit status
(TWI_FIFOSTAT.TXSTAT) field is updated. If an access is performed while the FIFO buffer is full, the write
is ignored and the existing FIFO buffer data and its status remains unchanged.

Note: This register when read back returns zero.

Figure 18-26: TWI_TXDATA8 Register Diagram

Tx Data Double-Byte Register

The TWI_TXDATA16 holds a 16-bit data value written into the FIFO buffer. To reduce interrupt output rates
and peripheral bus access times, a double byte transfer data access can be done. Two data bytes can be
written, effectively filling the transmit FIFO buffer with a single access.

The data is written in little endian byte order, where byte 0 is the first byte to be transferred and byte 1 is
the second byte to be transferred. With each access, the transmit status (TWI_FIFOSTAT.TXSTAT) field is
updated. If an access is performed while the FIFO buffer is not empty, the write is ignored and the existing
FIFO buffer data and its status remains unchanged.

Note: This register when read back returns zero.

Table 18-19: TWI_TXDATA8 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R0/W)

VALUE Tx Data 8-Bit Value.

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

18–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 18-27: TWI_TXDATA16 Register Diagram

Rx Data Single-Byte Register

The TWI_RXDATA8 holds an 8-bit data value read from the FIFO buffer. Receive data is read from the corre-
sponding receive buffer in a first-in first-out order. Although peripheral bus reads are 16 bits, a read access
to TWI_RXDATA8 accesses only one transmit data byte from the FIFO buffer. With each access, the receive
status (TWI_FIFOSTAT.RXSTAT) field is updated. If an access is performed while the FIFO buffer is empty,
the data is unknown and the FIFO buffer status remains indicating it is empty.

Figure 18-28: TWI_RXDATA8 Register Diagram

Table 18-20: TWI_TXDATA16 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R0/W)

VALUE Tx Data 16-Bit Value.

Table 18-21: TWI_RXDATA8 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R0/W)

VALUE Rx Data 8-Bit Value.

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 18–39

Rx Data Double-Byte Register

The TWI_RXDATA16 holds a 16-bit data value read from the FIFO buffer. To reduce interrupt output rates
and peripheral bus access times, a double byte receive data access can be performed. Two data bytes can
be read, effectively emptying the receive FIFO buffer with a single access.

The data is read in little endian byte order, where byte 0 is the first byte received and byte 1 is the second
byte received. With each access, the receive status (TWI_FIFOSTAT.RXSTAT) field is updated to indicate it
is empty. If an access is performed while the FIFO buffer is not full, the read data is unknown and the
existing FIFO buffer data and its status remains unchanged.

Figure 18-29: TWI_RXDATA16 Register Diagram

Table 18-22: TWI_RXDATA16 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R0/W)

VALUE Rx Data 16-Bit Value.

2-WIRE INTERFACE (TWI)
ADSP-CM40X TWI REGISTER DESCRIPTIONS

18–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–1

19 Controller Area Network (CAN)

The processor contains a controller area network (CAN) module based on the CAN 2.0B (active) protocol.
This protocol is an asynchronous communications protocol used in both industrial and automotive
control systems. The CAN protocol is well suited for control applications because it can communicate reli-
ably over a network and incorporates CRC checking, message error tracking, and fault node confinement.

NOTE: This document assumes familiarity with the CAN standard. For more information, refer to
Version 2.0 of the CAN Specification from Robert Bosch GmbH.

CAN Features

Key features of the CAN module include:

• Conformity to the CAN 2.0B (active) standard

• Dedicated acceptance mask for each mailbox

• Support for data rates of up to 1M bit/s

• Support for standard (11-bit) and extended (29-bit) identifiers

• 32 mailboxes (8 transmit, 8 receive, 16 configurable)

• Data filtering (first 2 bytes) can be used for acceptance filtering (DeviceNetTM mode)

• Error status and warning registers

• Universal counter module

• Readable receive and transmit pin values

• Support for remote frames

• Active or passive network support

• Interrupts, including transmit/receive complete, error, and global

• Clock derived from SCLK through a programmable divider, eliminating the need for an additional
crystal

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

19–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CAN Functional Description

The following sections provide information on the functional operation of the CAN module. This section
also provides listings of the CAN registers and interrupts.

ADSP-CM40x CAN Register List

The controller area network (CAN) module implements the CAN 2.0B (active) protocol. This protocol is
an asynchronous communications protocol used in both industrial and automotive control systems. A set
of registers govern CAN operations. For more information on CAN functionality, see the CAN register
descriptions.

Table 19-1: ADSP-CM40x CAN Register List

Name Description

CAN_MC1 Mailbox Configuration 1 Register

CAN_MD1 Mailbox Direction 1 Register

CAN_TRS1 Transmission Request Set 1 Register

CAN_TRR1 Transmission Request Reset 1 Register

CAN_TA1 Transmission Acknowledge 1 Register

CAN_AA1 Abort Acknowledge 1 Register

CAN_RMP1 Receive Message Pending 1 Register

CAN_RML1 Receive Message Lost 1 Register

CAN_MBTIF1 Mailbox Transmit Interrupt Flag 1 Register

CAN_MBRIF1 Mailbox Receive Interrupt Flag 1 Register

CAN_MBIM1 Mailbox Interrupt Mask 1 Register

CAN_RFH1 Remote Frame Handling 1 Register

CAN_OPSS1 Overwrite Protection/Single Shot Transmission 1 Register

CAN_MC2 Mailbox Configuration 2 Register

CAN_MD2 Mailbox Direction 2 Register

CAN_TRS2 Transmission Request Set 2 Register

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–3

CAN_TRR2 Transmission Request Reset 2 Register

CAN_TA2 Transmission Acknowledge 2 Register

CAN_AA2 Abort Acknowledge 2 Register

CAN_RMP2 Receive Message Pending 2 Register

CAN_RML2 Receive Message Lost 2 Register

CAN_MBTIF2 Mailbox Transmit Interrupt Flag 2 Register

CAN_MBRIF2 Mailbox Receive Interrupt Flag 2 Register

CAN_MBIM2 Mailbox Interrupt Mask 2 Register

CAN_RFH2 Remote Frame Handling 2 Register

CAN_OPSS2 Overwrite Protection/Single Shot Transmission 2 Register

CAN_CLK Clock Register

CAN_TIMING Timing Register

CAN_DBG Debug Register

CAN_STAT Status Register

CAN_CEC Error Counter Register

CAN_GIS Global CAN Interrupt Status Register

CAN_GIM Global CAN Interrupt Mask Register

CAN_GIF Global CAN Interrupt Flag Register

CAN_CTL CAN Master Control Register

CAN_INT Interrupt Pending Register

CAN_MBTD Temporary Mailbox Disable Register

CAN_EWR Error Counter Warning Level Register

CAN_ESR Error Status Register

CAN_UCCNT Universal Counter Register

Table 19-1: ADSP-CM40x CAN Register List (Continued)

Name Description

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

19–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x CAN Interrupt List

External Interface

The interface to the CAN bus is a simple two-wire line. The following figure shows a symbolic representa-
tion of the CAN transceiver interconnection. Typically, the processor’s CAN_TX output and CAN_RX input
pins are connected to an external CAN transceiver’s CAN_TX and CAN_RX pins (respectively). The CAN_TX

CAN_UCRC Universal Counter Reload/Capture Register

CAN_UCCNF Universal Counter Configuration Mode Register

CAN_AMnnL Acceptance Mask (L) Register

CAN_AMnnH Acceptance Mask (H) Register

CAN_MBnn_DATA0 Mailbox Word 0 Register

CAN_MBnn_DATA1 Mailbox Word 1 Register

CAN_MBnn_DATA2 Mailbox Word 2 Register

CAN_MBnn_DATA3 Mailbox Word 3 Register

CAN_MBnn_LENGTH Mailbox Length Register

CAN_MBnn_TIMESTAMP Mailbox Timestamp Register

CAN_MBnn_ID0 Mailbox ID 0 Register

CAN_MBnn_ID1 Mailbox ID 1 Register

Table 19-2: ADSP-CM40x CAN Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

123 CAN0_RX CAN0 Receive Transfer Complete LEVEL

124 CAN0_TX CAN0 Transmit Transfer Complete LEVEL

125 CAN0_STAT CAN0 Status LEVEL

126 CAN1_RX CAN1 Receive Transfer Complete LEVEL

127 CAN1_TX CAN1 Transmit Transfer Complete LEVEL

128 CAN1_STAT CAN1 Status LEVEL

Table 19-1: ADSP-CM40x CAN Register List (Continued)

Name Description

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–5

and CAN_RX pins operate with TTL levels and are appropriate for operation with CAN bus transceivers
according to ISO/DIS 11898.

Figure 19-1: Representation of CAN Transceiver Interconnection

CAN data is defined to be either dominant (logic 0) or recessive (logic 1). The default state of the CAN_TX
output is recessive.

Architectural Concepts

The full-CAN controller features 32 message buffers, which are called mailboxes. Eight mailboxes are dedi-
cated for message transmission, eight are for reception, and 16 are programmable in direction.

The CAN module architecture is based around a 32-entry mailbox RAM. The mailbox is accessed sequen-
tially by the CAN serial interface or the processor core. Each mailbox consists of eight 16-bit control and
data registers and two optional 16-bit acceptance mask registers, all of which must be configured before
the mailbox itself is enabled.

Since the mailbox area (shown in the following figure) is implemented as RAM, the reset values of these
registers are undefined. The data is divided into fields, which includes a message identifier, a time stamp,
a byte count, up to 8 bytes of data, and several control bits

Figure 19-2: CAN Mailbox Area

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

19–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The CAN mailbox identification (CAN_MBnn_ID0/1) register pair includes:

• The 29 bit identifier (base part CAN_AMnnH.BASEID plus extended part CAN_AMnnL.EXTID/CAN_AMnnH.
EXTID)

• The acceptance mask enable bit (CAN_MBnn_ID1.AME)

• The remote transmission request bit (CAN_MBnn_ID1.RTR)

• The identifier extension bit (CAN_MBnn_ID1.IDE)

NOTE: Do not write to the identifier of a message object while the mailbox is enabled for the CAN module
(the corresponding bit in CAN_MC1 is set).

The other mailbox area registers/bits are:

• The data length code bit (CAN_MBnn_LENGTH.DLC). The upper 12 bits of this register of each mailbox
are marked as reserved. These 12 bits should always be set to 0.

• The mailbox word registers (CAN_MBnn_DATA0/1/2/3) supply up to eight bytes for the data field, sent
MSB first from based on the number of bytes defined in the CAN_MBnn_LENGTH.DLC bit. For example,
if only one byte is transmitted or received (CAN_MBnn_LENGTH.DLC=1), then it is stored in the most
significant byte of the CAN_MBnn_DATA3 register.

• The time stamp value bits (CAN_MBnn_TIMESTAMP.TSV).

The final registers in the mailbox area are the acceptance mask registers (CAN_AMnnH and CAN_AMnnL). The
acceptance mask is enabled when the CAN_MBnn_ID1.AME bit is set.

The filtering on data field option can be enabled by setting the CAN_CTL.DNM and CAN_AMnnH.FDF bits.
When enabled, the CAN_MBnn_ID0.EXTID[15:0] bits are reused as acceptance code (DFC) for the data field
filtering.

Block Diagram

The following figure shows a block diagram of the CAN module.

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–7

Figure 19-3: CAN Controller Block Diagram

Mailbox Control

Mailbox control memory-mapped registers (MMRs) function as control and status registers for the 32
mailboxes. Each bit in these registers represents one specific mailbox. Since CAN MMRs are all 16 bits
wide, pairs of registers are required to manage certain functionality for all 32 individual mailboxes. Mail-
boxes 0–15 are configured/monitored in registers with a suffix of 1. Similarly, mailboxes 16–31 use the
same named register with a suffix of 2. For example, the CAN mailbox direction registers (CAN_MD1/ CAN_
MD2) control mailboxes as shown in the figure below.The Mailbox Control registers are shown in ADSP-
CM40x CAN Register List.

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

19–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-4: CAN Mailbox Register Pair

Since mailboxes 24–31 support transmit operation only and mailboxes 0–7 are receive-only mailboxes, the
lower eight bits in the 1 registers and the upper eight bits in the 2 registers are sometimes reserved or are
restricted in their use.

Protocol Fundamentals

Although the CAN_RX and CAN_TX pins are TTL-compliant signals, the CAN signals beyond the transceiver
have asymmetric drivers. A low state on the CAN_TX pin activates strong drivers while a high state is driven
weakly. Consequently, the active low is called the dominant state and the active high is the recessive state.
If the CAN module is passive, the CAN_TX pin is always high. If two CAN nodes transmit at the same time,
dominant bits overwrite recessive bits.

The CAN protocol specifies that all nodes trying to send a message on the CAN bus attempt to send a frame
(shown in the figure below) once the CAN bus becomes available. The start of frame indicator (SOF)
signals the beginning of a new frame. Each CAN node then begins transmitting its message starting with
the message ID.

Figure 19-5: Standard CAN Frame

While transmitting, the CAN controller samples the CAN_RX pin to verify that the logic level being driven
is the value it just placed on the CAN_TX pin. This is where the names for the logic levels apply. If a trans-

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–9

mitting node places a recessive 1 on the CAN_TX pin and detects a dominant 0 on the CAN_RX pin, it knows
that another node has placed a dominant bit on the bus, which means another node is a higher priority.

Therefore, if the value sensed on the CAN_RX pin is the value driven on the CAN_TX pin, transmission
continues, otherwise the CAN controller senses that it has lost arbitration and module configuration deter-
mines the next course of action.

The figure above shows a basic 11-bit identifier frame. After the SOF and identifier is the CAN_MBnn_ID1.
RTR bit, which indicates whether the frame contains data (data frame) or is a request for data associated
with the message identifier in the frame being sent (remote frame).

NOTE: In the CAN protocol, a dominant bit in the CAN_MBnn_ID1.RTR field wins arbitration against a
remote frame request (CAN_MBnn_ID1.RTR=1) for the same message ID. This allows a remote
request to be a lower priority than a data frame.

The next field of interest in the frame is the CAN_MBnn_ID1.IDE bit. When set, it indicates that the message
is an extended frame with a 29-bit identifier instead of an 11-bit identifier. In an extended frame, the first
part of the message resembles the following figure.

Figure 19-6: Extended CAN Frame

As can be concluded with regards to the CAN_MBnn_ID1.RTR field, a dominant bit in the CAN_MBnn_ID1.
IDE field wins arbitration against an extended frame with the same lower 11-bits and standard frames are
higher priority than extended frames.

The substitute remote request (SRR, always sent as recessive), the reserved bits r0 and r1 (always sent as
dominant), and the checksum (CRC) are generated automatically by the internal logic.

Data Transfer Modes

The following sections provide information on the data transfer modes supported by the CAN controller.

Transmit Operations

The following figure shows the CAN transmit operation. Mailboxes 24–31 are dedicated transmitters.
Mailboxes 8–23 can be configured as transmitters by writing 0 to the corresponding bit in the CAN_MD1/
CAN_MD2 registers. After writing the data and the identifier into the mailbox area, the message is sent after
mailbox n is enabled (CAN_MC1.MB=1) and, subsequently, the corresponding transmit request bit is set
(CAN_TRS1.MB=1).

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

19–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-7: CAN Transmit Operation Flow Chart

When a transmission completes, the corresponding bits in the CAN_TRS1/CAN_TRS2 and CAN_TRR1/CAN_
TRR2 registers are cleared. If the transmission was successful, the corresponding bit in the CAN_TA1/CAN_
TA2 register is set. If the transmission was aborted due to lost arbitration or a CAN error, the corre-
sponding bit in the CAN_AA1/CAN_AA2 register is set. A requested transmission can also be manually
aborted by setting the corresponding bit in the CAN_TRR1/CAN_TRR2 register.

Multiple CAN_TRS1.MB bits can be set simultaneously by software, and these bits are reset after either a
successful or an aborted transmission.

These bits are also set by the CAN hardware in the following cases:

• When using the auto-transmit mode of the universal counter,

• When a message loses arbitration and the single-shot CAN_OPSS1.MB bit is not set, or

• In the event of a remote frame request (only possible for receive/transmit mail-boxes if the automatic
remote frame handling feature is enabled (CAN_RFH1.MB=1).

NOTE: Special care should be given to mailbox area management when a CAN_TRS1/CAN_TRS2 bit is set.
Write access to the mailbox is permissible with a bit set, but changing data in such a mailbox may
lead to unexpected data during transmission.

Enabling and disabling mailboxes has an impact on transmit requests. Setting the CAN_TRS1/CAN_TRS2 bit
associated with a disabled mailbox may result in erroneous behavior. Similarly, disabling a mailbox before
the associated CAN_TRS1/CAN_TRS2 bit is reset by the internal logic can cause unpredictable results.

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–11

Retransmission

Normally, the current message object is resent after arbitration is lost or an error frame is detected on the
CAN bus line. If there is more than one transmit message object pending, the message object with the
highest mailbox is sent first (see figure below). The currently aborted transmission is restarted after any
messages with higher priority are sent.

Figure 19-8: Transmit Flow

A message which is currently under preparation is not replaced by another message which is written into
the mailbox. The message under preparation is one that is copied into the temporary transmit buffer when
the internal transmit request for the CAN core module is set. The message in the buffer is not replaced until
it is sent successfully, the arbitration on the CAN bus line is lost, or there is an error frame on the CAN bus
line.

Single-Shot Transmission

If the single shot transmission feature is used (CAN_OPSS1.MB=1), the corresponding CAN_TRS1 bit is
cleared after the message is successfully sent or even if the transmission is aborted due to a lost arbitration
or an error frame on the CAN bus line. Therefore, there is no further attempt to transmit the message again
if the initial try failed, and the Abort error is reported (CAN_AA1.MB=1).

Auto-Transmission

In Auto-Transmit mode, the message in mailbox 11 (MB11) can be sent periodically using the universal
counter. This mode is often used to broadcast heartbeats to all CAN nodes. Accordingly, messages sent this
way usually have high priority.

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

19–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The period value is written to the CAN_UCRC register. The Auto-Transmission mode is enabled by setting
the CAN_UCCNF.UCCNF field to 0x03. When enabled, the counter CAN_UCCNT is loaded with the value in the
CAN_UCRC register. The counter decrements to 0 at the CAN bit clock rate and is then reloaded from CAN_
UCRC. Each time the counter reaches a value of 0, the CAN_TRS1.MB bit is automatically set by internal logic,
and the corresponding message from mailbox 11 is sent.

For proper auto-transmit operation, mailbox 11 must be configured as a transmit mailbox and must
contain valid data (identifier, control bits, and data) before the counter first expires after this mode is
enabled.

Receive Operation

The CAN hardware autonomously receives messages and discards invalid messages. Once a valid message
is successfully received, the receive logic interrogates all enabled receive mailboxes sequentially, from
mailbox 23 down to mailbox 0, whether the message is of interest to the local node or not.

Each incoming data frame is compared to all identifiers stored in active receive mailboxes (respective
mailbox indices of CAN_MD1 and CAN_MC1 registers set to 1) and to all active transmit mailboxes with the
remote frame handling feature enabled (=1). The message identifier of the received message, along with
the identifier extension (CAN_MBnn_ID1.IDE) and remote transmission request (CAN_MBnn_ID1.RTR) bits,
are compared against each mailbox’s register settings. In standard mode, the message is compared to the
content of the CAN_MBnn_ID1register. In extended mode, the content of the CAN_MBnn_ID0register must
also match.

If the acceptance mask enable CAN_MBnn_ID1.AME bit is not set, a match is signaled only if CAN_MBnn_ID1.
IDE, CAN_MBnn_ID1.RTR, and all (11 or 29) identifier bits are exact. If, however, the CAN_MBnn_ID1.AME
bit is set, the acceptance mask registers (CAN_AMnnH/L) determine which of the CAN_MBnn_ID1.IDE and
CAN_MBnn_ID1.RTR bits need to match.

The following logic applies:

[(Received Message ID) XNOR (CAN_MBnn_ID0/1)] OR [(CAN_MBnn_ID1.AME) AND (CAN_AMnnH/L)].

This logic appears graphically in the figure below.

Figure 19-9: CAN Message Receive Logic

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–13

A one (1) at the respective bit position in the CAN_AMnnH/CAN_AMnnL mask registers means that the bit does
not need to match when CAN_MBnn_ID1.AME=1. This way, a mailbox can accept a group of messages.

If the acceptance filter finds a matching identifier, the content of the received data frame is stored in that
mailbox. A received message is stored only once, even if multiple receive mailboxes match its identifier. If
the current identifier does not match any mailbox, the message is not stored.

The figure below illustrates the decision tree of the receive logic when processing the individual mailboxes.

If a message is received for a mailbox and that mailbox still contains unread data (CAN_RMP1.MB), then the
program has to decide whether the old message should be overwritten or not. If the CAN_OPSS1.MB bit is
cleared, the corresponding CAN_RML1.MB bit is set, and the stored message is overwritten. This results in
the receive message lost interrupt being raised (CAN_GIS.RMLIS is set). If, however, the CAN_OPSS1.MB bit
is set, the next mailboxes are checked for another matching identifier. If no match is found, the message is
discarded, and the next message is checked.

NOTE: If a receive mailbox is disabled, an ongoing receive message for that mailbox is lost even if a second
mailbox is configured to receive the same identifier.

Table 19-3: Mailbox Used for Acceptance Filtering

MCn MDn RFHn Mailbox n Comment

0 X X Ignored Mailbox n disabled

1 0 0 Ignored Mailbox n enabled, Mailbox n configured for transmit, Remote
frame handling disabled

1 0 1 Used Mailbox n enabled, Mailbox n configured for transmit, Remote
frame handling enabled

1 1 X Used Mailbox n enabled, Mailbox n configured for receive

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

19–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-10: CAN Receive Operation Flow Chart

Data Acceptance Filtering

If DeviceNet mode is enabled (CAN_CTL.DNM = 1) and the mailbox is set up for filtering on data field, the
filtering is done on the standard ID of the message and data fields. The data field filtering can be
programmed for either the first byte only or the first two bytes, as shown the table below.

If the CAN_AMnnH.FDF bit is set, the corresponding CAN_AMnnL register holds the data field mask (DFM bits
15–0]). If the CAN_AMnnH.FDF bit is cleared, the corresponding CAN_AMnnL register holds the extended
identifier mask (CAN_AMnnH.EXTID bits 15–0).

Table 19-4: Data Field Filtering

FDF (Filter on Data
Field)

FMD (Full Mask
Data Field) Description

0 0 Do not allow filtering on the data field

0 1 Not allowed. FMF must be 0 if FDF is 0

1 0 Filter on first data byte only

1 1 Filter on first two data bytes

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–15

Watchdog Mode

Watchdog mode is used to ensure that messages are received periodically. It is often used to observe
whether or not a certain node on the network is alive and functioning properly, and, if not, to detect and
manage its failure case accordingly.

This mode can be enabled by programming the universal counter to watchdog mode by setting theCAN_
UCCNF.UCCNF to 0x2. Once enabled, the CAN_UCCNT register is loaded with the predefined value contained
in CAN_UCRC. This counter then decrements at the CAN bit rate.

If the CAN_UCCNF.UCCT and CAN_UCCNF.UCRC bits are set and a message is received in mailbox 4 before the
counter counts down to 0, the counter is reloaded with the CAN_UCRC contents. If the counter has counted
down to 0 without receiving a message in mailbox 4, then the CAN_GIS.UCEIS bit is set, and the counter is
automatically reloaded with the contents of the CAN_UCRC register. If an interrupt is desired for this event,
the CAN_GIM.UCEIM bit must also be set. With the mask bit set, when a watchdog interrupt occurs, the CAN_
GIF.UCEIF bit is also set.

The counter can be reloaded with the contents of CAN_UCRC or disabled by writing to the CAN_UCCNF
register.

The time period it takes for the watchdog interrupt to occur is controlled by the value written into the CAN_
UCRC register.

Time Stamps

To get an indication of the time of the receive or transmit time for each message, program the CAN
universal counter to Time Stamp mode. This mode can be enabled by setting the CAN_UCCNF.UCCNF field
to 0x01.

If enabled, the value of the 16-bit free-running counter (CAN_UCCNT) is written into the CAN_MBnn_
TIMESTAMP register of the corresponding mailbox when a received message is stored or a message is trans-
mitted.

The time stamp value is captured at the sample point of the Start Of Frame (SOF) bit of each incoming or
outgoing message. Afterwards, this time stamp value is copied to the CAN_MBnn_TIMESTAMP register of the
corresponding mailbox.

If the mailbox is configured for automatic remote frame handling (CAN_RFH1.MB = 1), the time stamp
value is written for transmission of a data frame (mailbox configured as transmit) or the reception of the
requested data frame (mailbox configured as receive).

The counter can be cleared by setting the CAN_UCCNF.UCRC bit to 1, or disabled by clearing the CAN_UCCNF.
UCE bit. The counter can also be loaded with a value by writing to the CAN_UCCNT register itself.

It is also possible to clear the counter (CAN_UCCNT) by reception of a message in mailbox number 4
(synchronization of all time stamp counters in the system). This is accomplished by setting the CAN_
UCCNF.UCCT bit.

CONTROLLER AREA NETWORK (CAN)
CAN FUNCTIONAL DESCRIPTION

19–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

An overflow of the counter sets the CAN_GIS.UCEIS bit. A global CAN interrupt can optionally occur by
unmasking the CAN_GIM.UCEIM bit. If the interrupt source is unmasked, the CAN_GIF.UCEIF bit is also set.

Remote Frame Handling

Automatic handling of remote frames can be enabled for a transmit mailbox by setting the corresponding
CAN_RFH1.MB bit of a transmit mailbox.

Remote frames are data frames with no data field and the CAN_MBnn_ID1.RTR bit set. The data length code
(DLC) of the responding data frame is overruled by the DLC of the requesting remote frame. A DLC can
be programmed with values in the range of 0 to 15, but DLC values greater than 8 are considered as 8.

A remote frame contains:

• The identifier bits

• The control field DLC (data length count)

• The remote transmission request (CAN_MBnn_ID1.RTR) bit

Only configurable mailboxes, MB8–MB23, can process remote frames, but all mailboxes can receive and
transmit remote frame requests. When setup for automatic remote frame handling, the CAN_OPSS1 register
has no effect. All content of a mailbox is always overwritten by an incoming message.

NOTE: If a remote frame is received, the DLC of the corresponding mailbox is overwritten with the
received value.

Erroneous behavior may result when the CAN_RFH1.MB bit is changed while the corresponding mailbox is
currently being processed. To avoid the risk of inconsistent messages, programs should temporarily
disable the mailbox while its data registers are updated.

Temporarily Disabling CAN Mailbox

If a mailbox is enabled and configured to transmit, write accesses to the data field should be guarded to
avoid transmitting inconsistent messages. Special care must be taken if the mailbox is transmitting (or
attempting to transmit) repeatedly. Also, if this mailbox is used for Automatic remote frame handling, the
data field must be updated without losing an incoming remote request frame and without sending incon-
sistent data. Therefore, the CAN controller allows for temporary disabling the mailbox using the mailbox
temporary disable register (CAN_MBTD).

The pointer to the requested mailbox must be written to the CAN_MBTD.TDPTR field, and the CAN_MBTD.
TDR bit must be set. The corresponding CAN_MBTD.TDA flag is subsequently set by the internal logic.

If a mailbox is configured as transmit (CAN_MD1 = 0) and the CAN_MBTD.TDA bit is set, the content of the
data field of that mailbox can be updated. If there is an incoming remote Request Frame while the mailbox
is temporarily disabled, the corresponding transmit request set bit (CAN_TRS1.MB) is set by the internal
logic and the data length code (DLC) of the incoming message is written to the corresponding mailbox.
However, the message being requested is not sent until the CAN_MBTD.TDR bit is cleared. Similarly, all
transmit requests for temporarily disabled mailboxes are ignored until the CAN_MBTD.TDR bit is cleared.

CONTROLLER AREA NETWORK (CAN)
CAN OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–17

Additionally, transmission of a message is immediately aborted if the mailbox is temporarily disabled and
the corresponding transmission request reset (CAN_TRR1.MB) bit for this mailbox is set.

If a mailbox is configured to receive (CAN_MD1 = 1), then after issuing a temporary disable request, the CAN_
MBTD.TDA flag is set, and the mailbox is not processed. If there is an incoming message for a mailbox being
temporarily disabled, the internal logic waits until the reception is complete or there is an error on the
CAN bus before setting CAN_MBTD.TDA. Once this flag is set, the mailbox can then be completely disabled
(CAN_MC1 = 0) without the risk of losing an incoming frame. The CAN_MBTD.TDR bit must then be reset as
soon as possible.

When the CAN_MBTD.TDA flag is set for a given mailbox, only the data field of that mailbox can be updated.
Accesses to the control bits and the identifier are denied.

CAN Operating Modes

The CAN controller is in configuration mode when coming out of processor reset. It is only when the CAN
is in configuration mode that hardware behavior can be altered. Before initializing the mailboxes them-
selves, the CAN bit timing must be set up to work on the CAN bus to which the controller is expected to
connect.

Bit Timing

The CAN controller does not have a dedicated clock. Instead, the CAN clock is derived from the system
clock based on a configurable number of time quanta. The Time Quantum (TQ) is derived from the
formula:

TQ = (BRP + 1)/SCLK,

where BRP is the 10-bit bit rate prescaler field in the CAN_CLK register.

Although the CAN_CLK.BRP field can be set to any value, it is recommended that the value be greater than
or equal to 4, as restrictions apply to the bit timing configuration when BRP is less than 4.

The CAN_CLK register defines the TQ value, and multiple time quanta make up the duration of a CAN bit
on the bus. The CAN_TIMING register controls the nominal bit time and the sample point of the individual
bits in the CAN protocol. The figure below shows the three phases of a CAN bit—the synchronization
segment, the segment before the sample point, and the segment after the sample point.

Figure 19-11: Three Phases of a CAN Bit

CONTROLLER AREA NETWORK (CAN)
CAN OPERATING MODES

19–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The synchronization segment is fixed to one TQ. It is required to synchronize the nodes on the bus. All
signal edges are expected to occur within this segment.

The CAN_TIMING.TSEG1 and CAN_TIMING.TSEG2 fields control how many TQs the CAN bits consist of,
resulting in the CAN bit rate. The nominal bit time is given by the following formula.

tBIT = TQ × [1 + (1 + TSEG1) + (1 + TSEG2)]

For safe receive operations on given physical networks, the sample point is programmable by the CAN_
TIMING.TSEG1 field. The CAN_TIMING.TSEG2 field holds the number of TQs needed to complete the bit
time. Often, best sample reliability is achieved with sample points in the high 80% range of the bit time.
Never use sample points lower than 50%. Therefore, CAN_TIMING.TSEG1 should always be greater than or
equal to CAN_TIMING.TSEG2.

The CAN module does not distinguish between the Propagation Segment and the phase segment-1 as
defined by the standard. The CAN_TIMING.TSEG1 value is intended to cover both of them. The CAN_
TIMING.TSEG2 value represents the phase segment-2.

If the CAN module detects a recessive-to-dominant edge outside the synchronization segment, it can auto-
matically move the sampling point such that the CAN bit is still handled properly. The synchronization
jump width (CAN_TIMING.SJW) field specifies the maximum number of TQs, ranging from 1 to 4 (SJW +
1), allowed for such a re-synchronization attempt. The SJW value should not exceed CAN_TIMING.TSEG2
or CAN_TIMING.TSEG1. Therefore, the fundamental rule for writing CAN_TIMING is:

SJW ≤ TSEG2 ≤ TSEG1

In addition to this fundamental rule, CAN_TIMING.TSEG2 must also be greater than or equal to the infor-
mation processing time (IPT). This is the time required by the logic to sample the CAN_RX input, which is
3 system clock cycles.

Because of this, restrictions apply to the minimal value of CAN_TIMING.TSEG2 if CAN_CLK.BRP is lower
than 2. If CAN_CLK.BRP is set to 0, the CAN_TIMING.TSEG2 field must be greater than or equal to 2. If CAN_
CLK.BRP is set to 1, the minimum CAN_TIMING.TSEG2 value is 1.

NOTE: All nodes on a CAN bus should use the same nominal bit rate.

With all the timing parameters set, the final consideration is how sampling is performed. The default
behavior of the CAN controller is to sample the CAN bit once at the sampling point described by the CAN_
TIMING register, controlled by the CAN_TIMING.SAM bit. If this bit is set, however, the input signal is over-
sampled three times at the system clock rate. The resulting value is generated by a majority decision of the
three sample values. Always keep the CAN_TIMING.SAM bit cleared if the BRP value is less than 4.

Do not modify the CAN_CLK and CAN_TIMING registers during normal operation. Always enter configura-
tion mode first. Writes to these registers have no effect if not in configuration or debug mode. If not
coming out of processor reset, enter configuration mode by setting the CAN_CTL.CCR bit and poll the CAN_
STAT register until CAN_STAT.CCA is set.

NOTE: If the CAN_TIMING.TSEG1 field is programmed to 0, the module doesn't leave the configuration
mode.

CONTROLLER AREA NETWORK (CAN)
CAN OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–19

During configuration mode, the module is not active on the CAN bus line. The CAN_TX output pin remains
recessive and the module does not receive/transmit messages or error frames. After leaving the configura-
tion mode, all CAN internal core registers and the CAN error counters are set to their initial values.

A soft reset does not change the values of CAN_CLK and CAN_TIMING. Therefore, an ongoing transfer
through the CAN bus cannot be corrupted by changing the bit timing parameter or initiating the soft reset
(by setting the CAN_CTL.SRS bit).

CAN Low Power Features

The CAN module includes built-in sleep and suspend modes to save power.

The behavior of the CAN module in these modes is described in the following sections.

Built-In Suspend Mode

The most modest of power savings mode is the suspend mode. This mode is entered by setting the CAN_
CTL.CSR bit. The module enters the suspend mode after the current operation of the CAN bus is finished,
at which point the internal logic sets the CAN_STAT.CSA bit. Once this mode is entered, the module is no
longer active on the CAN bus line, slightly reducing power consumption.

In suspend mode the CAN_TX output pin remains in a recessive state, and the module does not receive/
transmit messages or error frames. The content of the CAN_CEC register remains unchanged. Suspend
mode can subsequently be exited by clearing CAN_CTL.CSR.

The only difference between suspend mode and configuration mode is that the CAN_CTL and CAN_STAT
registers are not reset when exiting suspend mode.

Built-In Sleep Mode

The next level of power savings can be realized by using the module's built-in sleep mode. This mode is
entered by setting the CAN_CTL.SMR bit. The module enters the sleep mode after the current operation of
the CAN bus is finished. Once this mode is entered, many of the internal CAN module clocks are shut off,
reducing power consumption, and the CAN_INT.SMACK bit is set.

When the CAN module is in sleep mode, all register reads return the contents of CAN_INT instead of the
usual contents. All register writes, except to CAN_INT, are ignored in sleep mode. A small part of the
module is clocked continuously to allow for wake up out of sleep mode.

A write to the CAN_INT register ends sleep mode. If the CAN_CTL.WBA bit is set before entering sleep mode,
a dominant bit on the CAN_RX pin also ends sleep mode. When software sets the CAN_CTL.SMR bit, hard-
ware sets the CAN_CTL.CSR bit as well, making sleep mode a super set of suspend mode. When the
controller wakes up from sleep mode, hardware automatically clears CAN_CTL.SMR and CAN_CTL.CSR. If,
however, the controller never enters sleep mode because the wake-up condition was met before CAN_INT.
SMACK bit turns to one, the CAN_CTL.SMR and CAN_CTL.CSR bits may not be automatically cleared. There-

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

19–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

fore, it is good programming practice to always clear those two bits by software when returning from sleep
mode.

Soft Reset

The CAN controller features a build-in reset mechanism called Soft Reset. Soft reset is entered immediately
after software has set the CAN_CTL.SRS bit. Soft reset brings all control registers to a defined state and
mailbox and error registers remain unaffected. Soft reset does not alter the CAN_TIMING and CAN_CLK
registers and does not disturb the on-going transmission of a currently pending message, acknowledge bit
or error frame. However, when recovering from soft reset, software may lose track of transmission or
reception reports and interrupts.

CAN Event Control

The following is a description of how CAN events are generated and controlled.

CAN Interrupt Signals

The CAN module provides three independent interrupts: two mailbox interrupts (mailbox receive inter-
rupt (MBRIRQ) and mailbox transmit interrupt (MBTIRQ) and a global CAN status interrupt (GIRQ).
The values of these three interrupts can also be read back through the CAN_GIS registers.

Mailbox Interrupts

Each of the 32 mailboxes in the CAN module may generate a receive or transmit interrupt, depending on
the mailbox configuration. To enable a mailbox to generate an interrupt, set the corresponding CAN_MBIM1
bit.

If a mailbox is configured as a receive mailbox, the corresponding CAN_MBRIF1 bit and CAN_RMP1 bit are
set after a received message is stored in mailbox n. If the automatic remote frame handling feature is used
(CAN_RFH1=1), the receive interrupt flag is set after the requested data frame is stored in the mailbox.

If any CAN_MBRIF1 bits are set, the CAN_INT.MBRIRQ interrupt is generated. In order to clear the CAN_INT.
MBRIRQ interrupt request, all of the set CAN_MBRIF1 bits must be cleared by software by writing a 1 to those
set bit locations in CAN_MBRIF1. Prior to this, the corresponding CAN_RMP1 bit must also be cleared by soft-
ware.

If a mailbox is configured as a transmit mailbox, the corresponding CAN_MBTIF1 bit in the transmit inter-
rupt flag is set after the message in mailbox n is sent correctly, and the corresponding CAN_TA1 bit also gets
set. The CAN_TA1 bits maintain their state even after the corresponding mailbox n is disabled (CAN_MC1=0).
If the automatic remote frame handling feature is used, then transmit interrupt flag is set after the
requested data frame is sent from the mailbox.

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–21

If any CAN_MBTIF1.MB, bits are set the MBTIRQ interrupt output is raised in the CAN_INT register. In order
to clear the MBTIRQ interrupt request, all of the bits set in the CAN_MBTIF1 register must be cleared by
software by writing a 1 to those set bit locations. Additionally, software must clear the associated CAN_TA1
bit or set the associated CAN_TRS1 bit to clear the interrupt source that asserts the CAN_MBTIF1 bit.

Global Interrupt

The global CAN interrupt logic is implemented with three registers:

• The CAN_GIM register, where each interrupt source can be enabled or disabled separately

• The CAN_GIS register

• The CAN_GIF register

The interrupt mask bits only affect the content of the CAN_GIF register. If the mask bit is not set in the CAN_
GIM register, the corresponding flag bit is not set when the event occurs. The interrupt status bits in the
CAN_GIS register, however, are always set if the corresponding interrupt event occurs, independent of the
mask bits. Thus, the interrupt status bits can be used for polling of interrupt events.

The CAN_INT.GIRQ bit is only asserted if a bit in the CAN_GIF register is set. The read-only CAN_INT.GIRQ
bit remains set as long as at least one bit in CAN_GIF is set. All bits in the interrupt status and interrupt flag
registers remain set until cleared by software or a soft reset has occurred.

NOTE: The CAN_GIF register is read-only (RO). In the global CAN interrupt ISR, the interrupt latch
should be cleared by writing to 1 to the corresponding bit of the CAN_GIS register, which clears the
related bits of the CAN_GIS and CAN_GIF registers, as well as the CAN_INT.GIRQ bit.

There are several interrupt events that can activate this GIRQ interrupt:

• Access denied interrupt (CAN_GIM.ADIM, CAN_GIS.ADIS, CAN_GIF.ADIF): At least one access to the
mailbox RAM occurred during a data update by internal logic.

• Universal counter exceeded interrupt (CAN_GIM.UCEIM, CAN_GIS.UCEIS, CAN_GIF.UCEIF): There was
an overflow of the universal counter (in Time Stamp mode or Event Counter mode) or the counter has
reached the value 0x0000 (in Watchdog mode).

• Receive message lost interrupt (CAN_GIM.RMLIM, CAN_GIS.RMLIS, CAN_GIF.RMLIF): A message is
received for a mailbox that currently contains unread data. At least one bit in the CAN_RMLn register is
set. If the bit in CAN_GIS and CAN_GIF registers is cleared and there is at least one bit in CAN_RML1 still
set, then the bit in the CAN_GIS and CAN_GIF registers is not set again. The internal interrupt source
signal is only active if a new bit in CAN_RML1 is set.

• Abort acknowledge interrupt (CAN_GIM.AAIM, CAN_GIS.AAIS, CAN_GIF.AAIF): At least one CAN_AA1.
MB bit in the CAN_AA1 registers is set. If the bit in the CAN_GIS and CAN_GIF registers is cleared and there
is at least one bit in CAN_AA1 still set, then the bit in the CAN_GIS and CAN_GIF registers is not set again.
The internal interrupt source signal is only active if a new bit in CAN_AA1 is set. The CAN_AA1.MB bits
maintain state even after the corresponding mailbox n is disabled (CAN_MC1 = 0).

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

19–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Access to un implemented address interrupt (CAN_GIM.UIAIM, CAN_GIS.UIAIS, CAN_GIF.UIAIF):
There was a CPU access to an address which is not implemented in the controller module.

• Wake-up interrupt (CAN_GIM.WUIM, CAN_GIS.WUIS, CAN_GIF.WUIF): The CAN module has left the
sleep mode because of detected activity on the CAN bus line.

• Bus-Off interrupt (CAN_GIM.BOIM, CAN_GIS.BOIS, CAN_GIF.BOIF): The CAN module has entered the
bus-off state. This interrupt source is active if the status of the CAN core changes from normal opera-
tion mode to the bus-off mode. If the bit in the CAN_GIS and CAN_GIF registers is cleared and the bus-
off mode is still active, then this bit is not set again. If the module leaves the bus-off mode, the bit in the
CAN_GIS and CAN_GIF registers remains set, if not explicitly cleared.

• Error-passive interrupt (CAN_GIM.EPIM, CAN_GIS.EPIS, CAN_GIF.EPIF): The CAN module has
entered the error-passive state. This interrupt source is active if the status of the CAN module changes
from the error-active mode to the error-passive mode. If the bit in the CAN_GIS and CAN_GIF registers
is cleared and the error-passive mode is still active, then this bit is not set again. If the module leaves
the error-passive mode, the bit in the CAN_GIS and CAN_GIF registers remains set, if not explicitly
cleared.

• Error warning receive interrupt (CAN_GIM.EWRIM, CAN_GIS.EWRIS, CAN_GIF.EWRIF): The CAN
receive error counter (CAN_CEC.RXECNT) has reached the warning limit. If the bit in the CAN_GIS and
CAN_GIF registers) is cleared and the error warning mode is still active, this bit is not set again. If the
module leaves the error warning mode, the bit in the CAN_GIS and CAN_GIF registers remains set, if not
explicitly cleared.

• Error warning transmit interrupt (CAN_GIM.EWTIM, CAN_GIS.EWTIS, CAN_GIF.EWTIF): The CAN
transmit error counter (CAN_CEC.TXECNT) has reached the warning limit. If the bit in the CAN_GIS and
CAN_GIF registers is cleared and the error warning mode is still active, this bit is not set again. If the
module leaves the error warning mode, the bit in the CAN_GIS and CAN_GIF registers remains set, if not
explicitly cleared.

Event Counter

For diagnostic functions, it is possible to use the universal counter as an event counter. The counter can be
programmed in the CAN_UCCNF[3:0] field to increment on one of these conditions:

• 0x6 – CAN error frame. Counter is incremented if there is an error frame on the CAN bus line.

• 0x7 – CAN overload frame. Counter is incremented if there is an overload frame on the CAN bus line.

• 0x8 – Lost arbitration. Counter is incremented every time arbitration on the CAN line is lost during
transmission.

• 0x9 – Transmission aborted. Counter is incremented every time arbitration is lost or a transmit request
is canceled (CAN_AA1 is set).

• 0xA – Transmission succeeded. Counter is incremented every time a message sends without detected
errors (CAN_TA1 is set).

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–23

• 0xB – Receive message rejected. Counter is incremented every time a message is received without
detected errors but not stored in a mailbox because there is no matching identifier found.

• 0xC – Receive message lost. Counter is incremented every time a message is received without detected
errors but not stored in a mailbox because the mailbox contains unread data (CAN_RML1 is set).

• 0xD – Message received. Counter is incremented every time a message is received without detected
errors, whether the received message is rejected or stored in a mailbox.

• 0xE – Message stored. Counter is incremented every time a message is received without detected errors,
has an identifier that matches an enabled receive mailbox, and is stored in the receive mailbox (CAN_
RMP1 is set).

• 0xF – Valid message. Counter is incremented every time a valid transmit or receive message is detected
on the CAN bus line.

CAN Warnings and Errors

CAN warnings and errors are controlled using the error counter (CAN_CEC) register, the error status (CAN_
ESR) register, and the error counter warning level (CAN_EWR) register. Error handling is described in the
following sections.

Programmable Warning Limits

Programs can set the warning level for CAN_GIS.EWTIS and CAN_GIS.EWRIS separately by writing to the
CAN_EWR.EWLREC and CAN_EWR.EWLTEC fields. After power-on reset, the CAN_EWR register is set to the
default warning level of 96 for both error counters. After a soft reset, the contents of this register remain
unchanged.

Error Handling

Error management is an integral part of the CAN standard. Five different kinds of bus errors may occur
during transmissions:

• Bit error – This error is only detected by the transmitting node. Whenever a node is transmitting, it
continuously monitors its receive pin (CAN_RX) and compares the received bit with the transmitted bit.
During the arbitration phase, the node postpones the transmission if the received and transmitted bits
do not match. However, after the arbitration phase (that is, once the CAN_MBnn_ID1.RTR bit is sent
successfully), a bit error is signaled any time the value on CAN_RX does not equal what is being trans-
mitted on the CAN_TX pin.

• Form error – Occurs any time a fixed-form bit position in the CAN frame contains one or more illegal
bits--that is, when a dominant bit is detected at a delimiter or end-of-frame bit position.

• Acknowledge error – Occurs whenever a message is sent and no receivers drive an acknowledge bit.

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

19–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• CRC error – Occurs whenever a receiver calculates the CRC on the data it received and finds it different
than the CRC that was transmitted on the bus itself.

• Stuff error – The CAN specification requires the transmitter to insert an extra stuff bit of opposite value
after 5 bits have been transmitted with the same value. The receiver disregards the value of these stuff
bits. However, it takes advantage of the signal edge to re-synchronize itself. A stuff error occurs on
receiving nodes whenever the 6th consecutive bit value is the same as the previous five bits.

Once the CAN module detects any of the above errors, it updates the CAN_ESR and CAN_CEC registers. In
addition to the standard errors, the CAN_ESR.SAO flag signals when the CAN_RX pin sticks at dominant
level, indicating a possibility of shorted wires.

Error Frames

It is very important that all nodes on the CAN bus ignore data frames that any single node failed to receive.
To accomplish this, every node sends an error frame as soon as it has detected an error as shown in the
figure below.

A device has detected an error still completes the ongoing bit and initiates an error frame by sending six
dominant and eight recessive bits to the bus. Since this is a violation of the bit stuffing rule, all nodes are
informed that the ongoing frame needs to be discarded. (All receivers that did not detect the transmission
error in the first instance now detect a stuff bit error.)

The transmitter may detect a normal bit error sooner. It aborts the transmission of the ongoing frame and
tries resending it later.

When all nodes on the bus have detected the error, they also send 6 dominant and 8 recessive bits to the
bus. The resulting error frame consists of two different fields. The first field is given by the superposition
of error flags contributed from the different stations, which is a sequence of 6 to 12 dominant bits. The
second field is the error delimiter and consists of 8 recessive bits indicating the end of frame.

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–25

Figure 19-12: CAN Error Example

For CRC errors, the error frame is initiated at the end of the frame, rather than immediately after the failing
bit.

After having received 8 recessive bits, every node knows that the error condition is resolved and, if
messages are pending, starts transmission. The transmitter that had to abort its operation must win the
new arbitration again; otherwise its message is delayed as determined by priority.

Because the transmission of an error frame destroys the frame under transmission, a faulty node errone-
ously detecting an error can block the bus. Because of this, there are two node states which determine a
nodes right to signal an error—error-active and error-passive.

• Error-active nodes are those which have an error detection rate below a certain limit. These nodes drive
an Active Error Flag of 6 dominant bits.

• Error-passive nodes have a higher error detection rate and are suspected of having a local problem and
therefore have a limited right to signal errors. These nodes drive a passive error flag consisting of 6
recessive bits. Therefore an error-passive transmitting node is still able to inform the other nodes about
the aborting of a self-transmitted frame, but it is no longer able to destroy correctly received frames of
other nodes.

Error Levels

The CAN specification requires each node in the system to operate in one of three levels which are shown
in the table below. This prevents nodes with high error rates from blocking the entire network, as the errors
may be caused by local hardware. The CAN module provides an error counter for transmit (TEC) and an
error counter for receive (REC). The CAN_CEC register contains each of these 8-bit counters.

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

19–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

After initialization, both the TEC and the REC counters are 0. Each time a bus error occurs, one of the
counters is incremented by either 1 or 8, depending on the error situation (documented in Version 2.0 of
the CAN Specification). Successful transmit or receive operations decrement the respective counter by 1.

If either of the error counters exceeds 127, the CAN module goes into an error-passive state and the CAN_
STAT.EP bit is set. Once this occurs, the module is not allowed to send any more active error frames.
However, the module is still allowed to transmit messages and to signal passive error frames in case the
transmission fails due to bit errors.

If one of the counters exceeds 255 (that is, when an 8-bit counter overflows), the CAN module is discon-
nected from the bus and it goes into bus-off mode. In this mode the CAN_STAT.EBO bit is set. Software
intervention is required to recover from this state, unless the CAN_CTL.ABO bit is enabled, which puts the
module into active mode after the bus-off recovery sequence.

In addition to the three levels in the table, the CAN module also generates separate transmit and receive
warnings (CAN specification enhancement). By default, when one of the error counters exceeds 96, a
warning is signaled and is reported in the CAN_STAT register. The CAN receive warning flag (CAN_STAT.
WR) bit is set when CAN_CEC.RXECNT exceeds 96. The CAN transmit warning flag (CAN_STAT.WT) bit is set
when CAN_CEC.TXECNT exceeds 96. The error warning level can be programmed using the error warning
register (CAN_EWR).

Additionally, interrupts can occur for all of these levels by unmasking them in the global CAN interrupt
mask register (CAN_GIM). These interrupts include the bus-off interrupt (CAN_GIM.BOIM), the Error-
Passive interrupt (CAN_GIM.EPIM), the error warning receive interrupt (CAN_GIM.EWRIM), and the Error
Warning Transmit interrupt (CAN_GIM.EWTIM).

During the bus-off recovery sequence, the configuration mode request CAN_CTL.CCR bit is set by the
internal logic, and the CAN core module does not automatically come out of the bus-off mode. The CAN_
CTL.CCR bit cannot be reset until the bus-off recovery sequence has completed.

NOTE: This behavior can be overridden by setting the CAN_CTL.ABO bit. After exiting the bus-off or
configuration modes, the CAN error counters are reset.

CAN Debug and Test Modes

The CAN module contains test mode features that aid in the debugging of the CAN software and system.

Table 19-5: CAN Error Level Description

Level Condition Description

Error active Transmit and receive error counters <128 This is the initial condition level. As long as errors stay below
128, the node will drive active error flags during error frames.

Error passive Transmit or receive error counter value
between 128 and 255, inclusive

Errors have accumulated to a level that requires the node to
drive passive error flags during error frames.

Bus off Transmit or receive error counters greater
than 255

CAN module goes into bus-off mode

CONTROLLER AREA NETWORK (CAN)
CAN EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–27

NOTE: When these features are used, the CAN module may not be compliant to the CAN specification.
All test modes should be enabled or disabled only when the module is in Configuration mode
(CAN_STAT.CCA=1) or in Suspend mode (CAN_STAT.CSA=1).

The CAN_DBG.CDE bit is used to gain access to all of the debug features. This bit must be set to enable the
test mode, and it must be written first before any other writes to the CAN_DBG register. When the CAN_DBG.
CDE bit is cleared, all debug features are disabled.

When the CAN_DBG.CDE bit is set, it enables writes to the other bits of the CAN_DBG register. It also enables
these features, which are not compliant with the CAN standard:

• Bit timing registers can be changed anytime, not only during configuration mode. This includes the
CAN_CLK and CAN_TIMING registers.

• Write access is allowed to the normally read-only CAN_CEC register.

The other bits in the debug register are described below.

• The CAN_DBG.MRB bit is used to enable the read back mode. In this mode, a message transmitted on the
CAN bus (or through an internal loop back mode) is received back directly to the internal receive
buffer. After a correct transmission, the internal logic treats this as a normal receive message. This
feature allows the user to test most of the CAN features without an external device.

• The CAN_DBG.MAA bit allows the CAN module to generate its own acknowledge during the ACK slot of
the CAN frame. No external devices or connections are necessary to read back a transmit message. In
this mode, the message that is sent is automatically stored in the internal receive buffer. In Auto
Acknowledge mode, the module itself transmits the acknowledge. This acknowledge can be
programmed to appear on the CAN_TX pin if CAN_DBG.DIL=1 and CAN_DBG.DTO= 0. If the acknowledge
is only going to be used internally, then these test mode bits should be set to CAN_DBG.DIL= 0 and CAN_
DBG.DTO=1.

• The CAN_DBG.DIL bit is used to internally enable the transmit output to be routed back to the receive
input.

• The CAN_DBG.DTO bit is used to disable the CAN_TX output pin. When this bit is set, the CAN_TX pin
continuously drives recessive bits.

• The CAN_DBG.DRI bit is used to disable the CAN_RX input. When set, the internal logic receives recessive
bits or receives the internally generated transmit value in the case of the internal loop enabled (CAN_
DBG.DIL= 0). In either case, the value on the CAN_RX input pin is ignored.

• The CAN_DBG.DEC bit is used to disable the transmit and receive error counters in the CAN_CEC register.
When this bit is set, the CAN_CEC holds its current contents and is not allowed to increment or decre-
ment the error counters. This mode does not conform to the CAN specification.

NOTE: Writes to the error counter registers should be performed in debug mode only. Write access during
reception may lead to undefined values. The maximum value which can be written into the error
counters is 255. Therefore, the error counter value of 256, which forces the module into the bus off
state, cannot be written into the error counter registers.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x CAN Register Descriptions

Controller Area Network (CAN) contains the following registers.

Table 19-6: Common CAN Test Mode Bit Combinations

MRB MAA DIL DTO DRI CDE Functional Description

X X X X X 0 Normal mode, not debug mode

0 X X X X X No readback of transmit message

1 0 1 0 0 1 Normal transmission on CAN bus line.
Read back.
External acknowledge from external device required.

1 1 1 0 0 1 Normal transmission on CAN bus line.
Read back.
No external acknowledge required.
Transmit message and acknowledge are transmitted on CAN bus line.
CAN_RX input is enabled.

1 1 0 0 0 1 Normal transmission on CAN bus line.
Read back.
No external acknowledge required.
Transmit message and acknowledge are transmitted on CAN bus line.
CAN_RX input and internal loop are enabled (internal OR of TX and
RX)

1 1 0 0 1 1 Normal transmission on CAN bus line.
Read back.
No external acknowledge required.
Transmit message and acknowledge are transmitted on CAN bus line.
CAN_RX input is ignored.
Internal loop is enabled.

1 1 0 1 1 1 No transmission on CAN bus line.
Read back.
No external acknowledge required.
Nether transmit message nor acknowledge are transmitted on CAN_
TX.
CAN_RX input is ignored.
Internal loop is enabled.

Table 19-7: ADSP-CM40x CAN Register List

Name Description

CAN_MC1 Mailbox Configuration 1 Register

CAN_MD1 Mailbox Direction 1 Register

CAN_TRS1 Transmission Request Set 1 Register

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–29

CAN_TRR1 Transmission Request Reset 1 Register

CAN_TA1 Transmission Acknowledge 1 Register

CAN_AA1 Abort Acknowledge 1 Register

CAN_RMP1 Receive Message Pending 1 Register

CAN_RML1 Receive Message Lost 1 Register

CAN_MBTIF1 Mailbox Transmit Interrupt Flag 1 Register

CAN_MBRIF1 Mailbox Receive Interrupt Flag 1 Register

CAN_MBIM1 Mailbox Interrupt Mask 1 Register

CAN_RFH1 Remote Frame Handling 1 Register

CAN_OPSS1 Overwrite Protection/Single Shot Transmission 1 Register

CAN_MC2 Mailbox Configuration 2 Register

CAN_MD2 Mailbox Direction 2 Register

CAN_TRS2 Transmission Request Set 2 Register

CAN_TRR2 Transmission Request Reset 2 Register

CAN_TA2 Transmission Acknowledge 2 Register

CAN_AA2 Abort Acknowledge 2 Register

CAN_RMP2 Receive Message Pending 2 Register

CAN_RML2 Receive Message Lost 2 Register

CAN_MBTIF2 Mailbox Transmit Interrupt Flag 2 Register

CAN_MBRIF2 Mailbox Receive Interrupt Flag 2 Register

CAN_MBIM2 Mailbox Interrupt Mask 2 Register

CAN_RFH2 Remote Frame Handling 2 Register

CAN_OPSS2 Overwrite Protection/Single Shot Transmission 2 Register

CAN_CLK Clock Register

Table 19-7: ADSP-CM40x CAN Register List (Continued)

Name Description

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

CAN_TIMING Timing Register

CAN_DBG Debug Register

CAN_STAT Status Register

CAN_CEC Error Counter Register

CAN_GIS Global CAN Interrupt Status Register

CAN_GIM Global CAN Interrupt Mask Register

CAN_GIF Global CAN Interrupt Flag Register

CAN_CTL CAN Master Control Register

CAN_INT Interrupt Pending Register

CAN_MBTD Temporary Mailbox Disable Register

CAN_EWR Error Counter Warning Level Register

CAN_ESR Error Status Register

CAN_UCCNT Universal Counter Register

CAN_UCRC Universal Counter Reload/Capture Register

CAN_UCCNF Universal Counter Configuration Mode Register

CAN_AMnnL Acceptance Mask (L) Register

CAN_AMnnH Acceptance Mask (H) Register

CAN_MBnn_DATA0 Mailbox Word 0 Register

CAN_MBnn_DATA1 Mailbox Word 1 Register

CAN_MBnn_DATA2 Mailbox Word 2 Register

CAN_MBnn_DATA3 Mailbox Word 3 Register

CAN_MBnn_LENGTH Mailbox Length Register

CAN_MBnn_TIMESTAMP Mailbox Timestamp Register

CAN_MBnn_ID0 Mailbox ID 0 Register

Table 19-7: ADSP-CM40x CAN Register List (Continued)

Name Description

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–31

Mailbox Configuration 1 Register

The CAN_MC1 register enables mailboxes 0 through 15. Each bit in this register enables or disables the corre-
sponding mailbox. For all bits, set the bit (=1) to enable the mailbox, and clear the bit (=0) to disable the
mailbox.

Enabling and disabling mailboxes has an impact on transmit requests. Setting the CAN_TRS1 bit associated
with a disabled mailbox may result in erroneous behavior. Similarly, disabling a mailbox before the asso-
ciated CAN_TRS1 bit is reset by the internal logic can cause unpredictable results.

Figure 19-13: CAN_MC1 Register Diagram

CAN_MBnn_ID1 Mailbox ID 1 Register

Table 19-7: ADSP-CM40x CAN Register List (Continued)

Name Description

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Mailbox Direction 1 Register

The CAN_MD1 register selects the data transfer direction for mailboxes 0 through 15. Each bit in this register
selects receive mode or transmit mode for the corresponding mailbox. For all bits, set the bit (=1) for
receive mode from the mailbox, and clear the bit (=0) for transmit mode to the mailbox. Bits 0 through 7
are read-only, as the corresponding mailboxes are receive-only mailboxes.

Figure 19-14: CAN_MD1 Register Diagram

Transmission Request Set 1 Register

The CAN_TRS1 register requests transmit for mailboxes 8 through 15. Bits in this register request transmit
for the corresponding mailbox when set (=1). After writing the data and the identifier into the mailbox
area, the message is sent after mailbox n is enabled (with the corresponding bit in CAN_MC1 = 1}, and

Table 19-8: CAN_MC1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Enable/Disable.

Table 19-9: CAN_MD1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

MB Mailbox n Transmit/Receive.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–33

(subsequently) the corresponding transmit request bit is set (in CAN_TRS1). When a transmission
completes, the corresponding bits in CAN_TRS1 and in the transmit request reset register (CAN_TRR1) are
cleared. Bits 0 through 7 are read-only, as the corresponding mailboxes are receive-only mailboxes.

Figure 19-15: CAN_TRS1 Register Diagram

Transmission Request Reset 1 Register

The CAN_TRR1 register requests transmit abort for mailboxes 8 through 15. Bits in this register request
transmit abort for the corresponding mailbox when set (=1). When a transmission completes, the corre-
sponding bits in the transmit request set register (CAN_TRS1) and in the CAN_TRR1 are cleared. Bits 0
through 7 are read-only, as the corresponding mailboxes are receive-only mailboxes.

Table 19-10: CAN_TRS1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

MB Mailbox n Transmit Request.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-16: CAN_TRR1 Register Diagram

Transmission Acknowledge 1 Register

The CAN_TA1 register indicates transmission success for mailboxes 8 through 15. Each bit in this register
indicates transmission success for the corresponding mailbox when set (=1). Bits 0 through 7 are read-
only, as the corresponding mailboxes are receive-only mailboxes.

Table 19-11: CAN_TRR1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

MB Mailbox n Transmit Abort.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–35

Figure 19-17: CAN_TA1 Register Diagram

Abort Acknowledge 1 Register

The CAN_AA1 register indicates transmission abort (due to lost arbitration or a CAN error) for mailboxes
8 through 15. Each bit in this register indicates transmission abort for the corresponding mailbox when set
(=1). Bits 0 through 7 are read-only, as the corresponding mailboxes are receive-only mailboxes.

Table 19-12: CAN_TA1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W1C)

MB Mailbox n Transmit Acknowledge.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-18: CAN_AA1 Register Diagram

Receive Message Pending 1 Register

The CAN_RMP1 register indicates when a message is pending (unread data) for mailboxes 0 through 15.
Each bit in this register indicates the message pending status for the corresponding mailbox when set (=1).

Table 19-13: CAN_AA1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W1C)

MB Mailbox n Abort Acknowledge.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–37

Figure 19-19: CAN_RMP1 Register Diagram

Receive Message Lost 1 Register

The CAN_RML1 register indicates when a message is lost---due to a message coming while there is pending
data (corresponding CAN_RMP1 bit set) and overwrite protection is disabled (CAN_OPSS1 bit cleared)---for
mailboxes 0 through 15. Each bit in this register indicates the message lost status for the corresponding
mailbox when set (=1).

Table 19-14: CAN_RMP1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W1C)

MB Mailbox n Message Pending.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-20: CAN_RML1 Register Diagram

Mailbox Transmit Interrupt Flag 1 Register

The CAN_MBTIF1 register indicates when a transmit interrupt is pending---due to successful transmission
(corresponding CAN_TA1 bit set) and the interrupt is enabled (corresponding CAN_MBIM1 bit set)---for
mailboxes 8 through 15. Each bit in this register indicates the transmit interrupt pending status for the
corresponding mailbox when set (=1). When any bit in CAN_MBTIF1 is set, the CAN transmit interrupt
request is raised (CAN_INT.MBTIRQ bit set). To clear the interrupt request, all of the set bits in CAN_MBTIF1
must be cleared by software (W1C). Also, software must clear the associated bits set in CAN_TA1 or set the
associated bits in CAN_TRS1 bit to clear the interrupt source asserting the bits in CAN_MBTIF1. Bits 0
through 7 are read-only, as the corresponding mailboxes are receive-only mailboxes.

Table 19-15: CAN_RML1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/NW)

MB Mailbox n Message Lost.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–39

Figure 19-21: CAN_MBTIF1 Register Diagram

Mailbox Receive Interrupt Flag 1 Register

The CAN_MBRIF1 register indicates when a receive interrupt is pending---due to successful reception
(corresponding CAN_RMP1 bit set) and the interrupt is enabled (corresponding CAN_MBIM1 bit set)---for
mailboxes 0 through 15. Each bit in this register indicates the receive interrupt pending status for the corre-
sponding mailbox when set (=1). When any bit in CAN_MBRIF1 is set, the CAN receive interrupt request is
raised (CAN_INT.MBRIRQ bit set). To clear the interrupt request, all of the set bits in CAN_RMP1 must be
cleared by software, then the associated bits set in CAN_MBRIF1 must be cleared (W1C).

Table 19-16: CAN_MBTIF1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W1C)

MB Mailbox n Transmit Interrupt Pending.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-22: CAN_MBRIF1 Register Diagram

Mailbox Interrupt Mask 1 Register

The CAN_MBIM1 register enables transmit and receive interrupts for mailboxes 0 through 15. Each bit in
this register requests enables the transmit or receive interrupt for the corresponding mailbox when set
(=1).

Table 19-17: CAN_MBRIF1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W1C)

MB Mailbox n Receive Interrupt Pending.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–41

Figure 19-23: CAN_MBIM1 Register Diagram

Remote Frame Handling 1 Register

The CAN_RFH1 register enables remote frame handling for mailboxes 8 through 15. Each bit in this register
enables remote frame handling for the corresponding mailbox when set (=1). Note that enabling this bit
affects transmit and receive operations for mailboxes. For more information about remote frame handling,

Table 19-18: CAN_MBIM1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Transmit and Receive Interrupt Enable.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

see the CAN Operating Modes sections, describing transmit and receive operations. Bits 0 through 7 are
read-only, as the corresponding mailboxes are receive-only mailboxes.

Figure 19-24: CAN_RFH1 Register Diagram

Overwrite Protection/Single Shot Transmission 1 Register

The CAN_OPSS1 register enables overwrite protection for mailboxes 0 through 15. Each bit in this register
enables overwrite protection for the corresponding mailbox when set (=1). Note that enabling this bit
affects transmit and receive operations for mailboxes. For more information about remote overwrite
protection, see the detailed feature description in the CAN Functional Description section. For more infor-
mation about how this feature affects transmit and receive operations, see the CAN Operating Modes
sections, describing transmit and receive operations.

Table 19-19: CAN_RFH1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

MB Mailbox n Remote Frame Handling Enable.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–43

Figure 19-25: CAN_OPSS1 Register Diagram

Mailbox Configuration 2 Register

The CAN_MC2 register enables mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this register enables or
disables the corresponding mailbox. For all bits, set the bit (=1) to enable the mailbox, and clear the bit (=0)
to disable the mailbox.

Table 19-20: CAN_OPSS1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Overwrite Protection Enable.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Enabling and disabling mailboxes has an impact on transmit requests. Setting the CAN_TRS2 bit associated
with a disabled mailbox may result in erroneous behavior. Similarly, disabling a mailbox before the asso-
ciated CAN_TRS2 bit is reset by the internal logic can cause unpredictable results.

Figure 19-26: CAN_MC2 Register Diagram

Mailbox Direction 2 Register

The CAN_MD2 register selects the data transfer direction for mailboxes 16 (bit 0) through 23 (bit 7). Each bit
in this register selects receive mode or transmit mode for the corresponding mailbox. For all bits, set the
bit (=1) for receive mode from the mailbox, and clear the bit (=0) for transmit mode to the mailbox. Bits 8
through 15 are read-only, as the corresponding mailboxes (24 through 31) are transmit-only mailboxes.

Table 19-21: CAN_MC2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Enable/Disable.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–45

Figure 19-27: CAN_MD2 Register Diagram

Transmission Request Set 2 Register

The CAN_TRS2 register requests transmit for mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this
register requests transmit for the corresponding mailbox when set (=1). After writing the data and the
identifier into the mailbox area, the message is sent after mailbox n is enabled (with the corresponding bit
in CAN_MC2 = 1}, and (subsequently) the corresponding transmit request bit is set (in CAN_TRS2). When a
transmission completes, the corresponding bits in CAN_TRS2 and in the transmit request reset register
(CAN_TRR2) are cleared.

Table 19-22: CAN_MD2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

MB Mailbox n Transmit/Receive.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-28: CAN_TRS2 Register Diagram

Transmission Request Reset 2 Register

The CAN_TRR2 register requests transmit abort for mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this
register requests transmit abort for the corresponding mailbox when set (=1). When a transmission
completes, the corresponding bits in the transmit request set register (CAN_TRS2) and in the CAN_TRR2 are
cleared.

Table 19-23: CAN_TRS2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Transmit Request.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–47

Figure 19-29: CAN_TRR2 Register Diagram

Transmission Acknowledge 2 Register

The CAN_TA2 register indicates transmission success for mailboxes 16 (bit 0) through 31 (bit 15). Each bit
in this register indicates transmission success for the corresponding mailbox when set (=1).

Table 19-24: CAN_TRR2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Transmit Abort.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-30: CAN_TA2 Register Diagram

Abort Acknowledge 2 Register

The CAN_AA2 register indicates transmission abort (due to lost arbitration or a CAN error) for mailboxes
16 (bit 0) through 31 (bit 15). Each bit in this register indicates transmission abort for the corresponding
mailbox when set (=1).

Table 19-25: CAN_TA2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W1C)

MB Mailbox n Transmit Acknowledge.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–49

Figure 19-31: CAN_AA2 Register Diagram

Receive Message Pending 2 Register

The CAN_RMP2 register indicates when a message is pending (unread data) for mailboxes 16 (bit 0) through
23 (bit 7). Each bit in this register indicates the message pending status for the corresponding mailbox
when set (=1). Bits 8 through 15 are reserved, as the corresponding mailboxes (24 through 31) are
transmit-only mailboxes.

Table 19-26: CAN_AA2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W1C)

MB Mailbox n Abort Acknowledge.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-32: CAN_RMP2 Register Diagram

Receive Message Lost 2 Register

The CAN_RML2 register indicates when a message is lost---due to a message coming while there is pending
data (corresponding CAN_RMP2 bit set) and overwrite protection is disabled (CAN_OPSS2 bit cleared)---for
mailboxes 16 (bit 0) through 23 (bit 7). Each bit in this register indicates the message lost status for the
corresponding mailbox when set (=1). Bits 8 through 15 are reserved, as the corresponding mailboxes (24
through 31) are transmit-only mailboxes.

Figure 19-33: CAN_RML2 Register Diagram

Table 19-27: CAN_RMP2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W1C)

MB Mailbox n Message Pending.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–51

Mailbox Transmit Interrupt Flag 2 Register

The CAN_MBTIF2 register indicates when a transmit interrupt is pending---due to successful transmission
(corresponding CAN_TA2 bit set) and the interrupt is enabled (corresponding CAN_MBIM2 bit set)---for
mailboxes 16 (bit 0) through 31 (bit 15). Each bit in this register indicates the transmit interrupt pending
status for the corresponding mailbox when set (=1). When any bit in CAN_MBTIF2 is set, the CAN transmit
interrupt request is raised (CAN_INT.MBTIRQ bit set). To clear the interrupt request, all of the set bits in
CAN_MBTIF2 must be cleared by software (W1C). Also, software must clear the associated bits set in CAN_
TA2 or set the associated bits in CAN_TRS2 bit to clear the interrupt source asserting the bits in CAN_MBTIF2.

Table 19-28: CAN_RML2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/NW)

MB Mailbox n Message Lost.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–52 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-34: CAN_MBTIF2 Register Diagram

Mailbox Receive Interrupt Flag 2 Register

The CAN_MBRIF2 register indicates when a receive interrupt is pending---due to successful reception
(corresponding CAN_RMP2 bit set) and the interrupt is enabled (corresponding CAN_MBIM2 bit set)---for
mailboxes 16 (bit 0) through 23 (bit 7). Each bit in this register indicates the receive interrupt pending
status for the corresponding mailbox when set (=1). When any bit in CAN_MBRIF2 is set, the CAN receive
interrupt request is raised (CAN_INT.MBRIRQ bit set). To clear the interrupt request, all of the set bits in
CAN_RMP2 must be cleared by software, then the associated bits set in CAN_MBRIF2 must be cleared (W1C).

Table 19-29: CAN_MBTIF2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W1C)

MB Mailbox n Transmit Interrupt Pending.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–53

Bits 8 through 15 are reserved and read-only, as the corresponding mailboxes (24 through 31) are
transmit-only mailboxes.

Figure 19-35: CAN_MBRIF2 Register Diagram

Mailbox Interrupt Mask 2 Register

The CAN_MBIM2 register enables transmit and receive interrupts for mailboxes 16 (bit 0) through 31 (bit
15). Each bit in this register requests enables the transmit or receive interrupt for the corresponding
mailbox when set (=1).

Table 19-30: CAN_MBRIF2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W1C)

MB Mailbox n Receive Interrupt Pending.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–54 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-36: CAN_MBIM2 Register Diagram

Remote Frame Handling 2 Register

The CAN_RFH2 register enables remote frame handling for mailboxes 16 (bit 0) through 31 (bit 15). Each
bit in this register enables remote frame handling for the corresponding mailbox when set (=1). Note that

Table 19-31: CAN_MBIM2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Transmit and Receive Interrupt Enable.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–55

enabling this bit affects transmit and receive operations for mailboxes. For more information about remote
frame handling, see the CAN Operating Modes sections, describing transmit and receive operations.

Figure 19-37: CAN_RFH2 Register Diagram

Overwrite Protection/Single Shot Transmission 2 Register

The CAN_OPSS2 register enables overwrite protection for mailboxes 16 (bit 0) through 31 (bit 15). Each bit
in this register enables overwrite protection for the corresponding mailbox when set (=1). Note that
enabling this bit affects transmit and receive operations for mailboxes. For more information about remote
overwrite protection, see the detailed feature description in the CAN Functional Description section. For
more information about how this feature affects transmit and receive operations, see the CAN Operating
Modes sections, describing transmit and receive operations.

Table 19-32: CAN_RFH2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

MB Mailbox n Remote Frame Handling Enable.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–56 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-38: CAN_OPSS2 Register Diagram

Clock Register

The CAN_CLK register select the bit rate prescaler for calculating the time quantum (TQ), which is used to
derive the CAN clock from the system clock (SCLK). For more information about bit timing and clock
operation, see the CAN Operating Modes section.

Table 19-33: CAN_OPSS2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

MB Mailbox n Overwrite Protection Enable.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–57

Figure 19-39: CAN_CLK Register Diagram

Timing Register

The CAN_TIMING register select the time segments, sampling, and synchronization for CAN bit timing. For
more information about bit timing and clock operation, see the CAN Operating Modes section.

Figure 19-40: CAN_TIMING Register Diagram

Table 19-34: CAN_CLK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:0
(R/W)

BRP Bit Rate Prescaler.
The CAN_CLK.BRP bits select the bit rate prescaler value, which is used to calculate
the time quantum for CAN bit timing. The formula using CAN_CLK.BRP to
calculate the time quantum is:
TQ = (BRP+1) / SCLK
Note that it is recommended that the CAN_CLK.BRP value be greater than or equal
to 4. For more information about bit timing, see the Operating Modes section.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–58 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Debug Register

The CAN_DBG register controls CAN debug modes, including CAN_TX and CAN_RX pin enable/disable.

Table 19-35: CAN_TIMING Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:8
(R/W)

SJW Synchronization Jump Width.
The CAN_TIMING.SJW bits select the maximum number of time quanta, ranging
from 1 to 4(SJW + 1). This selection allows for a re-synchronization attempt when
the CAN detects a recessive-to-dominant edge outside the synchronization segment.
The re-synchronization automatically moves the sampling point such that the CAN
bit is still handled properly. Note that the CAN_TIMING.SJW value should not
exceed CAN_TIMING.TSEG2 or CAN_TIMING.TSEG1.

7
(R/W)

SAM Sampling.
The CAN_TIMING.SAM bit selects whether the CAN performs normal sampling
(once at the sampling point described by the CAN_TIMING register) or performs
over sampling. If CAN_TIMING.SAM is set, the CAN over samples the input signal
at three times at the SCLK rate. The resulting value is generated by a majority
decision of the three sample values. Note that the CAN_TIMING.SAM bit should
always be cleared if the CAN_CLK.BRP value is less than 4.

6:4
(R/W)

TSEG2 Time Segment 2.
The CAN_TIMING.TSEG2 bits and CAN_TIMING.TSEG1 bits control how many
time quanta of which the CAN bits consist, resulting in the CAN bit rate. For more
information about bit timing and clock operation, see the CAN Operating Modes
section. Note that the CAN_TIMING.TSEG1 value should always be greater than or
equal to the CAN_TIMING.TSEG2 value.

3:0
(R/W)

TSEG1 Time Segment 1.
The CAN_TIMING.TSEG1 bits and CAN_TIMING.TSEG2 bits control how many
time quanta of which the CAN bits consist, resulting in the CAN bit rate. For more
information about bit timing and clock operation, see the CAN Operating Modes
section. Note that the CAN_TIMING.TSEG1 value should always be greater than or
equal to the CAN_TIMING.TSEG2 value.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–59

Figure 19-41: CAN_DBG Register Diagram

Table 19-36: CAN_DBG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

CDE CAN Debug Mode Enable.
The CAN_DBG.CDE bit enables debug mode. This bit must be written first before
subsequent writes to the CAN_DBG register. When the CAN_DBG.CDE bit is cleared,
all CAN debug features are disabled.

0 Disable Debug Mode

1 Enable Debug Mode

5
(R/W)

MRB Mode Read Back.
The CAN_DBG.MRB bit enables read back mode. When enabled, a message
transmitted on the CAN bus or through an internal loop back mode is received back
directly to the internal receive buffer.

0 Disable Read Back Mode

1 Enable Read Back Mode

4
(R/W)

MAA Mode Auto Acknowledge.
The CAN_DBG.MAA bit enables mode auto acknowledge, allowing the CAN to
generate its own acknowledge during the ACK slot of the CAN frame. The CAN_
DBG.MAA acknowledge appears on the CAN_TX pin if CAN_DBG.DIL =1 and
CAN_DBG.DTO =0. If the acknowledge is only going to be used internally, these test
mode bits should be set to CAN_DBG.DIL = 0 and CAN_DBG.DTO =1.

0 Disable Auto Acknowledge Mode

1 Enable Auto Acknowledge Mode

3
(R/W)

DIL Disable Internal Loop.
The CAN_DBG.DIL bit disables internal loop mode, which routes the transmit
output to the receive input.

0 Enable Internal Loop

1 Disable Internal Loop

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–60 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Status Register

The CAN_STAT register indicates status for CAN modes and error conditions.

Figure 19-42: CAN_STAT Register Diagram

2
(R/W)

DTO Disable Tx Output Pin.
The CAN_DBG.DTO bit disables the CAN_TX pin.

0 Enable Tx Output Pin

1 Disable Tx Output Pin, Drive Recessive

1
(R/W)

DRI Disable Receive Input Pin.
The CAN_DBG.DRI bit disables the CAN_RX pin.

0 Enable Rx Input Pin

1 Disable Rx Input Pin, Drive Recessive Internally

0
(R/W)

DEC Disable Transmit and Receive Error Counters.
The CAN_DBG.DEC bit disables the transmit and receive error counters in the CAN_
CEC register. When set, the CAN_CEC holds its current contents and is not allowed
to increment or decrement the error counters. Note that this mode does not conform
to the CAN specification.

0 Enable CEC Tx and Rx Error Counters

1 Disable CEC Tx and Rx Error Counters

Table 19-36: CAN_DBG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–61

Table 19-37: CAN_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/NW)

REC Receive Mode.
The CAN_STAT.REC bit indicates whether the CAN is in receive mode.

0 Not in Receive Mode

1 Receive Mode

14
(R/NW)

TRM Transmit Mode.
The CAN_STAT.TRM bit indicates whether the CAN is in transmit mode.

0 Not in Transmit Mode

1 Transmit Mode

12:8
(R/NW)

MBPTR Mailbox Pointer.
The CAN_STAT.MBPTR bits represent the mailbox number of the current transmit
message. After a successful transmission, these bits remain unchanged.

0 Processing Mailbox 0 Message

... ...

31 Processing Mailbox 31 Message

7
(R/NW)

CCA CAN Configuration Mode Acknowledge.
The CAN_STAT.CCA bit indicates whether the CAN is in configuration mode.

0 Not in Configuration Mode

1 Configuration mode

6
(R/NW)

CSA CAN Suspend Mode Acknowledge.
The CAN_STAT.CSA bit indicates whether the CAN is in suspend mode.

0 Not in Suspend Mode

1 Suspend mode

3
(R/NW)

EBO CAN Error Bus Off Mode.
The CAN_STAT.EBO bit indicates whether the CAN is in error bus off mode.

0 TXECNT Below 256

1 TXECNT Above Bus Off Limit

2
(R/NW)

EP CAN Error Passive Mode.
The CAN_STAT.EP bit indicates whether the CAN is in error passive mode.

0 TXECNT and RXECNT Below 128

1 TXECNT or RXECNT Above EP Level

1
(R/NW)

WR CAN Receive Warning Flag.
The CAN_STAT.WR bit indicates whether the CAN has detected a receive warning
flag condition.

0 RXECNT Below Limit

1 RXECNT at Limit

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–62 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Error Counter Register

The CAN_CEC register, CAN_ESR register, and CAN_EWR register control CAN warnings and errors. For
detailed information about error and warning operations, see the Event Control section.

The CAN_CEC register holds an error counter for transmit (CAN_CEC.TXECNT) and an error counter for
receive (CAN_CEC.RXECNT). After initialization, both counters are 0. Each time a bus error occurs, one of
the counters is incremented by either 1 or 8, depending on the error situation (documented in Version 2.
0 of CAN Specification). Successful transmit and receive operations decrement the respective counter by 1.

Figure 19-43: CAN_CEC Register Diagram

0
(R/NW)

WT CAN Transmit Warning Flag.
The CAN_STAT.WT bit indicates whether the CAN detected a transmit warning flag
condition.

0 TXECNT Below Limit

1 TXECNT at Limit

Table 19-38: CAN_CEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

TXECNT Transmit Error Counter.
The CAN_CEC.TXECNT bits hold the transmit error counter, which is incremented
for errors (by either 1 or 8) and is decremented (by 1) for successful transmit
operations.

7:0
(R/W)

RXECNT Receive Error Counter.
The CAN_CEC.RXECNT bits hold the receive error counter, which is incremented
for errors (by either 1 or 8) and is decremented (by 1) for successful receive
operations.

Table 19-37: CAN_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–63

Global CAN Interrupt Status Register

The CAN_GIS register, CAN_GIF register, and CAN_GIM register control CAN interrupts. For detailed infor-
mation about interrupt operations, see the Event Control section.

The CAN_GIS register holds the interrupt status. All bits in this register are W1C.

Figure 19-44: CAN_GIS Register Diagram

Table 19-39: CAN_GIS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10
(R/W1C)

ADIS Access Denied Interrupt Status.
The CAN_GIS.ADIS bit indicates when at least one access to the mailbox RAM
occurred during a data update by internal logic.

0 No Interrupt Pending

1 Interrupt Pending

8
(R/W1C)

UCEIS Universal Counter Exceeded Interrupt Status.
The CAN_GIS.UCEIS bit indicates when there has been an overflow of the
universal counter (in time stamp mode or event counter mode) or the counter has
reached the value 0x0000 (in watchdog mode).

0 No Interrupt Pending

1 Interrupt Pending

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–64 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

7
(R/W1C)

RMLIS Receive Message Lost Interrupt Status.
The CAN_GIS.RMLIS bit indicates when a message is received for a mailbox that
currently contains unread data. At least one bit in the receive message lost register
(CAN_RML1 or CAN_RML2) is set. If the bit in CAN_GIS (and CAN_GIF) is reset
and there is at least one bit in CAN_RML1 or CAN_RML2 still set, the bit in CAN_
GIF (and CAN_GIF) is not set again. The internal interrupt source signal is only
active if a new bit in CAN_RML1 or CAN_RML2 is set.

0 No Interrupt Pending

1 Interrupt Pending

6
(R/W1C)

AAIS Abort Acknowledge Interrupt Status.
The CAN_GIS.AAIS bit indicates when At least one abort acknowledge bit is set in
the CAN_AA1 or the CAN_AA2 registers. If the bit in CAN_GIS (and CAN_GIF) is
reset and there is at least one bit in CAN_AA1 or CAN_AA2 still set, the bit in CAN_
GIS (and CAN_GIF) is not set again. The internal interrupt source signal is only
active if a new bit in CAN_AA1 or CAN_AA2 is set. The abort acknowledge bits
maintain state even after the corresponding mailbox n is disabled.

0 No Interrupt Pending

1 Interrupt Pending

5
(R/W1C)

UIAIS Unimplemented Address Interrupt Status.
The CAN_GIS.UIAIS bit indicates when there was a processor core access to an
address that is not implemented in the CAN.

0 No Interrupt Pending

1 Interrupt Pending

4
(R/W1C)

WUIS Wake Up Interrupt Status.
The CAN_GIS.WUIS bit indicates when the CAN has left the sleep mode because of
detected activity on the CAN bus line.

0 No Interrupt Pending

1 Interrupt Pending

3
(R/W1C)

BOIS Bus Off Interrupt Status.
The CAN_GIS.BOIS bit indicates when the CAN has entered the bus-off state. This
interrupt source is active if the status of the CAN changes from normal operation
mode to the bus-off mode. If the bit in CAN_GIS (and CAN_GIF) is reset and the
bus-off mode is still active, this bit is not set again. If the module leaves the bus-off
mode, the bit inCAN_GIS (and CAN_GIF) remains set.

0 No Interrupt Pending

1 Interrupt Pending

Table 19-39: CAN_GIS Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–65

Global CAN Interrupt Mask Register

The CAN_GIM register, CAN_GIF register, and CAN_GIF register control CAN interrupts. For detailed infor-
mation about interrupt operations, see the Event Control section.

The CAN_GIM register holds the interrupt mask. The interrupt mask bits only affect the content of the CAN_
GIF register. If the mask bit is not set (enabled/unmasked), the corresponding flag bit is not set when the
event occurs.

2
(R/W1C)

EPIS Error Passive Interrupt Status.
The CAN_GIS.EPIS bit indicates when the CAN has entered the error passive
state. This interrupt source is active if the status of the CAN changes from the error
active mode to the error passive mode. If the bit in CAN_GIS (and CAN_GIF) is
reset and the error passive mode is still active, this bit is not set again. If the CAN
leaves the error passive mode, the bit in CAN_GIS (and CAN_GIF) remains set.

0 No Interrupt Pending

1 Interrupt Pending

1
(R/W1C)

EWRIS Error Warning Receive Interrupt Status.
The CAN_GIS.EWRIS bit indicates when the CAN_CEC.RXECNT has reached the
warning limit. If the bit in CAN_GIS (and CAN_GIF) is reset and the error warning
mode is still active, this bit is not set again. If the CAN leaves the error warning
mode, the bit in CAN_GIS (and CAN_GIF) remains set.

0 No Interrupt Pending

1 Interrupt Pending

0
(R/W1C)

EWTIS Error Warning Transmit Interrupt Status.
The CAN_GIS.EWTIS bit indicates when the CAN_CEC.TXECNT has reached the
warning limit. If the bit in CAN_GIS (and CAN_GIF) is reset and the error warning
mode is still active, this bit is not set again. If the CAN leaves the error warning
mode, the bit in CAN_GIS (and CAN_GIF) remains set.

0 No Interrupt Pending

1 Interrupt Pending

Table 19-39: CAN_GIS Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–66 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-45: CAN_GIM Register Diagram

Table 19-40: CAN_GIM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10
(R/W)

ADIM Access Denied Interrupt Mask.
The CAN_GIM.ADIM bit enables (unmasks) the access denied interrupt.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

8
(R/W)

UCEIM Universal Counter Exceeded Interrupt Mask.
The CAN_GIM.UCEIM bit enables (unmasks) the universal counter exceeded
interrupt.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

7
(R/W)

RMLIM Receive Message Lost Interrupt Mask.
The CAN_GIM.RMLIM bit enables (unmasks) the receive message lost interrupt.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

6
(R/W)

AAIM Abort Acknowledge Interrupt Mask.
The CAN_GIM.AAIM bit enables (unmasks) the abort acknowledge interrupt.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

5
(R/W)

UIAIM Unimplemented Address Interrupt Mask.
The CAN_GIM.UIAIM bit enables (unmasks) the unimplemented address interrupt.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–67

Global CAN Interrupt Flag Register

The CAN_GIF register, CAN_GIF register, and CAN_GIM register control CAN interrupts. For detailed infor-
mation about interrupt operations, see the Event Control section.

The CAN_GIF register holds the interrupt flag. The CAN_INT.GIRQ bit is only asserted if a bit in the CAN_
GIF is set. The CAN_INT.GIRQ bit remains set as long as at least one bit in the CAN_GIF register is set.All
bits in this register are W1C.

4
(R/W)

WUIM Wake Up Interrupt Mask.
The CAN_GIM.WUIM bit enables (unmasks) the wake up interrupt.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

3
(R/W)

BOIM Bus Off Interrupt Mask.
The CAN_GIM.BOIM bit enables (unmasks) the bus off interrupt.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

2
(R/W)

EPIM Error Passive Interrupt Mask.
The CAN_GIM.EPIM bit enables (unmasks) the error passive mode interrupt.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

1
(R/W)

EWRIM Error Warning Receive Interrupt Mask.
The CAN_GIM.EWRIM bit enables (unmasks) the error warning receive interrupt.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

0
(R/W)

EWTIM Error Warning Transmit Interrupt Mask.
The CAN_GIM.EWTIM bit enables (unmasks) the error warning transmit interrupt.

0 Disable Interrupt (Mask)

1 Enable Interrupt (Unmask)

Table 19-40: CAN_GIM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–68 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-46: CAN_GIF Register Diagram

Table 19-41: CAN_GIF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10
(R/NW)

ADIF Access Denied Interrupt Flag.
The CAN_GIF.ADIF bit indicates the access denied interrupt flag is set (latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

8
(R/NW)

UCEIF Universal Counter Exceeded Interrupt Flag.
The CAN_GIF.UCEIF bit indicates the universal counter exceeded interrupt flag is
set (latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

7
(R/NW)

RMLIF Receive Message Lost Interrupt Flag.
The CAN_GIF.RMLIF bit indicates the receive message lost interrupt flag is set
(latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

6
(R/NW)

AAIF Abort Acknowledge Interrupt Flag.
The CAN_GIF.AAIF bit indicates the abort acknowledge interrupt flag is set
(latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–69

CAN Master Control Register

The CAN_CTL register controls CAN mode requests, including soft reset.

5
(R/NW)

UIAIF Unimplemented Address Interrupt Flag.
The CAN_GIF.UIAIF bit indicates the unimplemented address interrupt flag is set
(latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

4
(R/NW)

WUIF Wake Up Interrupt Flag.
The CAN_GIF.WUIF bit indicates the wake up interrupt flag is set (latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

3
(R/NW)

BOIF Bus Off Interrupt Flag.
The CAN_GIF.BOIF bit indicates the bus off interrupt flag is set (latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

2
(R/NW)

EPIF Error Passive Interrupt Flag.
The CAN_GIF.EPIF bit indicates the error passive mode interrupt flag is set
(latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

1
(R/NW)

EWRIF Error Warning Receive Interrupt Flag.
The CAN_GIF.EWRIF bit indicates the error warning receive interrupt flag is set
(latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

0
(R/NW)

EWTIF Error Warning Transmit Interrupt Flag.
The CAN_GIF.EWTIF bit indicates the error warning transmit interrupt flag is set
(latched).

0 No Interrupt Flag

1 Interrupt Flag Set (Latched)

Table 19-41: CAN_GIF Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–70 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-47: CAN_CTL Register Diagram

Table 19-42: CAN_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

CCR CAN Configuration Mode Request.
The CAN_CTL.CCR bit requests that the CAN enter configuration mode. Note that
the CAN should always be put in configuration mode before modifying the CAN_
CLK or CAN_TIMING registers.

0 No Request (Exit Configuration Mode)

1 Request Configuration Mode

6
(R/W)

CSR CAN Suspend Mode Request.
The CAN_CTL.CSR bit requests that the CAN enter suspend mode. The CAN enters
suspend mode after the current operation of the CAN bus is finished.

0 No Request (Exit Suspend Mode)

1 Request Suspend Mode

5
(R/W)

SMR Sleep Mode Request.
The CAN_CTL.SMR bit requests that the CAN enter sleep mode. The CAN enters
sleep mode after the current operation of the CAN bus is finished.

0 No Request (Exit Sleep Mode)

1 Request Sleep Mode

4
(R/W)

WBA Wake Up on CAN Bus Activity.
The CAN_CTL.WBA bit enables wake on CAN bus activity. When enabled, a
dominant bit on the CAN_RX pin ends sleep mode (in addition the default wake up
condition of a write to the CAN_INT register).

0 Disable Wake on Bus Activity

1 Enable Wake on Bus Activity

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–71

Interrupt Pending Register

The CAN_INT register indicates the status of pending CAN interrupts and indicates the state of the CAN_RX
and CAN_TX pins. Though this register is read-only, a write is allowed to exit the built-in sleep mode of the
module on processors supporting this feature.

Figure 19-48: CAN_INT Register Diagram

2
(R/W)

ABO Auto Bus On.
The CAN_CTL.ABO bit selects whether (if enabled) the CAN enters active mode
after the BusOff recovery sequence or (if disabled) the CAN enters configuration
mode after the BusOff recovery sequence.

0 Disable Auto Bus On

1 Enable Auto Bus On

1
(R/W)

DNM Device Net Mode.
The CAN_CTL.DNM bit enables mailbox filtering on a data field. The filtering is
done on the standard ID of the message and data fields. For more information, see
the CAN_AMnnH.FDF bit description.

0 Disable Device Net Mode

1 Enable Device Net Mode

0
(R/W)

SRS Software Reset.
The CAN_CTL.SRS bit resets the CAN, bringing all control registers to a defined
state. Soft reset is entered immediately after software has set the CAN_CTL.SRS bit.

0 No Action

1 Reset CAN

Table 19-42: CAN_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–72 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Temporary Mailbox Disable Register

The CAN_MBTD register supports temporarily and selectively disabling CAN mailboxes. For more informa-
tion about this feature, see the Operating Modes section.

Table 19-43: CAN_INT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/NW)

CANRX Serial Input From Transceiver.
The CAN_INT.CANRX bit indicates the logic value that the CAN detects on the
CAN_RX pin. Note that the reset/default value for CAN_INT.CANRX is dependent
on pin values.

0 Dominant Value (Low Active)

1 Recessive Value (High Active)

6
(R/NW)

CANTX Serial Input To Transceiver.
The CAN_INT.CANTX bit indicates the logic value that the CAN detects on the
CAN_TX pin. Note that the reset/default value for CAN_INT.CANTX is dependent
on pin values.

0 Dominant Value (Low Active)

1 Recessive Value (High Active)

3
(R/W)

SMACK Sleep Mode Acknowledge.
The CAN_INT.SMACK bit indicates when the CAN has entered sleep mode.

0 Not in Sleep Mode

1 Sleep Mode

2
(R/W)

GIRQ Global CAN Interrupt Output.
The CAN_INT.GIRQ bit indicates when at least one bit is set in the CAN_GIF
register, indicating at least one unmasked CAN is flagged (latched). The CAN_INT.
GIRQ bit remains set as long as at least one bit is set in the CAN_GIF register.

0 No CAN Global Interrupt Flag Set

1 CAN Global Interrupt Flag (1 or More) Set

1
(R/W)

MBTIRQ Mailbox Transmit Interrupt Output.
The CAN_INT.MBTIRQ bit indicates when any bits are set in the CAN_MBTIF1
register or CAN_MBTIF2 register, indicating transmit.

0 No CAN Transmit Flags Set

1 CAN Transmit Flags Set (1 or More)

0
(R/W)

MBRIRQ Mailbox Receive Interrupt Output.
The CAN_INT.MBRIRQ bit indicates when any bits are set in the CAN_MBRIF1
register or CAN_MBRIF2 register, indicating receive.

0 No CAN Receive Flags Set

1 CAN Receive Flags Set (1 or More)

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–73

Figure 19-49: CAN_MBTD Register Diagram

Error Counter Warning Level Register

The CAN_EWR register, CAN_CEC register, and CAN_ESR register control CAN warnings and errors. For
detailed information about error and warning operations, see the Operating Modes section.

Table 19-44: CAN_MBTD Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

TDR Temporary Disable Request.
The CAN_MBTD.TDR bit hold the pointer to mailbox, which is disabled when the
CAN_MBTD.TDR bit is set.

0 No Request

1 Request Temporary Mailbox Disable

6
(R/NW)

TDA Temporary Disable Acknowledge.
The CAN_MBTD.TDA bit indicates when the mailbox (to which the CAN_MBTD.
TDPTR bit point) is disabled. When this bit is set for a mailbox, only the data field of
that mailbox may be updated. Accesses that mailbox’s control bits and the identifier
are denied.

0 No Acknowledge

1 Acknowledge Temporary Mailbox Disable

4:0
(R/W)

TDPTR Temporary Disable Pointer.
The CAN_MBTD.TDPTR bits hold the pointer to mailbox, which is disabled when
the CAN_MBTD.TDR bit is set.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–74 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-50: CAN_EWR Register Diagram

Error Status Register

The CAN_ESR register, CAN_CEC register, and CAN_EWR register control CAN warnings and errors. All bits
in the CAN_ESR are W1C. Note that the CAN updates the CAN_CEC register when error status is detected in
the CAN_ESR register. For detailed information about error and warning operations, see the Operating
Modes section.

Figure 19-51: CAN_ESR Register Diagram

Table 19-45: CAN_EWR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

EWLTEC Transmit Error Warning Limit.
The CAN_EWR.EWLTEC bits select the transmit error warning limit, which is used
as a condition for the CAN_GIS.EWTIS interrupt.

7:0
(R/W)

EWLREC Receive Error Warning Limit.
The CAN_EWR.EWLREC bits select the receive error warning limit, which is used as
a condition for the CAN_GIS.EWRIS interrupt.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–75

Table 19-46: CAN_ESR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W1C)

FER Form Error.
The CAN_ESR.FER bit indicates when a form error occurs, indicating that a fixed-
form bit position in the CAN frame contains one or more illegal bits. This occurs
when a dominant bit is detected at a delimiter or end-of-frame bit position.

0 No Status

1 Form Error

6
(R/W1C)

BEF Bit Error Flag.
The CAN_ESR.BEF bit indicates (detected by the transmitting node only) the value
on the CAN_RX pin does not equal what is being transmitted on the CAN_TX pin.
When a node is transmitting, it continuously monitors its receive pin (CAN_RX) and
compares the received data with the transmitted data. The node postpones the
transmission (during the arbitration phase) if the received and transmitted data do
not match. After the arbitration phase (CAN_MBnn_ID1.RTR bit sent successfully),
a bit error is signaled when the value on the CAN_RX pin does not equal what is
being transmitted on the CAN_TX pin.

0 No Status

1 Bit Error Flag

5
(R/W1C)

SAO Stuck at Dominant.
The CAN_ESR.SAO bit indicates when the CAN_RX pin sticks at dominant level,
indicating that shorted wires are likely.

0 No Status

1 Stuck At Dominant

4
(R/W1C)

CRCE CRC Error.
The CAN_ESR.CRCE bit indicates when a CRC error occurs. This error may occur
when a receiver calculates the CRC on the data it received and finds the value
different than the CRC that was transmitted on the bus.

0 No Status

1 CRC Error

3
(R/W1C)

SER Stuff Bit Error.
The CAN_ESR.SER bit indicates when a stuff bit error (stuffed 6th consecutive bit
value is the same as the previous five bits) occurs.
The CAN specification requires that the transmitter insert an extra stuff bit of
opposite value after 5 bits have been transmitted with the same value. The receiver
disregards the value of these stuff bits. The receiver takes advantage of the signal edge
to re-synchronize itself. A stuff bit error occurs on receiving nodes when the 6th
consecutive bit value is the same as the previous five bits.

0 No Status

1 Stuff Bit Error Receive

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–76 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Universal Counter Register

The CAN_UCCNT register holds the current universal count. This register is re-loaded from the CAN_UCRC
register when the decrements to zero in auto-transmit mode.

Figure 19-52: CAN_UCCNT Register Diagram

Universal Counter Reload/Capture Register

The CAN_UCRC register holds the period value (universal count), which is used in auto-transmit mode as
the period for sending the message in mailbox 11 (broadcast heartbeat) to all CAN nodes. Accordingly,
messages sent this way usually have high priority.

The period value is written to the CAN_UCRC register. When auto-transmit mode is enabled (CAN_UCCNF.
UCCNF = 0x3), the CAN loads the counter with the value in CAN_UCRC. The counter decrements to 0 at the
CAN bit clock rate, then is reloaded. Each time the counter decrements to 0, the CAN sets the CAN_TRS1.
MB bit for mailbox 11 and sends the corresponding message from mailbox 11.

Note that for auto-transmit mode, mailbox 11 must be configured as a transmit mailbox and must contain
valid data (identifier, control bits, and data). This setup must occur before the counter first expires after
this mode is enabled.

2
(R/W1C)

ACKE Acknowledge Error.
The CAN_ESR.ACKE bit indicates when an acknowledge error occurs, indicating
that a message is sent and no receivers drive an acknowledge bit.

0 No Status

1 Acknowledge Error

Table 19-47: CAN_UCCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

COUNT Count Value.
The CAN_UCCNT.COUNT bits hold the current universal count value.

Table 19-46: CAN_ESR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–77

Figure 19-53: CAN_UCRC Register Diagram

Universal Counter Configuration Mode Register

The CAN_UCCNF register controls the operation of the universal counter, including counter enable and
counter mode selection.

Figure 19-54: CAN_UCCNF Register Diagram

Table 19-48: CAN_UCRC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

UCVAL Universal Counter Value.
The CAN_UCRC.UCVAL bits hold the value for the universal count period, which is
used in auto-transmit mode.

Table 19-49: CAN_UCCNF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

UCE Universal Counter Enable.
The CAN_UCCNF.UCE bit enables universal counter operation in the mode selected
by the CAN_UCCNF.UCCNF bits.

0 Disable Counter

1 Enable Counter

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–78 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Acceptance Mask (L) Register

The CAN_AMnnL register and CAN_AMnnH register manage acceptance mask operation. For information
about acceptance mask operation, see the Receive Operation section.

6
(R/W)

UCCT Universal Counter CAN Trigger.
The CAN_UCCNF.UCCT bit enables the universal counter trigger, directing the CAN
to re-load the counter on mailbox 4 reception in watchdog mode and clear the
counter on mailbox 4 reception in time stamp mode. This bit has no effect in all other
modes.

0 Disable Trigger

1 Enable Trigger

5
(R/W)

UCRC Universal Counter Reload/Clear.
The CAN_UCCNF.UCRC bit re-loads or clears the universal counter, depending on
the counter mode. In watchdog mode, setting this bit directs the CAN to re-load the
counter. In all other modes, setting this bit directs the CAN to clear the counter.

0 No Action

1 Re-load or Clear the Counter

3:0
(R/W)

UCCNF Universal Counter Configuration.
The CAN_UCCNF.UCCNF bits select the universal counter operating mode. For
more information about these modes, see the Operating Modes section.

0 Reserved

1 Time Stamp Mode

2 Watchdog Mode

3 Auto-transmit Mode

4 Reserved

5 Reserved

6 Count Error Frames

7 Count Overload Frames

8 Count Arbitration Lost

9 Count Aborted Transmissions

10 Count Successful Transmissions

11 Count Rejected Receive Messages

12 Count Receive Message Lost

13 Count Successful Receptions

14 Count Stored Receptions

15 Count Valid Messages

Table 19-49: CAN_UCCNF Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–79

Figure 19-55: CAN_AMnnL Register Diagram

Acceptance Mask (H) Register

The CAN_AMnnH register and CAN_AMnnL register manage acceptance mask operation. For information
about acceptance mask operation, see the Receive Operation section.

Figure 19-56: CAN_AMnnH Register Diagram

Table 19-50: CAN_AMnnL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

EXTID Extended Identifier/Data Field Mask.
The CAN_AMnnL.EXTID bits hold the extended ID (lower 16 bits) for data field
mask in acceptance mask operations.

Table 19-51: CAN_AMnnH Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

FDF Filter on Delay Field.
The CAN_AMnnH.FDF bit selects the operation of the CAN_AMnnH register and
CAN_AMnnL register when the CAN_CTL.DNM bit is enabled.
If the CAN_AMnnH.FDF bit is set, the corresponding CAN_AMnnL.EXTID bits
hold the data field mask. If the CAN_AMnnH.FDF bit is cleared, the corresponding
CAN_AMnnL.EXTID bits hold the high bits of the extended identifier mask.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–80 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Mailbox Word 0 Register

The CAN_MBnn_DATA0 register holds mailbox data bytes.

Figure 19-57: CAN_MBnn_DATA0 Register Diagram

Mailbox Word 1 Register

The CAN_MBnn_DATA1 register holds mailbox data bytes.

14
(R/W)

FMD Full Mask Data.
The CAN_AMnnH.FMD bit works with the CAN_AMnnH.FDF bit to determine data
field filtering. For information about data field filtering, see the Receive Operation
section.

13
(R/W)

AMIDE Acceptance Mask Identifier Extension.
The CAN_AMnnH.AMIDE bit enables the comparison of the received message ID to
the value in the CAN_AMnnH.EXTID and CAN_AMnnL.EXTID bits.

12:2
(R/W)

BASEID Base Identifier.
The CAN_AMnnH.BASEID bits hold the base ID for acceptance mask operations.

1:0
(R/W)

EXTID Extended Identifier.
The CAN_AMnnH.EXTID bits hold the extended ID (upper two bits) for acceptance
mask operations.

Table 19-52: CAN_MBnn_DATA0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

DFB6 Data Field Byte 6.
The CAN_MBnn_DATA0.DFB6 bits hold mailbox data.

7:0
(R/W)

DFB7 Data Field Byte 7.
The CAN_MBnn_DATA0.DFB7 bits hold mailbox data.

Table 19-51: CAN_AMnnH Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–81

Figure 19-58: CAN_MBnn_DATA1 Register Diagram

Mailbox Word 2 Register

The CAN_MBnn_DATA2 register holds mailbox data bytes.

Figure 19-59: CAN_MBnn_DATA2 Register Diagram

Mailbox Word 3 Register

The CAN_MBnn_DATA3 register holds mailbox data bytes.

Table 19-53: CAN_MBnn_DATA1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

DFB4 Data Field Byte 4.
The CAN_MBnn_DATA1.DFB4 bits hold mailbox data.

7:0
(R/W)

DFB5 Data Field Byte 5.
The CAN_MBnn_DATA1.DFB5 bits hold mailbox data.

Table 19-54: CAN_MBnn_DATA2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

DFB2 Data Field Byte 2.
The CAN_MBnn_DATA2.DFB2 bits hold mailbox data.

7:0
(R/W)

DFB3 Data Field Byte 3.
The CAN_MBnn_DATA2.DFB3 bits hold mailbox data.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–82 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 19-60: CAN_MBnn_DATA3 Register Diagram

Mailbox Length Register

The CAN_MBnn_LENGTH register holds the data length code for the received remote frame. For more infor-
mation about remote frames, see the Remote Frame Handling section.

Figure 19-61: CAN_MBnn_LENGTH Register Diagram

Table 19-55: CAN_MBnn_DATA3 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:8
(R/W)

DFB0 Data Field Byte 0.
The CAN_MBnn_DATA3.DFB0 bits hold mailbox data.

7:0
(R/W)

DFB1 Data Field Byte 1.
The CAN_MBnn_DATA3.DFB1 bits hold mailbox data.

Table 19-56: CAN_MBnn_LENGTH Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

DLC Data Length Code.
The CAN_MBnn_LENGTH.DLC bits hold the DLC value of the received remote
frame. The received value overwrites any previous value.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 19–83

Mailbox Timestamp Register

The CAN_MBnn_TIMESTAMP register holds an indication of the time of reception or transmission for each
message, when the universal counter is in time stamp mode (CAN_UCCNF.UCCNF =0x1). In this mode, the
CAN writes the value of the counter (CAN_UCCNT) to the CAN_MBnn_TIMESTAMP register when a received
message is stored or a message is transmitted. For more information about timestamps, see the Time
Stamps section.

Figure 19-62: CAN_MBnn_TIMESTAMP Register Diagram

Mailbox ID 0 Register

The CAN_MBnn_ID0 register contains the lower 16 bits of the 18-bit extended identifier.

Figure 19-63: CAN_MBnn_ID0 Register Diagram

Table 19-57: CAN_MBnn_TIMESTAMP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

TSV Time Stamp Value.
The CAN_MBnn_TIMESTAMP.TSV bits hold the message timestamp value.

Table 19-58: CAN_MBnn_ID0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

EXTID Extended Identifier/Data Field Acceptance Code.
The CAN_MBnn_ID0.EXTID bits hold the lower 16 bits of the 18-bit extended ID.

CONTROLLER AREA NETWORK (CAN)
ADSP-CM40X CAN REGISTER DESCRIPTIONS

19–84 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Mailbox ID 1 Register

The CAN_MBnn_ID1 register contains the identifier bits of mailbox. The 11-bit BASE_ID is mapped to The
CAN_MBnn_ID1.BASEID field. It also enables the extended identification and contains upper two bits of 18-
bit extended identifier.

Figure 19-64: CAN_MBnn_ID1 Register Diagram

Table 19-59: CAN_MBnn_ID1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

AME Acceptance Mask Enable.
The CAN_MBnn_ID1.AME bit enables acceptance mask operations if the mailbox is
configured as receiver. When enabled (=1), only those bits that have the
corresponding mask bit cleared are compared to the received message ID. A bit
position that is set in the mask register does not need to match. This bit should be set
to 0 when the mailbox is configured in transmit mode.

14
(R/W)

RTR Remote Transmission Request.
The CAN_MBnn_ID1.RTR bit selects whether the frame contains data (data frame)
or contains a request for data associated with the message identifier in the frame
being sent (remote frame).

13
(R/W)

IDE Identifier Extension.
The CAN_MBnn_ID1.IDE bit enables the comparison of the received message ID
to the value in the CAN_MBnn_ID1.EXTID and CAN_MBnn_ID0.EXTID bits.
When configured as transmitter, it sends the extended identifier in addition to the
base identifier.

12:2
(R/W)

BASEID Base Identifier.
The CAN_MBnn_ID1.BASEID bits hold the base identifier for acceptance mask
operations.

1:0
(R/W)

EXTID Extended Identifier.
The CAN_MBnn_ID1.EXTID bits hold the upper two bits of 18-bit extended
identifier.

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–1

20 Universal Serial Bus (USB)

The USB OTG controller provides a low-cost connectivity solution for consumer mobile devices such as
cell phones, digital still cameras and MP3 players, allowing these devices to transfer data using a point-to-
point USB connection without the need for a personal computer host.

The USB controller can operate in a traditional USB peripheral-only mode as well as the host mode
presented in the On-The-Go (OTG) supplement1 to the USB 2.0 Specification2The USB module supports:

• Host mode transfers at full-speed (12 Mbp/sec) rate

• Host mode transfers at low-speed (1.5 Mbp/sec) rates. The connection to low-speed devices is only
possible through a full-speed hub.

• Peripheral mode transfers at full-speed (12 Mbp/sec) rate

The USB controller uses a peripheral bus slave interface to access its control and status registers as well as
read and write to the endpoint packet buffers. Data is transferred to and from the USB controller through
any of the 3 transmit and 3 receive endpoint FIFOs (EP1 – EP3), providing a total of 6 data endpoints.

USB Features

The USB controller provides the following features:

• Low speed and full speed rates supported

• One bidirectional control endpoint

• Three transmit and three receive unidirectional endpoints

• 2624 byte of FIFO space for packet buffering

• Seven DMA master channels

• Two top-level maskable general purpose interrupts

• Low power wakeup on activity

• VBUS control interrupts for external analog VBUS control

• Session request protocol (SRP) and host negotiation protocol (HNP) capability

1.On-The-Go Supplement to the USB 2.0 Specification, Rev 1.0a; June 24, 2003; USB-IF
2.Universal Serial Bus Specification 2.0.

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

20–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Host transaction scheduling in hardware

• Soft connect/disconnect feature

• Full-speed physical layer UTMI+ level 3 interface for on-chip PHY

• Backwards compatible with existing USB 1.1 hosts

The number of active endpoints at one time is only limited by device requirements or system bandwidth,
because each endpoint operates independently from the next. Software determines the type of transfer for
each endpoint individually and also the manner in which it is transferred between the USB controller and
memory (DMA or interrupt-based). Endpoint zero is used solely for receive and transmit control transfers,
which are used for device configuration and information gathering.

USB Functional Description

The following sections describe the function of the USB OTG interface.

USB Architectural Concepts

The USB controller operates in either of two USB operation modes (peripheral or host mode) at a given
time.

In peripheral mode, the USB controller encodes, decodes, checks, and directs all USB packets sent and
received, responding appropriately to host requests. Data is transferred from the processor core memory
into the device's TX FIFOs to be transmitted onto USB as IN packets. In the other direction USB OUT
packets are received into the RX FIFOs (having been sent from the host) and transferred to system memory
for processing or storage. In peripheral mode, the USB controller acts as a slave device to another USB host;
either a personal computer or another OTG host controller.

When operating in host mode, the USB controller uses simple hosting capabilities to master point-to-point
connections with another USB peripheral, initiating transfers on the bus for the peripheral to respond.
USB IN packets are received into the RX FIFOs to be moved into the processor core memory, and data
written into TX FIFOs is transmitted onto the bus as USB OUT packets. In this mode, the USB controller
encodes, decodes, and checks USB packets sent and received. The controller automatically schedules
isochronous and interrupt transfers from the endpoint buffers such that one transaction is performed
every n frames, where n represents the polling interval programmed for the endpoint.

Any of the endpoints can be programmed to be written to or read from using the DMA master channels
to provide the most efficient means of transferring data between the controller and on-chip memory.

USB endpoints 0 through 3 have DMA interrupt lines (USB_DMA_IRQ) providing a total of seven DMA
request lines.

Two top-level maskable interrupts are provided, each of which can be sourced from any or all of transmit
endpoint status, receive endpoint status or global USB status. Details of these can be found in Interrupt
Signals .

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–3

The USB controller's RAM interface supports a single block of synchronous single-port RAM used to
buffer the USB packets.

2624 bytes of SRAM are available.

The UTMI+ level 3 PHY interface provides a means of connecting a selection of full-speed PHYs to the
controller, from device-only PHYs through full OTG compliant PHYs.

 The details of the PHY interface can be found in UTMI Interface.

ATTENTION: Check the processor data sheet for requirements regarding minimum system clock
frequency needed for proper USB operation.

The USB controller is configured as either a USB OTG A device or B device depending on the type of plug
inserted into its USB receptacle. This is determined by the state of the USB_ID (connector ID) pin.

The asynchronous wakeup circuit is used to detect when another B device is asserting its D+ pull-up to
initiate the SRP (session request protocol) when all other clocks are off.

This slow clock is derived from SCLK and enabled using the USB_PHY_CTL.PHYMAN bit.

Use of the controller for OTG functionality requires the capability to drive VBUS (as a default A device
powering the bus), to discharge VBUS (speeding up the time for VBUS to fall below the SessionEnd
threshold as a B device checking initial conditions), and to charge VBUS to 2.1 V (when initiating SRP as
a B device). These controls are driven from the UTMI interface, but the controller also provides a separate
interrupt register, USB_VBUS_CTL, which represents the drive VBUS, discharge VBUS, and charge VBUS
signaling. See the register section for more information on these controls.

Multi-Point Support

The USB controller has the facility, when operating in host mode, to act as the host to a range of USB
peripheral devices.

These full-speed or low-speed devices are connected to the USB controller via a USB hub.

The key feature of the controller's support for multiple devices is its facility to allow the functions of the
target devices to be individually allocated to the different Rx and Tx endpoints implemented. Furthermore,
this allocation can be made dynamically, allowing the devices from the targeted peripheral list to be used
in different combinations. The combinations of peripheral devices that may be used together are limited
by the numbers of Tx and Rx endpoints implemented in the controller. Further devices can only be added
where the endpoints they require remain available.

On-Chip Bus Interfaces

The USB controller uses two 32-bit wide independent bus interfaces, a master and a slave, to communicate
with a processor-based subsystem. The slave interface allows the processor core to access the control and
status registers (including DMA master registers) and the endpoint FIFOs. The master interface is used by

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

20–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

the integrated DMA to drive data into or out of the endpoint FIFOs with minimal processor core interac-
tion. For more information, see USB Block Diagram.

FIFO Configuration

Each bidirectional endpoint (provided as two unidirectional endpoints) has its own endpoint number (0
for control, 1 on up for data transfer). Although two endpoints might use the same number, the endpoints
may support different transfer types. Each of these bidirectional endpoints has a fixed region of the SRAM
in the USB controller to which it has access, and this feature dictates to some extent the types of transfers
that may be used for that particular endpoint. This restriction follows from the maximum size of USB
packets, which varies with each transfer type. The following table lists the endpoint FIFO configuration,
with an indication of the transfer types possible for that particular buffer size.

Each endpoint FIFO can buffer one or two packets (in double-buffered mode). Double-buffering is recom-
mended for most applications to improve efficiency by reducing the frequency with which each endpoint
needs to be serviced.

Double-buffering bulk transactions means that data transfers over the USB are not slowed if packets can
be loaded/unloaded from the FIFO in the time it takes to transfer a packet over the bus. Double-buffering
isochronous transactions also allows more time to load/unload the FIFO, but in addition, it also allows the
SOF interrupt to be used to service the endpoint rather than the endpoint interrupt. This has the following
advantages:

• Easy detection of lost packets

• Regular interrupt timing (making it easier to source/sink the data)

• If more than one isochronous endpoint is used, they can all be serviced with one interrupt.

Clocking

The USB controller uses the system clock SCLK to generate an internal clock (CLK) used to clock the USB
registers.

For proper operation, the system clock, SCLK, must be greater than 30 MHz.

The transceiver clock (XCLK) is a 60 MHz clock sourced from the UTMI PHY and is used by the PHY
interface logic and USB engine. This controller does not require an external USB clock, instead this clock

Table 20-1: FIFO Sizes and Transfer Types (ADSP-CM40x)

Bidirectional Endpoint
 (RX and TX)

FIFO Size
(each direction) USB Transfer Types

0 64 bytes Size fixed for control transfers

1–2 128 bytes Bulk, Interrupt, Isochronous

3 1024 bytes Bulk, Interrupt, Isochronous

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–5

is derived from the processor PLL (CGU_DIV.SCLK). It is required that the clock SCLK be 60 MHz for USB
operation. For more information, see the Clock Generation Unit (CGU) chapter.

For the ADSP-CM40x, the DCLK signal of the CGU is equivalent to the USBCLK signal.

NOTE: For best performance, (for best signal integrity), follow the guidelines in the data sheet for selecting
an input clock frequency.

When the controller is in the SUSPEND state and when no session is active, the clock to much of the USB
controller is stopped to reduce power consumption. The clock becomes operational again when RESUME
signaling is detected on the USB lines.

UTMI Interface

The interface to the on-chip PHY uses the industry-standard UTMI+ (universal transceiver macro inter-
face) level 3.

This provides full-speed device and OTG functionality and supports communication to a hub.

The PHY is a mixed-signal block and includes the following:

• Full-speed drivers and receivers (single-ended and differential)

• Full-speed CDR

• Full-speed shift registers, NRZI encode/decode and bit-stuff encode/decode

• Data line pull-up and pull-down resistors

• VBUS and USB_ID level detection

• Host disconnect detection

Although the UTMI specification indicates that VBUS charging, driving and discharging be done inside
the PHY, for process-restricting and power reasons, these functions need to be implemented off-chip in a
separate USB charge-pump chip.

ADSP-CM40x USB Register List

The universal serial bus (USB) controller is a multipoint high-speed dual role USB 2,0 compliant
controller. The USB controller can operate in a traditional USB peripheral-only mode as well as the host
mode presented in the on-the-go (OTG) supplement to the USB 2.0 Specification, Rev 1.0a; June 24, 2003;
USB-IF. A set of registers govern USB controller operations. For more information on USB controller
functionality, see the USB controller register descriptions.

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

20–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 20-2: ADSP-CM40x USB Register List

Name Description

USB_FADDR Function Address Register

USB_POWER Power and Device Control Register

USB_INTRTX Transmit Interrupt Register

USB_INTRRX Receive Interrupt Register

USB_INTRTXE Transmit Interrupt Enable Register

USB_INTRRXE Receive Interrupt Enable Register

USB_IRQ Common Interrupts Register

USB_IEN Common Interrupts Enable Register

USB_FRAME Frame Number Register

USB_INDEX Index Register

USB_TESTMODE Testmode Register

USB_FIFOBn FIFO Byte (8-Bit) Register

USB_FIFOHn FIFO Half-Word (16-Bit) Register

USB_FIFOn FIFO Word (32-Bit) Register

USB_DEV_CTL Device Control Register

USB_EPINFO Endpoint Information Register

USB_RAMINFO RAM Information Register

USB_LINKINFO Link Information Register

USB_VPLEN VBUS Pulse Length Register

USB_FS_EOF1 Full-Speed EOF 1 Register

USB_LS_EOF1 Low-Speed EOF 1 Register

USB_SOFT_RST Software Reset Register

USB_MPn_TXFUNCADDR MPn Transmit Function Address Register

USB_MPn_TXHUBADDR MPn Transmit Hub Address Register

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–7

USB_MPn_TXHUBPORT MPn Transmit Hub Port Register

USB_MPn_RXFUNCADDR MPn Receive Function Address Register

USB_MPn_RXHUBADDR MPn Receive Hub Address Register

USB_MPn_RXHUBPORT MPn Receive Hub Port Register

USB_EPn_TXMAXP EPn Transmit Maximum Packet Length Register

USB_EP0_CSRn_H EP0 Configuration and Status (Host) Register

USB_EPn_TXCSR_H EPn Transmit Configuration and Status (Host) Register

USB_EP0_CSRn_P EP0 Configuration and Status (Peripheral) Register

USB_EPn_TXCSR_P EPn Transmit Configuration and Status (Peripheral) Register

USB_EPn_RXMAXP EPn Receive Maximum Packet Length Register

USB_EPn_RXCSR_H EPn Receive Configuration and Status (Host) Register

USB_EPn_RXCSR_P EPn Receive Configuration and Status (Peripheral) Register

USB_EP0_CNTn EP0 Number of Received Bytes Register

USB_EPn_RXCNT EPn Number of Bytes Received Register

USB_EP0_TYPEn EP0 Connection Type Register

USB_EPn_TXTYPE EPn Transmit Type Register

USB_EP0_NAKLIMITn EP0 NAK Limit Register

USB_EPn_TXINTERVAL EPn Transmit Polling Interval Register

USB_EPn_RXTYPE EPn Receive Type Register

USB_EPn_RXINTERVAL EPn Receive Polling Interval Register

USB_EP0_CFGDATAn EP0 Configuration Information Register

USB_EPn_FIFOSZ FIFO Size

USB_DMA_IRQ DMA Interrupt Register

USB_DMAn_CTL DMA Channel n Control Register

Table 20-2: ADSP-CM40x USB Register List (Continued)

Name Description

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

20–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x USB Interrupt List

ADSP-CM40x USB Trigger List

USB_DMAn_ADDR DMA Channel n Address Register

USB_DMAn_CNT DMA Channel n Count Register

USB_RQPKTCNTn EPn Request Packet Count Register

USB_RXDPKTBUFDIS RX Double Packet Buffer Disable for Endpoints 1 to 3

USB_TXDPKTBUFDIS TX Double Packet Buffer Disable for Endpoints 1 to 3

USB_LPM_ATTR LPM Attribute Register

USB_LPM_CTL LPM Control Register

USB_LPM_IEN LPM Interrupt Enable Register

USB_LPM_IRQ LPM Interrupt Status Register

USB_LPM_FADDR LPM Function Address Register

USB_VBUS_CTL VBUS Control Register

USB_IDCTL ID Control

USB_PHY_CTL FS PHY Control

USB_PHY_STAT FS PHY Status

Table 20-3: ADSP-CM40x USB Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

106 USB0_STAT USB0 Status/FIFO Data Ready LEVEL

107 USB0_DATA USB0 DMA Status/Transfer Complete LEVEL

Table 20-4: ADSP-CM40x USB Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

52 USB0_DATA USB0 DMA Status/Transfer Complete LEVEL

Table 20-2: ADSP-CM40x USB Register List (Continued)

Name Description

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–9

USB Block Diagram

The USB block diagram shows the functional blocks within the USB. For more information about the
blocks, see the USB Functional Description.

Figure 20-1: USB OTG Controller Block Diagram

USB Definitions

A list of common USB terms and their definitions as used in this specification and with respect to the USB
controller follows:

Table 20-5: ADSP-CM40x USB Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

None

UNIVERSAL SERIAL BUS (USB)
USB FUNCTIONAL DESCRIPTION

20–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

'A' Device

The USB device with a mini-A plug inserted into its receptacle. The 'A' device always supplies power to
VBUS.

'B' Device

The USB device with a standard-B or mini-B plug inserted into its receptacle. The B device starts a session
as the peripheral.

Bi-directional endpoint

An endpoint that can concurrently support receive and transfer packets.

Control endpoint

An endpoint that is solely used for transfer of USB control packets for setup and configuration. In all USB
devices, the control endpoint refers to the bi-directional endpoint 0.

Dual role device

A USB device that can operate either as the USB host in an OTG session or as a traditional USB peripheral.

Endpoint

A single physical communication channel for USB, implemented as a FIFO and control logic for that
endpoint. Each endpoint has an associated USB transfer type, maximum packet size, bandwidth require-
ment, endpoint number, and (often) a fixed transfer direction.

Frame

A regular, fixed 1ms time slot that can contain several transactions. The transfer type determines what
transactions are permitted for a given endpoint.

HNP

Host negotiation protocol. Part of the USB OTG Supplement that allows the host function to be trans-
ferred between two connected dual role devices.

Packet

The lowest level of data exchange on USB. The size is determined by the transfer type and buffer size of the
USB peripheral.

PHY

The PHY is a transceiver circuit that implements the physical layer of USB. For full speed USB OTG this
includes line drivers and receivers, pull-up/pull-down resistors as well as device ID and VBUS level detec-
tion.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–11

Session

A period during which USB transfers take place within an OTG connection. This can be initiated by the
'A' device (by driving VBUS) or 'B' device (by initiating SRP). VBUS is powered during a session.

SRP

Session request protocol. Part of the USB OTG Supplement that allows a 'B' device to turn on VBUS and
initiate a USB session.

Transaction

Collection of one or more packets in sequence

Transfer

 Collection of one or more transfers in sequence

Unidirectional endpoint

Endpoint with its direction fixed in a single direction (for example, it can only receive packets from the
USB) in both host and peripheral modes.

USB References

The following references provide further information regarding the USB.

• On-The-Go Supplement to the USB 2.0 Specification, Rev 1.0a, June 24, 2003, USB-IF

• Universal Serial Bus Specification 2.0

USB Operating Modes

The USB OTG interface may operate in peripheral mode or host mode.

When the USB controller is operating in peripheral mode, the controller may be attached to a conventional
host (such as a personal computer) or another OTG device operating in host mode. The second device can
be high-speed or full-speed. When linked to another peripheral device, the USB controller can also act as
the host, and if the other device is also a dual role controller, the two devices can switch roles as required.

The role taken by the USB controller depends on the way the devices are cabled together. Each USB cable
has an A and a B device end. If the A end of the cable is plugged into the device containing the USB
controller, the USB controller takes the role of the host device and goes into host mode (in this case the
USB_DEV_CTL.HOSTMODE bit is set to 1). If the B of the cable is plugged in, the USB controller goes instead
into peripheral mode (and the USB_DEV_CTL.HOSTMODE bit remains at 0).

When both devices contain dual role controllers, signaling may be used to switch the roles of the two
devices, without switching the cable connecting the two devices. The conditions under which the USB

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

controller may switch between peripheral and host mode are detailed in Host Negotiation Protocol.

NOTE: The USB controller’s multi-point capability is associated with a range of registers recording the
allocation of device functions to individual USB controller's endpoints and device function char-
acteristics such as endpoint number, operating speed and transaction type on an endpoint-by-
endpoint basis. Although principally associated with the use of the USB controller as the host to a
number of devices, these registers also need to be set when the core is used as the host for a single
target device.

To enable the USB:

1. Configure the USB PLL multiplier settings in the USB PLL control register. Check the processor data
sheet for the input clock frequency requirements.

2. Enable the USB PHY by setting the USB_PHY_CTL.PHYMAN bit.

3. Poll the USB_PHY_STAT.CID bit in the USB PHY status register to ensure that the USB has locked to the
new ID.

Peripheral Mode

USB OTG interface operations for the peripheral mode differ from host mode in a number of ways. The
following sections describe peripheral mode operations.

Endpoint Setup

In peripheral mode, there are a few endpoint-specific configuration bits that are used when setting up an
endpoint for transfer for all types of peripheral transfer. They determine how the processor core interacts
with the endpoint FIFO.

One key parameter required before transfer can occur through an endpoint is the maximum USB packet
size that the endpoint can support. This value is set by the software and depends on a variety of system
constraints. These include the size of hardware FIFO available and system latencies as well as the USB
transfer type and class being used. The USB_EPn_TXMAXP or USB_EPn_RXMAXP registers define the
maximum amount of data that can be transferred to the selected endpoint in a single frame, and the value
must match the programmed maximum individual packet size (MaxPktSize) of the standard endpoint
descriptor for the endpoint.

For transmit endpoints, the maximum packet size is programmed using the USB_EPn_TXMAXP. For receive
endpoints, the USB_EPn_RXMAXP register is used. The maximum packet size must not exceed the actual
hardware endpoint FIFO size.

The sizes of the transmit/receive FIFOs for Endpoints 1 to 3 are fixed. The FIFOs operate in single buffered
mode if the maximum packet size is equal or greater than half the size of the FIFO. The FIFOs operate in
double buffered mode if the maximum packet size is less than half the size of the FIFO.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–13

Because the USB controller uses a 32-bit interface, the value chosen for MaxPktSize should be an even
number, as this selection simplifies transferring data between FIFOs and the processor core.

Additional setup parameters are configured using the USB_EPn_TXCSR_H or USB_EPn_RXCSR_H register
(depending on whether the endpoint in question is receive or transmit). The USB_EPn_RXCSR_H.
DMAREQEN bit in this register is used to enable the assertion of the appropriate DMA request whenever the
endpoint is able to receive or transmit another packet. The USB_EPn_RXCSR_H.AUTOCLR and USB_EPn_
RXCSR_H.AUTOREQ bits can be used to automatically set the FIFO ready triggers (USB_EPn_RXCSR_H.
RXPKTRDY and USB_EPn_TXCSR_H.TXPKTRDY) whenever a packet is transferred to streamline DMA oper-
ation for transfers that span multiple packets. Note, however, that USB_EPn_RXCSR_H.AUTOCLR and USB_
EPn_RXCSR_H.AUTOREQ cannot be used with high-bandwidth endpoints. Refer to the “Register Descrip-
tions” section for more details on the endpoint control and status registers.

IN Transactions as a Peripheral

When the USB controller is operating in peripheral mode, data for IN transactions is handled through the
transmit FIFOs. The maximum size of data packet that may be placed in a transmit endpoint’s FIFO for
transmission is programmable and (where applicable) is determined by the value written to the USB_EPn_
TXMAXP register for that endpoint (maximum payload multiplied by the number of transactions per micro-
frame).

Note that the maximum packet size set for any endpoint must not exceed the FIFO size. (See FIFO Config-
uration.)

ATTENTION: Do not write to the USB_EPn_TXMAXP register while there is data in the FIFO, as unexpected
results may occur.

The two types packet buffering sued for IN transactions are described below.

Single packet buffering. Set the USB_EPn_TXCSR_P.TXPKTRDY bit as each packet to be sent is loaded into
the transmit FIFO. If the USB_EPn_TXCSR_P.AUTOSET bit is set, the USB_EPn_TXCSR_P.TXPKTRDY bit is
automatically set when a maximum-sized packet is loaded into the FIFO. For packet sizes less than the
maximum, and where auto set may not be used (high-bandwidth isochronous/interrupt transactions)
always set the USB_EPn_TXCSR_P.TXPKTRDY bit manually (for example by the processor core).

When the USB_EPn_TXCSR_P.TXPKTRDY bit is set, either manually or automatically, the USB_EPn_TXCSR_
P.NEFIFO bit is also set and the packet is ready to be sent. When the packet is successfully sent, both the
USB_EPn_TXCSR_P.TXPKTRDY and USB_EPn_TXCSR_P.NEFIFO bits are cleared and the appropriate
transmit endpoint interrupt is generated (if enabled). The next packet can then be loaded into the FIFO.

Double packet buffering. Set the USB_EPn_TXCSR_P.TXPKTRDY bit as each packet to be sent is loaded into
the transmit FIFO. If the USB_EPn_TXCSR_P.AUTOSET bit is set, the USB_EPn_TXCSR_P.TXPKTRDY bit is
automatically set when a maximum-sized packet is loaded into the FIFO. For packet sizes less than the
maximum, the USB_EPn_TXCSR_P.TXPKTRDY bit always has to be set manually (for example, set by the
processor core).

When the USB_EPn_TXCSR_P.TXPKTRDY bit is set, either manually or automatically, the USB_EPn_TXCSR_
P.NEFIFO bit also is set. The USB_EPn_TXCSR_P.TXPKTRDY bit is then immediately cleared (and an inter-

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

rupt generated, if enabled). A second packet can now be loaded into the transmit FIFO and the USB_EPn_
TXCSR_P.TXPKTRDY bit is set again (either manually or automatically if the packet is the maximum size).
Both packets are now ready to be sent.

When the first packet is successfully sent, the USB_EPn_TXCSR_P.TXPKTRDY bit is cleared and the appro-
priate transmit endpoint interrupt is generated (if enabled) to signal that another packet can now be loaded
into the transmit FIFO. The state of the USB_EPn_TXCSR_P.NEFIFO bit at this point indicates how many
packets may be loaded. If the USB_EPn_TXCSR_P.NEFIFO bit is set then there is another packet in the FIFO
and only one more packet can be loaded. If the USB_EPn_TXCSR_P.NEFIFO bit is cleared then there are no
packets in the FIFO and two more packets can be loaded.

OUT Transactions as a Peripheral

When the USB controller is operating in peripheral mode, data for OUT transactions are handled through
the USB controller’s receive FIFOs.

The maximum amount of data received by a receive endpoint in any frame is programmable and is deter-
mined by the value written to the USB_EPn_RXMAXP register for that endpoint. The maximum packet size
must not exceed the FIFO size.

If the size of the receive endpoint FIFO is less than twice the maximum packet size for this endpoint (as set
in the USB_EPn_RXMAXP register), only one data packet can be buffered in the FIFO and single buffering is
selected. When a packet is received and placed in the receive FIFO, the USB_EPn_RXCSR_P.RXPKTRDY bit
and the USB_EPn_RXCSR_P.FIFOFULL bit are set and the appropriate receive endpoint interrupt is gener-
ated (if enabled) to signal that a packet can now be unloaded from the FIFO. After the packet is unloaded,
clear the USB_EPn_RXCSR_P.RXPKTRDY bit to allow further packets to be received. If the USB_EPn_RXCSR_
P.AUTOCLR bit i is set and a maximum-sized packet is unloaded from the FIFO, the USB_EPn_RXCSR_P.
RXPKTRDY bit is cleared automatically. The USB_EPn_RXCSR_P.FIFOFULL bit is also cleared. For packet
sizes less than the maximum, clear the USB_EPn_RXCSR_P.RXPKTRDY bit manually (for example by the
processor core).

If double packet buffering is enabled, then two data packets can be buffered. When the first packet to be
received is loaded into the receive FIFO, the USB_EPn_RXCSR_P.RXPKTRDY bit is set and the appropriate
receive endpoint interrupt is generated (if enabled) to signal that a packet can now be unloaded from the
FIFO. Note that the USB_EPn_RXCSR_P.FIFOFULL bit is not set at this point. This bit is only set if a second
packet is received and loaded into the receive FIFO.

After the first packet is unloaded, clear the USB_EPn_RXCSR_P.RXPKTRDY bit to allow further packets to be
received. If the USB_EPn_RXCSR_P.AUTOCLR bit is set and a maximum-sized packet is unloaded from the
FIFO, the USB_EPn_RXCSR_P.RXPKTRDY bit is cleared automatically. For packet sizes less than the
maximum, clear the USB_EPn_RXCSR_P.RXPKTRDY bit manually (for example by the processor core).

If the USB_EPn_RXCSR_P.FIFOFULL bit was set to 1 when USB_EPn_RXCSR_P.RXPKTRDY is cleared, the
USB controller first clears the USB_EPn_RXCSR_P.FIFOFULL bit. The controller then sets the USB_EPn_
RXCSR_P.RXPKTRDY bit again, indicating that there is another packet waiting in the FIFO to be unloaded.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–15

Peripheral Transfer Work Flows

The USB transfer types (control, bulk, isochronous and interrupt transfers) each have significantly
different system requirements as well as individual USB transfer-specific features. This dictates that they
are each dealt with slightly differently in software. For these reasons, there is no uniform way of doing
transfers across all transfer types using the USB controller.

The following sections provide some guidelines for peripheral mode transfer flows for each of the transfer
types, in both IN (transmit) and OUT (receive) directions. In the case of bulk endpoints, the optimal
transfer flow differs depending on whether the final size of the transfer is known or unknown. Whether
the transfer size is known or not depends on the USB driver class being used. Some define the complete
transfer size, and others operate on a packet-by-packet basis using a short packet (a packet of less than the
value configured in the USB_EPn_TXMAXP register or less than the value configured in the USB_EPn_RXMAXP
register) to denote the end of a transfer.

Each of the work flows use the following common steps.

1. Configure the endpoint control and status registers and the USB_EPn_TXMAXP or USB_EPn_RXMAXP
value.

2. Configure the appropriate data transfer mechanism (DMA or interrupt setup).

3. Data transfer occurs.

The work flows do not describe the USB controller’s actions immediately preceding the endpoint setup
(for example, the reception of an IN/OUT token from the host, token validity checking, or NAK genera-
tion, among others). Note also that there is currently no error-handling contained in the work flows (for
example, checking the USB_EPn_RXCSR_P.FIFOFULL bit before writing data).

The terms packets, frames and transfers are used in the proceeding sections with their strict USB defini-
tions (see USB Definitions).

Control Transactions as a Peripheral

Endpoint 0 is the main control endpoint of the USB controller. As such, the routines required to service
Endpoint 0 are more complicated than those required to service other endpoints.

The software is required to handle all the standard device requests that may be sent or received through
Endpoint 0. These are described in Universal Serial Bus Specification, Revision 2.0, Chapter 9. The protocol
for these device requests involves different numbers and types of transactions per transfer. To accommo-
date this, the processor needs to take a state machine approach to command decoding and handling.

The standard device requests received by a USB peripheral can be divided into three categories: zero data
requests (in which all the information is included in the command), write requests (in which the command
will be followed by additional data), and read requests (in which the device is required to send data back
to the host).

This following sections describe the sequence of actions that the software must perform to process these
different types of device request.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Write Requests

Write requests involve an additional packet (or packets) of data being sent from the host after the 8-byte
command. An example of a write standard device request is SET_DESCRIPTOR.

As with all requests, the sequence of events begins when the software receives an endpoint 0 interrupt. The
USB_EPn_RXCSR_P.RXPKTRDY bit is also set. The 8-byte command should then be read from the endpoint
0 FIFO and decoded.

As with a zero data request, the USB_EP0_CSRn_P register should then be written to set the USB_EP0_CSRn_
P.SPKTRDY bit (indicating that the command is read from the FIFO) but in this case the USB_EP0_CSRn_
P.DATAEND bit should not be set (indicating that more data is expected).

When a second endpoint 0 interrupt is received, the USB_EP0_CSRn_P register is read to check the
endpoint status. The USB_EP0_CSRn_P.RXPKTRDY bit is set to indicate that a data packet is received. The
USB_EP0_CNTn register should then be read to determine the size of this data packet. The data packet can
then be read from the endpoint 0 FIFO.

If the length of the data associated with the request (indicated by the WLENGTH field in the command)
is greater than the maximum packet size for endpoint 0, further data packets are sent. In this case, the USB_
EP0_CSRn_P.SPKTRDY bit is set, but the USB_EP0_CSRn_P.DATAEND bit should not be set.

When all the expected data packets have been received, the USB_EP0_CSRn_P register is written to set the
USB_EP0_CSRn_P.SPKTRDY bit and to set the USB_EP0_CSRn_P.DATAEND bit (indicating that no more data
is expected).

When the host moves to the status stage of the request, another endpoint 0 interrupt is generated to indi-
cate that the request has completed. No further action is required from the software—the interrupt is just
a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the USB_EP0_CSRn_P register should be written to set the USB_EP0_CSRn_P.SPKTRDY
bit and to set the USB_EP0_CSRn_P.SENDSTALL bit. When the host sends more data, the USB controller
will send a stall to tell the host that the request was not executed. An endpoint 0 interrupt is generated and
the USB_EP0_CSRn_P.SENTSTALL bit is set.

If the host sends more data after the USB_EP0_CSRn_P.DATAEND has been set, then the USB controller
sends a stall. An endpoint 0 interrupt is generated and the USB_EP0_CSRn_P.SENTSTALL bit is set.

Read Requests

Read requests have a packet (or packets) of data sent from the function to the host after the 8-byte
command. Examples of standard device requests for read are: GET_CONFIGURATION, GET_INTER-
FACE, GET_DESCRIPTOR, GET_STATUS, and SYNCH_FRAME.

As with all requests, the sequence of events will begin when the software receives an endpoint 0 interrupt.
The USB_EPn_RXCSR_P.RXPKTRDY bit is also set. The 8-byte command should then be read from the
endpoint 0 FIFO and decoded. Write the USB_EP0_CSRn_P.SPKTRDY bit (indicating that the command has
read from the FIFO).

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–17

The data to be sent to the host should then be written to the endpoint 0 FIFO. If the data to be sent is greater
than the maximum packet size for endpoint 0, only the maximum packet size should be written to the
FIFO. The USB_EP0_CSRn_P.TXPKTRDY bit should then be set (indicating that there is a packet in the FIFO
to be sent). When the packet has been sent to the host, another endpoint 0 interrupt is generated and the
next data packet can be written to the FIFO.

When the last data packet has been written to the FIFO, the USB_EP0_CSRn_P register should be written to
set the USB_EP0_CSRn_P.TXPKTRDY bit and to set the USB_EP0_CSRn_P.DATAEND bit (indicating that there
is no more data after this packet).

When the host moves to the status stage of the request, another endpoint 0 interrupt will be generated to
indicate that the request has completed. No further action is required from the software-the interrupt is
just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
has been decoded, the USB_EP0_CSRn_P register should be written to set the USB_EP0_CSRn_P.SPKTRDY
bit and to set the USB_EP0_CSRn_P.SENDSTALL bit. When the host requests data, the USB controller will
send a stall to tell the host that the request was not executed. An endpoint 0 interrupt will be generated and
the USB_EP0_CSRn_P.SENTSTALL bit is set.

If the host requests more data after USB_EP0_CSRn_P.DATAEND has been set, then the USB controller sends
a stall. An endpoint 0 interrupt is generated and the USB_EP0_CSRn_P.SENTSTALL bit is set.

Zero Data Requests

Zero data requests have all their information included in the 8-byte command and require no additional
data to be transferred.

Examples of zero data standard device requests are: SET_FEATURE, CLEAR_FEATURE, SET_
ADDRESS, SET_CONFIGURATION, and SET_INTERFACE.

As with all requests, the sequence of events begins when the software receives an endpoint 0 interrupt. The
USB_EP0_CSRn_P.RXPKTRDY bit will also have been set. The 8-byte command should then be read from
the endpoint 0 FIFO, decoded and the appropriate action taken. For example if the command is SET_
ADDRESS, the 7-bit address value contained in the command is written to the USB_FADDR register.

The USB_EP0_CSRn_P.SPKTRDY bit should be set (indicating that the command is read from the FIFO) and
the USB_EP0_CSRn_P.DATAEND bit should be set (indicating that no further data is expected for this
request).

When the host moves to the status stage of the request, a second endpoint 0 interrupt is generated, indi-
cating that the request has completed. No further action is required from the software—the second inter-
rupt is just a confirmation that the request completed successfully.

If the command is an unrecognized command, or for some other reason cannot be executed, then when it
is decoded, the USB_EP0_CSRn_P.SPKTRDY bit is set which sets the USB_EP0_CSRn_P.SENDSTALL bit.
When the host moves to the status stage of the request, the USB controller sends a stall to tell the host that
the request was not executed. A second endpoint 0 interrupt is generated and the USB_EP0_CSRn_P.
SENTSTALL bit is set.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

If the host sends more data after the USB_EP0_CSRn_P.DATAEND bit is set, then the USB controller sends a
stall. An endpoint 0 interrupt is generated and the USB_EP0_CSRn_P.SENTSTALL bit is set.

ENDPOINT 0 States

When the USB is operating as a peripheral, the Endpoint 0 control needs three modes (IDLE, TX and RX)
corresponding to the different phases of the control transfer and the states Endpoint 0 enters for the
different phases of the transfer. (See Endpoint 0 Service Routine as Peripheral.)

The default mode on power-up or reset should be IDLE. The RxPktRdy bit becoming set when Endpoint
0 is in IDLE state indicates a new device request. Once the device request is unloaded from the FIFO, the
USB decodes the descriptor to find whether there is a data phase and, if so, the direction of the data phase
of the control transfer (in order to set the FIFO direction).

Depending on the direction of the data phase, Endpoint 0 goes into either TX state or RX state. If there is
no data phase, Endpoint 0 remains in IDLE state to accept the next device request.

The processor needs to take different actions at the different phases of the possible transfers (for example,
"Loading the FIFO", "Setting TxPktRdy") are indicated in the Endpoint 0 Control States figure. Note that
the USB changes the FIFO direction depending on the direction of the data phase, independently of the
processor.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–19

Figure 20-2: Endpoint 0 Control States

Endpoint 0 Service Routine as Peripheral

An endpoint 0 interrupt is generated:

• When the USB controller sets the USB_EP0_CSRn_P.RXPKTRDY bit after a valid token has been received
and data has been written to the FIFO.

• When the USB controller clears the USB_EP0_CSRn_P.TXPKTRDY bit after the data packet in the FIFO
has been successfully transmitted to the host.

• When the USB controller sets the USB_EP0_CSRn_P.SENTSTALL bit after a control transaction is ended
due to a protocol violation.

• When the USB controller sets the USB_EP0_CSRn_P.SETUPEND bit because a control transfer has ended
before USB_EP0_CSRn_P.DATAEND is set.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Whenever the endpoint 0 service routine is entered, the firmware must first check whether the current
control transfer has been ended due to either a stall condition or a premature end-of-control transfer. If
the control transfer ends due to a stall condition, the USB_EP0_CSRn_P.SENTSTALL bit is set. If the control
transfer ends due to a premature end-of-control transfer, the USB_EP0_CSRn_P.SETUPEND is be set. In
either case, the firmware should abort processing the current control transfer and set the state to IDLE.

Once the firmware has determined that the interrupt was not generated by an illegal bus state, the next
action depends on the endpoint state.

If endpoint 0 is in IDLE state, the only valid reason an interrupt can be generated is as a result of the core
receiving data from the USB bus. The service routine must check for this by testing the USB_EP0_CSRn_P.
RXPKTRDY bit. If this bit is set, then the core has received a SETUP packet. This must be unloaded from the
FIFO and decoded to determine the action the core must take. Depending on the command contained
within the SETUP packet, endpoint 0 enters one of the following three states.

• If the command is a single packet transaction (SET_ADDRESS, SET_INTERFACE and the others)
without a data phase, the endpoint remains in the IDLE state.

• If the command has an OUT data phase (SET_DESCRIPTOR and others), the endpoint enter the RX
state.

• If the command has an IN data phase (GET_DESCRIPTOR and others), the endpoint enters the TX
state.

If the endpoint is in TX state, the interrupt indicates that the core has received an IN token and data from
the FIFO has been sent. The firmware must respond to this either by placing more data in the FIFO if the
host is still expecting more data1 or by setting the USB_EP0_CSRn_P.DATAEND bit to indicate that the data
phase is complete. Once the data phase of the transaction has been completed, endpoint 0 should be
returned to the IDLE state to await the next control transaction.

If the endpoint is in the RX state, the interrupt indicates that a data packet has been received. The firmware
must respond by unloading the received data from the FIFO. The firmware must then determine whether
it has received all of the expected data. If it has, the firmware should set the USB_EP0_CSRn_P.DATAEND bit
and return endpoint 0 to IDLE state. If more data is expected, the firmware should set the USB_EP0_CSRn_
P.SPKTRDY bit to indicate that it has read the data in the FIFO and leave the endpoint in the RX state.

1.Command transactions all include a field that indicates the amount of data the host expects to receive or is going to send.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–21

Figure 20-3: Endpoint 0 Service Routine

Idle Mode

The endpoint 0 control must select the IDLE mode at power-on or reset. The endpoint 0 control should
return to this mode when the RX and TX modes are terminated.

And, as shown in the Endpoint 0 Idle Mode (Setup Phase) figure, this is also the mode in which the
SETUP phase of control transfer is handled.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-4: Endpoint 0 Idle Mode (Setup Phase)

TX Mode

As shown in the Endpoint 0 TX Mode figure when the endpoint is in TX state, all arriving IN tokens need
to be treated as part of a data phase until the required amount of data has been sent to the host. If either a
SETUP or an OUT token is received while the endpoint is in the TX state, a USB_EP0_CSRn_P.SETUPEND
condition occurs since the core expects only IN tokens.

Three events can cause the TX mode to terminate before the expected amount of data has been sent:

• The host sends an invalid token which sets the USB_EP0_CSRn_P.SETUPEND bit.

• The firmware sends a packet containing less than the maximum packet size for endpoint 0.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–23

• The firmware sends an empty data packet.

Until the transaction is terminated, when the firmware receives an interrupt which indicates that a packet
has been sent from the FIFO, it simply loads the FIFO. An interrupt is generated when USB_EP0_CSRn_P.
TXPKTRDY is cleared.

When the firmware forces the termination of a transfer (by sending a short or empty data packet), it should
set the USB_EP0_CSRn_P.DATAEND bit to indicate to the core that the data phase is complete and that the
core should receive an acknowledge packet next.

Figure 20-5: Endpoint 0 TX Mode

RX Mode

As shown in the Endpoint 0 RX Mode figure, In RX mode, all arriving data should be treated as part of a
data phase until the expected amount of data has been received. If either a SETUP or an IN token is
received while the endpoint is in RX state, a USB_EP0_CSRn_P.SETUPEND condition occurs since the core
expects only OUT tokens.

Three events can cause the RX mode to terminate before the expected amount of data has been received:

• The host sends an invalid token causing a USB_EP0_CSRn_P.SETUPEND bit set.

• The host sends a packet which contains less than the maximum packet size for Endpoint 0.

• The host sends an empty data packet.

Until the transaction is terminated, when the firmware receives an interrupt which indicates that new data
has arrived (USB_EP0_CSRn_P.RXPKTRDY bit set), it simply needs to unload the FIFO and clear USB_EP0_
CSRn_P.RXPKTRDY by setting the USB_EP0_CSRn_P.SPKTRDY bit.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

When the firmware detects the termination of a transfer (by receiving either the expected amount of data
or an empty data packet), it should set the USB_EP0_CSRn_P.DATAEND bit to indicate to the core that the
data phase is complete and that the core should receive an acknowledge packet next.

Figure 20-6: Endpoint 0 RX Mode

Peripheral Mode, Bulk IN, Transfer Size Known

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes and the complete transfer size
(TxferSize) in bytes, must be known.

1. Load MaxPktSize into the USB_EPn_TXMAXP register.

2. Set the following bits: USB_EPn_TXCSR_P.DMAREQEN = 1, USB_EPn_TXCSR_P.AUTOSET = 1, USB_EPn_
TXCSR_P.ISO = 0, USB_EPn_TXCSR_P.FRCDATATGL= 0.

3. Load the TxferSize value into the USB_DMAn_CNT register.

4. Configure the DMA controller to write the data into the corresponding TX FIFO address.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–25

5. On each USB_DMAn_CNT transition, the DMA controller writes a new packet into the FIFO. The USB_
EPn_TXCSR_P.TXPKTRDY bit is automatically set when each new packet is written.

ADDITIONAL INFORMATION: Step 5 is repeated for each full packet of the transfer. Even if the final packet is
a short packet, the packet automatically is detected by the USB controller because the USB_EPn_TXCSR_
P.TXPKTRDY bit is set.

Peripheral Mode, Bulk IN, Transfer Size Unknown

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes is assumed to be an even
number of bytes.

1. Load MaxPktSize into the USB_EPn_TXMAXP register.

2. Set the following bits: USB_EPn_TXCSR_P.DMAREQEN = 1, USB_EPn_TXCSR_P.AUTOSET = 1, USB_EPn_
TXCSR_P.ISO = 0, USB_EPn_TXCSR_P.FRCDATATGL= 0.

3. Configure the DMA controller to write MaxPktSize/2 half words into the corresponding TX FIFO
address on each USB_DMAn_CNT.

4. Set up an ISR, sensitive to the DMA work-block-complete interrupt, that writes a remaining short
packet into the TX FIFO using processor core DMA. Then set USB_EPn_TXCSR_P.TXPKTRDY bit or
simply send a zero-length packet by toggling the USB_EPn_TXCSR_P.TXPKTRDYbit.

5. On each USB_DMAn_CNT transition, the DMA controller writes a new packet into the FIFO. USB_EPn_
TXCSR_P.TXPKTRDY bit automatically is set when each new packet is written.

ADDITIONAL INFORMATION: Step 5 is repeated for each full packet of the transfer. The final short/zero-
length packet is managed by the ISR from step 4.

Peripheral Mode, ISO IN, Small MaxPktSize

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes is less than 128 bytes and is an
even number of bytes. Double buffering is assumed to be enabled, and the auto set feature unused (because
packets are often less than MaxPktSize).

1. Load MaxPktSize into the USB_EPn_TXMAXP register.

2. Set the following bits: USB_EPn_TXCSR_P.ISO = 1.

3. Preload the first two packets into the endpoint TX FIFO and set the USB_EPn_TXCSR_P.TXPKTRDY bit.

4. Set up an ISR, sensitive to the USB_IRQ.SOF interrupt, which writes a new packet into the TX FIFO and
sets the USB_EPn_TXCSR_P.TXPKTRDY bit.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

5. Set the USB_IEN.SOF bit = 1 to generate an interrupt on each start-of-frame.

ADDITIONAL INFORMATION: Step 5 is repeated for each ISO packet.

Peripheral Mode, ISO IN, Large MaxPktSize

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes is greater than 128 bytes and
is an even number of bytes. Double buffering is assumed to be enabled, and the auto set feature unused
(because packets are often less than MaxPktSize).

1. Load MaxPktSize into the USB_EPn_TXMAXP register.

2. Set the USB_EPn_TXCSR_P.ISO bit = 1.

3. Set the USB_POWER.ISOUPDT bit = 1 to prevent the initial packet loaded into the FIFO from being trans-
mitted on the USB until the next 1 ms frame.

4. Load the total number of bytes for the first two packets into the USB_DMAn_CNT register.

5. Configure the DMA controller to pre-load the two packets into the corresponding TX FIFO address
and set theUSB_EPn_TXCSR_P.TXPKTRDY bit.

6. Set up an ISR, sensitive to the USB_IRQ.SOF interrupt, which writes a new packet into the TX FIFO by
configuring the DMA controller to load the packet.

7. Set the USB_IEN.SOF bit = 1 to generate an interrupt on each start-of-frame.

ADDITIONAL INFORMATION: Step 7 is repeated for each ISO packet.

Peripheral Mode, Bulk OUT, Transfer Size Known

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes and the complete transfer size
(TxferSize) in bytes must be known.

1. Load MaxPktSize into USB_EPn_RXMAXP.

2. Set the following bits: USB_EPn_RXCSR_P.DMAREQEN = 1, USB_EPn_RXCSR_P.AUTOCLR= 1, USB_EPn_
RXCSR_P.ISO = 0, USB_EPn_RXCSR_P.CLRDATATGL = 0, USB_EPn_RXCSR_P.DMAREQMODE = 0.

3. Configure the DMA controller to read the full TxferSize/2 half words from the corresponding RX FIFO
address.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–27

4. On each USB_DMAn_CNT transition, the DMA controller reads another packet from the FIFO. The USB_
EPn_RXCSR_P.RXPKTRDY bit is automatically cleared by the USB controller when each new packet is
read.

ADDITIONAL INFORMATION: Step 5 is repeated for each full packet of the transfer. If TxferSize is not an exact
multiple of MaxPktSize, the final USB_DMAn_CNT transition causes the DMA controller to read out only
the short packet that remains.

Peripheral Mode, Bulk OUT, Transfer Size Unknown

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes must be known.

1. Load MaxPktSize into USB_EPn_RXMAXP.

2. Set the following bits: USB_EPn_RXCSR_P.DMAREQEN= 1, USB_EPn_RXCSR_P.AUTOCLR = 1, USB_EPn_
RXCSR_P.ISO = 0, USB_EPn_RXCSR_P.CLRDATATGL= 0, USB_EPn_RXCSR_P.DMAREQMODE = 1.

3. Set the appropriate bit in the USB_INTRRXE register.

4. Configure the DMA controller to read MaxPktSize/2 half words from the corresponding RX FIFO
address on each USB_DMAn_CNT transition.

5. Set up an ISR, sensitive to the RX interrupt, which reads the USB_EPn_RXCNT register and then transfers
USB_EPn_RXCNT bytes (in half words) from the RX FIFO to the processor core.

ADDITIONAL INFORMATION: Depending on the number of bytes in the FIFO, this can be performed by
configuring the DMA to read the data, or by reading it with the processor core.

ADDITIONAL INFORMATION: On each USB_DMAn_CNT transition, the DMA controller reads a packet from
the FIFO. the USB_EPn_RXCSR_P.RXPKTRDY bit is automatically cleared by the USB controller when
each new packet is read.

ADDITIONAL INFORMATION: Step 5 is repeated for each full packet of the transfer.

6. If a packet is received that is less than MaxPktSize, the RX interrupt goes high, and the ISR from step 5
reads out the remaining short packet.

Peripheral Mode, ISO OUT, Small MaxPktSize

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes is less than 128 bytes, and
double buffering is assumed to be enabled.

1. Load the MaxPktSize value into the USB_EPn_RXMAXP register.

2. Set the USB_EPn_RXCSR_P.ISO bit = 1.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

3. Set up an ISR, sensitive to the USB_IRQ.SOF interrupt, that reads the USB_EPn_RXCSR_P.FIFOFULL bit,
reads the USB_EP0_CNTn.RXCNT status register, and finally removes one or two packets (equal to the
USB_EP0_CNTn.RXCNT number of bytes) from the FIFO then clears the USB_EPn_RXCSR_P.RXPKTRDY
bit.

4. Set the USB_IEN.SOF bit = 1 to generate an interrupt on each start-of-frame.

ADDITIONAL INFORMATION: Step 4 is repeated for each ISO packet.

Peripheral Mode, ISO OUT, Large MaxPktSize

PREREQUISITE:

For this process, the maximum individual packet size (MaxPktSize) in bytes is greater than 128 bytes, and
double buffering is assumed to be enabled.

1. Load MaxPktSize into the USB_EPn_RXMAXP register.

2. Set the USB_EPn_RXCSR_P.ISO bit = 1.

3. Set up an ISR, (sensitive to the USB_IRQ.SOF interrupt), that reads the USB_EPn_RXCSR_P.FIFOFULL
bit, reads the USB_EPn_RXCNT status register, and finally configures the DMA controller to remove one
or two packets (equal to the USB_EPn_RXCNT number of bytes) from the FIFO.

4. Set up an ISR, sensitive to the DMA work-block-complete interrupt to clear the USB_EPn_RXCSR_P.
RXPKTRDY.

5. Set the USB_IEN.SOF bit = 1 to generate an interrupt on each start-of-frame.

ADDITIONAL INFORMATION: Step 5 is repeated for each ISO packet.

Peripheral Mode Suspend

When no activity has occurred on the USB for 3 ms, the USB controller enters suspend mode. If the
suspend interrupt (USB_IRQ.SUSPEND) is enabled, an interrupt is generated at this time.

When resume signaling is detected, the USB controller exits suspend mode. If the USB_IRQ.RESUME inter-
rupt is enabled, an interrupt is generated. The processor core can also force the USB controller to exit
suspend mode by setting the USB_POWER.RESUME bit. This initiates a remote wakeup. When this bit is set,
the USB controller exits suspend mode and drives resume signaling onto the bus. The processor core
should clear this bit after 10 ms (a maximum of 15 ms) to end resume signaling.

NOTE: The USB_IRQ.RESUME interrupt is not generated when suspend mode is exited by the processor
core, nor is this interrupt generated when the software initiates remote wakeup.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–29

Start-of-frame (SOF) Packets

When the USB controller is operating in peripheral mode, it should receive a start-of-frame packet from
the host every millisecond when in full-speed mode.

When the SOF packet is received, the 11-bit frame number contained in the packet is written into the USB_
FRAME register and an output pulse, lasting one USB clock bit period, is generated. A start-of-frame inter-
rupt is also generated (if enabled by the USB_IRQ.SOF bit).

After the USB controller has started to receive SOF packets, the controller expects one every millisecond.
If no SOF packet is received after 1.00358 ms, it is assumed that the packet is lost. A start-of-frame pulse
(together with a USB_IRQ.SOF interrupt) is still generated even though the USB_FRAME register is not
updated. The USB controller continues to generate a SOF pulse every millisecond and re-synchronizes
these pulses to the received SOF packets when these packets are successfully received again.

Soft Connect/Soft Disconnect

In peripheral mode, the USB controller can be programmed to switch between normal mode and non-
driving mode by setting or clearing the USB_POWER.SOFTCONN bit. When USB_POWER.SOFTCONN=1, the
USB controller is placed in its normal mode and the D+/D– lines of the USB bus are enabled. When the
USB_POWER.SOFTCONN=0, the PHY is put into non-driving mode and D+ and D– are three-stated. The
USB controller appears to have been disconnected from the USB bus.

After system reset, USB_POWER.SOFTCONN=0. From that point, the USB controller appears disconnected
until the software has set USB_POWER.SOFTCONN =1. The application software can then choose when to set
the PHY to its normal mode. Systems with a lengthy initialization procedure may use this to ensure that
initialization is complete and the system is ready to perform enumeration before connecting to the USB.
Once the USB_POWER.SOFTCONN bit has been set to 1, the software can also simulate a disconnect by
clearing this bit to 0.

Error Handling As a Peripheral

A control transfer may be aborted due to a protocol error on the USB, the host prematurely ending the
transfer, or if the function controller software wishes to abort the transfer (for example, because it cannot
process the command).

The USB controller automatically detects protocol errors and sends a stall packet to the host under the
following conditions.

1. The host sends more data during the OUT data phase of a write request than was specified in the
command. This condition is detected when the host sends an OUT token after the USB_EP0_CSRn_P.
DATAEND bit is set.

2. The host requests more data during the IN data phase of a read request than was specified in the
command. This condition is detected when the host sends an IN token after the USB_EP0_CSRn_P.
DATAEND bit is set.

3. The host sends more than MaxPktSize data bytes in an OUT data packet.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

4. The host sends a non-zero length DATA1 packet during the status phase of a read request.

When the USB controller has sent the stall packet, it sets the USB_EP0_CSRn_P.SENTSTALL bit and gener-
ates an interrupt. When the software receives an Endpoint 0 interrupt with the USB_EP0_CSRn_P.
SENTSTALL bit set, it should abort the current transfer, clear the USB_EP0_CSRn_P.SENTSTALL bit, and
return to the IDLE state.

If the host prematurely ends a transfer by entering the status phase before all the data for the request is
transferred, or by sending a new SETUP packet before completing the current transfer, then the USB_EP0_
CSRn_P.SETUPEND bit is set and an Endpoint 0 interrupt generated. When the software receives an
Endpoint 0 interrupt with the USB_EP0_CSRn_P.SETUPEND bit set, it should abort the current transfer, set
the USB_EP0_CSRn_P.SSETUPEND bit, and return to the IDLE state. If the USB_EP0_CSRn_P.RXPKTRDY bit
is set, this indicates that the host has sent another SETUP packet and the software should then process this
command.

If the software wants to abort the current transfer, because it cannot process the command or has some
other internal error, then it should set the USB_EP0_CSRn_P.SENTSTALL bit. The USB controller then
sends a stall packet to the host, set the USB_EP0_CSRn_P.SENTSTALL bit and generate an Endpoint 0 inter-
rupt.

Stalls Issued to Control Transfers

In peripheral mode, the USB controller automatically issues a stall handshake to a control transfer under
the following conditions:

1. The host sends more data during an OUT data phase of a control transfer than was specified in the
device request during the SETUP phase. This condition is detected by the USB controller when the host
sends an OUT token (instead of an IN token) after the processor core has unloaded the last OUT packet
and set the USB_EP0_CSRn_P.DATAEND bit.

2. The host requests more data during an IN data phase of a control transfer than was specified in the
device request during the SETUP phase. This condition is detected by the USB controller when the host
sends an IN token (instead of an OUT token) after the processor core has cleared USB_EPn_TXCSR_P.
TXPKTRDY and set USB_EP0_CSRn_P.DATAEND in response to the ACK issued by the host to what should
have been the last packet.

3. The host sends more than MaxPktSize data with an OUT data token.

4. The host sends the wrong PID (packet identifier) for the OUT status phase of a control transfer.

5. The host sends more than a zero length data packet for the OUT status phase.

Zero Length OUT Data Packets in Control Transfers

A zero-length OUT data packet is used to indicate the end of a control transfer. In normal operation, such
packets should only be received after the entire length of the device request is transferred (for example,
after the processor core has set the USB_EP0_CSRn_P.DATAEND bit). If the host sends a zero-length OUT
data packet before the entire length of device request is transferred, this packet signals the premature end

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–31

of the transfer. In this case, the USB controller automatically flushes any IN token loaded by processor core
ready for the data phase from the FIFO and sets the USB_EP0_CSRn_P.SETUPEND bit.

Host Mode

USB OTG interface operations in host mode differ from peripheral mode in a number of ways. The
following sections describe host mode operations.

Transaction Scheduling

When operating as a host, the USB controller maintains a frame counter.

If the target function is a full-speed device, the USB controller automatically sends an SOF packet at the
start of each frame.

If the target function is a low-speed device, a K state is transmitted on the bus to act as a keep-alive to stop
the low-speed device from going into suspend mode.

After the SOF packet is transmitted, the USB controller cycles through all the endpoints looking for active
transactions. An active transaction is defined as an RX endpoint for which the USB_EPn_RXCSR_H.REQPKT
bit is set or a TX endpoint for which the USB_EPn_TXCSR_H.TXPKTRDY bit is set.

An active isochronous or interrupt transaction will only start if it is found on the first transaction scheduler
cycle of a frame and if the interval counter for that endpoint has counted down to zero.

This ensures that only one interrupt or isochronous transaction occurs per endpoint per n frames where
n is the interval set in the USB_EPn_TXINTERVAL or USB_EPn_RXINTERVAL register for that endpoint.

An active bulk transaction is started immediately, provided there is sufficient time left in the frame to
complete the transaction before the next SOF packet is due. If the transaction needs to be retried (for
example, because a NAK was received or the target function did not respond) then the transaction is not
retried until the transaction scheduler has checked all the other endpoints for active transactions first. This
check ensures that an endpoint that is sending a lot of NAKs does not block other transactions on the bus.
The USB controller lets you specify a limit (USB_EPn_TXINTERVAL or USB_EPn_RXINTERVAL registers) to
the length of time in which NAKs may be received from a particular target before the endpoint is timed
out.

Endpoint Setup and Data Transfer

When the HOST_MODE bit is set to 1, the USB controller operates as a host for point-to-point communica-
tions with another USB device or, when attached to a hub, for communication with a whole range of
devices in a multi-point set-up.

Full-speed and low-speed USB functions are supported, both for point-to-point communication and for
operation through a hub.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Where necessary, the core automatically carries out the necessary transaction translation needed to allow
a low-speed or full-speed device to be used with a USB 2.0 hub.

Control, Bulk, Isochronous or Interrupt transactions are supported.

Transfers between the subsystem and endpoint FIFOs in host mode are similar to peripheral mode. With
this in mind, see many of the descriptions of processor core to FIFO data transfer in Peripheral Mode.

Control Transaction as a Host

Host control transactions are conducted through Endpoint 0. The software is required to handle all the
Standard Device Requests that may be sent or received through Endpoint 0 (as described in Universal
Serial Bus Specification, Revision 2.0, Chapter 9).

For a USB peripheral, there are three categories of standard device requests:

• Zero data requests. Comprise a SETUP command followed by an IN status phase. All the information
is included in the command.

• Write requests. Comprised of a SETUP command, followed by an OUT data phase followed by an IN
status phase. The command is followed by additional data.

• Read requests comprise a SETUP command, followed by an IN data phase followed by an OUT status
phase. The device is required to send data back to the host.

A timeout may be set to limit the length of time during which the USB controller w retries a transaction
that is continually NAKed by the target. This limit can be between 2 and 215 frames/micro frames and is
set through the USB_EP0_NAKLIMITn register.

The following sections look at the steps in different phases of a control transaction to describe the actions
of the core in issuing standard device requests.

Setup Phase as a Host

The processor core driving the host device performs the following actions for the SETUP phase of a control
transaction.

1. Load the eight bytes of the required device request command into the Endpoint 0 FIFO.

2. Set the USB_EP0_CSRn_H.SETUPPKT bit and USB_EP0_CSRn_H.TXPKTRDY bit. These bits must be set
together.

The USB controller then sends a SETUP token followed by the 8-byte command to Endpoint 0 of the
addressed device, retrying as necessary.

3. At the end of the attempt to send the data, the USB controller generates an Endpoint 0 interrupt (for
example, set USB_INTRTXE.EP0). The processor core should then read the USB_EP0_CSRn_H register to

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–33

establish whether the USB_EP0_CSRn_H.RXSTALL, USB_EP0_CSRn_H.TOERR or the USB_EP0_CSRn_H.
NAKTO bits are set.

If USB_EP0_CSRn_H.RXSTALL=1, the target did not accept the command (for example, because it is not
supported by the target device) and so has issued a stall response.

If USB_EP0_CSRn_H.TOERR=1, the USB controller has tried to send the SETUP packet and the following
data packet three times without getting a response.

If USB_EP0_CSRn_H.NAKTO=1, the USB controller has received a NAK response to each attempt to send
the SETUP packet, for longer than the time set in the USB_EP0_NAKLIMITn register. The USB controller
can then be directed either to continue trying this transaction (until it times out again) by clearing the
USB_EP0_CSRn_H.NAKTO bit or to abort the transaction by flushing the FIFO before clearing the USB_
EP0_CSRn_H.NAKTO bit.

4. If none of USB_EP0_CSRn_H.RXSTALL, USB_EP0_CSRn_H.TOERR or USB_EP0_CSRn_H.NAKTO bits are
set, the SETUP phase is correctly acknowledged and the processor core should proceed to the following
IN data phase, OUT data phase or IN status phase specified for the particular standard device request.

IN Data Phase as a Host

The processor core driving the host device performs the following actions for the IN data phase of a control
transaction.

1. Set the USB_EP0_CSRn_H.REQPKT bit.

2. Wait while the USB controller sends the IN token and then receives the required data back.

3. When the USB controller generates the Endpoint 0 interrupt (for example, by setting the USB_
INTRTXE.EP0 bit), read the USB_EP0_CSRn_H register to establish whether the USB_EP0_CSRn_H.
RXSTALL bit, the USB_EP0_CSRn_H.TOERR bit, the USB_EP0_CSRn_H.NAKTO bit or the USB_EP0_CSRn_
H.RXPKTRDY bit is set.

If USB_EP0_CSRn_H.RXSTALL=1, the target has issued a stall response.

If USB_EP0_CSRn_H.TOERR=1, the USB controller has tried to send the required IN token three times
without getting a response.

If USB_EP0_CSRn_H.NAKTO=1, the USB controller has received a NAK response to each attempt to send
the IN token, for longer than the time set in the USB_EP0_NAKLIMITn register. The USB controller can
then be directed either to continue trying this transaction (until it times out again) by clearing the USB_
EP0_CSRn_H.NAKTO bit; or to abort the transaction by clearing USB_EP0_CSRn_H.REQPKT before
clearing the USB_EP0_CSRn_H.NAKTO bit.

4. If the USB_EP0_CSRn_H.RXPKTRDY bit is set, the processor core should read the data from the Endpoint
0 FIFO, then clear USB_EP0_CSRn_H.RXPKTRDY.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

5. If further data is expected, the processor core should repeat the previous steps.

When all the data is successfully received, the processor core should proceed to the OUT status phase
of the control transaction.

OUT Data as a Host (Control)

The processor core driving the host device performs the following actions for the OUT data phase of a
control transaction.

1. Load the data to be sent into the Endpoint 0 FIFO

2. Set the USB_EP0_CSRn_H.TXPKTRDY bit.

The USB controller sends an OUT token followed by the data from the FIFO to Endpoint 0 of the
addressed device, retrying as necessary.

3. At the end of the attempt to send the data, the USB controller generates an Endpoint 0 interrupt (for
example by setting the USB_INTRTX.EP0 bit). The processor core should then read the USB_EP0_CSRn_
H to establish whether the USB_EP0_CSRn_H.RXSTALL bit, the USB_EP0_CSRn_H.TOERR bit, or the USB_
EP0_CSRn_H.NAKTO bit is set.

If USB_EP0_CSRn_H.RXSTALL=1, the target has issued a stall response.

If USB_EP0_CSRn_H.TOERR=1 the USB controller has tried to send the OUT token and the following
data packet three times without getting a response.

If USB_EP0_CSRn_H.NAKTO=1, the USB controller has received a NAK response to each attempt to send
the OUT token, for longer than the time set in the USB_EP0_NAKLIMITn register. The USB controller
can then be directed either to continue trying this transaction (until it times out again) by clearing the
USB_EP0_CSRn_H.NAKTO bit; or to abort the transaction by flushing the FIFO before clearing the USB_
EP0_CSRn_H.NAKTO bit.

If none of the USB_EP0_CSRn_H.RXSTALL, USB_EP0_CSRn_H.TOERR, or USB_EP0_CSRn_H.NAKTO bits
are set, the OUT data is correctly acknowledged.

4. If further data needs to be sent, the processor core should repeat the previous steps.

When all the data is successfully sent, the processor core should proceed to the IN status phase of the
control transaction.

IN Status Phase as a Host (Following SETUP Phase or OUT Data Phase)

The processor core driving the host device performs the following actions for the IN status phase of a
control transaction.

1. Set the USB_EP0_CSRn_H.STATUSPKT and USB_EP0_CSRn_H.REQPKT bits. These bits must be set
together.

2. Wait while the USB controller both sends an IN token and receives a response from the USB peripheral.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–35

3. When the USB controller generates the Endpoint 0 interrupt (for example, sets the USB_INTRTX.EP0
bit), read the USB_EP0_CSRn_H register to establish whether the USB_EP0_CSRn_H.RXSTALL, USB_EP0_
CSRn_H.TOERR, USB_EP0_CSRn_H.NAKTO, or the USB_EP0_CSRn_H.RXPKTRDY bits are set.

If USB_EP0_CSRn_H.RXSTALL=1 the target could not complete the command and so has issued a stall
response.

If USB_EP0_CSRn_H.TOERR=1the USB controller has tried to send the required IN token three times
without getting a response.

If USB_EP0_CSRn_H.NAKTO=1 the USB controller has received a NAK response to each attempt to send
the IN token, for longer than the time set in the USB_EP0_NAKLIMITn register. The USB controller can
then be directed either to continue trying this transaction (until it times out again) by clearing the USB_
EP0_CSRn_H.NAKTO bit or to abort the transaction by clearing USB_EP0_CSRn_H.REQPKT and USB_
EP0_CSRn_H.STATUSPKT before clearing the USB_EP0_CSRn_H.NAKTO bit.

4. If the USB_EP0_CSRn_H.RXPKTRDY bit is set, the processor core should clear it.

OUT Status Phase as a Host (Following IN Data Phase)

The processor core driving the host device performs the following actions for the OUT status phase of a
control transaction.

1. Set USB_EP0_CSRn_H.STATUSPKT and USB_EP0_CSRn_H.TXPKTRDY bits. These bits must be set
together.

2. Wait while the USB controller both sends the OUT token and a zero-length DATA1 packet.

3. At the end of the attempt to send the data, the USB controller generates an Endpoint 0 interrupt. The
processor core should then read the USB_EP0_CSRn_H register to discover if the USB_EP0_CSRn_H.
RXSTALL, USB_EP0_CSRn_H.TOERR, or USB_EP0_CSRn_H.NAKTO bits are set.

If USB_EP0_CSRn_H.RXSTALL=1 the target could not complete the command and so has issued a stall
response.

If USB_EP0_CSRn_H.TOERR=1 the USB controller has tried to send the STATUS packet and the
following data packet three times without getting a response.

If USB_EP0_CSRn_H.NAKTO=1 the USB controller has received a NAK response to each attempt to send
the IN token, for longer than the time set in the USB_EP0_NAKLIMITn register. The USB controller can
then be directed either to continue trying this transaction (until it times out again) by clearing the USB_
EP0_CSRn_H.NAKTO bit or to abort the transaction by flushing the FIFO before clearing the USB_EP0_
CSRn_H.NAKTO bit.

4. If none of the USB_EP0_CSRn_H.RXSTALL, USB_EP0_CSRn_H.TOERR, or USB_EP0_CSRn_H.NAKTO bits
are set, the status phase is correctly acknowledged.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Host IN Transactions

When the USB controller operates as a host, IN transactions are handled like OUT transactions are
handled when the USB controller is operating as a peripheral. But the transaction must first be initiated by
setting the USB_EPn_RXCSR_H.REQPKT bit. This bit indicates to the transaction scheduler that there is an
active transaction on this endpoint. The transaction scheduler then sends an IN token to the target func-
tion.

When the packet is received and placed in the RX FIFO, the USB_EPn_RXCSR_H.RXPKTRDY bit is set, and
the appropriate RX endpoint interrupt is generated (if enabled) to signal that a packet can now be unloaded
from the FIFO. When the packet is unloaded, USB_EPn_RXCSR_H.RXPKTRDY is cleared. The USB_EPn_
RXCSR_H.AUTOCLR bit can be used to automatically clear the USB_EPn_RXCSR_H.RXPKTRDY bit when a
maximum sized packet is unloaded from the FIFO. There is also an USB_EPn_RXCSR_H.AUTOREQ bit that
automatically sets the USB_EPn_RXCSR_H.REQPKT bit when the USB_EPn_RXCSR_H.RXPKTRDY bit is
cleared. The USB_EPn_RXCSR_H.AUTOCLR and USB_EPn_RXCSR_H.AUTOREQ bits can be used with an
external DMA controller to perform complete bulk transfers without processor core intervention.

If the target function responds to a bulk or interrupt IN token with a NAK, the USB controller keeps
retrying the transaction until the NAK limit set in the USB_EP0_NAKLIMITn register) is reached. If the
target function responds with a stall, the USB controller does not retry the transaction, but interrupts the
processor core by setting the USB_EPn_RXCSR_H.RXSTALL bit. If the target function does not respond to
the IN token within the required time (or there was a CRC or bit-stuff error in the packet), the USB
controller retries the transaction. If after three attempts the target function still has not responded, the USB
controller clears the USB_EPn_RXCSR_H.REQPKT bit and interrupts the processor core with the DATAER-
ROR_R bit in USB_RXCSR set.

Host OUT Transactions

When the USB controller operates as a host, OUT transactions are handled in a similar manner to the way
IN transactions are handled when the USB controller operates as a peripheral.

The USB_EPn_TXCSR_H.TXPKTRDY bit needs to be set as each packet is loaded into the TX FIFO and the
USB_EPn_TXCSR_H.AUTOSET bit can be used to cause the USB_EPn_TXCSR_H.TXPKTRDY bit to be automat-
ically set when a maximum sized packet is loaded into the FIFO. The USB_EPn_TXCSR_H.AUTOSET bit can
be used with an external DMA controller to perform complete bulk transfers without processor core inter-
vention.

If the target function responds to the OUT token with a NAK, the USB controller keeps retrying the trans-
action until the NAK limit set in the USB_EP0_NAKLIMITn register is reached. If the target function
responds with a stall, the USB controller does not retry the transaction, but interrupts the processor core
by setting the USB_EPn_TXCSR_H.RXSTALL bit. If the target function does not respond to the OUT token
within the required time (or there was a CRC or bit-stuff error in the packet), the USB controller retries
the transaction. If after three attempts the target function still has not responded, the USB controller
flushes the FIFO and interrupts the processor core by setting the USB_EPn_TXCSR_H.TXTOERR bit.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–37

Multi-Point Support

The following sections describe the controller’s multi-point support.

• Allocating Devices to Endpoints

• Multi-Point Operation

• Multi-Point Bandwidth Considerations

Allocating Devices to Endpoints

The separate functions of the connected devices are allocated to the endpoints within the USB controller
through a group of three registers, which are associated with each implemented Rx or Tx endpoint
(including Endpoint 0).

The registers are USB_MPn_TXFUNCADDR/ USB_MPn_RXFUNCADDR, USB_MPn_TXHUBADDR/ USB_MPn_
RXHUBADDR and USB_MPn_TXHUBPORT/ USB_MPn_RXHUBPORT. Note that the location of these registers
depends on which of the endpoints is being addressed.

The information that needs to be recorded in the transmit and receive function address registers is the
address of the target function that is to be accessed through the selected endpoint. This information needs
to be recorded separately for each Tx and Rx endpoint that is used. In particular, both USB_MPn_
TXFUNCADDR and USB_MPn_RXFUNCADDR need to be set for Endpoint 0.

The transmit and receive hub address and hub port registers are used when a full- or low-speed device is
connected to the USB controller via a full-speed USB 2.0 hub, which carries out the required transaction
translation between full-speed transmission and low-/full-speed transmission. In this situation, the USB_
MPn_TXHUBADDR/ USB_MPn_RXHUBADDR and USB_MPn_TXHUBPORT/ USB_MPn_RXHUBPORT registers need to
record the address of the hub that carries out the transaction translation and the port of that hub through
which the associated Tx/Rx endpoint needs to access the device.

Note that if Endpoint 0 is connected to a hub, then both the Tx and the Rx versions of these registers need
to be set for this endpoint. The hub address registers are also used to record whether the hub offers multiple
transaction translators or just a single transaction translator. This has a significant effect on the overall
bandwidth that can be achieved.

In addition to recording the address of the target function through these three registers, the endpoint
number and operating speed of the target device and the type of transaction that is executed need to be
recorded. For a Tx endpoint, this information needs to be set in the USB_EPn_TXTYPE register when the
index register is set to select the required endpoint. For an Rx endpoint, this information needs to be set
in the USB_EPn_RXTYPE register when the index register is set to select the required endpoint. In both cases,
the endpoint number is recorded in bits 3–0, the transaction type is selected through bits 5–4, and the
operating speed is selected through bits 7–6.

Only the speed needs to be set for Endpoint 0 because endpoint 0 only has the facilities to handle control
transactions and therefore is always associated with a device Endpoint 0. This speed setting is made
through bits 7–6 of the Type 0 register, which is located at address 0x1A when the index register is set to 0.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Multi-Point Operation

Once the allocation of functions to endpoints has been made and the operating speed of the target device
recorded, most operations in a multi-point set-up are no different from those for the equivalent actions
where the core is attached to a single other device.

However, additional steps are required

• When the option of dynamically switching the allocation of functions to endpoints is taken (for
example to allow a wider range of devices to be supported)

• When the control packets normally associated with Endpoint 0 are handled through a different
endpoint.

If dynamic allocation is used, it is essential for the program to keep track of the current data toggle state
associated with the endpoint and with each of the devices that are allocated to that endpoint. Knowledge
of this state is necessary to allow the program to select the correct data toggle state when the switch is made
between one device and the other. (This action is the programs responsibility because the core cannot
determine what data toggle state is expected when a function is being switched in and out of use.)

The data toggle state can be switched from its current state by writing to the appropriate USB_EPn_TXCSR_
H or USB_EPn_RXCSR_H register to set the data toggle write enable and data toggle bits that are included in
these registers when the core is in host mode.

Data toggle write enable and data toggle bits are also included in the USB_EP0_CSRn_H register. However,
control operations carried out through the core’s Endpoint 0 should normally always leave the data toggle
in the expected state.

Where control packets are handled through an endpoint other than Endpoint 0, programs need to prompt
for each setup token to be sent. This involves setting the USB_EPn_TXCSR_H.SETUPPKT bit when the core
is operating in host mode, alongside the USB_EPn_TXCSR_H.TXPKTRDY bit. If the USB_EPn_TXCSR_H.
SETUPPKT bit is not set, an OUT token is sent.

Overall, the recommendation is to use the controller’s Endpoint 0 to handle control packets for all of the
devices attached to the controller, and to switch the allocation of this endpoint as appropriate. Sending the
correct token is ensured, as is ensuring that the data toggle is correctly set for this endpoint.

Using a different endpoint for this function is possible, as described above, but there are further points to
note:

• The control function must be allocated to an Rx/Tx endpoint pair (with the same endpoint number).

• The chosen endpoints must each be associated with FIFOs that can accommodate the packet size asso-
ciated with EP0 transactions at the chosen operating speed which can be a minimum of 8 bytes for low-
speed transactions but up to 64 bytes for full-speed transactions.

Multi-Point Bandwidth Considerations

The ability of a multi-point system to cope with isochronous transactions, in particular, is determined by
the available bandwidth.

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–39

Once an endpoint has been set up, all scheduling is handled in hardware. However, as with PC-based
EHCI/OHCI/UHCI hosts, before opening a periodic pipe (for use by isochronous or interrupt traffic),
software must determine that there is sufficient bandwidth available.

The bandwidth required for different transactions can be determined using similar algorithms to those
used in connection with PC-based hosts (detailed in Section 5.11.3 of the USB 2.0 Specification).

Note that the available bandwidth is greater where the hub used supports multiple transaction translators.

Babble Interrupt

If the bus is still active at the end of a frame, the USB controller assumes that the function it is connected
to has malfunctioned, suspends all transactions, and generates a babble interrupt (USB_IRQ.RSTBABBLE).
The USB controller does not start a transaction until the bus is inactive for at least the minimum inter-
packet delay. The controller also does not start a transaction unless it can be finished before the end of the
frame.

To recover from a babble error condition, the processor must take the following actions inside the inter-
rupt service routine.

1. Turn off VBUS. Wait until the VBUS level indicator reads b#01.

2. Turn on VBUS. Wait until the VBUS level indicator reads b#11.

3. Set the USB_IRQ.SESSREQ bit

The VBUS level indicator is the USB_DEV_CTL.VBUS bit field

NOTE: Because VBUS is sourced external to the processor, make sure that the hardware design connects
a GPIO or the dedicated USB_VBUS signal to the external source so that you can use software to turn
VBUS on and off.

VBUS Events

The USB On-The-Go specification defines a series of thresholds to which the devices involved in point-to-
point communications are required to respond.

• VBUS Valid (between 4.4 V and 4.75 V)

• Session Valid for A device (between 0.8 V and 2.1 V)

• Session End (between 0.2 V and 0.8 V)

Which thresholds are critical and the processor response depends on whether the device is an A device or
a B device and the circumstances of the event. These actions are described below.

Actions as an “A” Device

VBUS >VBUS Valid with session initiated by USB controller. VBUS level indicator = b#11 and session
bit is set. When VBUS is greater than VBUS valid, the USB controller selects host mode and waits for a

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

device to be connected. It then generates a connect interrupt. The processor resets and enumerates the
connected B device.

VBUS > Session Valid with session initiated by B device. VBUS level indicator = b#10 and session bit is
clear. When VBUS is greater than session valid, the USB controller generates a session request interrupt.
The processor sets the session bit and the USB controller either stays in Host mode or changes to Periph-
eral mode, depending upon the state of the pull-up resistor on the B device. For more information, refer
to the host negotiation protocol of the OTG specification. The selected mode is indicated by the state of
the Host Mode bit.

VBUS below VBUS Valid while the Session bit remains set. VBUS level indicator b#11 and session bit is
set. This indicates a problem with the VBUS power level. For example, the battery power may have
dropped too low to sustain VBUS valid. Or, the B device may be drawing more current than the A device
can provide. In either case, the USB controller will automatically terminate the session and generate a
VBUS error interrupt.

To recover from this VBUS error condition, the processor must take the following actions inside the VBUS
error interrupt handler.

• Turn off VBUS wait until the USB_DEV_CTL.VBUS reads b#01.

• Turn on VBUS wait until the USB_DEV_CTL.VBUS reads b#11.

• Set the USB_DEV_CTL.SESSION bit

The VBUS level indicator the USB_DEV_CTL.VBUS bit field.

NOTE: Because VBUS is sourced external to the processor, make sure that the hardware design connects
a GPIO or the dedicated DrvVBUS signal to the external source so that software can be used to turn
VBUS on and off.

Actions as a “B” Device

VBUS > Session Valid. VBUS level indicator = b#10 and session bit is clear. This indicates activity from
the A device. The USB controller sets the session bit and disconnects the pull down resistor on the D+ line.

VBUS < Session Valid. while the session bit remains set VBUS level indicator = b#01 and session bit is set.
This indicates that the A device has lost power (or become disconnected). The USB controller clears the
session bit and generates a disconnect interrupt. The processor ends the session.

VBUS < Session End. VBUS level indicator = b#00. This is the condition under which a B device can
initiate a session request. If the session bit is set, then after 2 ms of SE0 on the bus, the USB controller starts
SRP by first pulsing the data line, then pulsing the USB_VBUS signal.

Host Mode Reset

If the USB_POWER.RESET is set while the USB controller is in host mode, the USB controller generates reset
signaling on the bus. The processor core should keep this bit set for 20 ms to ensure correct resetting of the

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–41

target device. After the processor core has cleared the bit, the USB controller starts its frame counter and
transaction scheduler.

Host Mode Suspend

The controller has a suspend mode that allows power savings for the processor. The mode operates as
described below.

Entry into Suspend mode. When operating as a host, the USB controller can be prompted to go into
Suspend mode by setting the USB_POWER.SUSPEND bit. When this bit is set, the USB controller completes
the current transaction then stops the transaction scheduler and frame counter. No further transactions
are started and no SOF packets are generated. If the USB_POWER.SUSPEND bit is set, the UTMI+ PHY goes
into low-power mode when the USB controller goes into suspend mode and stops the clock.

Sending Resume Signaling. When the application requires the USB controller to leave suspend mode, it
needs to clear then set the USB_POWER.RESUME bit, and leave it set for 20 ms. While the USB_POWER.RESUME
bit is high, the USB controller generates resume signaling on the bus. After 20 ms, the processor core
should clear the USB_POWER.RESUME bit, at which point the frame counter and transaction scheduler are
started.

Responding to Remote Wake-up. If resume signaling is detected from the target while the USB controller
is in suspend mode, the UTMI+ PHY is brought out of low-power mode and the clock restarts. The USB
controller then exits suspend mode and automatically sets the USB_POWER.RESUME bit to take over gener-
ating the resume signaling from the target. If the USB_IRQ.RESUME bit=1, an interrupt is generated.

Suspending and Resuming the Controller

With the introduction of link power management, there are two basic methods for the USB controller to
be suspended and resumed. These two methods are demonstrated in the basic LPM transaction diagram
shown below.

Figure 20-7: Basic LPM Transaction

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The procedure in which the USB controller is suspended and resumed depends on whether the core is
operating as a device or a host and the method of suspend desired. These options are described in the
following sections.

Suspend/Resume by Inactivity on the USB Bus (L0 to L2 State) in Peripheral Mode

The following steps occur in this mode.

1. Entry into suspend mode. When operating as a peripheral, the USB controller monitors activity on the
USB and when no activity has occurred for 3 ms, the controller goes into suspend mode. If the USB_
IRQ.SUSPEND interrupt has been enabled, an interrupt is generated at this time. The USB_IRQ.SUSPEND
output also goes low (if enabled).

At this point, the POWERDWN signal is also asserted to indicate that the application may save power
by stopping USB_CLKIn. POWERDWN then remains asserted until either power is removed from the
bus (indicating that the device has been disconnected) or resume signaling or reset signaling is detected
on the bus.

2. When resume signaling occurs on the bus, the USB_CLKIn must be restarted if necessary. The USB
controller then automatically exits suspend mode. If the USB_IRQ.RESUME interrupt is enabled, an
interrupt is generated.

3. Initiating a remote wakeup. To initiate a remote wakeup while the controller is in suspend mode, set
the USB_POWER.RESUME bit=1. (Note: If USB_CLKIn has been stopped, it will need to be restarted before
this write can occur.) The software should leave then this bit set for approximately 10 ms (minimum of
2 ms, a maximum of 15 ms) before resetting it to 0. By this time the hub should have taken over driving
Resume signaling on the USB.

NOTE: The USB_IRQ.RESUME interrupt is not generated when the software initiates a remote wakeup.

Suspend/Resume By Inactivity On The USB Bus (L0 To L2 State) In Host Mode

The following steps occur in this mode.

1. Entry into suspend mode. When operating as a host, the USB controller can be prompted to go into
suspend mode by setting the USB_POWER.SUSPEND bit. When this bit is set, the USB controller
completes the current transaction then stops the transaction scheduler and frame counter. No further
transactions are started and no SOF packets are generated. If the USB_POWER.SUSEN bit is set, the
UTMI+ PHY goes into low-power mode when the controller goes into suspend mode and stop USB_
CLKIn.

2. Sending resume signaling. When the application requires the controller to leave suspend mode, it clears
the USB_POWER.SUSPEND bit, sets the USB_POWER.RESUME bit and leaves it set for 20 ms. While the USB_
POWER.RESUME bit is high, the controller generates Resume signaling on the bus. After 20 ms, the
processor core should clear the USB_POWER.RESUME bit, at which point the frame counter and transac-
tion scheduler are started.

3. Responding to remote wake-up. If resume signaling is detected from the target while the USB
controller is in suspend mode, the UTMI+ PHY is brought out of low-power mode and restart USB_

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–43

CLKIn. The controller then exits suspend mode and automatically sets the USB_POWER.RESUME bit to 1
to take over generating the resume signaling from the target. If the USB_IRQ.RESUME interrupt is
enabled, an interrupt is generated.

Suspend/Resume By an LPM Transaction (L0 To L1 State) In Peripheral Mode

The following steps occur in this mode.

1. Entry into suspend mode. When operating as a peripheral, the controller never initiates an LPM
suspend (transition from the L0 state to the L1 state). Rather, the controller only suspends at the request
of the host. However, for this to occur, the LPM feature must be enabled by setting up the USB_LPM_
CTL register appropriately. The register field USB_LPM_CTL.EN bit is used to enable and support
extended and LPM transactions. The USB_LPM_CTL.TX field is used instruct the hardware that it is
ready to suspend and to respond to the next LPM transaction with an ACK. In this case, the controller
responds to the next LPM transaction with an ACK if all other conditions are met. The response to an
LPM transaction by the controller is summarized in the table below.

For all cases shown above in which the controller responds (no timeout occurs), an LPM interrupt is
generated in the USB_LPM_IRQ register. Note that the controller responds with an ACK only if there is
no data pending in any of the TX Endpoint FIFOs. If there is data pending, the USB controller responds
with a NYET.

Once an LPM transaction is successfully received three events occur:

a. The USB_LPM_ATTR register is updated with values received in the LPM transaction just
received. See the “Register Descriptions” section of this chapter for complete information on
this register.

b. The controller suspend 9 μs after transmitting the ACK. Resume signaling can be driven by the
host or the controller 50 μs after this event. During this 9 μs interval, the host may continue to
transmit the LPM transaction. The controller responds with an ACK in this case regardless of
the USB_LPM_CTL.TX bit value.

Table 20-6: Response to LPM Transaction

LPMXMT LPMCNTRL
Data Pending (Resides in Tx

FIFOs)
Response to Next LPM

Transaction

1’b0,
1’b0
1’b1
1’b1

2’b00,
2’b10
2’b00
2’b10

Don’t Care Timeout

1’b0,
1’b1

2’b01 Don’t Care STALL

1’b0 2’b11 Don’t Care NYET

1’b1 2’b11 Yes NYET

1’b1 2’b11 No ACK

UNIVERSAL SERIAL BUS (USB)
USB OPERATING MODES

20–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

c. An interrupt is generated informing software of the response (an ACK in this case). An ACK
response is the indication to software that the controller has suspended.

Since the primary purpose of LPM is to save power, the software reads the USB_LPM_ATTR
register to determine the attributes of the suspend. Software must make a determination based
on these attributes whether additional power savings in the system can be found. In making this
determination note that if the host initiates the resume signaling, the controller is required to
respond to packet transmissions within the time specified by USB_LPM_ATTR.HIRD + 10 μs.

2. When resume signaling occurs on the bus. When the host resumes the bus, it drives resume signaling
for a minimum time specified by the host initiated resume duration bit field (USB_LPM_ATTR.HIRD).
The controller must be able to respond to traffic within the time HIRD + 10 μs. The controller transi-
tions to a normal operating state automatically and a resume interrupt is generated in the USB_LPM_IRQ
register.

However for this to occur, the inputs CLK and XCLK must be available. To facilitate the resume timing
requirement, a negative ACK (NAK) is provided using the USB_LPM_CTL.NAK bit. If this bit is set to
1'b1, all endpoints respond to any transaction (other then an LPM) with a NAK. This bit only takes
effect after the controller has suspended LPM. Typically, this bit is asserted when the USB_LPM_CTL.TX
field is also asserted. Using this feature may simplify the resume timing requirement because only
XCLK is needed for the controller to respond (with a NAK) to traffic. Software can continue to restore
the system to normal operation while the controller responds to all transactions with a NAK. After the
system has been completely restored, software can then clear the USB_LPM_CTL.NAK bit.

3. Initiating remote wakeup. To initiate a remote wakeup while the controller is in suspend mode, it write
a 1'b1 to theUSB_LPM_CTL.RESUME bit. This bit is self clearing. Writing a 1'b1 drives resume signaling
on the bus for 50 μs. The host responds by driving resume for 60 μs to 990 μs. 10 μs after the host stops
driving resume, the controller transitions to its normal operational state and is ready for packet trans-
mission. A resume interrupt is generated in the USB_LPM_IRQ register.

Suspend/Resume by an LPM Transaction (L0 to L1 State) in Host Mode

The following steps occur in this mode.

1. Entry into suspend mode. When operating as a host, the controller initiates an LPM suspend (transi-
tion from the L0 state to the L1 state) by initiating an LPM transaction as follows.

a. Software sets up the desired attributes of the suspend in the USB_LPM_ATTR register. Enabling
remote wakeup and a large HIRD gives the peripheral more opportunity to conserve power.

b. All LPM interrupts should be enabled in the USB_LPM_IEN register.

c. Software should initiate the transaction by writing a 0x01 to the USB_LPM_CTL register.

UNIVERSAL SERIAL BUS (USB)
USB EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–45

d. An interrupt is generated to inform software of the response to the LPM transaction. If an ACK
was received, then the controller suspends automatically within 8 μs. This is the indication that
the controller has suspended.

If the response from the device has a bit stuff error or a PID error, then an USB_LPM_IRQ.LPMERR inter-
rupt is generated. The hardware immediately attempts the LPM transaction two more times. The
device does not suspend for 8 μs after the initial LPM so it can respond to either of these subsequent
LPM transactions. If a LPM timeout has occurred three times, the USB_LPM_IRQ.LPMNC and the USB_
LPM_IRQ.LPMERR interrupts are set. At this time, software is unaware of the device state and must
deduce it by other means.

2. Sending resume signaling. Resume signaling should be generated by software as follows.

a. All LPM interrupts should be enabled in the USB_LPM_IEN register.

b. Software should write the USB_LPM_CTL.RESUME bit which is self-clearing. This causes resume
signaling to be generated on the bus for the time that is currently specified in the USB_LPM_
ATTR.HIRD bit field. It is assumed by hardware that this value was used in the last LPM transac-
tion that caused the suspend.

c. After HIRD + 10 μs, the controller transitions to its normal operational state and is ready for
packet transmission and a USB_LPM_IRQ.LPMRES interrupt is generated.

NOTE: Prior to resuming, software must ensure that the system is completely restored from a low power
state and that the inputs CLK and XCLK are available.

3. Responding to remote wake-up. If the remote wakeup feature is enabled in the LPM transaction that
caused the suspend, then the device may drive resume signaling on the bus. When this occurs, the
device drives resume signaling BUS for 50 μs. The controller will immediately begin driving resume
signaling on the BUS and will do so for 60 μs. 10 μs after completion of the resume signaling, the
controller transitions to its normal operating state and is ready for packet transmission. At this time,
the USB_LPM_IRQ.LPMRES interrupt is generated.

USB Event Control

The following sections provide information on the use of interrupts, reset and the reporting of errors and
interface status.

Interrupt Signals

The two interrupts generated from the USB controller are shown in ADSP-CM40x USB Interrupt List.

Interrupts can be generated from control endpoint zero under the following conditions

• When a control transaction ends before the end of the data is transferred.

• When a data packet is sent or received from the endpoint 0 FIFOs.

UNIVERSAL SERIAL BUS (USB)
USB EVENT CONTROL

20–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Interrupts can be generated from transmit endpoints (USB_INTRTX) under the following conditions:

• packet sent from the TX FIFO (host and peripheral mode)

• after three attempts at transmitting a packet with no valid handshake packet received (host mode)

Interrupts can be generated from receive endpoints (USB_INTRRX) under the following conditions:

• packet received into the RX FIFO (host and peripheral mode)

• when a stall handshake is received (host mode)

• After three attempts at receiving a packet and no data packet is received (host mode).

Interrupts can be generated from the USB status (USB_IRQ) under the following conditions:

• When VBUS drops below the VBUS valid threshold during a session (A device only).

• When SRP signaling is detected (A device only).

• When device disconnect is detected (host mode).

• When a session ends (peripheral mode).

• Device connection detected (host mode).

• Start-of-frame (SOF)

• Reset signaling detected on USB (peripheral mode).

• Babble detected (host mode).

• In suspend mode when resume signaling detected on USB.

• When suspend signaling is detected (peripheral mode).

Interrupts are generated for the following VBUS control requests by the USB controller:

• drive VBUS greater than 4.4 V (default A device)

• stop driving VBUS

• start charging VBUS (peripheral mode)

• stop charging VBUS

• start discharging VBUS (peripheral mode)

• stop discharging VBUS

UNIVERSAL SERIAL BUS (USB)
USB EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–47

Interrupt Handling

When the processor core is interrupted with a USB interrupt, it needs to read the interrupt status register
to determine which endpoint(s) have caused the interrupt and jump to the appropriate routine. If multiple
endpoints have caused the interrupt, Endpoint 0 should be serviced first, followed by the other endpoints.
A flowchart for the USB interrupt service routine is shown in the USB Interrupt Service Routine figure.

UNIVERSAL SERIAL BUS (USB)
USB EVENT CONTROL

20–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-8: USB Interrupt Service Routine

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–49

Reset Signals

The USB controller includes an active-high synchronous hardware reset sourced from the processor core.
Another source of peripheral reset is through the USB, when USB reset signaling is detected on the I/O
lines. As dictated by the USB 2.0 Specification, this state is entered when both the D+ and D- inputs are
driven low for a period of 2.5 ms or more (though the reset itself is held for typically greater than 10 ms by
the USB host).

Reset in Peripheral Mode

When a USB reset is detected, the USB controller performs the following actions:

• USB_FADDR register set to zero

• USB_INDEX register set to zero

• all endpoint FIFOs flushed

• all control and status registers cleared

• all interrupts enabled

• reset interrupt generated

The USB_IRQ and USB_VBUS_CTL, registers are not affected by the USB controller reset. These registers are
only reset (along with those listed above) during a system reset.

When the application software receives a reset interrupt, it should close any open pipes and wait for bus
enumeration to begin.

USB Reset in Host Mode

If the USB_POWER.RESET bit=1 while the USB controller is in host mode, the controller generates reset
signaling on the bus.

The processor core should keep the USB_POWER.RESET bit set for at least 20 ms to ensure correct resetting
of the target device. After the processor core has cleared the bit, the USB controller starts its frame counter
and transaction scheduler.

USB Programming Model

The following sections describe the USB OTG programming model.

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Peripheral Mode Flow Charts

Figure 20-9: USB Control Setup Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–51

Figure 20-10: Control In Data Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–52 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-11: Control In Data Status Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–53

Figure 20-12: Control Out Data Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–54 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-13: Control Out Data Status Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–55

Figure 20-14: Bulk/Low Bandwidth Interrupt In Transaction

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–56 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-15: Bulk/Low Bandwidth Interrupt Out Transaction

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–57

Figure 20-16: Full-speed/Low Bandwidth Isochronous In Transaction

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–58 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-17: Full-speed/Low Bandwidth Isochronous Out Transaction

Host Mode Flow Charts

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–59

Figure 20-18: USB Control Setup Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–60 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-19: Control In Data Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–61

Figure 20-20: Control In Data Status Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–62 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-21: Control Out Data Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–63

Figure 20-22: Control Out Data Status Phase

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–64 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-23: Bulk/Low Bandwidth Interrupt In Transaction

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–65

Figure 20-24: Bulk/Low Bandwidth Interrupt Out Transaction

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–66 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-25: Full-speed/Low Bandwidth Isochronous In Transaction

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–67

Figure 20-26: Full-speed/Low Bandwidth Isochronous Out Transaction

DMA Mode Flow Charts

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–68 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-27: Single Packet Transmit During DMA Operation

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–69

Figure 20-28: Single Packet Receive During DMA Operation

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–70 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-29: Multiple Packet Transmit During DMA Operation

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–71

Figure 20-30: Multiple Packet Receive During DMA Operation (Data Size Known)

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–72 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-31: Multiple Packet Receive During DMA Operation (Data Size Not-known)

OTG Session Request

In order to conserve power, the USB on-the-go supplement allows VBUS to only be powered up when
required and to be turned off when the bus is not in use.

VBUS is always supplied by the A device on the bus. The USB controller determines whether it is the A
device or the B device by sampling the USB_ID input from the PHY. This signal is pulled low when an A-
type plug is sensed (signifying that the USB controller is the A device), but the input is taken high when a
B-type plug is sensed (signifying that the USB controller is the B device).

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–73

Starting a Session

When the device containing the USB controller wants to start a session, the processor core must set the
USB_DEV_CTL.SESSION bit. The USB controller then enables ID pin sensing. This results in the USB_ID
input either being taken low if an A-type connection is detected or high if a B-type connection is detected.
The USB_DEV_CTL.BDEVICE bit is also set to indicate whether the USB controller has adopted the role of
the A device or the B device.

The USB controller is the A device. The USB controller then enters host mode (the A device is always the
default host), and waits for VBUS to go above the VBUS valid threshold, as indicated when the USB_DEV_
CTL.VBUS bits go to 11.

The USB controller then waits for a peripheral to be connected. When a peripheral is detected, a connect
interrupt (USB_IRQ.CON bit) is generated (if enabled) and either the USB_DEV_CTL.FSDEV or USB_DEV_
CTL.LSDEV bits is set, depending on whether a full-speed peripheral or a low-speed peripheral was
detected. The processor core should then reset this peripheral. To end the session, the processor core
should clear the USB_DEV_CTL.SESSION bit.

The USB controller is the B device. The USB controller requests a session using the session request
protocol defined in the USB on-the-go supplement. This is accomplished by setting the USB_DEV_CTL.
SESSION bit.

At the end of the session, the USB_DEV_CTL.SESSION bit is cleared—usually by the USB controller but it
can also be cleared by the processor core if the application software wishes to perform a software discon-
nect. For more information, see the description of the USB_DEV_CTL register. The USB controller switches
on the pull-up resistor on D+. This signals to the A device to end the session.

Detecting Activity

When the other device of the OTG set-up wants to start a session, it either raises VBUS above the session
valid threshold (if it is the A device as indicated by the USB_DEV_CTL.VBUS bits=10), or (if it is the B device)
first pulses the data line then pulses VBUS. Depending on which of these actions happens, the USB
controller can determine whether it is the A device or the B device in the current set-up and act accord-
ingly.

 If VBUS is raised above the session valid threshold, the USB controller is the B device. The USB controller
sets the USB_DEV_CTL.SESSION bit. When reset signaling is detected on the bus, a reset interrupt (USB_
IRQ.RSTBABBLE=1) is generated (if enabled) that the processor core should interpret as the start of a
session. The USB controller is in peripheral mode at this point as the B device is the default peripheral.

At the end of the session, the A device turns off the power to VBUS. When VBUS drops below the session
valid threshold (as indicated by the USB_DEV_CTL.VBUS bits=01), the USB controller detects this and clears
the USB_DEV_CTL.SESSION bit to indicate that the session has ended. A disconnect interrupt (USB_IRQ.
DISCON bit) is also generated (if enabled).

 If data line/VBUS pulsing is detected, the USB controller is the A device. The controller generates a USB_
IRQ.SESSREQ interrupt to indicate that the B device is requesting a session. The processor core should then
start a session by setting the USB_DEV_CTL.SESSION bit.

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–74 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Host Negotiation Protocol

When the USB controller is the A device (USB_ID low, USB_DEV_CTL.BDEVICE=0), the controller automat-
ically enters host mode when a session starts.

When the USB controller is the B device (USB_ID high, USB_DEV_CTL.BDEVICE=1), the controller auto-
matically enters peripheral mode when a session starts. The processor core can request that the USB
controller become the host by setting the USB_DEV_CTL.HOSTREQ bit. This bit can be set either when
requesting a session start by setting the USB_DEV_CTL.SESSION bit or at any time after a session has started.

When the USB controller next enters suspend mode (no activity on the bus for 3 ms), and assuming the
USB_DEV_CTL.HOSTREQ bit remains set, the controller enters host mode and begins host negotiation (as
specified in the USB OTG supplement), causing the PHY to disconnect the pull-up resistor on the D+ line.
This should cause the A device to switch to peripheral mode and to connect its own pull-up resistor. When
the USB controller detects this, it generates a connect interrupt (USB_IRQ.CON bit). The controller also sets
the USB_POWER.RESET bit to begin resetting the A device. (The USB controller begins this reset sequence
automatically to ensure that reset is started as required within 1 ms of the A device connecting its pull-up
resistor). The processor core should wait at least 20 ms, then clear the USB_POWER.RESET bit and
enumerate the A device.

When the USB controller-based B device has finished using the bus, the processor core should put it into
suspend mode by setting the USB_POWER.SUSPEND. The A device should detect this and either terminate
the session or revert to host mode. If the A device is USB controller-based, it generates a disconnect inter-
rupt (USB_IRQ.DISCON bit) if enabled.

Data Transfer

Regardless of whether the USB controller is operating in host or peripheral mode, data is channeled
through the endpoint FIFOs to construct packets that are sent or received over the USB. The RX FIFOs are
used to receive OUT packets when in peripheral mode and IN packets when operating in host mode. Simi-
larly, the TX FIFOs are used to transmit IN packets when in peripheral mode and OUT packets as a host.

Data may be moved between the FIFOs and memory using either DMA or core accesses. Each endpoint
FIFO has its own individually programmable options so that each can be set up separately. Different
transfer types must be treated differently by the system. Data transfers of significant size almost certainly
require DMA to move the data around; but smaller packet sizes might be handled completely by the
processor.

Each data endpoint supports both double and single-buffering modes. In single-buffered operation, FIFOs
are unloaded and loaded on a packet-by-packet basis. Double-buffering imposes less burden on the system
by allowing two packets to be buffered in a FIFO before it is necessary to use DMA/interrupts to service
the FIFO. Double-buffering mode is automatically enabled when a MaxPktSize is set for an endpoint that
is equal to or less than half the size in bytes of that FIFO.

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–75

Loading/Unloading Packets from Endpoints

Transfers to and from the FIFOs can be 32-bit, 16-bit, or 8-bit. When using core accesses, the same width
must be used for transfers associated with one data packet, so that data is consistently byte, half-word or
word aligned. The last transfer may, however, contain fewer bytes than the previous transfers in order to
complete an 8-bit or 16-bit transfer.

When using the DMA to access the FIFOs, the only requirement is that the starting DMA address be word
aligned, or aligned on a 32-bit boundary. The packet transfer starts with a word transfer, but half-word
and/or byte transfers may be added at the end to handle any left overs.

DMA Master Channels

The USB controller provides seven DMA master channels.

These channels provide a more efficient transfer of larger amounts of data between the FIFOs and the
processor core, and the channels free up the processor core for other tasks. Each of these channels is
configured and controlled using the DMA control registers.

Each DMA controller can operate in one of two DMA modes: 0 or 1. When operating in mode 0, the DMA
controller only can be programmed to load or unload one packet, so processor intervention is required for
each packet transferred over the USB. This mode can be used with any endpoint, whether it uses control,
bulk, isochronous, or interrupt transactions.

When operating in DMA mode 1, the DMA controller can only be programmed to load/unload a complete
bulk transfer, which can be many packets. After set up, the DMA controller loads or unloads the packets,
interrupting the processor only when the transfer has completed. DMA mode 1 can only be used with
endpoints that use bulk transactions and is most valuable where large blocks of data are transferred to a
bulk endpoint. The USB protocol requires such packets to be split into a series of packets of MaxPktSize
for the endpoint.

Mode 1 can be used to avoid the overhead of having to interrupt the processor after each individual packet
because the processor is only interrupted after the transfer has completed. In some cases, the block of data
transferred comprises a predefined number of these packets that the controlling software counts through
the transfer process. In other cases, the last packet in the series may be less than the maximum packet size
and the receiver may use this short packet to signal the end of the transfer. If the total size of the transfer
is an exact multiple of the maximum packet size, the transmitting software should send a null packet for
the receiver to detect.

NOTE: Each channel can be independently programmed for the selected operating mode.

For bulk OUT transfers using DMA mode 1, the DMA request line is asserted only when there is an edge
transition of the state of the USB_EPn_RXCSR_H.RXPKTRDY and a payload of MaxPktSize has been received.
If a data packet has been sitting in the FIFO prior to setting the DMA request mode bits (USB_EPn_RXCSR_
H.DMAREQMODE or USB_EPn_RXCSR_P.DMAREQMODE), the DMA request line is not asserted when the DMA
is enabled using the USB_DMAn_CTL.EN bit. This causes the data to not be read from the RX FIFO, resulting
in a DMA hang. However, since the packet arrived before DMA request mode and DMA request enable

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–76 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

bits (USB_EPn_RXCSR_H.DMAREQEN or USB_EPn_RXCSR_P.DMAREQEN) were enabled, an RX interrupt is
generated for the corresponding endpoint. Therefore, the software should set the DMA request mode to
request mode 0 to unload the pre-received packet. The RX interrupt service routine may be similar to the
following.

If USB_EPn_RXCNT == MaxPktSize

Switch to DMA mode 0 and unload the packet (in mode 0, the DMA request enable is always asserted
whenever there is data in the FIFO)

Set the USB_EPn_RXCNT to MaxPktSize so as to unload only one packet

If USB_EPn_RXCSR_H.AUTOCLR is set, USB_EPn_RXCSR_H.RXPKTRDY does not need to be cleared manually.

Switch back to DMA Mode 1 and set the count to

(Total_Count – MaxPktSize)

Else

Handle as normal for case of short packet

DMA transfers may be 8-bit, 16-bit, or 32-bit. All transfers associated with one packet (with the exception
of the last) must be of the same width, so that the data is consistently byte-aligned or word-aligned. The
last transfer may contain fewer bytes than the previous transfers in order to complete an odd-byte or odd-
word transfer.

DMA Bus Cycles

The DMA controller uses incrementing bursts of an unspecified length on the peripheral DMA bus. The
controller starts a new burst when it is first granted bus mastership (whether at the start of a USB packet
or when regaining the bus after losing it after a partial packet) and when the peripheral address starts a new
1K byte block.

When unloading packets from the FIFOs, the DMA controller requests ahead to the USB controller.
Although it starts the transfer with two BUSY cycles while it is getting the first word from the FIFO, all
subsequent words of the packet are immediately available and no further BUSY cycles are required. The
DMA controller is associated with a two-word buffer, so no data is lost if it loses bus mastership in the
middle of unloading a packet. When bus mastership is regained, it can continue unloading the packet
without adding any BUSY cycles.

The DMA start address (written to the USB_DMAn_ADDR register) must be word aligned. Split transactions
and retries are supported.

The DMA request lines are individually enabled using the appropriate DMA request enable bit (there are
four options: TX peripheral and host and RX peripheral and host) and operate in two modes, referred to
as DMA request mode 0 and DMA request mode 1. The operating mode is configured using the appro-
priate DMA request mode bit (there are four options: TX peripheral and host and RX peripheral and host).

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–77

NOTE: When operating in host mode, if either the USB_EPn_TXCSR_H.RXSTALL bit or the USB_EPn_
TXCSR_H.TXTOERR is set following three failed attempts to transmit a packet, the DMA request line
is disabled until the bits have been cleared.

The mode selected also affects the generation of Endpoint interrupts (if enabled). In DMA request mode
0, no interrupt is generated when packets are received but the appropriate Endpoint interrupt is generated
to prompt the loading of all packets. In DMA request mode 1, the Endpoint interrupt is suppressed except
following the receipt of a short packet (one less than USB_EPn_RXMAXP bytes).

NOTE: The USB_EPn_TXMAXP/USB_EPn_RXMAXP registers must be set to an even number of bytes for
proper interrupt generation in DMA mode 1.

DMA transfers may be 8-bit, 16-bit, or 32-bit as required. However, all transfers associated with one packet
(with the exception of the last) must be of the same width so that the data is consistently byte-, word- or
double-word-aligned. The last transfer may contain fewer bytes than the previous transfers in order to
complete an odd-byte or odd-word transfer.

NOTE: DMA requests should be disabled before the DMA request mode bit is changed. In particular, the
USB_EPn_TXCSR_H.DMAREQMODE bit should not be set to zero either before or in the same cycle as
the corresponding USB_EPn_TXCSR_H.DMAREQEN bit is cleared to zero.

Transferring Packets Using DMA

Use of the DMA master channels to access the USB controller FIFOs requires that both the appropriate
channel and the endpoint be programmed appropriately. Many variations are possible. The following
sections detail the standard set ups used for the basic actions of transferring individual and multiple
packets.

Table 20-7: Endpoint Interrupt Associated with the Receive Packet Ready Bit=1

DMAReqEnab DMAReqMode EP Interrupt Generated?

0 X YES

1 0 NO

1 1 Only is short packet

Table 20-8: Endpoint Interrupt Associated with the Receive Packet Ready Bit=0

DMAReqEnab DMAReqMode EP Interrupt Generated?

0 X YES

1 0 YES

1 1 NO

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

20–78 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Individual RX Endpoint Packet

The transfer of individual packets is normally carried out using DMA mode 0. The USB controller RX
endpoint is programmed as follows.

1. The relevant bit in the USB_INTRRXE register is set to 1.

2. The DMA enable bit of the appropriate USB_EPn_RXCSR_H.DMAREQEN/USB_EPn_RXCSR_P.DMAREQEN
register is set to 0. (There is no need to set the USB controller to support DMA for this operation.)

3. When a packet is received by the USB controller, it generates the appropriate endpoint interrupt (using
the USB_INTRRXE register). The processor should then program the appropriate DMA master channel
as follows.

• Configure the USB_DMAn_ADDR register with the memory address to store the packet

• Configure the USB_DMAn_CNT register with the size of packet (determined by reading the USB
controller USB_RQPKTCNTn register)

• Configure the USB_DMAn_CTL register using the following bit settings:USB_DMAn_CTL.IE=1
USB_DMAn_CTL.EN=1, USB_DMAn_CTL.DIR=0, USB_DMAn_CTL.MODE=0

The DMA controller then requests bus mastership and transfers the packet to memory. It interrupts the
processor when it has completed the transfer. The processor should then clear the USB_EPn_RXCSR_H.
RXPKTRDY bit.

Individual TX Endpoint Packet

Using DMA mode 0, a USB controller TX endpoint is programmed as follows.

1. The relevant bit in the USB_INTRTXE register is set to 1.

2. The DMA enable bit of the appropriate USB_EPn_TXCSR_H.DMAREQEN/USB_EPn_TXCSR_P.DMAREQEN
register is set to 0. (There is no need to set the USB controller to support DMA for this operation.)

3. When the FIFO can accommodate data, the USB controller interrupts the processor with the appro-
priate TX endpoint interrupt. The processor should then program the DMA channel as follows:

• Configure the USB_DMAn_ADDR register with the memory address to store the packet

• Configure the USB_DMAn_CNT register with the size of packet

• Configure the USB_DMAn_CTL register using the following bit settings: USB_DMAn_CTL.IE=1
USB_DMAn_CTL.EN=1, USB_DMAn_CTL.DIR=1, USB_DMAn_CTL.MODE=0

The DMA controller then requests bus mastership and transfers the packet to the USB controller FIFO.
When it has completed the transfer, it generates a DMA interrupt. The processor should then set the USB_
EPn_TXCSR_H.TXPKTRDY bit.

UNIVERSAL SERIAL BUS (USB)
USB PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–79

Multiple RX Endpoint Packets

Multiple packets normally are transferred using DMA mode 1. The DMA controller is programmed using
the DMA registers:

• Configure the USB_DMAn_ADDR register with the memory address of data block to send

• Configure the USB_DMAn_CNT register with the maximum size of data buffer

• Configure the USB_DMAn_CTL register using the following bit settings: USB_DMAn_CTL.EN=1, USB_
DMAn_CTL.IE=1, USB_DMAn_CTL.DIR=0, USB_DMAn_CTL.MODE=1

The USB controller RX endpoint should now be programmed as follows:

1. The relevant bit in the USB_INTRRX register is set to 1.

2. The USB_EPn_RXCSR_H.AUTOCLR, USB_EPn_RXCSR_H.DMAREQEN and USB_EPn_RXCSR_H.DMAREQMODE
bits of the appropriate receive control and status register (host or peripheral) register is set to 1. In host
mode, the USB_EPn_RXCSR_H.AUTOREQ and USB_EPn_RXCSR_H.DMAREQMODE bits should also be set to
1.

As each packet is received by the USB controller, the DMA master channel requests bus mastership and
transfers the packet to memory. With USB_EPn_RXCSR_H.AUTOCLR set, the USB controller automatically
clears its USB_EPn_RXCSR_H.RXPKTRDY bit. This process continues automatically until the USB controller
receives a short packet (one of less than the maximum packet size for the endpoint) signifying the end of
the transfer. This short packet is not transferred by the DMA controller: instead the USB controller inter-
rupts the processor by generating the appropriate endpoint interrupt. The processor can then read the
USB_EPn_RXCNT register to see the size of the short packet and either unload it manually or reprogram the
DMA controller in mode 0 to unload the packet.

The USB_DMAn_ADDR register is incremented as the packets are unloaded, so the processor can determine
the size of the transfer by comparing the current value of USB_DMAn_ADDR with the start address of the
memory buffer.

If the size of the transfer exceeds the data buffer size, the DMA controller stops unloading the FIFO and
interrupts the processor.

Multiple TX Endpoint Packets

Using DMA mode 1 for a TX endpoint, the DMA controller is programmed as follows:

• Configure the USB_DMAn_ADDR register with the memory address of data block to send

• Configure the USB_DMAn_CNT register with the size of the data block

• Configure the USB_DMAn_CTL register using the following bit settings: USB_DMAn_CTL.EN=1, USB_
DMAn_CTL.IE=1 USB_DMAn_CTL.DIR=1, USB_DMAn_CTL.MODE=1

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–80 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The USB controller TX endpoint is programmed as follows:

1. The relevant bit in the USB_INTRTXE register is set to 1.

2. The USB_EPn_TXCSR_H.AUTOSET and USB_EPn_TXCSR_H.DMAREQEN bits of the appropriate transmit
control and status register (host or peripheral) is set to 1.

When the FIFO in the USB controller becomes available, the DMA controller requests bus mastership and
transfers a packet to the FIFO. With USB_EPn_TXCSR_H.AUTOSET set, the USB controller automatically
sets the USB_EPn_TXCSR_H.TXPKTRDY bit. This process continues until the entire data block is transferred
to the USB controller.

The DMA controller then interrupts the processor by taking the appropriate USB_DMA_IRQ register bit low.
Note that:

• If the last packet loaded was less than the maximum packet size for the endpoint, the USB_EPn_TXCSR_
H.TXPKTRDY bit is not set for this packet. The processor should respond to the DMA interrupt by
setting the USB_EPn_TXCSR_H.TXPKTRDY bit to allow the last short packet to be sent.

• If the last packet loaded was of the maximum packet size, then the action to take depends on whether
the transfer is under the control of an application such as the mass storage software on Windows system
that keeps count of the individual packets sent.

• If the transfer is not under such control, the processor should respond to the DMA interrupt by setting
the USB_EPn_TXCSR_H.TXPKTRDY bit. This has the effect of sending a null packet for the receiving soft-
ware to interpret as indicating the end of the transfer.

ADSP-CM40x USB Register Descriptions

Universal Serial Bus Controller (USB) contains the following registers.

Table 20-9: ADSP-CM40x USB Register List

Name Description

USB_FADDR Function Address Register

USB_POWER Power and Device Control Register

USB_INTRTX Transmit Interrupt Register

USB_INTRRX Receive Interrupt Register

USB_INTRTXE Transmit Interrupt Enable Register

USB_INTRRXE Receive Interrupt Enable Register

USB_IRQ Common Interrupts Register

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–81

USB_IEN Common Interrupts Enable Register

USB_FRAME Frame Number Register

USB_INDEX Index Register

USB_TESTMODE Testmode Register

USB_FIFOBn FIFO Byte (8-Bit) Register

USB_FIFOHn FIFO Half-Word (16-Bit) Register

USB_FIFOn FIFO Word (32-Bit) Register

USB_DEV_CTL Device Control Register

USB_EPINFO Endpoint Information Register

USB_RAMINFO RAM Information Register

USB_LINKINFO Link Information Register

USB_VPLEN VBUS Pulse Length Register

USB_FS_EOF1 Full-Speed EOF 1 Register

USB_LS_EOF1 Low-Speed EOF 1 Register

USB_SOFT_RST Software Reset Register

USB_MPn_TXFUNCADDR MPn Transmit Function Address Register

USB_MPn_TXHUBADDR MPn Transmit Hub Address Register

USB_MPn_TXHUBPORT MPn Transmit Hub Port Register

USB_MPn_RXFUNCADDR MPn Receive Function Address Register

USB_MPn_RXHUBADDR MPn Receive Hub Address Register

USB_MPn_RXHUBPORT MPn Receive Hub Port Register

USB_EPn_TXMAXP EPn Transmit Maximum Packet Length Register

USB_EP0_CSRn_H EP0 Configuration and Status (Host) Register

USB_EPn_TXCSR_H EPn Transmit Configuration and Status (Host) Register

Table 20-9: ADSP-CM40x USB Register List (Continued)

Name Description

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–82 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

USB_EP0_CSRn_P EP0 Configuration and Status (Peripheral) Register

USB_EPn_TXCSR_P EPn Transmit Configuration and Status (Peripheral) Register

USB_EPn_RXMAXP EPn Receive Maximum Packet Length Register

USB_EPn_RXCSR_H EPn Receive Configuration and Status (Host) Register

USB_EPn_RXCSR_P EPn Receive Configuration and Status (Peripheral) Register

USB_EP0_CNTn EP0 Number of Received Bytes Register

USB_EPn_RXCNT EPn Number of Bytes Received Register

USB_EP0_TYPEn EP0 Connection Type Register

USB_EPn_TXTYPE EPn Transmit Type Register

USB_EP0_NAKLIMITn EP0 NAK Limit Register

USB_EPn_TXINTERVAL EPn Transmit Polling Interval Register

USB_EPn_RXTYPE EPn Receive Type Register

USB_EPn_RXINTERVAL EPn Receive Polling Interval Register

USB_EP0_CFGDATAn EP0 Configuration Information Register

USB_EPn_FIFOSZ FIFO Size

USB_DMA_IRQ DMA Interrupt Register

USB_DMAn_CTL DMA Channel n Control Register

USB_DMAn_ADDR DMA Channel n Address Register

USB_DMAn_CNT DMA Channel n Count Register

USB_RQPKTCNTn EPn Request Packet Count Register

USB_RXDPKTBUFDIS RX Double Packet Buffer Disable for Endpoints 1 to 3

USB_TXDPKTBUFDIS TX Double Packet Buffer Disable for Endpoints 1 to 3

USB_LPM_ATTR LPM Attribute Register

USB_LPM_CTL LPM Control Register

Table 20-9: ADSP-CM40x USB Register List (Continued)

Name Description

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–83

Function Address Register

The USB_FADDR register contains the device address used in peripheral mode. The processor writes this
register with the address received through a SET_ADDRESS command from the host.

Figure 20-32: USB_FADDR Register Diagram

Power and Device Control Register

The USB_POWER register controls suspend and resume signaling and controls some operational aspects of
the USB controller.

USB_LPM_IEN LPM Interrupt Enable Register

USB_LPM_IRQ LPM Interrupt Status Register

USB_LPM_FADDR LPM Function Address Register

USB_VBUS_CTL VBUS Control Register

USB_IDCTL ID Control

USB_PHY_CTL FS PHY Control

USB_PHY_STAT FS PHY Status

Table 20-10: USB_FADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE Function Address Value.
The USB_FADDR.VALUE bits contain the address of the peripheral part of the
transaction.

Table 20-9: ADSP-CM40x USB Register List (Continued)

Name Description

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–84 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-33: USB_POWER Register Diagram

Table 20-11: USB_POWER Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

ISOUPDT ISO Update Enable.
The USB_POWER.ISOUPDT bit directs the USB controller to waits for an SOF
token from the time TXPKTRDY is set before sending the packet. If an IN token is
received before an SOF token, the USB controller send a zero length data packet. This
USB_POWER.ISOUPDT bit only affects endpoints performing isochronous
transfers. This bit only is valid in peripheral mode (USB_DEV_CTL.HOSTMODE =
0).

0 Disable ISO Update

1 Enable ISO Update

6
(R/W)

SOFTCONN Soft Connect/Disconnect Enable.
In peripheral mode, the D+/- lines default to disconnected. Setting this bit will enable
the D+/- termination resistors. This bit is automatically set when the DevCtl.Session
bit is written with '1'. The USB_POWER.SOFTCONN bit enables USB controller soft
connect/disconnect, enabling the termination resistors for USB_DP (Data +) and
USB_DM (Data -) pins. When disabled, these pins are three-stated. Note that USB_
POWER.SOFTCONN only is valid in peripheral mode (USB_DEV_CTL.HOSTMODE
= 0).

0 Disable Soft Connect/Disconnect

1 Enable Soft Connect/Disconnect

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–85

5
(R/W)

HSEN High Speed Mode Enable.
The USB_POWER.HSEN bit enables USB controller negotiation for high speed (on
devices supporting high-speed mode) when the device is reset by the hub/host. If
disabled, the USB controller only operates in full-speed mode. When operating in
full-speed mode, this bit should be cleared.

0 Disable Negotiation for HS Mode

1 Enable Negotiation for HS Mode

4
(R/NW)

HSMODE High Speed Mode.
The USB_POWER.HSMODE bit indicates whether or not the USB controller
successfully negotiated high-speed mode during a USB controller reset. In peripheral
mode (USB_DEV_CTL.HOSTMODE = 0), this bit has valid data when the USB
controller completes reset. In host mode (USB_DEV_CTL.HOSTMODE = 1), this bit
has valid data when the USB_IRQ.RSTBABBLE bit is cleared, remaining valid for
the duration of the session.

0 Full Speed Mode (HS fail during reset)

1 High Speed Mode (HS success during reset)

3
(R/W)

RESET Reset USB.
The USB_POWER.RESET bit indicates (in both host and peripheral modes) that the
USB controller has detected that reset signaling is present on the bus. In peripheral
mode (USB_DEV_CTL.HOSTMODE = 0), this bit is read only, but in host mode
(USB_DEV_CTL.HOSTMODE = 1), this bit is read/write, permitting the processor
core to set the bit and initiate a USB controller reset.

0 No Reset

1 Reset USB

2
(R/W)

RESUME Resume Mode.
The USB_POWER.RESUME bit directs the USB controller to generate resume
signaling when the function is in suspend mode (USB_POWER.SUSPEND =1). The
processor core should clear this bit after 10 ms (a maximum of 15 ms) to end resume
signaling. When the USB controller is in host mode (USB_DEV_CTL.HOSTMODE =
1), the USB controller automatically sets the USB_POWER.RESUME bit when
resume signaling from the target is detected while the USB controller is suspended.

0 Disable Resume Signaling

1 Enable Resume Signaling

1
(R/W1S)

SUSPEND Suspend Mode.
When the USB controller is in host mode (USB_DEV_CTL.HOSTMODE = 1), the
USB_POWER.SUSPEND bit enables suspend mode. When the USB controller is in
peripheral mode (USB_DEV_CTL.HOSTMODE = 0), the USB controller sets the
USB_POWER.SUSPEND bit on entry to suspend mode and clears the bit when the
processor reads the USB_IRQ register. Note that the USB controller automatically
clears this bit if the USB_POWER.RESUME bit is set.

0 Disable Suspend Mode (Host)

1 Enable Suspend Mode (Host)

Table 20-11: USB_POWER Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–86 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Transmit Interrupt Register

The USB_INTRTX register indicates which interrupts are currently active for endpoint 0 and the transmit
(Tx) endpoints. Note that the USB controller automatically clears this register when it is read.

Figure 20-34: USB_INTRTX Register Diagram

0
(R/W)

SUSEN SUSPENDM Output Enable.
The USB_POWER.SUSEN bit enables the SUSPENDM output (internal USB
controller signal). When enabled, the SUSPENDM output signal is used by the USB
controller PHY to power-down its drivers when the USB controller is not active.

0 Disable SUSPENDM Output

1 Enable SUSPENDM Output

Table 20-12: USB_INTRTX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(RC/NW)

EP3 End Point 3 Tx Interrupt.
The USB_INTRTX.EP3 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

2
(RC/NW)

EP2 End Point 2 Tx Interrupt.
The USB_INTRTX.EP2 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

Table 20-11: USB_POWER Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–87

Receive Interrupt Register

The USB_INTRRX register indicates which interrupts are currently active for the receive (Rx) endpoints.
Note that the USB controller automatically clears this register when it is read.

Figure 20-35: USB_INTRRX Register Diagram

1
(RC/NW)

EP1 End Point 1 Tx Interrupt.
The USB_INTRTX.EP1 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

0
(RC/NW)

EP0 End Point 0 Tx Interrupt.
The USB_INTRTX.EP0 bit indicates whether or not a transmit interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

Table 20-13: USB_INTRRX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(RC/NW)

EP3 End Point 3 Rx Interrupt.
The USB_INTRRX.EP3 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

Table 20-12: USB_INTRTX Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–88 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Transmit Interrupt Enable Register

The USB_INTRTXE register enables interrupts for endpoint 0 and the transmit (Tx) endpoints. Enabling an
interrupt in this register directs the USB controller to generate an interrupt if the corresponding interrupt
pending bit in the USB_INTRTX register is set.

Figure 20-36: USB_INTRTXE Register Diagram

2
(RC/NW)

EP2 End Point 2 Rx Interrupt.
The USB_INTRRX.EP2 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

1
(RC/NW)

EP1 End Point 1 Rx Interrupt.
The USB_INTRRX.EP1 bit indicates whether or not a receive interrupt is pending
for this endpoint.

0 No Interrupt

1 Interrupt Pending

Table 20-14: USB_INTRTXE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W)

EP3 End Point 3 Tx Interrupt Enable.
The USB_INTRTXE.EP3 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

Table 20-13: USB_INTRRX Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–89

Receive Interrupt Enable Register

The USB_INTRRXE register enables interrupts for the receive (Rx) endpoints. Enabling an interrupt in this
register directs the USB controller to generate an interrupt if the corresponding interrupt pending bit in
the USB_INTRRX register is set.

Figure 20-37: USB_INTRRXE Register Diagram

2
(R/W)

EP2 End Point 2 Tx Interrupt Enable.
The USB_INTRTXE.EP2 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

1
(R/W)

EP1 End Point 1 Tx Interrupt Enable.
The USB_INTRTXE.EP1 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

0
(R/W)

EP0 End Point 0 Tx Interrupt Enable.
The USB_INTRTXE.EP0 bit enables the transmit interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

Table 20-15: USB_INTRRXE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W)

EP3 End Point 3 Rx Interrupt Enable.
The USB_INTRRXE.EP3 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

Table 20-14: USB_INTRTXE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–90 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Common Interrupts Register

The USB_IRQ register indicates which interrupts are currently active for USB controller system sources.
Note that the USB controller automatically clears this register when it is read.

Figure 20-38: USB_IRQ Register Diagram

2
(R/W)

EP2 End Point 2 Rx Interrupt Enable.
The USB_INTRRXE.EP2 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

1
(R/W)

EP1 End Point 1 Rx Interrupt Enable.
The USB_INTRRXE.EP1 bit enables the receive interrupt for this endpoint.

0 Disable Interrupt

1 Enable Interrupt

Table 20-16: USB_IRQ Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(RC/NW)

VBUSERR VBUS Threshold Indicator.
The USB_IRQ.VBUSERR bit indicates whether the USB controller has detected that
the VBUS is below the VBUS valid threshold. This bit is valid only when the USB
controller is an A device. Note that the USB_IRQ.VBUSERR bit and the USB_
VBUS_CTL.DRVINT bit share an interrupt source line.

0 No Interrupt

1 Interrupt Pending

Table 20-15: USB_INTRRXE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–91

6
(RC/NW)

SESSREQ Session Request Indicator.
The USB_IRQ.SESSREQ bit indicates whether the USB controller has detected a
session request signal. This bit is valid only when the USB controller is an A device.

0 No Interrupt

1 Interrupt Pending

5
(RC/NW)

DISCON Disconnect Indicator.
The USB_IRQ.DISCON bit indicates whether the USB controller has detected a
device disconnect (host mode) or has detected a session end (peripheral mode).

0 No Interrupt

1 Interrupt Pending

4
(RC/NW)

CON Connection Indicator.
The USB_IRQ.CON bit indicates whether the USB controller has detected a device
connection. This bit is valid only in host mode.

0 No Interrupt

1 Interrupt Pending

3
(RC/NW)

SOF Start-of-frame Indicator.
The USB_IRQ.SOF bit indicates whether the USB controller has detected a start of
frame.

0 No Interrupt

1 Interrupt Pending

2
(RC/NW)

RSTBABBLE Reset/Babble Indicator.
The USB_IRQ.RSTBABBLE bit indicates whether the USB controller has detected
reset signalling on the bus. In host mode, the USB controller also indicates when the
USB controller detects babble. Note that the USB_IRQ.RSTBABBLE bit is only
active after the first SOF has been sent.

0 No Interrupt

1 Interrupt Pending

1
(RC/NW)

RESUME Resume Indicator.
The USB_IRQ.RESUME bit indicates whether the USB controller has detected
resume signaling on the bus while the USB controller is in suspend mode.

0 No Interrupt

1 Interrupt Pending

0
(RC/NW)

SUSPEND Suspend Indicator.
The USB_IRQ.SUSPEND bit indicates whether the USB controller has detected
suspend signalling on the bus. This bit is valid only in peripheral mode.

0 No Interrupt

1 Interrupt Pending

Table 20-16: USB_IRQ Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–92 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Common Interrupts Enable Register

The USB_IEN register enables interrupts for USB controller system sources. Enabling an interrupt in this
register directs the USB controller to generate an interrupt if the corresponding interrupt pending bit in
the USB_IRQ register is set.

Figure 20-39: USB_IEN Register Diagram

Table 20-17: USB_IEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

VBUSERR VBUS Threshold Indicator Interrupt Enable.
The USB_IEN.VBUSERR bit enables the USB_IRQ.VBUSERR interrupt.

0 Disable Interrupt

1 Enable Interrupt

6
(R/W)

SESSREQ Session Request Indicator Interrupt Enable.
The USB_IEN.SESSREQ bit enables the USB_IRQ.SESSREQ interrupt.

0 Disable Interrupt

1 Enable Interrupt

5
(R/W)

DISCON Disconnect Indicator Interrupt Enable.
The USB_IEN.DISCON bit enables the USB_IRQ.DISCON interrupt.

0 Disable Interrupt

1 Enable Interrupt

4
(R/W)

CON Connection Indicator Interrupt Enable.
The USB_IEN.CON bit enables the USB_IRQ.CON interrupt.

0 Disable Interrupt

1 Enable Interrupt

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–93

Frame Number Register

The USB_FRAME register contains the frame number of the last received frame. The data in this register has
bit 10 as the MSB and bit 0 as the LSB.

Figure 20-40: USB_FRAME Register Diagram

3
(R/W)

SOF Start-of-frame Indicator Interrupt Enable.
The USB_IEN.SOF bit enables the USB_IRQ.SOF interrupt.

0 Disable Interrupt

1 Enable Interrupt

2
(R/W)

RSTBABBLE Reset/Babble Indicator Interrupt Enable.
The USB_IEN.RSTBABBLE bit enables the USB_IRQ.RSTBABBLE interrupt.

0 Disable Interrupt

1 Enable Interrupt

1
(R/W)

RESUME Resume Indicator Interrupt Enable.
The USB_IEN.RESUME bit enables the USB_IRQ.RESUME interrupt.

0 Disable Interrupt

1 Enable Interrupt

0
(R/W)

SUSPEND Suspend Indicator Interrupt Enable.
The USB_IEN.SUSPEND bit enables the USB_IRQ.SUSPEND interrupt.

0 Disable Interrupt

1 Enable Interrupt

Table 20-18: USB_FRAME Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10:0
(R/NW)

VALUE Frame Number Value.
The USB_FRAME.VALUE bits contains the frame number of the last received frame.
The data in this field has bit 10 as the MSB and bit 0 as the LSB.

Table 20-17: USB_IEN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–94 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Index Register

The USB_INDEX register contains an index value for mirrored addressing of USB controller endpoint
control and status registers.

There is one set of registers, but they are mirrored at two address locations if the endpoint is selected by
the USB_INDEX register. An endpoint's register set only appears in the indexed location if the USB_INDEX
register is written with that endpoint number. You can read/write an endpoint's register in either the
directly mapped location which is always visible, or in the indexed location which is only visible if the USB_
INDEX register is written with the endpoint number. The USB_INDEX register and indexed address locations
only affect address decoding. For example, loading a 0 into the USB_INDEX register selects endpoint 0
access.

The USB_INDEX register can be used for indexed access of the directly mapped control/status registers from
USB controller address offset 0x100-0x1FF. For products supporting the dynamic FIFO size feature, the
endpoint Tx/Rx size and address registers always use the USB_INDEX register, there is no direct mapping
for these endpoint specific registers. The multipoint USB_MPn_TXFUNCADDR, USB_MPn_TXHUBADDR, USB_
MPn_TXHUBPORT, USB_MPn_RXFUNCADDR, USB_MPn_RXHUBADDR, and USB_MPn_RXHUBPORT register only
have direct mapping, no indexed mapping.

Before accessing an endpoint's control/status registers using the indexed range, write the endpoint number
to the USB_INDEX register to ensure that the correct control/status registers appear in the indexed range of
the memory map.

Figure 20-41: USB_INDEX Register Diagram

Table 20-19: USB_INDEX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3:0
(R/W)

EP Endpoint Index.
The USB_INDEX.EP bits selects mirrored access for an endpoints indexed control
and status registers. Valid values for this bit field are 0-11.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–95

Testmode Register

The USB_TESTMODE register places the USB controller into test mode state and can also put the USB
controller into one of the test modes for high-speed operation. For more information about these modes,
see the USB 2.0 specification.

Note that the USB_TESTMODE register is not used in normal operation. Only one of the test mode (bits 0-6)
selection bits may be set at a time.

Figure 20-42: USB_TESTMODE Register Diagram

FIFO Byte (8-Bit) Register

Writes to the USB_FIFOBn register go to the endpoint Tx FIFO and reads from the USB_FIFOBn register
come from the endpoint Rx FIFO. The USB_FIFOBn, USB_FIFOHn, and USB_FIFOn registers are one and
the same. These registers exist at the same address. Typically, programs should load and unload the FIFO
using word (USB_FIFOn register) writes and reads, which are more efficient. Only if the USB packet is a

Table 20-20: USB_TESTMODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6
(R/W1A)

FIFOACCESS FIFO Access.
The USB_TESTMODE bit directs the USB controller to transfer the packet in the
endpoint 0 Tx FIFO to the endpoint 0 Rx FIFO. The bit is cleared automatically.

2
(R/W)

TESTK Test_K Mode.
The USB_TESTMODE.TESTK bit selects Test_K test mode. In this mode, the USB
controller transmits a continuous K on the bus.

1
(R/W)

TESTJ Test_J Mode.
The USB_TESTMODE.TESTJ bit selects Test_J test mode. In this mode, the USB
controller transmits a continuous J on the bus.

0
(R/W)

TESTSE0NAK Test SE0 NAK.
The USB_TESTMODE.TESTSE0NAK bit selects Test_SE0_NAK test mode, which
applies only when the USB controller in high speed mode. In this mode, the USB
controller remains in high-speed mode, but responds to any valid IN token with a
NAK.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–96 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

non-word (4-byte) size should the program use a half-word (USB_FIFOHn register) or byte (USB_FIFOBn
register) read or write at the end when loading or unloading the FIFO.

Note that (for correct USB controller operation) programs should not mix byte, half-word, or word
accesses, except for the last few bytes if the size of the packet is odd (not a multiple of the size they were
using).

Figure 20-43: USB_FIFOBn Register Diagram

FIFO Half-Word (16-Bit) Register

Writes to the USB_FIFOHn register go to the endpoint Tx FIFO and reads from the USB_FIFOHn register
come from the endpoint Rx FIFO. The USB_FIFOBn, USB_FIFOHn, and USB_FIFOn registers are one and
the same. These registers exist at the same address. Typically, programs should load and unload the FIFO
using word (USB_FIFOn register) writes and reads, which are more efficient. Only if the USB packet is a
non-word (4-byte) size should the program use a half-word (USB_FIFOHn register) or byte (USB_FIFOBn
register) read or write at the end when loading or unloading the FIFO.

Note that (for correct USB controller operation) programs should not mix byte, half-word, or word
accesses, except for the last few bytes if the size of the packet is odd (not a multiple of the size they were
using).

Figure 20-44: USB_FIFOHn Register Diagram

Table 20-21: USB_FIFOBn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

FIFO FIFO Byte Data.
The USB_FIFOBn.FIFO bits provide byte access to the USB Tx and Rx endpoint
FIFOs.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–97

FIFO Word (32-Bit) Register

Writes to the USB_FIFOn register go to the endpoint Tx FIFO and reads from the USB_FIFOn register come
from the endpoint Rx FIFO. The USB_FIFOBn, USB_FIFOHn, and USB_FIFOn registers are one and the
same. These registers exist at the same address. Typically, programs should load and unload the FIFO
using word (USB_FIFOn register) writes and reads, which are more efficient. Only if the USB packet is a
non-word (4-byte) size should the program use a half-word (USB_FIFOHn register) or byte (USB_FIFOBn
register) read or write at the end when loading or unloading the FIFO.

Note that (for correct USB controller operation) programs should not mix byte, half-word, or word
accesses, except for the last few bytes if the size of the packet is odd (not a multiple of the size they were
using).

Figure 20-45: USB_FIFOn Register Diagram

Table 20-22: USB_FIFOHn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

FIFO FIFO Half-Word Data.
The USB_FIFOHn.FIFO bits provide half-word access to the USB Tx and Rx
endpoint FIFOs.

Table 20-23: USB_FIFOn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE FIFO Word Data.
The USB_FIFOn.VALUE bits provide word access to the USB Tx and Rx endpoint
FIFOs.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–98 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Device Control Register

The USB_DEV_CTL register selects whether the USB controller is operating in peripheral mode or in host
mode and is used for controlling and monitoring the VBUS line.

Figure 20-46: USB_DEV_CTL Register Diagram

Table 20-24: USB_DEV_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/NW)

BDEVICE A or B Devices Indicator.
The USB_DEV_CTL.BDEVICE bit indicates whether the USB controller is
operating as the A device or the B device. This bit is only valid while a session is in
progress.

0 A Device Detected

1 B Device Detected

6
(R/NW)

FSDEV Full or High-Speed Indicator.
The USB_DEV_CTL.FSDEV bit is set when a full-speed or high-speed device is
detected being connected to the port. High speed devices are distinguished from full-
speed by checking for high-speed chirps when the device detects a USB controller
reset. This bit is only valid in host mode.

0 Not Detected

1 Full or High Speed Detected

5
(R/NW)

LSDEV Low-Speed Indicator.
The USB_DEV_CTL.LSDEV bit is set when a low-speed device is detected being
connected to the port. This bit is only valid in host mode.

0 Not Detected

1 Low Speed Detected

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–99

Endpoint Information Register

The USB_EPINFO register allows read-back of the number of Tx and Rx endpoints available

Figure 20-47: USB_EPINFO Register Diagram

4:3
(R/NW)

VBUS VBUS Level Indicator.
The USB_DEV_CTL.VBUS bits indicated the current VBUS level.

0 Below SessionEnd

1 Above SessionEnd, below AValid

2 Above AValid, below VBUSValid

3 Above VBUSValid

2
(R/NW)

HOSTMODE Host Mode Indicator.
The USB_DEV_CTL.HOSTMODE bit is set when the USB controller is acting as a
host.

0 Peripheral Mode

1 Host Mode

1
(R/W)

HOSTREQ Host Negotiation Request.
When the USB_DEV_CTL.HOSTREQ bit is set, the USB controller initiates the host
negotiation when Suspend mode is entered. This bit is cleared when host negotiation
is completed. The USB_DEV_CTL.HOSTREQ bit applies when the USB controller is
operating as a B device only.

0 No Request

1 Place Request

0
(R/W)

SESSION Session Indicator.
When operating as an A device, the USB_DEV_CTL.SESSION is set or cleared by
the processor core to start or end a session. When operating as a B device, the USB_
DEV_CTL.SESSION bit is set or cleared by the USB controller when a session starts
or ends. This bit is also set by the processor core to initiate the session request
protocol. When the USB controller is in Suspend mode, the bit may be cleared by the
processor core to perform a software disconnect.

0 Not Detected

1 Detected Session

Table 20-24: USB_DEV_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–100 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

RAM Information Register

The USB_RAMINFO register provides information about the width of the USB controller RAM.

Figure 20-48: USB_RAMINFO Register Diagram

Link Information Register

The USB_LINKINFO register specifies the PHY-related delays.

Table 20-25: USB_EPINFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:4
(R/NW)

RXEP Rx Endpoints.
The USB_EPINFO.RXEP bits indicate the number of receive endpoints. excluding
EP0.

3:0
(R/NW)

TXEP Tx Endpoints.
The USB_EPINFO.TXEP bits indicate the number of transmit endpoints, excluding
EP0.

Table 20-26: USB_RAMINFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:4
(R/NW)

DMACHANS DMA Channels.
The USB_RAMINFO.DMACHANS bits indicate the number of DMA channels.

3:0
(R/NW)

RAMBITS RAM Address Bits.
The USB_RAMINFO.RAMBITS bits indicate the number of RAM address bits. The
USB controller FIFO RAM is 32-bits wide. The number of bytes in the FIFO RAM
may be calculated from the formula:
RAM_bytes = 2(RAM_Bits+2)

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–101

Figure 20-49: USB_LINKINFO Register Diagram

VBUS Pulse Length Register

The USB_VPLEN register defines the duration of the VBUS pulsing charge for SRP initiation.

Figure 20-50: USB_VPLEN Register Diagram

Table 20-27: USB_LINKINFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:4
(R/W)

WTCON Wait for Connect/Disconnect.
The USB_LINKINFO.WTCON bits set the wait to be applied to allow for the users
connect or disconnect filter in units of 533.3ns. The default settings corresponds to 2.
667us

3:0
(R/W)

WTID Wait from ID Pull-up.
The USB_LINKINFO.WTID bits set the delay to be applied from IDPULLUP being
asserted to IDDIG being considered valid in units of 4.3690ms. The default
corresponds to 52.43ms UTMI+ spec says 50ms min. OTG spec does not have timing
requirements (it doesn't assume a programmable pull-up that is only sampled during
session start). Micro-USB cable spec says that the ID pin is greater than 10 Ohms
when shorted and less than 100k Ohms when open.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–102 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Full-Speed EOF 1 Register

The USB_FS_EOF1 register defines the minimum time gap allowed between the start of the last transaction
and the end of frame for full-speed transactions.

Figure 20-51: USB_FS_EOF1 Register Diagram

Low-Speed EOF 1 Register

The USB_LS_EOF1 register defines the minimum time gap allowed between the start of the last transaction
and the end of frame for low-speed transactions.

Table 20-28: USB_VPLEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE VBUS Pulse Length Value.
The USB_VPLEN.VALUE bits sets the duration of the VBUS pulsing charge in units
of 546.1us. The default setting corresponds to 32.77ms. Note that VBUS pulsing was
removed in the OTG specification v2.0, section 5.1.4.

Table 20-29: USB_FS_EOF1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Full-Speed EOF 1 Value.
The USB_FS_EOF1.VALUE bits set the time before end of frame to stop beginning
new transactions (in units of 533.3ns) for full-speed transactions. The default setting
corresponds to 63.46us.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–103

Figure 20-52: USB_LS_EOF1 Register Diagram

Software Reset Register

The USB_SOFT_RST register provides reset controls for the USB controller CLK domain and XCLK
domain. The USB controller PHY operates in the controller's XCLK domain, and the USB controller inter-
face to the processor core operates in the controller's CLK domain. Note that for correct operation, both
of the reset control bits (USB_SOFT_RST.RST and USB_SOFT_RST.RSTX) should always be asserted simul-
taneously.

Figure 20-53: USB_SOFT_RST Register Diagram

Table 20-30: USB_LS_EOF1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Low-Speed EOF 1 Value.
The USB_LS_EOF1.VALUE bits set the time before end of frame to stop beginning
new transactions (in units of 1.067us) for low-speed transactions. The default setting
corresponds to 121.6us.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–104 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

MPn Transmit Function Address Register

The USB_MPn_TXFUNCADDR register specifies the transmit endpoint's target address in host mode. This
register is not used in device mode. Note that the USB_MPn_TXFUNCADDR register must be setup for EP0.
(The USB_MPn_RXFUNCADDR register does not exist for EP0.)

Figure 20-54: USB_MPn_TXFUNCADDR Register Diagram

Table 20-31: USB_SOFT_RST Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W1A)

RSTX Reset USB XCLK Domain.
The USB_SOFT_RST.RSTX bit resets logic in the USB XCLK domain. This bit is
self clearing. Note that this bit should always be asserted simultaneously with the
USB_SOFT_RST.RST bit.

0 No Reset

1 Reset USB XCLK Domain

0
(R/W1A)

RST Reset USB CLK Domain.
The USB_SOFT_RST.RST bit resets logic in the USB CLK domain. This bit is self
clearing. Note that this bit should always be asserted simultaneously with the USB_
SOFT_RST.RSTX bit.

0 No Reset

1 Reset USB CLK Domain

Table 20-32: USB_MPn_TXFUNCADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE Tx Function Address Value.
The USB_MPn_TXFUNCADDR.VALUE bits hold the address of the target device for
this endpoint.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–105

MPn Transmit Hub Address Register

The USB_MPn_TXHUBADDR register specifies the hub address of the endpoint in host mode. This register is
not used in device mode. Note that this register only needs to be programmed when a full-speed or low-
speed device is connected to a high-speed hub, which carries out the necessary transaction translation.
Also note that EP0 only uses the USB_MPn_TXHUBADDR register. (The USB_MPn_RXHUBADDR register does
not exist for EP0.)

Figure 20-55: USB_MPn_TXHUBADDR Register Diagram

MPn Transmit Hub Port Register

The USB_MPn_TXHUBPORT register specifies the hub port for full-speed and low-speed endpoints in host
mode. This register is not used in device mode. The USB_MPn_TXHUBPORT register lets the USB controller
support SPLIT transactions. EP0 only uses the USB_MPn_TXHUBPORT register. (The USB_MPn_RXHUBPORT
register does not exist for EP0.)

Table 20-33: USB_MPn_TXHUBADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

MULTTRANS Multiple Transaction Translators.
The USB_MPn_TXHUBADDR.MULTTRANS bit should be set if the hub has multiple
transaction translators.

0 Single Transaction Translator

1 Multiple Transaction Translators

6:0
(R/W)

ADDR Hub Address Value.
The USB_MPn_TXHUBADDR.ADDR bits hold the address of the hub to which this
device is connected.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–106 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-56: USB_MPn_TXHUBPORT Register Diagram

MPn Receive Function Address Register

The USB_MPn_RXFUNCADDR register specifies the receive endpoint's target address in host mode. This
register is not used in device mode. Note that the USB_MPn_RXFUNCADDR register does not exist for EP0.

Figure 20-57: USB_MPn_RXFUNCADDR Register Diagram

MPn Receive Hub Address Register

The USB_MPn_RXHUBADDR register specifies the hub address of the endpoint in host mode. This register is
not used in device mode. Note that this register only needs to be programmed when a full-speed or low-

Table 20-34: USB_MPn_TXHUBPORT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE Hub Port Value.
The USB_MPn_TXHUBPORT.VALUE bits hold the hub port value of the target
device for this endpoint.

Table 20-35: USB_MPn_RXFUNCADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE Rx Function Address Value.
The USB_MPn_RXFUNCADDR.VALUE bits hold the address of the target device for
this endpoint.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–107

speed device is connected to a high-speed hub, which carries out the necessary transaction translation.
Note that the USB_MPn_RXHUBADDR register does not exist for EP0.

Figure 20-58: USB_MPn_RXHUBADDR Register Diagram

MPn Receive Hub Port Register

The USB_MPn_RXHUBPORT register specifies the hub port for full-speed and low-speed endpoints in host
mode. This register is not used in device mode. The USB_MPn_RXHUBPORT register lets the USB controller
support SPLIT transactions. Note that the USB_MPn_RXHUBPORT register does not exist for EP0.

Figure 20-59: USB_MPn_RXHUBPORT Register Diagram

Table 20-36: USB_MPn_RXHUBADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

MULTTRANS Multiple Transaction Translators.
The USB_MPn_RXHUBADDR.MULTTRANS bit should be set if the hub has multiple
transaction translators.

0 Single Transaction Translator

1 Multiple Transaction Translators

6:0
(R/W)

ADDR Hub Address Value.
The USB_MPn_RXHUBADDR.ADDR bits hold the address of the hub to which this
device is connected.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–108 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

EPn Transmit Maximum Packet Length Register

The USB_EPn_TXMAXP register defines the maximum amount of data that can be transferred through the
selected transmit endpoint in a single frame. When setting this value, you must consider the constraints
placed by the USB specification on packet sizes for bulk, interrupt and isochronous transactions in full-
speed operations. The USB_EPn_TXMAXP register provides indexed access to the maximum packet length
register for each Tx endpoint, except endpoint 0.

Figure 20-60: USB_EPn_TXMAXP Register Diagram

EP0 Configuration and Status (Host) Register

The USB_EP0_CSRn_H register provides control and status bits for endpoint 0 in host mode. Note that some
bits may be set to clear automatically.

Table 20-37: USB_MPn_RXHUBPORT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE Hub Port Value.
The USB_MPn_RXHUBPORT.VALUE bits hold the hub port value of the target
device for this endpoint.

Table 20-38: USB_EPn_TXMAXP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10:0
(R/W)

MAXPAY Maximum Payload.
The USB_EPn_TXMAXP.MAXPAY bits select the maximum number of bytes that
may be transferred per transaction. This field can be up to 1024 but is subject to
constraints by the USB specification based on endpoint mode and speed. This field
should not exceed the FIFO size for the endpoint, or half the FIFO size if double
buffering is used. This value should match the wMaxPacketSize field of the standard
endpoint descriptor (USB 2.0 spec, section 9). The USB_EPn_TXMAXP.MAXPAY
bits must be set to an even number of bytes for proper interrupt generation in DMA
mode 1.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–109

Figure 20-61: USB_EP0_CSRn_H Register Diagram

Table 20-39: USB_EP0_CSRn_H Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10
(R/W1A)

DATGLEN Data Toggle Write Enable.
The USB_EP0_CSRn_H.DATGLEN bit enables (in host mode) the USB controller
to write the current state of the endpoint 0 USB_EP0_CSRn_H.DATGL bit. This bit
is automatically cleared once the new value is written.

0 Disable Write to DATGL

1 Enable Write to DATGL

9
(R/W)

DATGL Data Toggle.
The USB_EP0_CSRn_H.DATGL bit indicates (in host mode) the current state of
the endpoint 0 data toggle. If D10 is high, this bit may be written with the required
setting of the data toggle. If D10 is low, any value written to this bit is ignored. This
bit is only used in host mode.

0 DATA0 is Set

1 DATA1 is Set

8
(R/W1A)

FLUSHFIFO Flush Endpoint FIFO.
The USB_EP0_CSRn_H.FLUSHFIFO bit directs (in host mode) the USB
controller to flush data from the endpoint 0 FIFO and clear the USB_EP0_CSRn_
H.TXPKTRDY and USB_EP0_CSRn_H.RXPKTRDY bits. The USB_EP0_CSRn_
H.FLUSHFIFO bit should only be set if the USB_EP0_CSRn_H.TXPKTRDY and
USB_EP0_CSRn_H.RXPKTRDY bits are set. Note that setting this bit at other times
may cause data corruption.

0 No Flush

1 Flush Endpoint FIFO

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–110 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

7
(R/W0C)

NAKTO NAK Timeout.
The USB_EP0_CSRn_H.NAKTO bit indicates (in host mode) when endpoint 0 is
halted following the receipt of NAK responses for longer than the time set by the
USB_EP0_NAKLIMITn register. The processor core should clear this bit to allow
the endpoint to continue.

0 No Status

1 Endpoint Halted (NAK Timeout)

6
(R/W)

STATUSPKT Status Packet.
The USB_EP0_CSRn_H.STATUSPKT bit directs (in host mode) the USB
controller to perform a status stage transaction. This bit is set at the same time as the
USB_EP0_CSRn_H.TXPKTRDYUSB_EP0_CSRn_H.RXPKTRDY. Setting this bit
ensures that the data toggle is set to 1 so that a DATA1 packet is used for the status
stage transaction.

0 No Request

1 Request Status Transaction

5
(R/W)

REQPKT Request Packet.
The USB_EP0_CSRn_H.REQPKT bit directs (in host mode) the USB controller to
request an IN transaction. This bit is cleared when USB_EP0_CSRn_H.
RXPKTRDY is set.

0 No Request

1 Send IN Tokens to Device

4
(R/W0C)

TOERR Timeout Error.
The USB_EP0_CSRn_H.TOERR bit indicates (in host mode) when three attempts
have been made to perform a transaction with no response from the peripheral. The
processor core should clear this bit. An interrupt is generated when this bit is set.

0 No Status

1 Timeout Error

3
(R/W1S)

SETUPPKT Setup Packet.
The USB_EP0_CSRn_H.SETUPPKT bit directs (in host mode) the USB controller
to send a SETUP token instead of an OUT token for the transaction. This bit is set at
the same time as the USB_EP0_CSRn_H.TXPKTRDY bit is set.

0 No Request

1 Send SETUP token

2
(R/W0C)

RXSTALL Rx Stall.
The USB_EP0_CSRn_H.RXSTALL bit indicates (in host mode) when a STALL
handshake is received. The processor core should clear this bit.

0 No Status

1 Stall Received from Device

Table 20-39: USB_EP0_CSRn_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–111

EPn Transmit Configuration and Status (Host) Register

The USB_EPn_TXCSR_H register provides (in host mode) control and status bits for transfers through the
currently selected transmit endpoint.

Figure 20-62: USB_EPn_TXCSR_H Register Diagram

1
(R/W1S)

TXPKTRDY Tx Packet Ready.
The USB_EP0_CSRn_H.TXPKTRDY bit should be set (in host mode) by the
processor core after loading a data packet into the FIFO. This bit is cleared
automatically when the data packet is transmitted. An interrupt is generated (if
enabled) when the bit is cleared.

0 No Tx Packet

1 Tx Packet in Endpoint FIFO

0
(R/W0C)

RXPKTRDY Rx Packet Ready.
The USB_EP0_CSRn_H.RXPKTRDY is set (in host mode) when a data packet is
received. An interrupt is generated (if enabled) when this bit is set. The processor
core should clear this bit when the packet is read from the FIFO.

0 No Rx Packet

1 Rx Packet in Endpoint FIFO

Table 20-39: USB_EP0_CSRn_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–112 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 20-40: USB_EPn_TXCSR_H Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

AUTOSET TxPkRdy Autoset Enable.
The USB_EPn_TXCSR_H.AUTOSET bit enables (in host mode) automatic setting
of the USB_EPn_TXCSR_H.TXPKTRDY bit when the maximum data packet size
(USB_EPn_TXMAXP) is loaded into the transmit FIFO. The USB_EPn_TXMAXP
value must be a word (4-byte) multiple. If a packet less than the maximum packet size
is loaded, the USB_EPn_TXCSR_H.TXPKTRDY bit needs to be set manually. For
products supporting high-speed operation, this USB_EPn_TXCSR_H.AUTOSET
bit should not be set for high bandwidth endpoints (endpoints with USB_EPn_
TXMAXP value greater than 1).

0 Disable Autoset

1 Enable Autoset

12
(R/W)

DMAREQEN DMA Request Enable Tx EP.
The USB_EPn_TXCSR_H.DMAREQEN bit enables (in host mode) DMA requests
for this transmit endpoint.

0 Disable DMA Request

1 Enable DMA Request

11
(R/W)

FRCDATATGL Force Data Toggle.
The USB_EPn_TXCSR_H.FRCDATATGL bit forces (in host mode) the endpoint
data toggle to switch and clears the data packet from the FIFO, regardless of whether
an ACK was received. This feature can be used by interrupt transmit endpoints that
are used to communicate rate feedback for isochronous endpoints.

0 No Action

1 Toggle Endpoint Data

10
(R/W)

DMAREQMODE DMA Mode Select.
The USB_EPn_TXCSR_H.DMAREQMODE bit selects (in host mode) between DMA
request mode 1 or 0. This bit must not be cleared the cycle before or the same cycle
that the USB_EPn_TXCSR_H.DMAREQEN bit is cleared. In DMA request mode 0,
the DMA is programmed to load one packet at a time. Processor intervention is
required for each packet. DMA mode 1 can be used with bulk endpoints to transmit
multiple packets without processor intervention.

0 DMA Request Mode 0

1 DMA Request Mode 1

9
(R/W1A)

DATGLEN Data Toggle Write Enable.
The USB_EPn_TXCSR_H.DATGLEN bit enables (in host mode) the USB controller
to write the current state of the endpoint USB_EPn_TXCSR_H.DATGL bit. This bit
is automatically cleared once the new value is written.

0 Disable Write to DATGL

1 Enable Write to DATGL

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–113

8
(R/W)

DATGL Data Toggle.
The USB_EPn_TXCSR_H.DATGL bit indicates (in host mode) the current state of
the endpoint data toggle. If D10 is high, this bit may be written with the required
setting of the data toggle. If D10 is low, any value written to this bit is ignored. This
bit is only used in host mode.

0 DATA0 is set

1 DATA1 is set

7
(R/W0C)

NAKTOINCMP NAK Timeout Incomplete.
The USB_EPn_TXCSR_H.NAKTOINCMP bit indicates (for bulk endpoints in host
mode) when the transmit endpoint is halted following the receipt of NAK responses
for longer than the time set in the USB_EPn_TXINTERVAL register. The processor
should clear this bit, allowing the endpoint to continue. For products supporting
high-speed operation, for high-bandwidth isochronous endpoints in host mode, this
bit indicates when no response is received from the device to which the packet is
being sent.

0 No Status

1 NAK Timeout Over Maximum

6
(R/W1A)

CLRDATATGL Clear Endpoint Data Toggle.
The USB_EPn_TXCSR_H.CLRDATATGL bit is set (in host mode) by the processor
to reset the endpoint data toggle to 0.

0 No Action

1 Reset EP Data Toggle to 0

5
(R/W0C)

RXSTALL Rx STALL.
The USB_EPn_TXCSR_H.RXSTALL bit indicates (in host mode) when a STALL
handshake is received. The processor core should clear this bit.

0 No Status

1 Stall Received from Device

4
(R/W)

SETUPPKT Setup Packet.
The USB_EPn_TXCSR_H.SETUPPKT bit directs (in host mode) the USB
controller to send a SETUP token instead of an OUT token for the transaction. This
bit is set at the same time as the USB_EPn_TXCSR_H.TXPKTRDY bit is set.

0 No Request

1 Send SETUP Token

3
(R/W1A)

FLUSHFIFO Flush Endpoint FIFO.
The USB_EPn_TXCSR_H.FLUSHFIFO bit directs (in host mode) the USB
controller to flush data from the endpoint FIFO and clear the USB_EPn_TXCSR_
H.TXPKTRDY bit. The USB_EPn_TXCSR_H.FLUSHFIFO bit should only be set if
the USB_EPn_TXCSR_H.TXPKTRDY bit is set. Note that setting this bit at other
times may cause data corruption.

0 No Flush

1 Flush endpoint FIFO

Table 20-40: USB_EPn_TXCSR_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–114 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

EP0 Configuration and Status (Peripheral) Register

The USB_EP0_CSRn_P register provides control and status bits for endpoint 0 in peripheral mode. Note
that some bits may be set to clear automatically.

2
(R/W0C)

TXTOERR Tx Timeout Error.
The USB_EPn_TXCSR_H.TXTOERR bit indicates (in host mode) when three
attempts have been made to send a packet and no handshake packet has been
received. The USB controller generates an interrupt for this condition, clears the
USB_EPn_TXCSR_H.TXPKTRDY bit, and flushes the FIFO. The processor should
clear this bit. Note that USB_EPn_TXCSR_H.TXTOERR is valid only when the
endpoint is operating in bulk or interrupt mode.

0 No Status

1 Tx Timeout Error

1
(R/NW)

NEFIFO Not Empty FIFO.
The USB_EPn_TXCSR_H.NEFIFO bit indicates (in host mode) when there is at
least one packet in the transmit FIFO. This bit is cleared automatically when a data
packet has been transmitted. If the endpoints transmit interrupt is enabled (in USB_
INTRTXE), the USB controller generates an interrupt for this condition. Note that
the USB_EPn_TXCSR_H.TXPKTRDY bit is also automatically cleared prior to
loading a second packet into a double-buffered FIFO.

0 FIFO Empty

1 FIFO Not Empty

0
(R/W1S)

TXPKTRDY Tx Packet Ready.
The USB_EPn_TXCSR_H.TXPKTRDY bit should be set (in host mode) by the
processor core after loading a data packet into the FIFO. This bit is cleared
automatically when the data packet is transmitted. An interrupt is generated (if
enabled) when the bit is cleared.

0 No Tx Packet

1 Tx Packet in Endpoint FIFO

Table 20-40: USB_EPn_TXCSR_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–115

Figure 20-63: USB_EP0_CSRn_P Register Diagram

Table 20-41: USB_EP0_CSRn_P Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

8
(R/W1A)

FLUSHFIFO Flush Endpoint FIFO.
The USB_EP0_CSRn_P.FLUSHFIFO bit directs (in peripheral mode) the USB
controller to flush data from the endpoint 0 FIFO and clear the USB_EP0_CSRn_
P.TXPKTRDY and USB_EP0_CSRn_P.RXPKTRDY bits. The USB_EP0_CSRn_
P.FLUSHFIFO bit should only be set if the USB_EP0_CSRn_P.TXPKTRDY and
USB_EP0_CSRn_P.RXPKTRDY bits are set. Note that setting this bit at other times
may cause data corruption.

0 No Flush

1 Flush Endpoint FIFO

7
(R/W1A)

SSETUPEND Service Setup End.
The USB_EP0_CSRn_P.SSETUPEND bit is set (in peripheral mode) by the
processor core to clear the USB_EP0_CSRn_P.SETUPEND. This bit is cleared
automatically.

0 No Action

1 Clear SETUPEND Bit

6
(R/W1A)

SPKTRDY Service Rx Packet Ready.
The USB_EP0_CSRn_P.SPKTRDY bit is set (in peripheral mode) by the processor
core to clear the USB_EP0_CSRn_P.RXPKTRDY bit. This bit is cleared
automatically.

0 No Action

1 Clear RXPKTRDY Bit

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–116 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

5
(R/W)

SENDSTALL Send Stall.
The USB_EP0_CSRn_P.SENDSTALL bit is set (in peripheral mode) by the
processor core to terminate the current transaction. The STALL handshake is
transmitted, then this bit automatically is cleared.

0 No Action

1 Terminate Current Transaction

4
(R/NW)

SETUPEND Setup End.
The USB_EP0_CSRn_P.SETUPEND bit indicates (in peripheral mode) when a
control transaction ends before the USB_EP0_CSRn_P.DATAEND bit is set. An
interrupt is generated and the FIFO is flushed at this time. This bit is cleared when
the processor core sets the USB_EP0_CSRn_P.SSETUPEND bit.

0 No Status

1 Setup Ended before DATAEND

3
(R/W1S)

DATAEND Data End.
The USB_EP0_CSRn_P.DATAEND bit is set (in peripheral mode) by the processor
core sets when the core:

• Sets the USB_EP0_CSRn_P.TXPKTRDY bit for the last data packet.
• Clears the USB_EP0_CSRn_P.RXPKTRDY bit after unloading the last

data packet.
• Sets the USB_EP0_CSRn_P.TXPKTRDY bit for a zero length data

packet.
The USB_EP0_CSRn_P.DATAEND bit is cleared automatically.

0 No Status

1 Data End Condition

2
(R/W0C)

SENTSTALL Sent Stall.
The USB_EP0_CSRn_P.SENTSTALL bit is set (in peripheral mode) when a
STALL handshake is transmitted. The processor core should clear this bit.

0 No Status

1 Transmitted STALL Handshake

1
(R/W1S)

TXPKTRDY Tx Packet Ready.
The USB_EP0_CSRn_P.TXPKTRDY bit should be set (in peripheral mode) by the
processor core after loading a data packet into the FIFO. This bit is cleared
automatically when the data packet is transmitted. An interrupt is generated (if
enabled) when the bit is cleared.

0

1 Set this bit after loading a data packet into the FIFO

Table 20-41: USB_EP0_CSRn_P Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–117

EPn Transmit Configuration and Status (Peripheral) Register

The USB_EPn_TXCSR_P register provides (in peripheral mode) control and status bits for transfers through
the currently selected transmit endpoint.

Figure 20-64: USB_EPn_TXCSR_P Register Diagram

0
(R/W0C)

RXPKTRDY Rx Packet Ready.
The USB_EP0_CSRn_P.RXPKTRDY is set (in peripheral mode) when a data
packet is received. An interrupt is generated (if enabled) when this bit is set. The
processor core clears this bit by setting the USB_EP0_CSRn_P.SPKTRDY bit.

0 No Rx Packet

1 Rx Packet in Endpoint FIFO

Table 20-41: USB_EP0_CSRn_P Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–118 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 20-42: USB_EPn_TXCSR_P Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

AUTOSET TxPkRdy Autoset Enable.
The USB_EPn_TXCSR_P.AUTOSET bit enables (in peripheral mode) automatic
setting of the USB_EPn_TXCSR_P.TXPKTRDY bit when the maximum data
packet size (USB_EPn_TXMAXP) is loaded into the transmit FIFO. The USB_EPn_
TXMAXP value must be a word (4-byte) multiple. If a packet less than the maximum
packet size is loaded, the USB_EPn_TXCSR_P.TXPKTRDY bit needs to be set
manually. For products supporting high-speed operation, this USB_EPn_TXCSR_
P.AUTOSET bit should not be set for high bandwidth endpoints (endpoints with
USB_EPn_TXMAXP value greater than 1).

0 Disable Autoset

1 Enable Autoset

14
(R/W)

ISO Isochronous Transfers Enable.
The USB_EPn_TXCSR_P.ISO bit enables (in peripheral mode) the transmit
endpoint for isochronous transfers. This bit should be disabled for bulk or interrupt
endpoints.

0 Disable Tx EP Isochronous Transfers

1 Enable Tx EP Isochronous Transfers

12
(R/W)

DMAREQEN DMA Request Enable Tx EP.
The USB_EPn_TXCSR_P.DMAREQEN bit enables (in peripheral mode) DMA
requests for this transmit endpoint.

0 Disable DMA Request

1 Enable DMA Request

11
(R/W)

FRCDATATGL Force Data Toggle.
The USB_EPn_TXCSR_P.FRCDATATGL bit forces (in peripheral mode) the
endpoint data toggle to switch and clears the data packet from the FIFO, regardless of
whether an ACK was received. This feature can be used by interrupt transmit
endpoints that are used to communicate rate feedback for isochronous endpoints.

0 No Action

1 Toggle Endpoint Data

10
(R/W)

DMAREQMODE DMA Mode Select.
The USB_EPn_TXCSR_P.DMAREQMODE bit selects (in peripheral mode) between
DMA request mode 1 or 0. This bit must not be cleared the cycle before or the same
cycle that the USB_EPn_TXCSR_P.DMAREQEN bit is cleared. In DMA request
mode 0, the DMA is programmed to load one packet at a time. Processor
intervention is required for each packet. DMA mode 1 can be used with bulk
endpoints to transmit multiple packets without processor intervention.

0 DMA Request Mode 0

1 DMA Request Mode 1

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–119

6
(R/W1A)

CLRDATATGL Clear Endpoint Data Toggle.
The USB_EPn_TXCSR_P.CLRDATATGL bit is set (in peripheral mode) by the
processor to reset the endpoint data toggle to 0.

0 No Action

1 Reset EP Data Toggle to 0

5
(R/W0C)

SENTSTALL Sent STALL.
The USB_EPn_TXCSR_P.SENTSTALL bit indicates (in peripheral mode) when
the USB controller transmits a STALL handshake. When this condition occurs, the
USB controller flushes the FIFO and clears the USB_EPn_TXCSR_P.TXPKTRDY
bit. The processor should clear this bit.

0 No Status

1 STALL Handshake Transmitted

4
(R/W)

SENDSTALL Send STALL.
The USB_EPn_TXCSR_P.SENDSTALL bit (in peripheral mode) is set by the
processor to issue a STALL handshake to an IN token. The processor clears this bit to
terminate the stall condition. This bit has no effect for isochronous transfers.

0 No Request

1 Request STALL Handshake Transmission

3
(R/W1A)

FLUSHFIFO Flush Endpoint FIFO.
The USB_EPn_TXCSR_P.FLUSHFIFO bit directs (in peripheral mode) the USB
controller to flush data from the endpoint FIFO and clear the USB_EPn_TXCSR_
P.TXPKTRDY bit. The USB_EPn_TXCSR_P.FLUSHFIFO bit should only be set if
the USB_EPn_TXCSR_P.TXPKTRDY bit is set. Note that setting this bit at other
times may cause data corruption.

0 No Flush

1 Flush endpoint FIFO

2
(R/W0C)

URUNERR Underrun Error.
The USB_EPn_TXCSR_P.URUNERR bit indicates (in peripheral mode) when an
IN token is received while the USB_EPn_TXCSR_P.TXPKTRDY bit is not set. The
processor should clear this bit.

0 No Status

1 Underrun Error

1
(R/NW)

NEFIFO Not Empty FIFO.
The USB_EPn_TXCSR_P.NEFIFO bit indicates (in peripheral mode) when there
is at least one packet in the transmit FIFO. This bit is cleared automatically when a
data packet has been transmitted. If the endpoints transmit interrupt is enabled (in
USB_INTRTXE), the USB controller generates an interrupt for this condition. Note
that the USB_EPn_TXCSR_P.TXPKTRDY bit is also automatically cleared prior to
loading a second packet into a double-buffered FIFO.

0 FIFO Empty

1 FIFO Not Empty

Table 20-42: USB_EPn_TXCSR_P Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–120 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

EPn Receive Maximum Packet Length Register

The USB_EPn_RXMAXP register defines the maximum amount of data that can be transferred through the
selected receive endpoint in a single frame.

Note that a value greater than the maximum allowed of 1023 for full-speed USB operation produces unpre-
dictable results. Also note that the total amount of data represented by the value written to this register
must not exceed the receive FIFO size, and should not exceed half the FIFO size if double-buffering is
required.

Figure 20-65: USB_EPn_RXMAXP Register Diagram

0
(R/W1S)

TXPKTRDY Tx Packet Ready.
The USB_EPn_TXCSR_P.TXPKTRDY bit should be set (in peripheral mode) by
the processor core after loading a data packet into the FIFO. This bit is cleared
automatically when the data packet is transmitted. An interrupt is generated (if
enabled) when the bit is cleared.

0 No Tx Packet

1 Tx Packet in Endpoint FIFO

Table 20-43: USB_EPn_RXMAXP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10:0
(R/W)

MAXPAY Maximum Payload.
The USB_EPn_RXMAXP.MAXPAY bits select the maximum number of bytes that
may be transferred per transaction. This field can be up to 1024 but is subject to
constraints by the USB specification based on endpoint mode and speed. This field
should not exceed the FIFO size for the endpoint, or half the FIFO size if double
buffering is used. This value should match the wMaxPacketSize field of the standard
endpoint descriptor (USB 2.0 spec, section 9). The USB_EPn_RXMAXP.MAXPAY
bits must be set to an even number of bytes for proper interrupt generation in DMA
mode 1.

Table 20-42: USB_EPn_TXCSR_P Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–121

EPn Receive Configuration and Status (Host) Register

The USB_EPn_RXCSR_H register provides (in host mode) control and status bits for transfers through the
currently selected receive endpoint.

Figure 20-66: USB_EPn_RXCSR_H Register Diagram

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–122 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 20-44: USB_EPn_RXCSR_H Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

AUTOCLR Auto Clear Enable.
The USB_EPn_RXCSR_H.AUTOCLR bit directs (in host mode) the USB controller
to automatically clear the USB_EPn_RXCSR_H.RXPKTRDY bit when a packet of
size USB_EPn_RXMAXP bytes has been unloaded from the receive FIFO. When
packets of less than the maximum packet size are unloaded, the processor must clear
USB_EPn_RXCSR_H.RXPKTRDY manually. When using the DMA to unload the
receive FIFO, data is read from the receive FIFO in four byte chunks, regardless of the
USB_EPn_RXMAXP value. The USB controller auto clears the USB_EPn_RXCSR_
H.RXPKTRDY bit as follows. (In the following: Remainder=(RxMaxP/4), and PktSz-
Clearing-RxPktRdy=Actual-Bytes-Read-Packet-Sizes-That-Clear-RxPktRdy.)

• Remainder=0, Bytes-Read=RxMaxP, PktSz-Clearing-RxPk-
tRdy=RxMaxP, RxMaxP-1, RxMaxP-2, RxMaxP-3

• Remainder=3, Bytes Read=RxMaxP+1, PktSz-Clearing-RxPk-
tRdy=RxMaxP, RxMaxP-1, RxMaxP-2

• Remainder=2, Bytes Read=RxMaxP+2, PktSz-Clearing-RxPk-
tRdy=RxMaxP, RxMaxP-1

• Remainder=1, Bytes Read=RxMaxP+3, PktSz-Clearing-RxPk-
tRdy=RxMaxP

For products supporting high-speed operation, the USB_EPn_RXCSR_H.
AUTOCLR bit should not be set for high-bandwidth isochronous endpoints.

0 Disable Auto Clear

1 Enable Auto Clear

14
(R/W)

AUTOREQ Auto Request Clear Enable.
The USB_EPn_RXCSR_H.AUTOREQ bit directs (in host mode) the USB controller
to automatically clear the USB_EPn_RXCSR_H.REQPKT bit when USB_EPn_
RXCSR_H.RXPKTRDY bit is cleared. This bit is automatically cleared when a short
packet is received.

0 Disable Auto Request Clear

1 Enable Auto Request Clear

13
(R/W)

DMAREQEN DMA Request Enable Rx EP.
The USB_EPn_RXCSR_H.DMAREQEN bit enables (in host mode) DMA requests
for this receive endpoint.

0 Disable DMA Request

1 Enable DMA Request

12
(R/W0C)

PIDERR Packet ID Error.
The USB_EPn_RXCSR_H.PIDERR bit indicates (in host mode) when a PID error
occurs for isochronous transactions. This bit is ignored in host mode for bulk or
interrupt transactions.

0 No Status

1 PID Error

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–123

11
(R/W)

DMAREQMODE DMA Mode Select.
The USB_EPn_RXCSR_H.DMAREQMODE bit selects (in host mode) between DMA
request mode 1 or 0. This bit must not be cleared the cycle before or the same cycle
that the USB_EPn_RXCSR_H.DMAREQEN bit is cleared. In DMA request mode 0,
the DMA is programmed to load one packet at a time. Processor intervention is
required for each packet. DMA mode 1 can be used with bulk endpoints to transmit
multiple packets without processor intervention.

0 DMA Request Mode 0

1 DMA Request Mode 1

10
(R/W1A)

DATGLEN Data Toggle Write Enable.
The USB_EPn_RXCSR_H.DATGLEN bit enables (in host mode) the USB controller
to write the current state of the endpoint USB_EPn_RXCSR_H.DATGL bit. This bit
is automatically cleared once the new value is written.

0 Disable Write to DATGL

1 Enable Write to DATGL

9
(R/W)

DATGL Data Toggle.
The USB_EPn_RXCSR_H.DATGL bit indicates (in host mode) the current state of
the endpoint data toggle. If D10 is high, this bit may be written with the required
setting of the data toggle. If D10 is low, any value written to this bit is ignored. This
bit is only used in host mode.

0 DATA0 is Set

1 DATA1 is Set

7
(R/W1A)

CLRDATATGL Clear Endpoint Data Toggle.
The USB_EPn_RXCSR_H.CLRDATATGL bit is set (in host mode) by the processor
to reset the endpoint data toggle to 0.

0 No Action

1 Reset EP Data Toggle to 0

6
(R/W0C)

RXSTALL Rx STALL.
The USB_EPn_RXCSR_H.RXSTALL bit indicates (in host mode) when a STALL
handshake is received. The processor core should clear this bit.

0 No Status

1 Stall Received from Device

5
(R/W)

REQPKT Request Packet.
The USB_EPn_RXCSR_H.REQPKT bit directs (in host mode) the USB controller
to request an IN transaction. This bit is cleared when USB_EPn_RXCSR_H.
RXPKTRDY is set.

0 No Request

1 Send IN Tokens to Device

Table 20-44: USB_EPn_RXCSR_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–124 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

4
(R/W1A)

FLUSHFIFO Flush Endpoint FIFO.
The USB_EPn_RXCSR_H.FLUSHFIFO bit directs (in host mode) the USB
controller to flush data from the endpoint FIFO and clear the USB_EPn_RXCSR_
H.RXPKTRDY bit. The USB_EPn_RXCSR_H.FLUSHFIFO bit should only be set if
the USB_EPn_RXCSR_H.RXPKTRDY bit is set. Note that setting this bit at other
times may cause data corruption.

0 No Flush

1 Flush Endpoint FIFO

3
(R/W0C)

NAKTODERR NAK Timeout Data Error.
The USB_EPn_RXCSR_H.NAKTODERR bit indicates (in host mode for
isochronous transfers) a NAK timeout data error when the USB_EPn_RXCSR_H.
RXPKTRDY bit is set and the data packet has a CRC or bit-stuff error. This bit is
cleared when the USB_EPn_RXCSR_H.RXPKTRDY bit is cleared.
The USB_EPn_RXCSR_H.NAKTODERR bit indicates (in host mod for bulk
transfers) when a receive endpoint is halted following the receipt of NAK responses
greater than the limit set in the USB_EPn_RXINTERVAL register. The processor
should clear this bit to allow the endpoint to continue. If double packet buffering is
enabled, the USB_EPn_RXCSR_H.REQPKT bit should also be set in the same cycle
as this bit is cleared.

0 No Status

1 NAK Timeout Data Error

2
(R/W0C)

RXTOERR Rx Timeout Error.
The USB_EPn_RXCSR_H.RXTOERR bit indicates (in host mode) when three
attempts have been made to receive a packet and no data packet has been received.
The USB controller generates an interrupt for this condition. The processor should
clear this bit. Note that USB_EPn_RXCSR_H.RXTOERR is valid only when the
endpoint is operating in bulk or interrupt mode.

0 No Status

1 Rx Timeout Error

1
(R/NW)

FIFOFULL FIFO Full.
The USB_EPn_RXCSR_H.FIFOFULL bit indicates (in host mode) when no more
packets can be loaded into the receive FIFO.

0 No Status

1 FIFO Full

0
(R/W0C)

RXPKTRDY Rx Packet Ready.
The USB_EPn_RXCSR_H.RXPKTRDY is set (in host mode) when a data packet is
received. An interrupt is generated (if enabled) when this bit is set. The processor
core should clear this bit when the packet is read from the FIFO.

0 No Rx Packet

1 Rx Packet in Endpoint FIFO

Table 20-44: USB_EPn_RXCSR_H Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–125

EPn Receive Configuration and Status (Peripheral) Register

The USB_EPn_RXCSR_P register provides (in peripheral mode) control and status bits for transfers through
the currently selected receive endpoint.

Figure 20-67: USB_EPn_RXCSR_P Register Diagram

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–126 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 20-45: USB_EPn_RXCSR_P Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

AUTOCLR Auto Clear Enable.
The USB_EPn_RXCSR_P.AUTOCLR bit directs (in peripheral mode) the USB
controller to automatically clear the USB_EPn_RXCSR_P.RXPKTRDY bit when a
packet of size USB_EPn_RXMAXP bytes has been unloaded from the receive FIFO.
When packets of less than the maximum packet size are unloaded, the processor
must clear USB_EPn_RXCSR_P.RXPKTRDY manually. When using the DMA to
unload the receive FIFO, data is read from the receive FIFO in four byte chunks,
regardless of the USB_EPn_RXMAXP value. The USB controller auto clears the
USB_EPn_RXCSR_P.RXPKTRDY bit as follows. (In the following:
Remainder=(RxMaxP/4), and PktSz-Clearing-RxPktRdy=Actual-Bytes-Read-
Packet-Sizes-That-Clear-RxPktRdy.)

• Remainder=0, Bytes-Read=RxMaxP, PktSz-Clearing-RxPk-
tRdy=RxMaxP, RxMaxP-1, RxMaxP-2, RxMaxP-3

• Remainder=3, Bytes Read=RxMaxP+1, PktSz-Clearing-RxPk-
tRdy=RxMaxP, RxMaxP-1, RxMaxP-2

• Remainder=2, Bytes Read=RxMaxP+2, PktSz-Clearing-RxPk-
tRdy=RxMaxP, RxMaxP-1

• Remainder=1, Bytes Read=RxMaxP+3, PktSz-Clearing-RxPk-
tRdy=RxMaxP

For products supporting high-speed operation, the USB_EPn_RXCSR_P.
AUTOCLR bit should not be set for high-bandwidth isochronous endpoints.

0 Disable Auto Clear

1 Enable Auto Clear

14
(R/W)

ISO Isochronous Transfers.
The USB_EPn_RXCSR_P.ISO bit selects (in peripheral mode) between
isochronous transfers and bulk/interrupt transfers.

0 This bit should be cleared for bulk or interrupt
transfers.

1 This bit should be set for isochronous transfers.

13
(R/W)

DMAREQEN DMA Request Enable Rx EP.
The USB_EPn_RXCSR_P.DMAREQEN bit enables (in peripheral mode) DMA
requests for this receive endpoint.

0 Disable DMA Request

1 Enable DMA Request

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–127

11
(R/W)

DMAREQMODE DMA Mode Select.
The USB_EPn_RXCSR_P.DMAREQMODE bit selects (in peripheral mode) between
DMA request mode 1 or 0. This bit must not be cleared the cycle before or the same
cycle that the USB_EPn_RXCSR_P.DMAREQEN bit is cleared. In DMA request
mode 0, the DMA is programmed to load one packet at a time. Processor
intervention is required for each packet. DMA mode 1 can be used with bulk
endpoints to transmit multiple packets without processor intervention.

0 DMA Request Mode 0

1 DMA Request Mode 1

7
(R/W1A)

CLRDATATGL Clear Endpoint Data Toggle.
The USB_EPn_RXCSR_P.CLRDATATGL bit is set (in peripheral mode) by the
processor to reset the endpoint data toggle to 0.

0 No Action

1 Reset EP Data Toggle to 0

6
(R/W0C)

SENTSTALL Sent STALL.
The USB_EPn_RXCSR_P.SENTSTALL bit indicates (in peripheral mode) when a
STALL handshake is transmitted. The processor should clear this bit.

0 No Status

1 STALL Handshake Transmitted

5
(R/W)

SENDSTALL Send STALL.
The USB_EPn_RXCSR_P.SENDSTALL bit is set (in peripheral mode) by the
processor to send a STALL handshake. The processor clears this bit to terminate the
stall condition. This bit has no effect for isochronous transfers.

0 No Action

1 Request STALL Handshake

4
(R/W1A)

FLUSHFIFO Flush Endpoint FIFO.
The USB_EPn_RXCSR_P.FLUSHFIFO bit directs (in peripheral mode) the USB
controller to flush data from the endpoint FIFO and clear the USB_EPn_RXCSR_
P.RXPKTRDY bit. The USB_EPn_RXCSR_P.FLUSHFIFO bit should only be set if
the USB_EPn_RXCSR_P.RXPKTRDY bit is set. Note that setting this bit at other
times may cause data corruption.

0 No Flush

1 Flush Endpoint FIFO

3
(R/NW)

DATAERR Data Error.
The USB_EPn_RXCSR_P.DATAERR bit indicates (in peripheral mode for
isochronous transfers) when the USB_EPn_RXCSR_P.RXPKTRDY bit is set and
the data packet has a CRC or bit-stuff error. This bit is cleared when USB_EPn_
RXCSR_P.RXPKTRDY is cleared. The USB_EPn_RXCSR_P.DATAERR bit is
always zero for bulk endpoints in peripheral mode.

0 No Status

1 Data Error

Table 20-45: USB_EPn_RXCSR_P Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–128 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

EP0 Number of Received Bytes Register

The USB_EP0_CNTn register indicates the number of received data bytes in the endpoint 0 FIFO. The value
returned changes as the contents of the FIFO change and is only valid while the USB_EP0_CSRn_H.
RXPKTRDY bit or USB_EP0_CSRn_P.RXPKTRDY bit is set.

Figure 20-68: USB_EP0_CNTn Register Diagram

2
(R/W0C)

ORUNERR OUT Run Error.
The USB_EPn_RXCSR_P.ORUNERR bit indicates (in peripheral mode for
isochronous transfers) when an OUT packet cannot be loaded into the receive FIFO.
The processor should clear this bit. The USB_EPn_RXCSR_P.ORUNERR bit always
returns zero in bulk mode.

0 No Status

1 OUT Run Error

1
(R/NW)

FIFOFULL FIFO Full.
The USB_EPn_RXCSR_P.FIFOFULL bit indicates (in peripheral mode) when no
more packets can be loaded into the receive FIFO.

0 No Status

1 FIFO Full

0
(R/W0C)

RXPKTRDY Rx Packet Ready.
The USB_EPn_RXCSR_P.RXPKTRDY is set (in peripheral mode) when a data
packet is received. An interrupt is generated (if enabled) when this bit is set. The
processor core should clear this bit when the packet is read from the FIFO.

0 No Rx Packet

1 Rx Packet in Endpoint FIFO

Table 20-45: USB_EPn_RXCSR_P Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–129

EPn Number of Bytes Received Register

The USB_EPn_RXCNT register indicates the number of received data bytes in the endpoint receive FIFO.
The value returned changes as the contents of the FIFO change and is only valid while the USB_EPn_
RXCSR_H.RXPKTRDY bit or USB_EPn_RXCSR_P.RXPKTRDY bit is set.

Figure 20-69: USB_EPn_RXCNT Register Diagram

EP0 Connection Type Register

The USB_EP0_TYPEn register selects the USB controller operating speed for endpoint 0 when acting as a
host connected to devices through a hub.

Table 20-46: USB_EP0_CNTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/NW)

RXCNT Rx Byte Count Value.
The USB_EP0_CNTn.RXCNT bits holds the number of data bytes currently inline
ready to be read from the Rx FIFO. The value returned changes as the FIFO is
unloaded and is only valid while USB_EP0_CSRn_H.RXPKTRDY bit or USB_
EP0_CSRn_P.RXPKTRDY bit is set.

Table 20-47: USB_EPn_RXCNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

13:0
(R/NW)

EPRXCNT EP Rx Count.
The USB_EPn_RXCNT.EPRXCNT bits hold the number of data bytes ready to be
read from the receive FIFO.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–130 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-70: USB_EP0_TYPEn Register Diagram

EPn Transmit Type Register

The USB_EPn_TXTYPE register selects the endpoint number and transaction protocol to use for the
currently selected transmit endpoint. There is a USB_EPn_TXTYPE register for each transmit endpoint.
Note that this register is only used in host mode.

Figure 20-71: USB_EPn_TXTYPE Register Diagram

Table 20-48: USB_EP0_TYPEn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1:0
(R/W)

SPEED Speed of Operation Value.
The USB_EP0_TYPEn.SPEED bits select the USB controller operating speed for
endpoint 0 when acting as a host connected to devices through a hub. In these
instances. the USB controller must issue split transactions under certain conditions.
If a device is directly connected (not through a hub), all endpoints use the same speed
as which the controller is connected. When not connected to devices through a hub,
program this field with 00.

0 Same Speed as Processor Core

1 High Speed

2 Full Speed

3 Low Speed

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–131

Table 20-49: USB_EPn_TXTYPE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

SPEED Speed of Operation Value.
The USB_EPn_TXTYPE.SPEED bits select the USB controller operating speed for
the endpoint when acting as a host connected to devices through a hub. In these
instances. the USB controller must issue split transactions under certain conditions.
If a device is directly connected (not through a hub), all endpoints use the same speed
as which the controller is connected. When not connected to devices through a hub,
program this field with 00.

0 Same Speed as the Core

1 High Speed

2 Full Speed

3 Low Speed

5:4
(R/W)

PROTOCOL Protocol for Transfer.
The USB_EPn_TXTYPE.PROTOCOL bits select the transfer protocol for the
endpoint.

0 Control

1 Isochronous

2 Bulk

3 Interrupt

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–132 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

EP0 NAK Limit Register

The USB_EP0_NAKLIMITn register determines the number of frames/micro-frames after which endpoint 0
should timeout on receiving a stream of NAK responses for bulk endpoints.

Figure 20-72: USB_EP0_NAKLIMITn Register Diagram

3:0
(R/W)

TGTEP Target Endpoint Number.
The USB_EPn_TXTYPE.TGTEP bits select (for endpoints 1-11) the target
endpoint. This value should be set to the endpoint number contained in the transmit
endpoint descriptor returned during device enumeration. Endpoint 0 always uses
target endpoint number 0. (Enumeration values not shown are reserved.)

0 Endpoint 0

1 Endpoint 1

2 Endpoint 2

3 Endpoint 3

4 Endpoint 4

5 Endpoint 5

6 Endpoint 6

7 Endpoint 7

8 Endpoint 8

9 Endpoint 9

10 Endpoint 10

11 Endpoint 11

12 Endpoint 12

13 Endpoint 13

14 Endpoint 14

15 Endpoint 15

Table 20-49: USB_EPn_TXTYPE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–133

EPn Transmit Polling Interval Register

The USB_EPn_TXINTERVAL register defines the polling interval for the currently selected transmit endpoint
for interrupt, isochronous, and bulk transfers. There is a USB_EPn_TXINTERVAL register for each config-
ured transmit endpoint, except endpoint 0. The transfer types relate to speed1, interval value, and interval
operation as follows:

• Interrupt: Speed=Low Speed or Full Speed, USB_EPn_TXINTERVAL=1-255, and Operation=Polling
interval is m frames.

• Interrupt: Speed=High Speed, USB_EPn_TXINTERVAL=1-16, and Operation=Polling interval is 2(m-1)
micro-frames.

• Isochronous: Speed=Full Speed or High Speed, USB_EPn_TXINTERVAL=1-16, and Operation=Polling
interval is 2(m-1) frames or micro-frames.

• Bulk: Speed=Full Speed or High Speed, USB_EPn_TXINTERVAL=2-16, and Operation=NAK Limit is
2(m-1) frames or micro-frames.

Note that a USB_EPn_TXINTERVAL value of 0 or 1 disables the NAK timeout function.

Figure 20-73: USB_EPn_TXINTERVAL Register Diagram

Table 20-50: USB_EP0_NAKLIMITn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4:0
(R/W)

VALUE Endpoint 0 Timeout Value (in Frames).
The USB_EP0_NAKLIMITn.VALUE bits hold the endpoint 0 timeout value
(number of frames).

1.Not all products support high-speed operation or microframes. These features do not apply for products that only support low/full-speed
operation.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–134 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

EPn Receive Type Register

The USB_EPn_RXTYPE register selects the endpoint number and transaction protocol to use for the
currently selected receive endpoint. There is a USB_EPn_RXTYPE register for each receive endpoint. Note
that this register is only used in host mode.

Figure 20-74: USB_EPn_RXTYPE Register Diagram

Table 20-51: USB_EPn_TXINTERVAL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Tx Polling Interval.
The USB_EPn_TXINTERVAL.VALUE bits define the polling interval value for
interrupt and isochronous transfers and select the number of frames (or
microframes, if the processor supports high-speed operation) after which the
endpoint should timeout on receiving a stream of NAK responses for bulk and
control endpoints. Note that the USB controller halts transfers to control endpoints if
the host receives NAK responses for more frames than the limit set by this register.

Table 20-52: USB_EPn_RXTYPE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:6
(R/W)

SPEED Speed of Operation Value.
The USB_EPn_RXTYPE.SPEED bits select the USB controller operating speed for
the endpoint when acting as a host connected to devices through a hub. In these
instances. the USB controller must issue split transactions under certain conditions.
If a device is directly connected (not through a hub), all endpoints use the same speed
as which the controller is connected. When not connected to devices through a hub,
program this field with 00.

0 Same Speed as the Core

1 High Speed

2 Full Speed

3 Low Speed

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–135

EPn Receive Polling Interval Register

The USB_EPn_RXINTERVAL register defines the polling interval for the currently selected receive endpoint
for interrupt, isochronous, and bulk transfers. There is a USB_EPn_RXINTERVAL register for each config-

5:4
(R/W)

PROTOCOL Protocol for Transfer.
The USB_EPn_RXTYPE.PROTOCOL bits select the transfer protocol for the
endpoint.

0 Control

1 Isochronous

2 Bulk

3 Interrupt

3:0
(R/W)

TGTEP Target Endpoint Number.
The USB_EPn_RXTYPE.TGTEP bits select (for endpoints 1-11) the target
endpoint. This value should be set to the endpoint number contained in the receive
endpoint descriptor returned during device enumeration. Endpoint 0 always uses
target endpoint number 0. (Enumeration values not shown are reserved.)

0 Endpoint 0

1 Endpoint 1

2 Endpoint 2

3 Endpoint 3

4 Endpoint 4

5 Endpoint 5

6 Endpoint 6

7 Endpoint 7

8 Endpoint 8

9 Endpoint 9

10 Endpoint 10

11 Endpoint 11

12 Endpoint 12

13 Endpoint 13

14 Endpoint 14

15 Endpoint 15

Table 20-52: USB_EPn_RXTYPE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–136 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ured receive endpoint, except endpoint 0. The transfer types relate to speed1, interval value, and interval
operation as follows:

• Interrupt: Speed=Low Speed or Full Speed, USB_EPn_RXINTERVAL=1-255, and Operation=Polling
interval is m frames.

• Interrupt: Speed=High Speed, USB_EPn_RXINTERVAL=1-16, and Operation=Polling interval is 2(m-1)
micro-frames.

• Isochronous: Speed=Full Speed or High Speed, USB_EPn_RXINTERVAL=1-16, and Operation=Polling
interval is 2(m-1) frames or micro-frames.

• Bulk: Speed=Full Speed or High Speed, USB_EPn_RXINTERVAL=2-16, and Operation=NAK Limit is
2(m-1) frames or micro-frames.

Note that a USB_EPn_RXINTERVAL value of 0 or 1 disables the NAK timeout function.

Figure 20-75: USB_EPn_RXINTERVAL Register Diagram

EP0 Configuration Information Register

The USB_EP0_CFGDATAn register describes the USB controller hardware configuration. This register only
exists for endpoint 0.

1.Not all products support high-speed operation or microframes. These features do not apply for products that only support low/full-speed
operation.

Table 20-53: USB_EPn_RXINTERVAL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

VALUE Rx Polling Interval.
The USB_EPn_RXINTERVAL.VALUE bits define the polling interval value for
interrupt and isochronous transfers and select the number of frames (or
microframes, if the processor supports high-speed operation) after which the
endpoint should timeout on receiving a stream of NAK responses for bulk and
control endpoints. Note that the USB controller halts transfers to control endpoints if
the host receives NAK responses for more frames than the limit set by this register.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–137

Figure 20-76: USB_EP0_CFGDATAn Register Diagram

Table 20-54: USB_EP0_CFGDATAn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R0/NW)

MPRX Multi-Packet Aggregate for Rx Enable.
The USB_EP0_CFGDATAn.MPRX bit indicates whether the USB controller
aggregates receive packets into bulk packets before the processor core reads the data.

0 No Aggregate Rx Bulk Packets

1 Aggregate Rx Bulk Packets

6
(R0/NW)

MPTX Multi-Packet Split for Tx Enable.
The USB_EP0_CFGDATAn.MPTX bit indicates whether the USB controller permits
transmit of large packets through writing to bulk endpoints. The USB controller
splits the transmit data into packets, which are appropriately sized for transmit.

0 No Split Tx Bulk Packets

1 Split Tx Bulk Packets

5
(R0/NW)

BIGEND Big Endian Data.
The USB_EP0_CFGDATAn.BIGEND bit indicates whether the USB controller uses
big endian configuration or little endian configuration.

0 Little Endian Configuration

1 Big Endian Configuration

4
(R0/NW)

HBRX High Bandwidth Rx Enable.
The USB_EP0_CFGDATAn.HBRX bit indicates whether the USB controller
supports high-bandwidth receive ISO endpoint support.

0 No High Bandwidth Rx

1 High Bandwidth Rx

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–138 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

FIFO Size

When configured for fixed FIFO sizes, the USB_EPn_FIFOSZ register reports the size for the given
endpoint. This register is only valid for endpoints greater than 0 (endpoint zero has a fixed size of 64 bytes).
The USB_EPn_FIFOSZ register is not present if the USB controller is configured for dynamic FIFO sizing.

Figure 20-77: USB_EPn_FIFOSZ Register Diagram

3
(R0/NW)

HBTX High Bandwidth Tx Enable.
The USB_EP0_CFGDATAn.HBTX bit indicates whether the USB controller
supports high bandwidth transmit ISO endpoint support.

0 No High Bandwidth Tx

1 High Bandwidth Tx

2
(R0/NW)

DYNFIFO Dynamic FIFO Size Enable.
The USB_EP0_CFGDATAn.DYNFIFO bit indicates whether the USB controller
uses dynamic FIFO size support (on products supporting this feature), enabling the
dynamic FIFO registers. These registers are accessed using the configuration set in
the endpoints indexed FIFO size and FIFO address registers, except for endpoint 0.

0 No Dynamic FIFO Size

1 Dynamic FIFO Size

1
(R1/NW)

SOFTCON Soft Connect Enable.
The USB_EP0_CFGDATAn.SOFTCON bit indicates whether the USB controller
uses soft connect.

0 No Soft Connect

1 Soft Connect

0
(R0/W)

UTMIWID UTMI Data Width.
The USB_EP0_CFGDATAn.UTMIWID bit indicates whether the USB controller
uses an 8-bit or 16-bit UTMI data width.

0 8-bit UTMI Data Width

1 16-bit UTMI Data Width

Table 20-54: USB_EP0_CFGDATAn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–139

DMA Interrupt Register

The USB_DMA_IRQ register indicates which of the DMA master channels have a pending interrupt. The
USB controller generates the interrupt when the corresponding DMA count register (USB_DMAn_CNT)
reaches zero. The USB controller clears this register when it is read.

Figure 20-78: USB_DMA_IRQ Register Diagram

Table 20-55: USB_EPn_FIFOSZ Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:4
(R/NW)

RXFIFOSZ Receive FIFO Size.
The USB_EPn_FIFOSZ.RXFIFOSZ bit encodes the log2 size of the receive FIFO.
Values of 313 correspond to FIFO sizes 8-8192 (2^n). If an endpoint has not been
configured, a value of 0 is returned. If the RX and TX endpoints share the same FIFO,
a value of 0xF is returned.

3:0
(R/NW)

TXFIFOSZ Transmit FIFO Size.
The USB_EPn_FIFOSZ.TXFIFOSZ bit encodes the log2 size of the transmit
FIFO. Values of 313 correspond to FIFO sizes 8-8192 (2^n). If an endpoint has not
been configured, a value of 0 is returned.

Table 20-56: USB_DMA_IRQ Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6
(RC/NW)

D6 DMA 6 Interrupt Pending Status.
The USB_DMA_IRQ.D6 indicates whether there is a DMA 6 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–140 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA Channel n Control Register

There is a USB_DMAn_CTL register for each DMA master channel. This register assigns, configures, and
controls each endpoint with a corresponding DMA master channel.

5
(RC/NW)

D5 DMA 5 Interrupt Pending Status.
The USB_DMA_IRQ.D5 indicates whether there is a DMA 5 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

4
(RC/NW)

D4 DMA 4 Interrupt Pending Status.
The USB_DMA_IRQ.D4 indicates whether there is a DMA 4 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

3
(RC/NW)

D3 DMA 3 Interrupt Pending Status.
The USB_DMA_IRQ.D3 indicates whether there is a DMA 3 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

2
(RC/NW)

D2 DMA 2 Interrupt Pending Status.
The USB_DMA_IRQ.D2 indicates whether there is a DMA 2 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

1
(RC/NW)

D1 DMA 1 Interrupt Pending Status.
The USB_DMA_IRQ.D1 indicates whether there is a DMA 1 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

0
(RC/NW)

D0 DMA 0 Interrupt Pending Status.
The USB_DMA_IRQ.D0 indicates whether there is a DMA 0 interrupt pending.

0 No Pending Interrupt

1 Pending DMA Interrupt

Table 20-56: USB_DMA_IRQ Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–141

Figure 20-79: USB_DMAn_CTL Register Diagram

Table 20-57: USB_DMAn_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

10:9
(R/W)

BRSTM Burst Mode.
The USB_DMAn_CTL.BRSTM bits select the type or length of burst transfer used by
the corresponding DMA channel to transfer data.

0 Unspecified Length

1 INCR4 or Unspecified Length

2 INCR8, INCR4, or Unspecified Length

3 INCR16, INCR8, INCR4, or Unspecified Length

8
(R/W)

ERR Bus Error.
The USB_DMAn_CTL.ERR bit indicates when a peripheral bus error has been
encountered by the master channel. This bit is cleared by software.

0 No Status

1 Bus Error

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–142 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

7:4
(R/W)

EP DMA Channel Endpoint Assignment.
The USB_DMAn_CTL.EP bits select the endpoint assignments for the DMA
channel. (Enumeration values not shown are reserved.)

0 Endpoint 0

1 Endpoint 1

2 Endpoint 2

3 Endpoint 3

4 Endpoint 4

5 Endpoint 5

6 Endpoint 6

7 Endpoint 7

8 Endpoint 8

9 Endpoint 9

10 Endpoint 10

11 Endpoint 11

12 Endpoint 12

13 Endpoint 13

14 Endpoint 14

15 Endpoint 15

3
(R/W)

IE DMA Interrupt Enable.
The USB_DMAn_CTL.IE bit enables DMA interrupts for the DMA channel,
enabling operation of the channels corresponding bit in the USB_DMA_IRQ register.

0 Disable Interrupt

1 Enable Interrupt

2
(R/W)

MODE DMA Mode.
The USB_DMAn_CTL.MODE bit selects whether the DMA channel operates in
DMA mode 0 or operates in DMA mode 1. Note that DMA mode 1 may only be used
with bulk endpoints.

0 DMA Mode 0

1 DMA Mode 1

1
(R/W)

DIR DMA Transfer Direction.
The USB_DMAn_CTL.DIR bit selects the DMA channel transfer direction, which
must be selected for use with receive endpoints (DMA write=0) or transmit
endpoints (DMA read=1).

0 DMA Write (for Rx Endpoint)

1 DMA Read (for Tx Endpoint)

Table 20-57: USB_DMAn_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–143

DMA Channel n Address Register

The USB_DMAn_ADDR register indicates the location in on-chip memory where DMA data is written or read.
The address must be aligned to 32-bit words (The lower two address bits are always zero.) This register
increments as the DMA transfer progresses.

Figure 20-80: USB_DMAn_ADDR Register Diagram

DMA Channel n Count Register

The USB_DMAn_CNT register holds the DMA count, indicating the number of bytes to be transferred for a
given DMA work block. If this field is set to zero, no data is transferred, and an interrupt is generated.

0
(R/W)

EN DMA Enable.
The USB_DMAn_CTL.EN bit enables the DMA channel starts the DMA transfer.

0 Disable DMA

1 Enable DMA (Start Transfer)

Table 20-58: USB_DMAn_ADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE DMA Address Value.
The USB_DMAn_ADDR.VALUE bits hold the address value for the location in on-
chip memory where DMA data is written or read.

Table 20-57: USB_DMAn_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–144 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 20-81: USB_DMAn_CNT Register Diagram

EPn Request Packet Count Register

The USB_RQPKTCNTn register specifies (in host mode) the number of packets to request in a block transfer
of one or more bulk packets of size USB_EPn_RXMAXP from a receive endpoint. This register only applies
for receive endpoints 1 through 11 in host mode.

Figure 20-82: USB_RQPKTCNTn Register Diagram

Table 20-59: USB_DMAn_CNT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE DMA Count Value.
The USB_DMAn_CNT.VALUE bits indicate the number of bytes to be transferred for
a given DMA work block.

Table 20-60: USB_RQPKTCNTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Request Packet Count Value.
The USB_RQPKTCNTn.VALUE bits specify the number of bulk packets to request
in a block transfer from a receive endpoint. This field is used in conjunction with
Auto Request feature (USB_EPn_RXCSR_H.AUTOREQ).

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–145

RX Double Packet Buffer Disable for Endpoints 1 to 3

When the bits in the USB_RXDPKTBUFDIS register =1, double packet buffering for the corresponding
endpoint is disabled regardless of the end point FIFO size and the maximum packet size (MAXP) relation-
ship. When the bits in the USB_RXDPKTBUFDIS register =0, they do not necessarily enable double packet
buffering but rather allow double packet buffering to be determined based upon the end point FIFO size
and MAXP size relationship.

Figure 20-83: USB_RXDPKTBUFDIS Register Diagram

Table 20-61: USB_RXDPKTBUFDIS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W)

EP3 Disable RX Double Buffer of Endpoint 3.
The USB_RXDPKTBUFDIS.EP3 bit either allows or disables double packed
buffering based on endpoint 3 FIFO size and MAXP size relationship.

0 Allow double packet buffering based on endpoint FIFO
size and MAXP size relationship

1 Disable double packet buffering

2
(R/W)

EP2 Disable RX Double Buffer of Endpoint 2.
The USB_RXDPKTBUFDIS.EP2 bit either allows or disables double packed
buffering based on endpoint 2 FIFO size and MAXP size relationship.

0 Allow double packet buffering based on endpoint FIFO
size and MAXP size relationship

1 Disable double packet buffering

1
(R/W)

EP1 Disable RX Double Buffer of Endpoint 1.
The USB_RXDPKTBUFDIS.EP1 bit either allows or disables double packed
buffering based on endpoint 1 FIFO size and MAXP size relationship.

0 Allow double packet buffering based on endpoint FIFO
size and MAXP size relationship

1 Disable double packet buffering

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–146 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

TX Double Packet Buffer Disable for Endpoints 1 to 3

When the bits in the USB_TXDPKTBUFDIS register =1, double packet buffering for the corresponding
endpoint is disabled regardless of the end point FIFO size and the maximum packet size (MAXP) size rela-
tionship. When the bits in the USB_TXDPKTBUFDIS register =0, they do not necessarily enable double
packet buffering but rather allow double packet buffering to be determined based upon the end point FIFO
size and MAXP size relationship.

Figure 20-84: USB_TXDPKTBUFDIS Register Diagram

Table 20-62: USB_TXDPKTBUFDIS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W)

EP3 Disable TX Double Buffer of Endpoint 3.
The USB_TXDPKTBUFDIS.EP3 bit either allows or disables double packed
buffering based on endpoint 3 FIFO size and MAXP size relationship.

0 Allow double packet buffering based on endpoint FIFO
size and MAXP size relationship

1 Disable double packet buffering

2
(R/W)

EP2 Disable TX Double Buffer of Endpoint 2.
The USB_TXDPKTBUFDIS.EP2 bit either allows or disables double packed
buffering based on endpoint 2 FIFO size and MAXP size relationship.

0 Allow double packet buffering based on endpoint FIFO
size and MAXP size relationship

1 Disable double packet buffering

1
(R/W)

EP1 Disable TX Double Buffer of Endpoint 1.
The USB_TXDPKTBUFDIS.EP1 bit either allows or disables double packed
buffering based on endpoint 1 FIFO size and MAXP size relationship.

0 Allow double packet buffering based on endpoint FIFO
size and MAXP size relationship

1 Disable double packet buffering

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–147

LPM Attribute Register

The USB_LPM_ATTR register defines the link power management (LPM) attributes for LPM transactions
and sleep/wake operation. In peripheral mode, the USB_LPM_ATTR register contains values received in the
most recent, accepted (ACK'd) LPM transaction. In host mode, the USB_LPM_ATTR register contains values
(loaded by software) that set up the next LPM transaction. The USB controller inserts the LPM values
within the next LPM transaction.

Figure 20-85: USB_LPM_ATTR Register Diagram

Table 20-63: USB_LPM_ATTR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:12
(R/W)

EP Endpoint.
The USB_LPM_ATTR.EP bits select the endpoint in the token packet of the LPM
transaction.

8
(R/W)

RMTWAK Remote Wakeup Enable.
The USB_LPM_ATTR.RMTWAK bit enables remote wakeup. This bit is applied on a
temporary basis only and is only applied to the current suspend state. After the
current suspend cycle, the remote wakeup capability that was negotiated during
enumeration applies.

0 Disable Remote Wakeup

1 Enable Remote Wakeup

7:4
(R/W)

HIRD Host Initiated Resume Duration.
The USB_LPM_ATTR.HIRD bits select the host initiated resume duration. This
value is the minimum time that the host drives resume on the bus. The value in this
register corresponds to an actual resume time of:
Resume Time = 50us + HIRD*75us.
This equation produces results in a range of 50us to 1200us.

3:0
(R/W)

LINKSTATE Link State.
The USB_LPM_ATTR.LINKSTATE bits is value is provided by the host to the
peripheral to indicate what state the peripheral must transition to after the receipt
and acceptance of a LPM transaction. (Enumerations not shown are reserved.)

1 Sleep State (L1)

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–148 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

LPM Control Register

The USB_LPM_CTL register controls link power management (LPM) operations, including LPM enable,
NAK, resume, and mode transition.

Figure 20-86: USB_LPM_CTL Register Diagram

Table 20-64: USB_LPM_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/W)

NAK LPM NAK Enable.
The USB_LPM_CTL.NAK bit enables (in peripheral mode) a NAK-all-non-LPM
transactions mode for all end points, forcing a NAK response to all transactions other
than an LPM transaction. This bit only takes effect after the controller has been LPM
suspended. In this case, the USB controller continues to NAK, until this bit has been
cleared by software.

0 Disable LPM NAK

1 Enable LPM NAK

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–149

3:2
(R/W)

EN LPM Enable.
The USB_LPM_CTL.EN bits enable (In peripheral mode) LPM operations. The
LPM operation may be enabled at different levels, which determine the response of
the USB controller to LPM transactions.

0 Disable LPM
LPM and extended transactions are not supported. The
USB controller does not respond to LPM transactions,
and these transaction timeout.

1 Disable LPM
LPM and extended transactions are not supported. The
USB controller does not respond to LPM transactions,
and these transaction timeout.

2 Enable Extended Transactions
LPM is not supported, but extended transactions are
supported. The USB controller responds to an LPM
transaction with a STALL.

3 Enable LPM and Extended Transactions
Both LPM and extended transactions are supported.
The USB controller responds with a NYET or an ACK
as determined by the value of LPMXMT and other
conditions.

1
(R/W)

RESUME LPM Resume (Remote Wakeup).
The USB_LPM_CTL.RESUME bit initiates resume (remote wakeup). This bits
operation differs from the USB_POWER.RESUME bit in that the LPM resume signal
timing is controlled by hardware. When set, the USB controller asserts resume
signaling for 50us in host mode or asserts resume signaling for the time specified by
the USB_LPM_ATTR.HIRD field in device mode. The USB_LPM_CTL.RESUME
bit is self clearing.

0 No Action

1 LPM Resume

Table 20-64: USB_LPM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–150 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

LPM Interrupt Enable Register

The USB_LPM_IEN register enables the link power management (LPM) related interrupts. When an inter-
rupt is enabled in this register and the corresponding interrupt is pending in USB_LPM_IRQ, the USB
controller generates the interrupt. When an interrupt is disabled in this register, the corresponding inter-
rupt may be pending in USB_LPM_IRQ, but the USB controller does not generate an interrupt.

Figure 20-87: USB_LPM_IEN Register Diagram

0
(R/W)

TX LPM Transmit.
The USB_LPM_CTL.TX bit puts the USB controller in LPM transmit mode, but this
mode has differing operations in host mode versus peripheral mode.
In peripheral mode, this bit is set by software to instruct the controller to transition to
the L1 state upon receipt of the next LPM transaction. This bit is only effective if LPM
enable (USB_LPM_CTL.EN) is set to 0x3. The LPM transmit enable bit can be set in
the same cycle as LPM enable. If USB_LPM_CTL.TX and USB_LPM_CTL.EN are
enabled, the USB controller can respond in the following ways:

• If no data is pending (all transmit FIFOs are empty), the USB controller
responds with an ACK, clears the USB_LPM_CTL.TX bit, and generates a
software interrupt.

• If data is pending (data resides in at least one transmit FIFO), the USB
controller responds with a NYET, does not clear the USB_LPM_CTL.TX bit, and
generates a software interrupt.

In host mode, this bit is set by software to transmit an LPM transaction. This bit is
self clearing. The USB controller clears this bit immediately on receipt of any token or
after three timeouts have occurred.

0 Disable LPM Tx

1 Enable LPM Tx

Table 20-64: USB_LPM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–151

LPM Interrupt Status Register

The USB_LPM_IRQ register indicates link power management (LPM) related interrupt status. The USB
controller clears this register when it is read.

Figure 20-88: USB_LPM_IRQ Register Diagram

Table 20-65: USB_LPM_IEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5
(R/W)

LPMERR LPM Error Interrupt Enable.

0 Disable Interrupt

1 Enable Interrupt

4
(R/W)

LPMRES LPM Resume Interrupt Enable.

0 Disable Interrupt

1 Enable Interrupt

3
(R/W)

LPMNC LPM NYET Control Interrupt Enable.

0 Disable Interrupt

1 Enable Interrupt

2
(R/W)

LPMACK LPM ACK Interrupt Enable.

0 Disable Interrupt

1 Enable Interrupt

1
(R/W)

LPMNY LPM NYET Interrupt Enable.

0 Disable Interrupt

1 Enable Interrupt

0
(R/W)

LPMST LPM STALL Interrupt Enable.

0 Disable Interrupt

1 Enable Interrupt

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–152 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 20-66: USB_LPM_IRQ Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5
(RC/NW)

LPMERR LPM Error Interrupt.
The USB_LPM_IRQ.LPMERR bit indicates an LPM error interrupt condition, but
this interrupt has differing conditions for host mode versus peripheral mode.
In peripheral mode, this bit is set if an LPM transaction is received that has a
LinkState field that is not supported. The USB controller responds to the transaction
with a STALL. Note that the USB controller updates the USB_LPM_ATTR register, so
software can observe the non compliant LPM packet payload.
In host mode, this bit is set if the response to a LPM transaction is received with a bit
stuff or PID error. No suspend occurs and the state of the device is now unknown.

0 No Interrupt Pending

1 Interrupt Pending

4
(RC/NW)

LPMRES LPM Resume Interrupt.
The USB_LPM_IRQ.LPMRES bit indicates that the USB controller has been
resumed for any reason. This bit is mutually exclusive from the USB_POWER.
RESUME bit.

0 No Interrupt Pending

1 Interrupt Pending

3
(RC/NW)

LPMNC LPM NYET Control Interrupt.
The USB_LPM_IRQ.LPMNC bit indicates an LPM NYET control interrupt
condition, but this interrupt has differing conditions for host mode versus peripheral
mode.
In peripheral mode, this bit is set when an LPM transaction is received, and the USB
controller responds with a NYET due to data pending in the transmit FIFOs. This
interrupt may only occur when the USB_LPM_CTL.EN field is set to 11, the USB_
LPM_CTL.TX field is set to 1, and there is data pending in the transmit FIFOs.
In host mode, this bit is set when an LPM transaction has been transmitted, but has
failed to complete. The transaction failure must be because a timeout occurred or be
because there were bit errors in the response for three attempts.

0 No Interrupt Pending

1 Interrupt Pending

2
(RC/NW)

LPMACK LPM ACK Interrupt.
The USB_LPM_IRQ.LPMACK bit indicates an LPM ACK interrupt condition, but
this interrupt has differing conditions for host mode versus peripheral mode.
In peripheral mode, this bit is set when an LPM transaction is received, and the USB
controller responds with an ACK. This interrupt may only occur when the USB_
LPM_CTL.EN field is set to 11, the USB_LPM_CTL.TX field is set to 1, and there is
no data pending in the controller transmit FIFOs.
In host mode, this bit is set when an LPM transaction is transmitted, and the device
responds with an ACK.

0 No Interrupt Pending

1 Interrupt Pending

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–153

LPM Function Address Register

The USB_LPM_FADDR register selects the link power management (LPM) function address.

Figure 20-89: USB_LPM_FADDR Register Diagram

1
(RC/NW)

LPMNY LPM NYET Interrupt.
The USB_LPM_IRQ.LPMNY bit indicates an LPM NYET interrupt condition, but
this interrupt has differing conditions for host mode versus peripheral mode.
In peripheral mode, this bit is set when an LPM transaction is received, and the USB
controller responds with a NYET. This interrupt may only occur when the USB_
LPM_CTL.EN field is set to 11, and the USB_LPM_CTL.TX field is set to 0.
In host mode, this bit is set when an LPM transaction is transmitted and the device
responds with a NYET.

0 No Interrupt Pending

1 Interrupt Pending

0
(RC/NW)

LPMST LPM STALL Interrupt.
The USB_LPM_IRQ.LPMST bit indicates an LPM STALL interrupt condition, but
this interrupt has differing conditions for host mode versus peripheral mode.
This bit is set when an LPM transaction is received, and the USB controller responds
with a STALL. This interrupt may only occur when the USB_LPM_CTL.EN field is
set to 01.
In host mode, this bit is set when an LPM transaction is transmitted, and the device
responds with a STALL.

0 No Interrupt Pending

1 Interrupt Pending

Table 20-67: USB_LPM_FADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:0
(R/W)

VALUE Function Address Value.
The USB_LPM_FADDR.VALUE bits hold the LPM function address value that the
USB controller places in the LPM payload.

Table 20-66: USB_LPM_IRQ Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–154 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

VBUS Control Register

The USB_VBUS_CTL controls USB controller VBUS related features.

Figure 20-90: USB_VBUS_CTL Register Diagram

ID Control

The USB_IDCTL register can be used to override the ID pin and force the controller to act as an A-device
or B-device.

Table 20-68: USB_VBUS_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

4
(R/NW)

DRV VBUS Drive.
The USB_VBUS_CTL.DRV bit indicates the state of the UTMI+ DrvVBUS signal
from the USB controller.

3
(R/W1C)

DRVINT VBUS Drive Interrupt.
The USB_VBUS_CTL.DRVINT bit indicates the state of the DrvVBUSInt interrupt.

2
(R/W)

DRVIEN VBUS Drive Interrupt Enable.
The USB_VBUS_CTL.DRVIEN bit enables the DrvVBUS interrupt.

1
(R/W)

DRVOD VBUS Drive Open Drain.
The USB_VBUS_CTL.DRVOD selects whether the DrvVBUS output is open drain.

0
(R/W)

INVDRV VBUS Invert Drive.
The USB_VBUS_CTL.INVDRV bit selects whether the DrvVBUS output is
inverted.

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–155

Figure 20-91: USB_IDCTL Register Diagram

FS PHY Control

The USB_PHY_CTL register provides configuration options for USB full speed operations.

Figure 20-92: USB_PHY_CTL Register Diagram

Table 20-69: USB_IDCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W)

IDVAL ID Value.
When the USB_IDCTL.IDSEL bit =1, the USB_IDCTL.IDVAL bit sets the value
of the ID input to the controller. This bit has no effect if USB_IDCTL.IDSEL=0.

0 A-Device

1 B-Device

0
(R/W)

IDSEL ID Select.
The USB_IDCTL.IDSEL bit selects the source of the ID input to the controller.
This can be used to bypass the ID input pin and force the controller to act as an A-
device or B-device.

0 ID pin selected for controller input

1 IDCTL[1] selected for controller input

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–156 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

FS PHY Status

The USB_PHY_STAT register is used to directly observe PHY inputs.

Figure 20-93: USB_PHY_STAT Register Diagram

Table 20-70: USB_PHY_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W)

SUSPEND Suspend Power.
The USB_PHY_CTL.SUSPEND bit powers down the output drivers, differential
input comparator, ID input comparator and pull-up.

0 normal operation (power enabled)

1 SUSPEND enabled

0
(R/W)

PHYMAN PHY Management.
The USB_PHY_CTL.PHYMAN bit manages inputs.

0 PHY inputs come from controller

1 PHY inputs come from this register

Table 20-71: USB_PHY_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/NW)

VBUSVALID Vbus Voltage Valid.
The USB_PHY_STAT.VBUSVALID bit indicates if the voltage on Vbus is at a valid
level for operation.

0 Vbus < 4.4V

1 Vbus > 4.75V

5
(R/NW)

AVALID Vbus Voltage A Device Valid.
The USB_PHY_STAT.AVALID bit indicates if the voltage on Vbus is above the A-
device session valid threshold.

0 Vbus < 0.8V

1 Vbus > 2V

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 20–157

4
(R/NW)

VBUSLO Vbus Voltage Session End.
The USB_PHY_STAT.VBUSLO bit is used to determine if Vbus is above the session
end voltage.

0 Vbus > 0.8V

1 Vbus < 0.2V

3
(R/NW)

CID ID Input State.
The USB_PHY_STAT.CID bit reflects the state of the ID input. The ID input
comparator is disabled when the PHY is in SUSPEND (references are powered down)
and the USB_PHY_STAT.CID bit is forced to 0. There is a small current source
enabled on the ID pin when the PHY is enabled to sense whether this pin is floating
or shorted to GND.

Table 20-71: USB_PHY_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

UNIVERSAL SERIAL BUS (USB)
ADSP-CM40X USB REGISTER DESCRIPTIONS

20–158 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–1

21 Ethernet Media Access Controller (EMAC)

The EMAC peripheral present in the processor enables network connectivity to applications via a 10/100M
bit/s Ethernet interface. The module is fully compliant to the following standards:

• Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications, Standard 802.3-2005, Institute of Electrical and Electronics Engineers (IEEE).

• Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control
Systems, Standard 1588-2008, Institute of Electrical and Electronics Engineers (IEEE).

• Reduced Media Independent Interface Specification, Revision 1.2, RMII Consortium.

NOTE: Copyright © 2010 Synopsys, Inc.; portions of this chapter are included with permission from
Synopsys, Inc.

The EMAC interface consists of the hardware for the Media Access Control protocol. This allows applica-
tions to support TCP/IP based network communication. At the system end, the module supports direct
connection with the System Crossbar bus for Memory/MMR transactions. It supports RMII (Reduced
Media Independent Interface) and SMI (Station Management Interface) for interfacing with the external
PHY chip.

The MAC also includes a built-in and dedicated DMA controller that performs both data and status trans-
fers between the application and the RMII interface. Internal transmit and receive FIFOs are used to buffer
and regulate the frames. A dedicated interrupt line connects the EMAC interrupt sources to the System
Event Controller (SEC).

The MAC Management Counters (MMC) block is an extended set of registers that collects various statis-
tics compliant with IEEE 802.3 definitions regarding the operation of the interface. The registers are
updated for each new transmitted or received frame when the condition to update the counter is met. The
EMAC provides a set of such counters, along with extended usage control.

The EMAC also includes a PTP (Precision Time Protocol) engine that provides hardware assistance for
the implementation of the IEEE 1588 Version 1 and Version 2 standards, which allows time synchroniza-
tion between systems.

EMAC Features

The Ethernet MAC's features include the following:

• Supports 10/100 Mbps data transfer rates with external PHY interfaced via RMII.

• Full-duplex and half-duplex support for Ethernet.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Dedicated DMA controller with independent read write channels.

• Supports dual-buffer (ring) or linked-list (chained) descriptor chaining.

• Direct interface with the System Crossbar bus.

• Provides support for CSMA/CD protocol for half-duplex operation.

• IEEE 802.3x flow control for full-duplex and half-duplex.

• Automatic network monitoring statistics with management counters.

• Flexible address filtering options for uni-cast/multi-cast/broadcast addresses.

• Support for Promiscuous mode in reception.

• Supports IEEE 802.1Q VLAN tag detection.

• Supports programmable Inter-frame Gap (IFG).

• Checksum Offload Engine for checking IPv4 header checksum and TCP/UDP/ICMP checksum encap-
sulated in IPv4 or IPv6 datagrams.

• Station Management Interface for PHY device configuration and management.

• Includes FIFOs for buffering: 256 bytes for transmit FIFO and 128 bytes for receive FIFO.

• Automatic CRC and pad generation controllable on a per-frame basis.

EMAC Functional Description

This section provides information on the function of Ethernet MAC peripheral and contains the following
topics.

• ADSP-CM40x EMAC Register List

• EMAC Definitions

• EMAC Block Diagram and Interfaces

• EMAC Architectural Concepts

ADSP-CM40x EMAC Register List

The ethernet MAC (EMAC) module provides a 10/100M bit/s Ethernet interface, compliant to IEEE Std.
802.3-2005, between an RMII (Reduced Media Independent Interface) and the processor. A set of registers
govern EMAC operations. For more information on EMAC functionality, see the EMAC register descrip-
tions.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–3

Table 21-1: ADSP-CM40x EMAC Register List

Name Description

EMAC_MACCFG MAC Configuration Register

EMAC_MACFRMFILT MAC Rx Frame Filter Register

EMAC_HASHTBL_HI Hash Table High Register

EMAC_HASHTBL_LO Hash Table Low Register

EMAC_SMI_ADDR SMI Address Register

EMAC_SMI_DATA SMI Data Register

EMAC_FLOWCTL FLow Control Register

EMAC_VLANTAG VLAN Tag Register

EMAC_DBG Debug Register

EMAC_ISTAT Interrupt Status Register

EMAC_IMSK Interrupt Mask Register

EMAC_ADDR0_HI MAC Address 0 High Register

EMAC_ADDR0_LO MAC Address 0 Low Register

EMAC_MMC_CTL MMC Control Register

EMAC_MMC_RXINT MMC Rx Interrupt Register

EMAC_MMC_TXINT MMC Tx Interrupt Register

EMAC_MMC_RXIMSK MMC Rx Interrupt Mask Register

EMAC_MMC_TXIMSK MMC TX Interrupt Mask Register

EMAC_TXOCTCNT_GB Tx OCT Count (Good/Bad) Register

EMAC_TXFRMCNT_GB Tx Frame Count (Good/Bad) Register

EMAC_TXBCASTFRM_G Tx Broadcast Frames (Good) Register

EMAC_TXMCASTFRM_G Tx Multicast Frames (Good) Register

EMAC_TX64_GB Tx 64-Byte Frames (Good/Bad) Register

EMAC_TX65TO127_GB Tx 65- to 127-Byte Frames (Good/Bad) Register

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

EMAC_TX128TO255_GB Tx 128- to 255-Byte Frames (Good/Bad) Register

EMAC_TX256TO511_GB Tx 256- to 511-Byte Frames (Good/Bad) Register

EMAC_TX512TO1023_GB Tx 512- to 1023-Byte Frames (Good/Bad) Register

EMAC_TX1024TOMAX_GB Tx 1024- to Max-Byte Frames (Good/Bad) Register

EMAC_TXUCASTFRM_GB Tx Unicast Frames (Good/Bad) Register

EMAC_TXMCASTFRM_GB Tx Multicast Frames (Good/Bad) Register

EMAC_TXBCASTFRM_GB Tx Broadcast Frames (Good/Bad) Register

EMAC_TXUNDR_ERR Tx Underflow Error Register

EMAC_TXSNGCOL_G Tx Single Collision (Good) Register

EMAC_TXMULTCOL_G Tx Multiple Collision (Good) Register

EMAC_TXDEFERRED Tx Deferred Register

EMAC_TXLATECOL Tx Late Collision Register

EMAC_TXEXCESSCOL Tx Excess Collision Register

EMAC_TXCARR_ERR Tx Carrier Error Register

EMAC_TXOCTCNT_G Tx Octet Count (Good) Register

EMAC_TXFRMCNT_G Tx Frame Count (Good) Register

EMAC_TXEXCESSDEF Tx Excess Deferral Register

EMAC_TXPAUSEFRM Tx Pause Frame Register

EMAC_TXVLANFRM_G Tx VLAN Frames (Good) Register

EMAC_RXFRMCNT_GB Rx Frame Count (Good/Bad) Register

EMAC_RXOCTCNT_GB Rx Octet Count (Good/Bad) Register

EMAC_RXOCTCNT_G Rx Octet Count (Good) Register

EMAC_RXBCASTFRM_G Rx Broadcast Frames (Good) Register

EMAC_RXMCASTFRM_G Rx Multicast Frames (Good) Register

Table 21-1: ADSP-CM40x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–5

EMAC_RXCRC_ERR Rx CRC Error Register

EMAC_RXALIGN_ERR Rx alignment Error Register

EMAC_RXRUNT_ERR Rx Runt Error Register

EMAC_RXJAB_ERR Rx Jab Error Register

EMAC_RXUSIZE_G Rx Undersize (Good) Register

EMAC_RXOSIZE_G Rx Oversize (Good) Register

EMAC_RX64_GB Rx 64-Byte Frames (Good/Bad) Register

EMAC_RX65TO127_GB Rx 65- to 127-Byte Frames (Good/Bad) Register

EMAC_RX128TO255_GB Rx 128- to 255-Byte Frames (Good/Bad) Register

EMAC_RX256TO511_GB Rx 256- to 511-Byte Frames (Good/Bad) Register

EMAC_RX512TO1023_GB Rx 512- to 1023-Byte Frames (Good/Bad) Register

EMAC_RX1024TOMAX_GB Rx 1024- to Max-Byte Frames (Good/Bad) Register

EMAC_RXUCASTFRM_G Rx Unicast Frames (Good) Register

EMAC_RXLEN_ERR Rx Length Error Register

EMAC_RXOORTYPE Rx Out Of Range Type Register

EMAC_RXPAUSEFRM Rx Pause Frames Register

EMAC_RXFIFO_OVF Rx FIFO Overflow Register

EMAC_RXVLANFRM_GB Rx VLAN Frames (Good/Bad) Register

EMAC_RXWDOG_ERR Rx Watch Dog Error Register

EMAC_IPC_RXIMSK MMC IPC Rx Interrupt Mask Register

EMAC_IPC_RXINT MMC IPC Rx Interrupt Register

EMAC_RXIPV4_GD_FRM Rx IPv4 Datagrams (Good) Register

EMAC_RXIPV4_HDR_ERR_FRM Rx IPv4 Datagrams Header Errors Register

EMAC_RXIPV4_NOPAY_FRM Rx IPv4 Datagrams No Payload Frame Register

Table 21-1: ADSP-CM40x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

EMAC_RXIPV4_FRAG_FRM Rx IPv4 Datagrams Fragmented Frames Register

EMAC_RXIPV4_UDSBL_FRM Rx IPv4 UDP Disabled Frames Register

EMAC_RXIPV6_GD_FRM Rx IPv6 Datagrams Good Frames Register

EMAC_RXIPV6_HDR_ERR_FRM Rx IPv6 Datagrams Header Error Frames Register

EMAC_RXIPV6_NOPAY_FRM Rx IPv6 Datagrams No Payload Frames Register

EMAC_RXUDP_GD_FRM Rx UDP Good Frames Register

EMAC_RXUDP_ERR_FRM Rx UDP Error Frames Register

EMAC_RXTCP_GD_FRM Rx TCP Good Frames Register

EMAC_RXTCP_ERR_FRM Rx TCP Error Frames Register

EMAC_RXICMP_GD_FRM Rx ICMP Good Frames Register

EMAC_RXICMP_ERR_FRM Rx ICMP Error Frames Register

EMAC_RXIPV4_GD_OCT Rx IPv4 Datagrams Good Octets Register

EMAC_RXIPV4_HDR_ERR_OCT Rx IPv4 Datagrams Header Errors Register

EMAC_RXIPV4_NOPAY_OCT Rx IPv4 Datagrams No Payload Octets Register

EMAC_RXIPV4_FRAG_OCT Rx IPv4 Datagrams Fragmented Octets Register

EMAC_RXIPV4_UDSBL_OCT Rx IPv4 UDP Disabled Octets Register

EMAC_RXIPV6_GD_OCT Rx IPv6 Good Octets Register

EMAC_RXIPV6_HDR_ERR_OCT Rx IPv6 Header Errors Register

EMAC_RXIPV6_NOPAY_OCT Rx IPv6 No Payload Octets Register

EMAC_RXUDP_GD_OCT Rx UDP Good Octets Register

EMAC_RXUDP_ERR_OCT Rx UDP Error Octets Register

EMAC_RXTCP_GD_OCT Rx TCP Good Octets Register

EMAC_RXTCP_ERR_OCT Rx TCP Error Octets Register

EMAC_RXICMP_GD_OCT Rx ICMP Good Octets Register

Table 21-1: ADSP-CM40x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–7

EMAC_RXICMP_ERR_OCT Rx ICMP Error Octets Register

EMAC_TM_CTL Time Stamp Control Register

EMAC_TM_SUBSEC Time Stamp Sub Second Increment Register

EMAC_TM_SEC Time Stamp Low Seconds Register

EMAC_TM_NSEC Time Stamp Nanoseconds Register

EMAC_TM_SECUPDT Time Stamp Seconds Update Register

EMAC_TM_NSECUPDT Time Stamp Nanoseconds Update Register

EMAC_TM_ADDEND Time Stamp Addend Register

EMAC_TM_TGTM Time Stamp Target Time Seconds Register

EMAC_TM_NTGTM Time Stamp Target Time Nanoseconds Register

EMAC_TM_HISEC Time Stamp High Second Register

EMAC_TM_STMPSTAT Time Stamp Status Register

EMAC_TM_PPSCTL PPS Control Register

EMAC_TM_AUXSTMP_NSEC Time Stamp Auxiliary TS Nano Seconds Register

EMAC_TM_AUXSTMP_SEC Time Stamp Auxiliary TM Seconds Register

EMAC_TM_PPSINTVL Time Stamp PPS Interval Register

EMAC_TM_PPSWIDTH PPS Width Register

EMAC_DMA_BUSMODE DMA Bus Mode Register

EMAC_DMA_TXPOLL DMA Tx Poll Demand Register

EMAC_DMA_RXPOLL DMA Rx Poll Demand register

EMAC_DMA_RXDSC_ADDR DMA Rx Descriptor List Address Register

EMAC_DMA_TXDSC_ADDR DMA Tx Descriptor List Address Register

EMAC_DMA_STAT DMA Status Register

EMAC_DMA_OPMODE DMA Operation Mode Register

Table 21-1: ADSP-CM40x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x EMAC Interrupt List

ADSP-CM40x EMAC Trigger List

EMAC_DMA_IEN DMA Interrupt Enable Register

EMAC_DMA_MISS_FRM DMA Missed Frame Register

EMAC_DMA_RXIWDOG DMA Rx Interrupt Watch Dog Register

EMAC_DMA_BMMODE DMA SCB Bus Mode Register

EMAC_DMA_BMSTAT DMA SCB Status Register

EMAC_DMA_TXDSC_CUR DMA Tx Descriptor Current Register

EMAC_DMA_RXDSC_CUR DMA Rx Descriptor Current Register

EMAC_DMA_TXBUF_CUR DMA Tx Buffer Current Register

EMAC_DMA_RXBUF_CUR DMA Rx Buffer Current Register

Table 21-2: ADSP-CM40x EMAC Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

86 EMAC0_STAT EMAC0 Status LEVEL

Table 21-3: ADSP-CM40x EMAC Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

32 EMAC0_STAT EMAC0 Status LEVEL

Table 21-4: ADSP-CM40x EMAC Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

None

Table 21-1: ADSP-CM40x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–9

EMAC Definitions

The following definitions aid with using the EMAC.

EMAC SCB

System Crossbar interface of EMAC

EMAC DMA

DMA Controller of EMAC

EMAC MFL

MAC FIFO Layer inside EMAC

EMAC CORE

CORE Layer inside EMAC which performs the actual Ethernet operations, including interface with PHY
via RMII.

MMC

MAC Management Counter

SMI

Station Management Interface that controls PHY via MDIO/MDC signals.

MII

Reduced Media Independent Interface

MAC

Media Access Control

PTP

Precision Time Protocol

EMAC Block Diagram and Interfaces

The following figure illustrates the overall functional architecture of the Ethernet MAC peripheral. The
EMAC module is comprised of four major layers, EMAC SCB, EMAC DMA, EMAC MFL and EMAC
CORE. Each of these layers (sub-blocks) are explained in depth in their respective sections in this chapter.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-1: EMAC Simplified Block Diagram

A more comprehensive block diagram is shown below. It includes most of the important blocks inside the
EMAC. The EMAC is connected to processor memory and the system crossbar via the System Crossbar
Bus Interface (SCB) and System Peripheral Bus Interface (SPB), which are part of the SCB Layer. The SPB
interface is connected to all modules that require MMR programming.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–11

The DMA controller performs application data transfer frame by frame, through well defined descriptor
structures. A FIFO layer acts as a buffer between the DMA controller and the EMAC core. The EMAC core
is the most important block as it contains sub-blocks to support IEEE802.3 based communication with
external network interfaces of 10/100 Mbps speeds. It includes the PTP sub-block which assists applica-
tions requiring time synchronization and a MMC sub-block to generate packet transfer statistics. The
MAC is connected to the external PHY via the Reduced Media Independent Interface (RMII) and the
Station Management Interface (Serial Management IO).

Figure 21-2: EMAC Complete Block Diagram

EMAC CORE Sub-Blocks

The core transmit engine sub-blocks and their function are summarized in the below table. Please refer to
the EMAC core section for further explanation of each of these sub-blocks.

Table 21-5: Core Transmit Engine sub-blocks

CORE Transmit Engine Sub Block Function

Transmit Bus Interface Interface to the FIFO.

Transmit Frame Controller –Appends Zero-PAD data if required, for short frames.
–Appends CRC for Frame Check-Sum from the CRC Generator.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The core receive engine sub-blocks and their function are summarized in the following table. Please refer
to the EMAC core section for more information on each of these sub-blocks.

Transmit Protocol Engine –Generates preamble and SFD, as per 802.3 protocol.
–Generates jam pattern in Half-Duplex mode, for collisions.
–Jabber timeout, for excessively large frames.
–Flow control for Half-Duplex mode (back pressure).
–Generates transmit frame status.

Transmit Scheduler –Maintains the inter-frame gap between two transmitted frames.
–Follows the Truncated Binary Exponential Back-off algorithm for
Half-Duplex mode.

Transmit CRC Generator Generate CRC for the Frame Check-Sum field of the Ethernet
frame.

 Transmit Flow Control Receives the Pause frame, appends the calculated CRC, and sends
the frame to the Protocol Engine module.

Transmit Checksum Offload Engine Supports checksum calculation and insertion in the transmit path,
for IPV4/TCP/UDP/ICMP packets.

Table 21-6: Core Receive Engine Sub-Blocks

CORE Receive Engine sub block Functionality overview

Receive Protocol Engine –Strips the incoming preamble and SFD.
–Checks for correct Length/Type field.
–Performs internal loopback if required.
–Generates receive status.
–Supports watchdog of received frames.
–Supports Jumbo Frames.

Receive CRC Module Checks for CRC error, by comparing with FCS.

Receive Frame Controller Module –Packs incoming 8-bit input stream to 32-bit data internally.
–Performs Frame filtering, for uni-cast/multi-cast/broadcast
frames.
–Attaches the calculated IP Checksum input from Checksum
Offload Engine.
–Updates the Receive Status to Bus Interface.

Receive Flow Control Module –Detects the receiving Pause frame and pauses the frame
transmission for the delay specified within the received Pause
frame.
–Works in Full Duplex mode.

Receive IP Checksum Offload Engine –Calculates IPv4 header checksums and verify against the received
IPv4 header checksums.
–Identifies a TCP, UDP or ICMP payload in the received IP
datagrams.

Receive Bus Interface Unit Module Interface to the FIFO.

Table 21-5: Core Transmit Engine sub-blocks (Continued)

CORE Transmit Engine Sub Block Function

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–13

EMAC PHY Interface

The EMAC can interface to the PHY via the RMII interface standard. The tables below indicate the RMII
pins available in the EMAC in terms of their generic names. Please refer to the data sheet for exact pin
names.

Figure 21-3: RMII Di-bit Data Transfer

Clock Sources

The Ethernet MAC is clocked internally from SCLK. Check the processor data sheet for the valid frequency
range of the appropriate SCLKsignal for Ethernet operation.

Address Filtering Module Performs Destination Address Filtering based on Unicast/ Multi-
cast/Broadcast frames.
–Provides CRC hash filtering.

Table 21-7: RMII Pins

Sl. No. Generic Signal Name (IEEE Standards) RMII Pin functionality.

1. TXD0 RMII transmit data pin D0 (di-bit lower)

2. TXD1 RMII transmit data pin D1 (di-bit higher)

3. RXD0 RMII receive data pin D0 (di-bit lower)

4. RXD1 RMII receive data pin D1 (di-bit higher)

5. RMII CLK RMII common clock (for Tx and Rx), also called reference clock

6. TXEN RMII transmit enable pin (Tx valid)

7. CRS RMII Carrier Sense / receive data valid

8. MDC Serial management clock driven by EMAC

9. MDIO Serial management bi-directional data

Table 21-6: Core Receive Engine Sub-Blocks (Continued)

CORE Receive Engine sub block Functionality overview

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

A 50 MHz clock should be sourced externally to operate the EMAC in RMII mode. This clock is the same
for both transmit and receive. The MDC Station Management Clock is derived from the SCLK and driven
from the MAC to the PHY, when accessing any PHY registers.

Figure 21-4: ADSP-CM40x EMAC Clock Sources

EMAC Architectural Concepts

This section explains different architectural concepts relevant to EMAC peripheral, such as EMAC SCB,
EMAC DMA, EMAC MFL, EMAC CORE and others.

EMAC System Crossbar Interface (EMAC SCB)

The EMAC SCB bus interface provides the bus connectivity to support highly effective data traffic
throughput. System bus use is maximized by allowing simultaneous read and write transfers initiated from
different DMA channels. The EMAC controller is directly connected to the SCB0 crossbar. The following
interfaces are available with the design.

• A 32-bit SCB master interface for reading/writing from/to application memory.

• A 32-bit SPB slave interface for register programming.

Please refer to the “System Crossbars (SCB)” chapter for more information on how the crossbar operates.
Only the EMAC specific information is detailed in this chapter.

Table 21-8: EMAC-SCB Interface Data Transfer Specifications with Crossbar

Specification Term Comments

1 beat in SCB SINGLE burst

BLEN4 bursts 4 beats in SCB

BLEN8 bursts 8 beats in SCB

BLEN16 bursts 16 beats in SCB

Bus size 32-bit fixed bus size; equals 1 beat

INCR bursts Incrementing Bursts

INCR ALIGNED bursts Incrementing aligned bursts

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–15

The DMA write channel and read channel data paths and their connection to the system crossbar is shown
below.

Figure 21-5: EMAC DMA Read/Write channels with System Crossbar

NOTE: Transmit descriptor read and receive descriptor write-back (status update) operations can occur
simultaneously. However transmit descriptor read and transmit descriptor write-back operations
cannot occur simultaneously because transmit DMA (or receive DMA) does not initiate the next
transfer unless the previous one is complete.

Priority of SCB Requests

The descriptor transfers have higher priority than the data transfers. For example, if there are two bus
requests—a receive descriptor read and a transmit data read—the receive descriptor read has a higher
priority so that the next receive data write (subsequent to the receive descriptor read) need not wait for the
transmit data read transfer to complete.

If there are descriptor read requests from both DMA channels, they are serviced based on a first-come first-
serve. Receive DMA has higher priority if descriptor read requests are generated from both the DMA chan-
nels in the same clock cycle. Similarly, in the write channel, descriptor writes from DMA have higher
priority than the data-write transfers for the receive DMA.

UNDEF bursts Undefined burst length

PBL Programmable Burst Length for DMA

Table 21-8: EMAC-SCB Interface Data Transfer Specifications with Crossbar (Continued)

Specification Term Comments

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SCB Interface Programming Options

The SCB bus interface supports the following programmable options for the EMAC module. These
options are available using the EMAC_DMA_BMMODE register with the EMAC_DMA_BUSMODE register.

• Outstanding transactions. The EMAC-SCB supports up to four outstanding read/write requests on
the SCB bus. This can also be controlled through software by programming the EMAC_DMA_BMMODE.
WROSRLMT and EMAC_DMA_BMMODE.RDOSRLMT bits. Maximum outstanding requests=EMAC_DMA_
BMMODE.WROSRLMT + 1 (or) EMAC_DMA_BMMODE.RDOSRLMT + 1.

• Allowed burst sizes. The allowed burst sizes are 4 (EMAC_DMA_BMMODE.BLEN4), 8 (EMAC_DMA_BMMODE.
BLEN8), 16 (EMAC_DMA_BMMODE.BLEN16) and the SINGLE burst. Only those burst sizes configured by
the program (via the EMAC_DMA_BMMODEregister) are used for data transfer through the SCB bus.
However, SINGLE burst is available by default, when the EMAC_DMA_BMMODE.UNDEF bit in the is cleared.
Data transfers are restricted to the maximum burst size from this list of programmed burst sizes.

• Burst splitting and burst selection. The EMAC-SCB splits the DMA requests into multiple bursts on
the SCB system bus. Splitting is based on DMA count and software controllable burst enable bits
(shown in the Allowed burst sizes) as well as burst types (INCR and INCR_ALIGNED) which are also
controllable through the software. SINGLE burst is enabled when the EMAC_DMA_BMMODE.UNDEF bit is
not set. Burst length select priority is in the sequence: UNDEF, 16, 8, and 4.

• INCR burst type

– If the EMAC_DMA_BMMODE.UNDEF bit is set, then the EMAC-SCB always chooses the maximum
allowed burst length based on the EMAC_DMA_BMMODE.BLEN16, EMAC_DMA_BMMODE.BLEN8, EMAC_
DMA_BMMODE.BLEN4 bits. In cases where the DMA requests are not multiples of the maximum
allowed burst length, the SCB may also choose a burst-length of any value less than the maximum
enabled burst-length (all lesser burst-length enables are redundant). For example, when length bits
are enabled and the DMA requests a burst transfer size of 42 beats, then the SCB splits it into three
bursts of 16, 16 and 10 beats respectively.

– If EMAC_DMA_BMMODE.UNDEF is not enabled, then the burst length is based on the priority of the
enabled bits in the following order EMAC_DMA_BMMODE.BLEN16, EMAC_DMA_BMMODE.BLEN8, EMAC_
DMA_BMMODE.BLEN4. When the DMA requests a burst transfer, the SCB interface splits the
requested bursts into multiple transfers using only the enabled burst lengths. This splitting can
occur when the requested burst is not a multiple of the maximum enabled burst. If it cannot choose
any of the enabled burst lengths then it selects the burst length as 1.

For example, when EMAC_DMA_BMMODE.BLEN16, EMAC_DMA_BMMODE.BLEN8, EMAC_DMA_BMMODE.BLEN4
are enabled and the DMA requests a burst transfer of 42 beats, then the SCB interface splits it into
multiple bursts of size 16, 16, 8, 1 and 1 beats respectively (the sequence is in decreasing burst sizes).

• INCR_ALIGNED burst type. When the address-aligned burst-type is enabled (EMAC_DMA_BMMODE.
AAL), then in addition to the burst splitting conditions explained in the INCR Burst type, the SCB inter-
face splits the DMA requested bursts such that each burst-size is aligned to the least significant bits of

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–17

the start address. The SCB interface initially generates smaller bursts so that the remaining transfers can
be transferred with the maximum possible (enabled) fixed burst lengths.

For example, in the same setting as explained earlier for EMAC_DMA_BMMODE.UNDEF set (EMAC_DMA_
BMMODE.BLEN16, EMAC_DMA_BMMODE.BLEN8, and EMAC_DMA_BMMODE.BLEN4 are enabled), DMA
requests a burst size of 42 beats at the start address of 0x000003A4. The SCB starts the first transfer with
size 3 such that the address of the next burst is aligned (0x000003B0) for a burst of 16. Therefore, the
sequence of bursts is 3, 16, 16, and 7, respectively.

When EMAC_DMA_BMMODE.UNDEF is not set, then in the same situation (start address of 0x000003A4
with 42 beats), the sequence of burst transfers is 1, 1, 1, 16, 16, 4, and 3 respectively. The sequence of
smaller bursts at the beginning is to align the address to the next higher enabled burst-lengths
programmed in the register.

• Burst operations for DMA transactions. The EMAC_DMA_BUSMODE.PBL (programmable burst length)
field indicates the maximum number of beats to be transferred in one DMA transaction. This is also
the maximum value that is used in a single block read/write and is shown in the following table.

– For example, if EMAC_DMA_BUSMODE.PBL=32 and if EMAC_DMA_BMMODE.BLEN16 is enabled, the
DMA automatically splits 32 bursts in to 2 x 16 bursts. If EMAC_DMA_BUSMODE.PBL=8, and if EMAC_
DMA_BMMODE.BLEN16 and EMAC_DMA_BMMODE.BLEN8 are enabled, the maximum burst is limited to
EMAC_DMA_BMMODE.BLEN8. If the EMAC_DMA_BUSMODE.PBL8 bit is set, the programmed EMAC_DMA_
BUSMODE.PBL value is multiplied by 8 times internally. However, the result cannot be more than the
maximum limits specified above.

– The receive DMA burst length configuration can be made independent of transmit DMA configu-
ration, by setting the EMAC_DMA_BUSMODE.USP bit. If this bit is set, the EMAC_DMA_BUSMODE.RPBL
bits define the burst length of receive DMA. If the EMAC_DMA_BUSMODE.USP bit is not set, the EMAC_
DMA_BUSMODE.RPBL bits are used for both transmit and receive. Programs must ensure that the PBL
maximum limit is not violated.

– The receive and transmit descriptors are always accessed in the maximum possible burst-size
(limited by PBL maximum for transmit and receive) for the 16-bytes to be read.

DMA Bursts Using the SCB Interface

The transmit DMA initiates a data transfer only when sufficient space to accommodate the configured
burst is available in the transmit FIFO or the number of bytes until the end of frame (when it is less than
the configured burst-length). The DMA indicates the start address and the number of transfers required

Table 21-9: DMA PBL Max Limits

Burst Limit Max Term Definition

PBL-max limit (FIFO size/2)/4 words.

PBL-max limit (transmit) 256 bytes/2 /4 = 32 words.

PBL-max limit (receive) 128 bytes/2 /4 = 16 words.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

to the SCB master interface. When the SCB interface is configured for fixed-length burst, then it transfers
data using the best combination of INCR4/8/16 and 1 beat transaction.

The receive DMA initiates a data transfer only when sufficient data to accommodate the configured burst
is available in the MTL receive FIFO or when the end of frame (when it is less than the configured burst-
length) is detected in the receive FIFO. The DMA indicates the start address and the number of transfers
required to the SCB master interface. When the SCB interface is configured for fixed-length burst, then it
transfers data using the best combination of INCR 4/8/16 or 1 beat transaction. If the end-of frame is
reached before the fixed-burst ends on the SCB interface, then dummy transfers are performed in-order
to complete the fixed-burst. Otherwise (if EMAC_DMA_BUSMODE.FBis reset), it transfers data using INCR
(undefined length) transactions.

When the SCB interface is configured for address-aligned beats using the EMAC_DMA_BUSMODE.AAL bit,
both DMA engines ensure that the first burst transfer the SCB initiates is less than or equal to the size of
the configured PBL. Therefore, all subsequent beats start at an address that is aligned to the configured
PBL.

SCB Bus Transaction Status

The EMAC_DMA_BMSTAT.BUSRD and EMAC_DMA_BMSTAT.BUSWR bits indicate whether the channel is active
or not.

Fatal Bus Error

The EMAC SCB asserts the error interrupt (EMAC_DMA_STAT.FBI) when the corresponding fatal bus error
interrupt is enabled in the DMA interrupt enable register. The application has to reset the core to restart
the DMA.

DMA Controller (EMAC DMA)

The EMAC has an built-in DMA controller that performs reads and writes of application data and descrip-
tors via the SCB master interface.

The DMA controller has independent transmit and receive engines, and a CSR (control and status register)
space. The transmit engine transfers data from system memory to a FIFO, while the receive engine trans-
fers data from the FIFO to the system memory. The controller uses a descriptor chain based transfer mech-
anism to efficiently move data from source to destination with minimal processor core intervention. The
DMA is specially designed for packet-oriented data transfers such as Ethernet frames. The controller can
be programmed to interrupt the application for situations such as frame transmit and receive transfer
completion, and other normal or abnormal conditions.

The DMA and the application device driver communicate through two internal data structures:

1. DMA control and status registers (CSR).

2. Data buffers and descriptor lists. Descriptor list operate in ring mode and chain mode, as shown in the
following figure.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–19

Figure 21-6: EMAC DMA Descriptor Models

Descriptors that reside in the application memory act as pointers to receive and transmit buffers. Descrip-
tors have the following additional attributes.

• There are two descriptor lists, one for receive, and one for transmit. The base address of each list is
written into the receive descriptor list address register and transmit descriptor list address register,
respectively.

• A descriptor list is forward linked (either implicitly or explicitly). The last descriptor may point back to
the first entry to create a ring structure.

• Explicit chaining of descriptors is accomplished by setting the second address chained in both receive
and transmit descriptors.

• The descriptor lists reside in the application memory address space.

• Each descriptor can point to a maximum of two buffers. This enables two buffers to be used, physically
addressed, rather than contiguous buffers in memory.

A data buffer resides in the application physical memory space and consists of an entire frame or part of a
frame, but cannot exceed a single frame. Buffers may contain only data while buffer status is maintained
in the descriptor itself. Data chaining refers to frames that span multiple data buffers. However, a single
descriptor cannot span multiple frames. The DMA skips to the next frame buffer when the end-of-frame
is detected. Data chaining can be enabled or disabled.

NOTE: It is possible to define a skip length (in terms of N × 32-bit words) between two subsequent descrip-
tors, when using ring mode. The EMAC_DMA_BUSMODE.DSL field must be programmed to enable

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

this. With this option available, programs are not always restricted to a contiguous memory loca-
tion in ring mode.

DMA Related Registers

A summary of DMA registers relative to their function is provided in the table below. Please refer to the
“Register Descriptions” sections for complete bit descriptions of each of these registers.

Table 21-10: Summary of DMA Related Registers.

Register Name Description

Bus Mode1 Establishes the bus operating modes for the DMA with respect to the SCB master
interface.

Transmit Poll Demand Enables the transmit DMA to check whether or not the current descriptor is owned by
DMA. The transmit poll demand command is given to wake up the TxDMA if it is in
suspend mode. The TxDMA can go into suspend mode because of an underflow error
in a transmitted frame or because of the unavailability of descriptors owned by transmit
DMA. This command can be issued anytime and the TxDMA resets this command
once it starts re-fetching the current descriptor from host memory.

Receive Poll Demand Enables the receive DMA to check for new descriptors. This command is given to wake-
up the RxDMA from the SUSPEND state. The RxDMA can go into SUSPEND state
only because of the unavailability of descriptors owned by it.

Receive Descriptor List Address Points to the start of the receive descriptor list. The descriptor lists reside in the
application memory space and must be word-aligned (32- bit data bus). The DMA
internally converts the descriptor list to a bus width aligned address by making the
corresponding LSBs low.

Transmit Descriptor List Address Points to the start of the transmit descriptor list. The descriptor lists reside in the
application memory space and must be word-aligned (for 32-bit data bus). The DMA
internally converts it to bus width aligned address by making the corresponding LSB to
low.

DMA Status Contains all the status bits that the DMA reports to the application. The software driver
reads this register during an interrupt service routine or during polling. Most of the
fields in this register cause the host to be interrupted.

Operation Mode Establishes the transmit and receive operating modes and commands. The operation
mode register should be the last control register to be written as part of DMA
initialization.

Interrupt Enable Enables the interrupts reported by DMA status register. After a hardware or software
reset, all interrupts are disabled.

Missed Frame and Buffer Overflow Counter The DMA maintains two counters to track the number of missed frames during
reception. This register reports the current value of the counter, which is used for
diagnostic purposes.

Receive Interrupt Watchdog Timer When written with non-zero value, enables the watchdog timer for receive interrupt
(RI) in the DMA status register.

SCB Bus Mode Controls the SCB interface master behavior. It is mainly used to control the burst
splitting and the number of outstanding requests.

SCB Status Provides the active status of the SCB interface read and write channels.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–21

DMA Descriptors

The DMA module in the Ethernet subsystem transfers data based on a linked list of descriptors. The
descriptor addresses must be aligned to the 32-bit bus width. The descriptors can be either 4 x 32-bit words
(16 bytes) or 8 x 32-bit words (32 bytes). The controller needs to be configured for the appropriate word
length using the EMAC_DMA_BUSMODE register. Descriptor words are numbered from 0 to 7 for both the
transmit and receive engine.

Typical factors for deciding the descriptor word size are as follows.

• When the time-stamping or receive checksum engines are not enabled, the extended descriptors are
not required and the software can use descriptors with the default size of 16 bytes (4 words).

• When the time-stamping feature is enabled (to be used with the IEEE 1588 PTP engine), the software
needs to allocate 32-bytes (8 words) of memory for every descriptor.

• When only the receive checksum off-load is enabled (time-stamping disabled) the software needs to
allocate 32-bytes (8 words) of memory for every descriptor, although in reality only word 4 of the
extended words (descriptors 4–7) contain the required status information. The rest of extended words
may be treated as reserved or dummy.

Transmit Descriptor

The transmit descriptor structure in memory is shown in the following figure. The application software
must program the TDES0 control bits during descriptor initialization. When the DMA updates the
descriptor, it writes back all the control bits except the OWN bit (which it clears) and updates the status bits.
The contents of the transmitter descriptor word 0 (TDES0) through word 7 (TDES7) are given in the
following tables.

Current Host Transmit Descriptor Points to the start address of the current transmit descriptor read by the DMA.

Current Host Receive Descriptor Points to the start address of the current receive descriptor read by the DMA.

Current Host Transmit Buffer Address Points to the current transmit buffer address being read by the DMA.

Current Host Receive Buffer Address Points to the current receive buffer address being read by the DMA.

1.There should not be any further writes to the EMAC_DMA_BUSMODE registers until the first write is updated. Otherwise, the second write
operation will not get updated properly. For correct operation, the delay between two writes to the same register location should be at least 8
cycles of 50 MHz RMII REFCLK.

Table 21-11: DMA Registers with Consecutive Writes

Registers with Implications for Consecutive Writes

DMA Bus Mode

Table 21-10: Summary of DMA Related Registers. (Continued)

Register Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-7: Transmit Descriptor Words

Table 21-12: Transmit Descriptor Fields (TDES0)

Bit Name Description

31 OWN When set, this bit indicates that the descriptor is owned by the DMA. When this bit is reset, it
indicates that the descriptor is owned by the application. The DMA clears this bit either when it
completes the frame transmission or when the buffers allocated in the descriptor are read
completely. The ownership bit of the frame’s first descriptor must be set after all subsequent
descriptors belonging to the same frame have been set. This avoids a possible race condition
between fetching a descriptor and the driver setting an ownership bit.

30 IC Interrupt on Completion. When set, this bit sets the transmit interrupt (DMA status register
[0]) after the present frame has been transmitted.

29 LS Last Segment. When set, this bit indicates that the buffer contains the last segment of the frame

28 FS First Segment. When set, this bit indicates that the buffer contains the first segment of a frame.

27 DC Disable CRC. When this bit is set, the EMAC does not append a cyclic redundancy check
(CRC) to the end of the transmitted frame. This is valid only when the first segment
(TDES0[28]) is set.

26 DP Disable Pad. When set, the EMAC does not automatically add padding to a frame shorter than
64 bytes. When this bit is reset, the DMA automatically adds padding and CRC to a frame
shorter than 64 bytes, and the CRC field is added despite the state of the DC (TDES0[27]) bit.
This is valid only when the first segment (TDES0[28]) is set.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–23

25 TTSE Transmit Time-Stamp Enable. When set, this bit enables IEEE1588 hardware time-stamping for
the transmit frame referenced by the descriptor. This field is valid only when the first segment
control bit (TDES0[28]) is set.

24 Reserved

23:22 CIC Checksum Insertion Control. These bits control the checksum calculation and insertion. Bit
encodings are shown below.
00 = Checksum Insertion Disabled.
01 = Only IP header checksum calculation and insertion are enabled.
10 = IP header checksum and payload checksum calculation and insertion are enabled, but
pseudo-header checksum is not calculated in hardware.
11 = IP Header checksum and payload checksum calculation and insertion are enabled, and
pseudo-header checksum is calculated in hardware.

21 TER Transmit End of Ring. When set, this bit indicates that the descriptor list reached its final
descriptor. The DMA returns to the base address of the list, creating a descriptor ring.

20 TCH Second Address Chained. When set, this bit indicates that the second address in the descriptor
is the next descriptor address rather than the second buffer address. When TDES0[20] is set,
TBS2 (TDES1[28:16]) is a don’t care value. TDES0[21] takes precedence over TDES0[20].

19:18 Reserved

17 TTSS Transmit Time Stamp Status. This bit is used as a status bit to indicate that a time-stamp was
captured for the described transmit frame. When this bit is set, TDES2 and TDES3 have a time-
stamp value captured for the transmit frame. This field is only valid when the descriptor's Last
Segment control bit (TDES0[29]) is set.

16 IHE IP Header Error. When set, this bit indicates that the EMAC transmitter detected an error in
the IP datagram header. The transmitter checks the header length in the IPv4 packet against the
number of header bytes received from the application and indicates an error status if there is a
mismatch. For IPv6 frames, a header error is reported if the main header length is not 40 bytes.
Furthermore, the Ethernet Length/Type field value for an IPv4 or IPv6 frame must match the
IP header version received with the packet. For IPv4 frames, an error status is also indicated if
the Header Length field has a value less than 0x5.

15 ES Error Summary. Indicates the logical OR of the following bits.
TDES0[14] = Jabber Timeout
TDES0[13] = Frame Flush
TDES0[11] = Loss of Carrier
TDES0[10] = No Carrier
TDES0[9] = Late Collision
TDES0[8] = Excessive Collision
TDES0[2] = Excessive Deferral
TDES0[1] = Underflow Error
TDES0[16] = IP Header Error
TDES0[12] = IP Payload Error

14 JT Jabber Timeout. When set, this bit indicates the EMAC transmitter has experienced a jabber
time-out. This bit is only set when the EMAC configuration register's JD bit is not set.

13 FF Frame Flushed. When set, this bit indicates that the DMA/MFL flushed the frame due to a
software Flush command given by the CPU.

Table 21-12: Transmit Descriptor Fields (TDES0) (Continued)

Bit Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

12 IPE IP Payload Error. When set, this bit indicates that EMAC transmitter detected an error in the
TCP, UDP, or ICMP IP datagram payload.The transmitter checks the payload length received in
the IPv4 or IPv6 header against the actual number of TCP, UDP, or ICMP packet bytes received
from the application and issues an error status in case of a mismatch.

11 LC Loss of Carrier. When set, this bit indicates that a loss of carrier occurred during frame
transmission. This is valid only for the frames transmitted without collision when the EMAC
operates in Half-Duplex mode.

10 NC No Carrier. When set, this bit indicates that the Carrier Sense signal form the PHY was not
asserted during transmission.

9 LC Late Collision. When set, this bit indicates that frame transmission was aborted due to a
collision occurring after the collision window (64 byte-times, including preamble). This bit is
not valid if the Underflow Error bit is set.

8 EC Excessive Collision. When set, this bit indicates that the transmission was aborted after 16
successive collisions while attempting to transmit the current frame. If the DR (Disable Retry)
bit in the EMAC configuration register is set, this bit is set after the first collision, and the
transmission of the frame is aborted.

7 VF VLAN Frame. When set, this bit indicates that the transmitted frame was a VLAN-type frame.

6:3 CC Collision Count. This 4-bit counter value indicates the number of collisions occurring before
the frame was transmitted. The count is not valid when the Excessive Collisions bit (TDES0[8])
is set.

2 ED Excessive Deferral. When set, this bit indicates that the transmission has ended because of
excessive deferral of over 24,288 bit times (155,680 bits times in 1,000-Mbps mode or if Jumbo
Frame is enabled) if the Deferral Check (DC) bit in the EMAC control register is set high.

1 UF Underflow Error. When set, this bit indicates that the EMAC aborted the frame because data
arrived late from the application memory. Underflow Error indicates that the DMA
encountered an empty transmit buffer while transmitting the frame. The transmission process
enters the suspended state and sets both Transmit Underflow (register 5[5]) and Transmit
Interrupt (register 5[0]).

0 DB: Deferred Bit When set, this bit indicates that the EMAC defers before transmission because of the presence
of carrier. This bit is valid only in half-duplex mode.

Table 21-13: Transmit Descriptor Word 1 (TDES1)

Bit Name Description

31–29 Reserved

28–16 TBS2 Transmit Buffer 2 Size. These bits indicate the second data buffer size in bytes. This field is not
valid if TDES0[20] is set.

15–13 Reserved

12–0 TBS1 Transmit Buffer 1 Size. These bits indicate the first data buffer byte size, in bytes. If this field is
0, the DMA ignores this buffer and uses buffer 2 or the next descriptor, depending on the value
of TCH (TDES0[20]).

Table 21-12: Transmit Descriptor Fields (TDES0) (Continued)

Bit Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–25

DMA Transmit Process

The following sections describe how the direct memory access transmit process works on the EMAC
controller.

• Default (Non-OSF) Mode

• OSF Mode Enabled

• Transmit Frame Processing

• Transmit Polling Suspended

Table 21-14: Transmit Descriptor 2 (TDES2)

Bit Name Description

31–0 Buffer 1 Address
Pointer

These bits indicate the physical address of buffer 1. There is no limitation on the buffer address
alignment

Table 21-15: Transmit Descriptor 3 (TDES3)

Bit Name Description

31–0 Buffer 2 Address
Pointer (Next
Descriptor Address)

Indicates the physical address of buffer 2 when a descriptor ring structure is used. If the
second address chained (TDES1[24]) bit is set, this address contains the pointer to the physical
memory where the next descriptor is present. The buffer address pointer must be aligned to
the bus width only when TDES1[24] is set. (LSBs are ignored internally.)

Table 21-16: Transmit Descriptor 6 (TDES6)

Bit Name Description

31–0 TTSL Transmit Frame Time Stamp Low. This field is updated by DMA with the least significant 32
bits of the time-stamp captured for the corresponding transmit frame. This field has the time-
stamp only if the Last Segment bit (LS) in the descriptor is set and time-stamp status (TTSS)
bit is set.

Table 21-17: Transmit Descriptor 7 (TDES7)

Bit Name Description

31–0 TTSH Transmit Frame Time Stamp High. This field is updated by DMA with the most significant 32
bits of the time-stamp captured for the corresponding receive frame. This field has the time-
stamp only if the last segment bit (LS) in the descriptor is set and time-stamp status (TTSS) bit
is set.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Default (Non-OSF) Mode

The default process for DMA transmit works as follows:

1. The application sets up the transmit descriptor (using TDES0- TDES3) and sets the OWN bit (TDES0) after
setting up the corresponding data buffer(s) with Ethernet frame data.

2. Once the EMAC_DMA_OPMODE.ST bit is set, the DMA enters the run state.

3. While in the run state, the DMA polls the transmit descriptor list for frames requiring transmission.
After polling starts, it continues in either sequential descriptor ring order or chained order. If the DMA
detects a descriptor flagged as owned by the application, or if an error condition occurs, transmission
is suspended and both the transmit buffer unavailable (EMAC_DMA_STAT.TU) and normal interrupt
summary (EMAC_DMA_STAT.NIS) bits are set. The transmit engine proceeds to Step 9.

4. If the acquired descriptor is flagged as owned by DMA (TDES0 [31] = 1#b1), the DMA decodes the
transmit data buffer address from the acquired descriptor.

5. The DMA fetches the transmit data from the application memory and transfers the data to the MFL for
transmission.

6. If an Ethernet frame is stored over data buffers in multiple descriptors, the DMA closes the interme-
diate descriptor and fetches the next descriptor. Steps 3, 4, and 5 are repeated until the end-of-Ethernet-
frame data is transferred to the MFL.

7. When frame transmission is complete, if IEEE 1588 time-stamping was enabled for the frame (as indi-
cated in the transmit status) the time-stamp value obtained from MFL is written to the transmit
descriptor (TDES2 and TDES3) that contains the end-of-frame buffer. The status information is then
written to this transmit descriptor (TDES0). Because the OWN bit is cleared during this step, the appli-
cation now owns this descriptor. If time-stamping was not enabled for this frame, the DMA does not
alter the contents of TDES2 and TDES3.

8. Transmit interrupt (EMAC_DMA_STAT.TI) is set after completing transmission of a frame that has inter-
rupt on completion (TDES1 [31]) set in its last descriptor. The DMA engine then returns to Step 3.

9. In the suspend state, the DMA tries to re-acquire the descriptor (and thereby return to Step 3) when it
receives a transmit poll demand and the EMAC_DMA_STAT.UNF bit is cleared.

NOTE: If the EMAC_DMA_OPMODE.OSF bit is not set, the actual Inter Frame Gap (IFG) may be seen as more
than as programmed in the EMAC_MACCFG register.

OSF Mode Enabled

While in the run state, the transmit process can simultaneously acquire two frames without closing the
status descriptor of the first (if the EMAC_DMA_OPMODE.OSF bit is set). As the transmit process finishes
transferring the first frame, it immediately polls the transmit descriptor list for the second frame. If the
second frame is valid, the transmit process transfers this frame before writing the first frame status infor-
mation.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–27

In OSF mode, the run state transmit DMA operates in the following sequence.

1. The DMA operates as described in steps 1–6 of Default (Non-OSF) Mode.

2. Without closing the previous frame’s last descriptor, the DMA fetches the next descriptor.

3. If the DMA owns the acquired descriptor, the DMA decodes the transmit buffer address in this
descriptor. If the DMA does not own the descriptor, the DMA goes into suspend mode and skips to
Step 7.

4. The DMA fetches the transmit frame from the application memory and transfers the frame to the MFL
until the End-of-Frame data is transferred, closing the intermediate descriptors if this frame is split
across multiple descriptors.

5. The DMA waits for the previous frame’s frame transmission status and time-stamp. Once the status is
available, the DMA writes the time-stamp to TDES2 and TDES3, if such time-stamp was captured (as
indicated by a status bit). The DMA then writes the status, with a cleared OWN bit, to the corresponding
TDES0, thus closing the descriptor. If time-stamping was not enabled for the previous frame, the DMA
does not alter the contents of TDES2 and TDES3.

6. If enabled, the transmit interrupt is set; the DMA fetches the next descriptor, and then proceeds to Step
3 (when status is normal). If the previous transmission status shows an underflow error, the DMA goes
into suspend mode (Step 7).

7. In suspend mode, if a pending status and time-stamp are received from the MFL, the DMA writes the
time-stamp (if enabled for the current frame) to TDES2 and TDES3, then writes the status to the corre-
sponding TDES0. It then sets relevant interrupts and returns to suspend mode.

8. The DMA can exit suspend mode and enter the run state (go to Step 1 or Step 2 depending on pending
status) only after receiving a transmit poll demand (EMAC_DMA_TXPOLL).

NOTE: If the EMAC_DMA_OPMODE.OSF bit is set, the DMA fetches the next descriptor in advance before
closing the current descriptor. Therefore the descriptor chain should have more than two different
descriptors for proper operation.

NOTE: If the EMAC_DMA_OPMODE.OSF bit is set, the DMA starts fetching the second frame immediately
after completing the transfer of the first frame to the FIFO. It does not wait for the status to be
updated. In the meantime the MFL receives the second frame into the FIFO while transmitting the
first frame. The difference in cycles are not seen for the first descriptor, because the time taken for
the complete descriptor processing remains the same whether EMAC_DMA_OPMODE.OSF is set or not.
The difference is seen only for the following descriptor as the processing of that descriptor is started
earlier.

Transmit Frame Processing

The transmit DMA engine expects that the data buffers contain complete Ethernet frames, excluding
preamble, pad bytes, and FCS fields. The destination address, source address, and type/length fields
contain valid data. If the transmit descriptor indicates that the EMAC CORE must disable CRC or PAD
insertion, the buffer must have complete Ethernet frames (excluding preamble), including the CRC bytes.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Frames can be data-chained and can span several buffers. Frames must be delimited by the first descriptor
(TDES1 [29]) and the last descriptor (TDES1 [30]), respectively.

As transmission starts, the first descriptor must have (TDES1 [29]) set. When this occurs, frame data trans-
fers from the application buffer to the transmit FIFO. Concurrently, if the current frame has the Last
Descriptor (TDES1 [30]) cleared, the transmit process attempts to acquire the next descriptor. The
transmit process expects this descriptor to have TDES1 [29] clear. If TDES1 [30] is clear, it indicates an
intermediary buffer. If TDES1 [30] is set, it indicates the last buffer of the frame.

After the last buffer of the frame has been transmitted, the DMA writes back the final status information
to the transmit descriptor 0 (TDES0) word of the descriptor that has the last segment set in transmit
descriptor 1 (TDES1 [30]). At this time, if interrupt on completion (TDES1 [31]) was set, transmit inter-
rupt (DMA_STAT [0]) is set, the next descriptor is fetched, and the process repeats.

Actual frame transmission begins after the MFL transmit FIFO has reached either a programmable
transmit threshold (EMAC_DMA_OPMODE.TTC), or a full frame is contained in the FIFO. There is also an
option for store and forward mode (EMAC_DMA_OPMODE.TSF). Descriptors are released (OWN bit TDES0
[31] clears) when the DMA finishes transferring the frame.

Transmit Polling Suspended

Transmit polling may be suspended by either of the following conditions.

1. The DMA detects a descriptor owned by the application (TDES0 [31] = 0).

2. A frame transmission is aborted when a transmit error due to underflow is detected. The appropriate
transmit descriptor 0 (TDES0) bit is set.

If the second condition occurs, both abnormal interrupt summary ([15]) and transmit underflow bits ([5])
are set and the information is written to transmit descriptor 0, causing the suspension. If the DMA goes
into SUSPEND state due to the first condition then both EMAC_DMA_STAT.NIS and EMAC_DMA_STAT.TU are
set.

In both cases, the position in the transmit list is retained. The retained position is that of the descriptor
following the last descriptor closed by the DMA.

The driver must explicitly issue a transmit poll demand command after rectifying the suspension cause. If
the first condition occurs, the driver must give descriptor ownership to the DMA and then issue a poll
demand command, in order to resume the transfer.

Receive Descriptor

The structure of the receive descriptor is shown below. It can have 32 bytes of descriptor data (8 DWORDs)
when advanced time-stamping or checksum is enabled.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–29

Figure 21-8: Receive Descriptor words

Table 21-18: Receive Descriptor Fields (RDES0)

Bit Name Description

31 OWN Own. When set, this bit indicates that the descriptor is owned by the DMA of the EMAC
Subsystem. When this bit is reset, this bit indicates that the descriptor is owned by the application.
The DMA clears this bit either when it completes the frame reception or when the buffers that are
associated with this descriptor are full.

30 AFM Destination Address Filter Fail. When set, this bit indicates a frame that failed in the DA Filter in
the EMAC CORE.

29–16 FL Frame Length. These bits indicate the byte length of the received frame that was transferred to
application memory (including CRC). This field is valid when last descriptor (RDES0[8]) is set and
either the descriptor error (RDES0[14]) or overflow error bits are reset. This field is valid when
Last Descriptor (RDES0[8]) is set. When the last descriptor and error summary bits are not set, this
field indicates the accumulated number of bytes that have been transferred for the current frame.

15 ES Error Summary. Indicates the logical OR of the following bits.
RDES0[1] = CRC Error
RDES0[4] = Watchdog Timeout
RDES0[6] = Late Collision
RDES0[7] = time-stamp Available
RDES4[4:3] = IP Header/Payload Error
RDES0[11] = Overflow Error
RDES0[14] = Descriptor Error. This field is valid only when the last descriptor (RDES0[8]) is set.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

14 DE Descriptor Error. When set, this bit indicates a frame truncation caused by a frame that does not fit
within the current descriptor buffers, and that the DMA does not own the next descriptor. The
frame is truncated. This field is valid only when the last descriptor (RDES0[8]) is set.

13 Reserved

12 LE Length Error. When set, this bit indicates that the actual length of the frame received and that the
length/type field does not match. This bit is valid only when the frame type (RDES0[5]) bit is reset.

11 OE Overflow Error. When set, this bit indicates that the received frame was damaged due to buffer
overflow in MFL.

10 VLAN VLAN Tag. When set, this bit indicates that the frame pointed to by this descriptor is a VLAN
frame tagged by the EMAC CORE.

9 FS First Descriptor. When set, this bit indicates that this descriptor contains the first buffer of the
frame. If the size of the first buffer is 0, the second buffer contains the beginning of the frame. If the
size of the second buffer is also 0, the next descriptor contains the beginning of the frame.

8 LS Last Descriptor. When set, this bit indicates that the buffers pointed to by this descriptor are the
last buffers of the frame

7 time-stamp
Available

When set, this bit indicates that a snapshot of the timestamp is written in descriptor words 6
(RDES6) and 7 (RDES7). This is valid only when the last descriptor bit (RDES0[8]) is set

6 LC Late Collision. When set, this bit indicates that a late collision has occurred while receiving the
frame in half-duplex mode.

5 FT Frame Type. When set, this bit indicates that the receive frame is an Ethernet-type frame (the LT
field is greater than or equal to 16'h0600). When this bit is reset, it indicates that the received frame
is an IEEE802.3 frame. This bit is not valid for Runt frames less than 14 bytes.

4 RWT Receive Watchdog Timeout. When set, this bit indicates that the receive watchdog timer has
expired while receiving the current frame and the current frame is truncated after the watchdog
timeout.

3 Reserved

2 DE Dribble Bit Error. When set, this bit indicates that the received frame has a non-integer multiple of
bytes (odd nibbles).

1 CE CRC Error. When set, this bit indicates that a Cyclic Redundancy Check (CRC) Error occurred on
the received frame. This field is valid only when the Last Descriptor (RDES0[8]) is set.

0 Extended Status
Available

When set, this bit indicates that the extended status is available in descriptor word 4 (RDES4). This
is valid only when the last descriptor bit (RDES0[8]) is set.

Table 21-19: Receive Descriptor Fields 1 (RDES1)

Bit Name Description

31 DIC Disable Interrupt on Completion. When set, this bit prevents setting the status register’s EMAC_
DMA_STAT.RI bit for the received frame ending in the buffer indicated by this descriptor. This,
in turn, disables the assertion of the interrupt to the application due to RI for that frame.

30–29 Reserved

Table 21-18: Receive Descriptor Fields (RDES0) (Continued)

Bit Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–31

28–16 RBS2 Receive Buffer 2 Size. These bits indicate the second data buffer size, in bytes. The buffer size must
be a multiple of 4, (32-bit bus), even if the value of RDES3 (buffer2 address pointer) is not aligned
to bus width. If the buffer size is not an appropriate multiple of 4, 8, or 16, the resulting behavior is
undefined. This field is not valid if RDES1[14] is set.

15 RER Receive End of Ring. When set, this bit indicates that the descriptor list reached its final descriptor.
The DMA returns to the base address of the list, creating a descriptor ring.

14 RCH Second Address Chained. When set, this bit indicates that the second address in the descriptor is
the next descriptor address rather than the second buffer address. When this bit is set, RBS2
(RDES1[28:16]) is a don’t care value. RDES1[15] takes precedence over RDES1[14].

13 Reserved

12–0 RBS1 Receive Buffer 1 Size. Indicates the first data buffer size in bytes. The buffer size must be a multiple
of 4 (32-bit bus), even if the value of RDES2 (buffer1 address pointer) is not aligned. When the
buffer size is not a multiple of 4 the resulting behavior is undefined. If this field is 0, the DMA
ignores this buffer and uses buffer 2 or next descriptor depending on the value of RCH (Bit 14).

Table 21-20: Receive Descriptor Fields 2 (RDES2)

Bit Name Description

31–0 Buffer 1 Address
Pointer

These bits indicate the physical address of buffer 1. There are no limitations on the buffer address
alignment except for the following condition: The DMA uses the configured value for its address
generation when the RDES2 value is used to store the start of frame. Note that the DMA performs
a write operation with the RDES2[1:0] bits as 0 during the transfer of the start of frame but the
frame data is shifted as per the actual buffer address pointer. The DMA ignores RDES2[1:0]
(corresponding to bus width of 32) if the address pointer is to a buffer where the middle or last part
of the frame is stored.

Table 21-21: Receive Descriptor Fields 3 (RDES3)

Bit Name Description

31–0 Buffer 2 Address
Pointer (Next
Descriptor
Address)

These bits indicate the physical address of buffer 2 when a descriptor ring structure is used. If the
second address chained (RDES1[24]) bit is set, this address contains the pointer to the physical
memory where the next descriptor is present. If RDES1[24] is set, the buffer (next descriptor)
address pointer must be bus width-aligned (RDES3[1:0] = 0, corresponding to a bus width of 32.
LSBs are ignored internally.) However, when RDES1[24] is reset, there are no limitations on the
RDES3 value, except for the following condition: The DMA uses the configured value for its
buffer address generation when the RDES3 value is used to store the start of frame. The DMA
ignores RDES3[1:0] (corresponding to a bus width of 32) if the address pointer is to a buffer
where the middle or last part of the frame is stored.

Table 21-22: Receive Descriptor Fields 4 (RDES4)

Bit Name Description

31–14 Reserved

Table 21-19: Receive Descriptor Fields 1 (RDES1) (Continued)

Bit Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

13 PTP Version When set, indicates that the received PTP message is having the IEEE 1588 version 2 format.
When reset, it has the version 1 format. This is valid only if the message type is non-zero.

12 PTP Frame Type When set, this bit indicates that the PTP message is sent directly over Ethernet. When this bit is
not set and the message type is non-zero, it indicates that the PTP message is sent over UDP-
IPv4 or UDP-IPv6. The information on IPv4 or IPv6 can be obtained from bits 6 and 7.

11–8 Message Type These bits are encoded to give the type of the message received.
0000 = No PTP message received 0001 = SYNC (all clock types)
0010 = Follow_Up (all clock types)
0011 = Delay_Req (all clock types)
0100 = Delay_Resp (all clock types)
0101 = Pdelay_Req (in peer-to-peer transparent clock) or Announce (in ordinary or boundary
clock)
0110 = Pdelay_Resp (in peer-to-peer transparent clock) or Management (in ordinary or
boundary clock)
0111 = Pdelay_Resp_Follow_Up (in peer-to-peer transparent clock) or Signaling (for ordinary
or boundary clock)
1xxx - Reserved

7 IPv6 Packet
Received

When set, this bit indicates that the received packet is an IPv6 packet.

6 IPv4 Packet
Received

When set, this bit indicates that the received packet is an IPv4 packet.

5 IP Checksum
Bypassed

When set, this bit indicates that the checksum off-load engine is bypassed.

4 IP Payload Error When set, this bit indicates that the 16-bit IP payload checksum (that is, the TCP, UDP, or ICMP
checksum) that the core calculated does not match the corresponding checksum field in the
received segment. It is also set when the TCP, UDP, or ICMP segment length does not match the
payload length value in the IP Header field.

3 IP Header Error When set, this bit indicates either that the 16-bit IPv4 header checksum calculated by the core
does not match the received checksum bytes, or that the IP datagram version is not consistent
with the Ethernet Type value.

2–0 IP Payload Type These bits indicate the type of payload encapsulated in the IP datagram processed by the receive
checksum off-load engine (COE). The COE also sets these bits to 2'b00 if it does not process the
IP datagram's payload due to an IP header error or fragmented IP.
000 = Unknown or did not process IP payload
001 = UDP
010 = TCP
011 = ICMP
1xx = Reserved

Table 21-22: Receive Descriptor Fields 4 (RDES4) (Continued)

Bit Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–33

EMAC DMA Receive Process

The following sections describe how the direct memory access receive process works on the EMAC
controller.

• Receive Frame Processing

• Receive Descriptor Acquisition

• Receive Process Suspended

The Receive DMA engine’s reception proceeds as follows:

1. The application sets up receive descriptors (RDES0–RDES3) and sets the OWN bit (RDES0 [31]).

2. Once the EMAC_DMA_OPMODE.SR bit is set, the DMA enters the run state. While in the run state, the
DMA attempts to acquire free descriptors by polling the receive descriptor list. If the fetched descriptor
is not free (is owned by the application), the DMA enters the suspend state and jumps to Step 9.

3. The DMA decodes the receive data buffer address from the acquired descriptors.

4. Incoming frames are processed and placed in the acquired descriptor’s data buffers.

5. When the buffer is full or the frame transfer is complete, the receive engine fetches the next descriptor.

6. If the current frame transfer is complete, the DMA proceeds to Step 7. If IEEE 1588 time-stamping is
enabled, the DMA writes the time-stamp (if available) to the current descriptor. If the DMA does not
own the next fetched descriptor and the frame transfer is not complete, the DMA sets the descriptor
error bit in the RDES0 (unless flushing is disabled). The DMA closes the current descriptor (clears the
OWN bit) and marks it as intermediate by clearing the last segment (LS) bit in the RDES0 value (marks
it as Last descriptor if flushing is not disabled), then proceeds to Step 8. If the DMA owns the next
descriptor but the current frame transfer is not complete, the DMA closes the current descriptor as
intermediate and reverts to Step 4.

Table 21-23: Receive Descriptor Fields 6 (RDES6)

Bit Name Description

31–0 RTSL Receive Frame Time-Stamp Low. This field is updated by DMA with the least significant 32 bits
of the time-stamp captured for the corresponding receive frame. This field is updated by DMA
only for the last descriptor of the receive frame which is indicated by last descriptor status bit
(RDES0[8]).

Table 21-24: Receive Descriptor Fields 7 (RDES7)

Bit Name Description

31–0 RTSH Receive Frame Time-Stamp High. This field is updated by DMA with the most significant 32 bits
of the time-stamp captured for the corresponding receive frame. This field is updated by DMA
only for the last descriptor of the receive frame which is indicated by last descriptor status bit
(RDES0[8]).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

7. If IEEE 1588 time-stamping is enabled, the DMA writes the time-stamp (if available) to the current
descriptor’s RDES2 and RDES3. It then takes the receive frame’s status from the MFL and writes the
status word to the current descriptor’s RDES0, with the OWN bit cleared and the last segment bit set.

8. The receive engine checks the latest descriptor’s OWN bit. If the host owns the descriptor (OWN bit is 0)
the EMAC_DMA_STAT.RU bit is set and the DMA receive engine enters the suspended state (Step 9). If the
DMA owns the descriptor, the engine returns to Step 4 and awaits the next frame.

9. Before the receive engine enters the suspend state, partial frames are flushed from the receive FIFO
(programs control flushing using the EMAC_DMA_OPMODE.DFF bit).

10. The receive DMA exits the suspend state when a receive poll demand is given or the start of next frame
is available from the MFL’s receive FIFO. The engine proceeds to Step 2 and re fetches the next
descriptor.

Receive Frame Processing

The EMAC transfers the received frames to the application memory only when the frame passes the
address filter sub-block and frame size is greater than or equal to configurable threshold bytes set for the
receive FIFO of MFL, or when the complete frame is written to the FIFO in Store-and-Forward mode.

If the frame fails the address filtering, it is dropped in the EMAC block itself (unless the EMAC_
MACFRMFILT.RA bit is set). Frames that are shorter than 64 bytes, because of collision or premature termi-
nation, can be purged from the receive FIFO.

After 64 bytes (configurable threshold) have been received, the MFL block requests the DMA block to
begin transferring the frame data to the receive buffer pointed to by the current descriptor. The DMA sets
first descriptor (RDES0 [9]) after the SCB becomes ready to receive the data (if DMA is not fetching
transmit data from the application). The descriptors are released when the OWN (RDES [31]) bit is reset to
0, either as the data buffer fills up or as the last segment of the frame is transferred to the receive buffer. If
the frame is contained in a single descriptor, both the last descriptor (RDES [8]) and the first descriptor
(RDES [9]) are set.

The DMA fetches the next descriptor, sets the last descriptor (RDES [8]) bit, and releases the RDES0 status
bits in the previous frame descriptor. Then the DMA sets the EMAC_DMA_STAT.RI bit. The same process
repeats unless the DMA encounters a descriptor flagged as being owned by the application. If this occurs,
the receive process sets the EMAC_DMA_STAT.RU bit and then enters the suspend state. The position in the
receive list is retained.

Receive Descriptor Acquisition

The Receive engine always attempts to acquire an extra descriptor in anticipation of an incoming frame.
Descriptor acquisition is attempted if any of the following conditions is satisfied:

• TheEMAC_DMA_OPMODE.SR bit has been set immediately after being placed in the run state.

• The data buffer of current descriptor is full before the frame ends for the current transfer.

• The controller has completed frame reception, but the current receive descriptor is not yet closed.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–35

• The receive process has been suspended because of an application-owned buffer (RDES0 [31] = 0) and
a new frame is received.

• A receive poll demand has been issued.

Receive Process Suspended

If a new receive frame arrives while the receive process is in suspend state, the DMA re-fetches the current
descriptor in the application memory. If the descriptor is now owned by the DMA, the receive process re-
enters the run state and starts frame reception. If the descriptor is still owned by the application, by default,
the DMA discards the current frame at the top of the receive FIFO and increments the missed frame
counter. If more than one frame is stored in the receive FIFO, the process repeats.

The discarding or flushing of the frame at the top of the receive FIFO can be avoided by setting the EMAC_
DMA_OPMODE.DFF bit. In such conditions, the receive process sets the receive buffer unavailable status and
returns to the suspend state.

OWN Bit (Ownership) Semaphore

Usage or ownership of the transmit/receive descriptor between application and EMAC is mutually exclu-
sive. While the EMAC is accessing the descriptor, the application cannot modify it. Conversely, while the
host is updating the descriptor, the EMAC cannot use the descriptor’s contents. This functionality is
implemented through the OWN bit in the transmit/receive descriptor, acting as a semaphore to prevent
multiple, simultaneous access to the descriptors.

The following example is based on a use case of 4 WORDs enabled for descriptors (which means the EMAC_
DMA_BUSMODE.ATDS bit is not set) and chain structure configuration is assumed. However, the explanation
of the OWN bit semaphore remains consistent irrespective of any particular mode of operation.

1. Transmit OWN Bit:

• TDES0 – TDES3 words implement the transmit descriptors. TDES0 [31] is defined as the OWN
bit. When TDES0 [31] is set to 0, this bit indicates that the descriptor is available for the appli-
cation to update. The application sets up the descriptors, including the buffer addresses, by
updating TDES0 through TDES3.

• To release ownership of the descriptor to the EMAC, the application sets the transmit OWN bit,
TDES0 [31], to 1. TDES0 [31] = 1 indicates that the descriptor is ready for use by the EMAC.
The DMA reads the descriptors, then fetches the data to be transmitted from the buffer loca-
tions pointed to by the transmit descriptors (TDES2 and TDES3). When either the last data
buffer is empty or the end-of-frame is reached, DMA clears the TDES0 [31] bit to 0. Now the
transmit descriptor is released to the application for updates.

2. Receive OWN Bit:

• RDES0 – RDES3 words implement the receive descriptors. RDES0 [31] is defined as the OWN bit.
When RDES0 [31] is set to 0, this bit indicates that the descriptor is available for the application
to update. The application sets up the descriptors, including the buffer locations for writing the

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

received data, by updating RDES0 through RDES3. To give ownership of the descriptor to the
EMAC, the host sets the receive OWN bit, RDES0 [31], to 1.

• RDES0 [31] = 1 indicates that the descriptor is ready for use by the EMAC. The EMAC's DMA
reads the descriptors, then writes the received data to the buffers with locations pointed to by
the receive descriptors (RDES2 and RDES3). When either the last data buffer is full or the end-
of-frame is reached, DMA clears the RDES0 [31] bit to 0. Now the receive descriptor is released
to the application for updates

Application Data Buffer Alignment

The transmit and receive data buffers do not have any restrictions on start address alignment; the start
address for the buffers can be aligned to any of the four bytes. However, the DMA always initiates transfers
with address aligned to the bus width with dummy data for the byte lanes not required. This typically
happens during the transfer of the beginning or end of an Ethernet frame.

Example for Buffer Read—If the transmit buffer address is 0xFF800002 and 15 bytes need to be trans-
ferred, then the DMA reads 5 full words (5 x 32-bit data) from address 0xFF800000. However, when trans-
ferring data to the EMAC transmit FIFO, the extra bytes (the first two bytes) are dropped or ignored.
Similarly, the last 3 bytes of the last transfer are also ignored. The DMA always ensures it transfers a full
32-bit data to the transmit FIFO, unless it is the end-of-frame.

Example for Buffer Write—If the receive buffer address is 0xFF800002 and 15 bytes of a received frame
need to be transferred, then the DMA writes 5 full words (5 x 32-bit data) to address 0xFF800000.
However, the first 2 bytes of first transfer and the last 3 bytes of the third transfer have dummy data.

Buffer Size Calculations

The DMA engines do not update the size fields in the transmit and receive descriptors alone. The DMA
updates only the status fields (RDES0 and TDES0) of the descriptors. The driver has to perform the size
calculations. The transmit DMA transfers the exact number of bytes (indicated by buffer size field of
TDES1) towards the EMAC CORE. If a descriptor is marked as first (FS bit of TDES1 is set), then the DMA
marks the first transfer from the buffer as the start of frame. If a descriptor is marked as last (LS bit of
TDES1), then the DMA marks the last transfer from that data buffer as the end-of frame to the EMAC.

The receive DMA transfers data to a buffer until the buffer is full or the end-of frame is received from the
MFL. If a descriptor is not marked as last (LS bit of RDES0), then the descriptor’s corresponding buffer(s)
are full and the amount of valid data in a buffer is accurately indicated by its buffer size field minus the data
buffer pointer offset when the FS bit of that descriptor is set. The offset is zero when the data buffer pointer
is aligned to the data bus width. If a descriptor is marked as last, then the buffer may not be full (as indi-
cated by the buffer size in RDES1). To compute the amount of valid data in this final buffer, the driver must
read the frame length (FL bits of RDES0[29:16]) and subtract the sum of the buffer sizes of the preceding
buffers in this frame. The receive DMA always transfers the start of next frame with a new descriptor.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–37

EMAC FIFO Layer (EMAC MFL)

The MAC FIFO layer provides FIFO memory to buffer and regulates the frames between the application
system memory and the EMAC CORE. It also allows the data to be transferred between the application
clock domain and the EMAC clock domains. The MFL layer has transfer controllers for each direction,
called the transmit controller (TxFIFO) and the receive controller (RxFIFO). The data path for both direc-
tions is 32-bit wide and each controller has a dedicated FIFO.

FIFO Size

The transmit FIFO size is fixed and is 256 bytes. The receive FIFO sized is fixed and is 128 bytes.

FIFO Layer Transmit Path

The DMA Engine controls all transactions for the transmit path with the application. Ethernet frames read
from the system memory are pushed into the FIFO by the DMA. The frame is then popped out and trans-
ferred to the EMAC CORE when triggered. When the end-of-frame is transferred, the status of the trans-
mission is taken from the EMAC CORE and transferred back to the DMA. FIFO-fill level is indicated to
the DMA so that it can initiate a data fetch in required bursts from the system memory, through the SCB
interface.

When the EMAC_DMA_OPMODE.OSF bit is enabled, the MFL receives the second frame into the FIFO while
transmitting the first frame. As soon as the first frame has been transferred and the status is sent to DMA.
If the DMA has already completed sending the second packet to the MFL, it must wait for the status of the
first packet before proceeding to the next frame.

The following are the modes of operation for FIFO transactions.

1. Threshold mode – In this mode as soon as the number of bytes in the FIFO crosses the configured
threshold level (or when the end-of-frame is written before the threshold is crossed), the data is ready
to be popped out and forwarded to the EMAC core. The threshold level is configured using the TTC bits
of the DMA bus mode register.

2. Store-and-Forward mode – In this mode, the MFL pops the frame towards the EMAC core only after
a complete frame is stored in the FIFO. If the Tx FIFO size is smaller than the Ethernet frame to be
transmitted (such as a Jumbo frame), then the frame is forwarded when the Tx FIFO becomes almost
full or when the requested FIFO does not have space to accommodate the requested burst-length.
Therefore, the FIFO read controller never stalls in Store and Forward mode even if the Ethernet frame
length is bigger than the Tx FIFO depth.

Transmit FIFO and Half-Duplex Retransmissions

While a frame is being transferred from the FIFO a collision event can occur on the EMAC line interface
in half-duplex mode. The EMAC then indicates a retry attempt to the MFL by giving the status even before
the end-of-frame is transferred from MFL. Then the MFL enables the retransmission by popping out the
frame again from the FIFO.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

After more than 96 bytes are popped out of FIFO, the FIFO controller frees up that space and makes it
available to the DMA to push in more data. This means that the retransmission is not possible after this
threshold is crossed or when the EMAC CORE indicates a late-collision event.

Transmit FIFO Flush Operation

The EMAC provides a control to the software to flush the transmit FIFO in the MFL layer through the use
of the EMAC_DMA_OPMODE.FTF bit. The flush operation is immediate and the MFL clears the transmit FIFO
and the corresponding pointers to the initial state even if it is in the middle of transferring a frame to the
EMAC CORE. The data which is already accepted by the MAC transmitter is not flushed. It is scheduled
for transmission and results in underflow as the transmit FIFO does not complete the transfer of rest of
the frame. As in all underflow conditions, a runt frame is transmitted and observed on the line. The status
of such a frame is marked with both underflow and frame flush events (TDES0 bits 13 and 1).

The MFL layer also stops accepting any data from the application (DMA) during the flush operation. It
generates and transfers transmit status words to the application for the number of frames that is flushed
inside the MFL (including partial frames). Frames that are completely flushed in the MFL have the frame
flush status bit (TDES0 bit 13) set. The MFL completes the flush operation when the application (DMA)
accepts all of the status words for the frames that were flushed, and then clears the transmit FIFO flush
control register bit. At this point, the MFL starts accepting new frames from the application (DMA).

FIFO Layer Receive Path

The receive controller operates in the following sequence.

1. When the EMAC core receives a frame, it pushes in data with the frame start and end indicators. The
MFL accepts the data and pushes it into the FIFO.

2. The receive controller takes the data out of the FIFO and sends it to the DMA.

• In the default threshold mode, when 64 bytes (configured using EMAC_DMA_OPMODE.RTC) or a
full packet of data are received into the FIFO, the receive controller pops out the data and indi-
cates its availability to the DMA. Some error frames may not be dropped, because the error
status is received at the end-of-frame, by which time the start of that frame has already been read
out of the FIFO.

• In Rx FIFO Store-and-Forward mode (configured using EMAC_DMA_OPMODE.RSF), a frame is
read out only after being written completely into the receive FIFO. In this mode, all error frames
are dropped (if the EMAC core is configured to do so) such that only valid frames are read out
and forwarded to the application.

3. After the end-of-frame is transferred, the status word from EMAC core is also the pushed FIFO. When
the status of a partial frame due to overflow is given out, the frame length field in the status word is not
valid.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–39

 Receive FIFO Multi-Frame Handling

Since the status is available immediately following the data, the MFL is capable of storing any number of
frames into the FIFO, as long as it is not full.

Receive FIFO Error Handling

If the MFL Rx FIFO is full before it receives the end-of-frame data from the EMAC, an overflow is declared,
the whole frame (including the status word) is dropped, and the overflow counter in the DMA (Over Flow
Counter register) is incremented. This is true even if the EMAC_DMA_OPMODE.FEF bit is set. If the start
address of such a frame has already been transferred, the rest of the frame is dropped and a dummy end-
of-frame is written to the FIFO along with the status word. The status indicates a partial frame due to over-
flow. In such frames, the frame length field is invalid.

The MFL receive control logic can filter error and undersized frames using the EMAC_DMA_OPMODE.FEF
and EMAC_DMA_OPMODE.FUF bits. If the start address of such a frame has already been transferred to the Rx
FIFO read controller, that frame is not filtered. The start address of the frame is transferred to the read
controller after the frame crosses the receive threshold (set by the EMAC_DMA_OPMODE.RTC bits).

If the MFL receive FIFO is configured to operate in Store-and-Forward mode, all error frames can be
filtered and dropped.

EMAC CORE

The EMAC CORE is the lowest block in the EMAC peripheral and it performs all operations with the
external world (PHY chip). It has independent transmit and receive modules that interact with the EMAC
FIFO layer at one end and the PHY chip via the RMII interface at the other end. Both the modules have
several sub blocks which are discussed in subsequent sections.

Transmission is initiated when the MFL (FIFO Layer) pushes in data with start-of-frame and the CORE
subsequently transmitting to the RMII. After the end-of-frame is transferred out, it gives out the status of
the transmission back to the MFL to be forwarded to the application via DMA.

A receive operation is initiated when the EMAC detects a SFD on the RMII. The CORE strips the preamble
and SFD before proceeding to process the frame. The header fields are checked for the filtering and the
FCS field used to verify the CRC for the frame. The frame is dropped in the core if it fails the address filter.

NOTE: The term CORE (written in capitals) is used refer to the internal block of Ethernet peripheral, and
should not be confused with the processor core.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 21-25: EMAC CORE Related Registers

Register Name Description

MAC Configuration1 Establishes receive and transmit operating modes including:

• Watchdog/Jabber/Jumbo frame sizes
• Inter Frame Gap
• Speed Control – 10/100 Mbps
• Full/Half Duplex
• Loopback Mode
• Checksum Offload
• Enabling TX/RX Engines

MAC Frame Filter Contains the filter controls for receiving frames. Some of the controls from this register go to
the address check block of the MAC, which performs the first level of address filtering. The
second level of filtering is performed on the incoming frame, based on other controls such as
pass bad frames and pass control frames.

Hash Table High/Low1 A 64-bit hash table is used for group address filtering. For hash filtering, the contents of the
destination address in the incoming frame is passed through the CRC logic, and the upper 6
bits of the CRC register are used to index the contents of the hash table.

SMI Address1 Controls the management cycles to the external PHY through the Station Management
interface. The register also includes a field to program the frequency of MDC.

SMI Data1 Stores write data to be written to the PHY register located at the address specified in SMI
Address register. This register also stores read data from the PHY register located at the
address specified by SMI address register.

Flow Control1 Controls the generation and reception of the control (pause command) frames by the
EMAC’s flow control module. The fields of the control frame are selected as specified in the
802.3x specification, and the pause time value from this register is used in the pause time
field of the control frame. The host must make sure that the activate bit is cleared before
writing to the register.

VLAN Tag1 Contains the IEEE 802.1Q VLAN tag to identify the VLAN frames. The MAC compares the
13th and 14th bytes of the receiving frame (length/type) with 16.h8100, and the following 2
bytes are compared with the VLAN tag. If a match occurs, it sets the received VLAN bit in the
receive frame status. The legal length of the frame is increased from 1518 bytes to 1522 bytes.

Debug Provides the status of all main modules of the transmit and receive data-paths and the FIFOs.
An all-zero status indicates that the MAC core is in idle state (and FIFOs are empty) and no
activity is going on in the data-paths.

Interrupt Status The contents of this register identify the events in the EMAC-CORE that can generate MMC
and PTP related interrupts.

Interrupt Mask Enables the program to mask the interrupt signal because of the corresponding PTP event in
the interrupt status register.

MAC Address0 High/Low1 Holds the upper/lower 16 bits of the MAC address of the station. Note that the first DA byte
that is received on the RMII interface corresponds to the LS byte (bits [7:0]) of the MAC
address low register. For example, if 0x112233445566 is received (0x11 is the first byte) on the
RMII as the destination address, then the macaddress0 register [47:0] is compared with
0x665544332211.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–41

NOTE: Please refer to the “Register Description” section for the detailed bit-level explanation of the regis-
ters.

EMAC CORE Transmission Engine

The following modules constitute the transmission function (transmission engine components) of the
EMAC:

• Transmit Bus Interface Module (TBU)

• Transmit Frame Controller Module (TFC)

• Transmit Checksum Offload Engine (TCOE)

• Transmit Protocol Engine Module (TPE)

• Transmit Scheduler Module (STX)

• Transmit CRC Generator Module (CTX)

• Transmit Flow Control Module (FTX)

Transmit Bus Interface Module (TBU)

This module interfaces the transmit path of the EMAC CORE with the MAC Layer FIFO interface. This
module outputs the transmit status to the application at the end of normal transmission or collision.

Transmit Frame Controller Module (TFC)

The transmit frame controller regulates frames as well as converts the 32-bit input data into an 8-bit
stream.

When the number of bytes received from the application falls below 60 (DA+SA+LT+DATA), the state
machine automatically appends zeros to the transmitting frame to make the data length exactly 46 bytes to
meet the minimum data field requirement of IEEE 802.3. The EMAC can also be programmed not to
append any padding.

The frame controller receives the computed CRC and appends it as the FCS field to the data being trans-
mitted out. When the EMAC is programmed to not append the CRC value to the end of Ethernet frames,
the TFC module ignores the computed CRC. An exception to this rule is that when the EMAC is
programmed to append pads for frames (DA+SA+LT+DATA) less than 60 bytes, then the CRC is always
appended at the end of padded frame.

Operation Mode1

1.There should not be any further writes to these registers until the first write is updated. Otherwise, the second write operation is not updated
properly. For correct operation, the delay between two writes to the same register location should be at least 8 cycles of 50MHz RMII REFCLK.

Table 21-25: EMAC CORE Related Registers (Continued)

Register Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Transmit Checksum Offload Engine (TCOE)

Communication protocols such as TCP and UDP implement checksum fields, which help determine the
integrity of data transmitted over a network. Because the most widespread use of Ethernet is to encapsulate
TCP and UDP over IP datagrams, the EMAC has a checksum offload engine (COE) to support checksum
calculation and insertion in the transmit path, and error detection in the receive path.

NOTE: The checksum for TCP, UDP, or ICMP is calculated over a complete frame, and then inserted into
its corresponding header field. Because of this requirement, this function is enabled only when the
transmit FIFO is configured for store-and-forward mode (that is, when the EMAC_DMA_OPMODE.
TSF bit is set. If the MAC is configured for threshold (cut-through) mode, the transmit COE is
bypassed.

NOTE: Programs must make sure that the transmit FIFO is deep enough to store a complete frame before
that frame is transferred to the EMAC CORE transmitter. The program must enable the checksum
insertion only in the frames that are less than the following number of bytes in size (even in the
store-and-forward mode): FIFO depth (256 bytes) – PBL – 3 FIFO locations, where PBL is the
programmed burst-length in the DMA bus mode register.

IP Header Checksum

In IPv4 datagrams, the integrity of the header fields is indicated by the 16-bit header checksum field (the
eleventh and twelfth bytes of the IPv4 datagram). The COE detects an IPv4 datagram when the Ethernet
frame’s type field has the value 0x0800 and the IP datagram’s version field has the value 0x4. The input
frame’s checksum field is ignored during calculation and replaced with the calculated value.

The result of this IP header checksum calculation is indicated by the IP header error status bit in transmit
descriptor word TDES0. This status bit is set whenever the values of the Ethernet type field and the IP
header’s version field are not consistent, or when the Ethernet frame does not have enough data, as indi-
cated by the IP header length field. In other words, this bit is set when an IP header error is asserted under
the following circumstances.

For IPv4 datagrams:

• The received Ethernet type is 0x0800, but the IP header’s version field is not equal to 0x4.

• The IPv4 header length field indicates a value less than 0x5 (20 bytes).

• The total frame length is less than the value given in the IPv4 header length field.

For IPv6 datagrams:

• The Ethernet type is 0x86dd but the IP header version field is not equal to 0x6.

• The frame ends before the IPv6 header (40 bytes) or extension header (as given in the corresponding
Header Length field in an extension header) is completely received.

If the COE detects an IP header error, it still inserts an IPv4 header checksum if the Ethernet type field indi-
cates an IPv4 payload.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–43

NOTE: IPv6 headers do not have a checksum field. Therefore, the COE does not modify the IPv6 header
fields.

TCP/UDP/ICMP Checksum

The TCP/UDP/ICMP checksum engine processes the IPv4 or IPv6 header (including extension headers)
and determines whether the encapsulated payload is TCP, UDP, or ICMP.

NOTE: See IETF specifications RFC 791, RFC 793, RFC 768, RFC 792, RFC 2460, and RFC 4443 for IPv4,
TCP, UDP, ICMP, IPv6, and ICMPv6 packet header specifications, respectively.

NOTE: For non-TCP/UDP/ICMP/ICMPv6 payloads, this checksum engine is bypassed and nothing
further is modified in the frame.

NOTE: For ICMP-over-IPv4 packets, the Checksum field in the ICMP packet must always be 0x0000 in
both modes, because pseudo-headers are not defined for such packets. If it does not equal 0x0000,
an incorrect checksum may be inserted into the packet.

NOTE: Fragmented IP frames (IPv4 or IPv6), IP frames with security features (such as an encapsulated
security payload), and IPv6 frames with routing headers are not processed by this engine. The
checksum engine bypasses the checksum insertion for such frames even if the checksum insertion
is enabled.

The checksum is calculated for the TCP, UDP, or ICMP payload and inserted into its corresponding field
in the header. This engine can work in the following two ways.

• The TCP, UDP, or ICMPv6 pseudo-header is not included in the checksum calculation and is assumed
to be present in the checksum field of the input frame. This engine includes the checksum field in the
checksum calculation, and then replaces the checksum field with the final calculated checksum.

• The engine ignores the checksum field, includes the TCP, UDP, or ICMPv6 pseudo-header data into
the checksum calculation, and overwrites the checksum field with the final calculated value.

The result of this operation is indicated by the payload checksum error status bit in the transmit descriptor
word TDES0. The checksum engine sets the payload checksum error status bit when it detects that the
frame has been forwarded to the MAC transmitter engine in the store-and-forward mode without the end-
of-frame (EOF) being written to the FIFO, or when the packet ends before the number of bytes indicated
by the payload length field in the IP header is received. When the packet is longer than the indicated
payload length, the COE ignores them as stuff bytes, and no error is reported. When the engine detects the
first type of error, it does not modify the TCP, UDP, or ICMP header. For the second error type, it still
inserts the calculated checksum into the corresponding header field.

Transmit checksum offloading is enabled by setting the CIC bits [23:22] of TDES0 word in the transmit
descriptor.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Transmit Protocol Engine Module (TPE)

The transmit protocol engine consists of a state-machine that controls the protocol level operation of
Ethernet frame transmission. The module performs the following functions to meet the IEEE 802.3 spec-
ifications.

• Generates preamble and SFD

• Generates jam pattern in half-duplex mode

• Jabber timeout

• Flow control for half-duplex mode (back pressure)

• Generates transmit frame status

When a new frame transmission is requested, the protocol engine sends out the preamble and SFD,
followed by the data received. The preamble is defined as 7 bytes of 10101010 pattern and the SFD is
defined as 1 byte of 10101011 pattern.

The collision window is defined as 1 slot time (512 bit times for 10/100 Mbps). The jam pattern generation
is applicable only to half-duplex mode, not to full-duplex mode. If a collision occurs any time from the
beginning of the frame to the end of the CRC field, the state machine sends a 32-bit jam pattern of
0x55555555 on the RMII to inform all other stations that a collision has occurred. If the collision is seen
during the preamble transmission phase, it completes the transmission of preamble and SFD and then
sends the jam pattern. If the collision occurs after the collision window and before the end of the FCS field,
it sends a 32-bit jam pattern and sets the late collision bit in the transmit frame status.

The module maintains a jabber timer (in 10/100-Mbps) to cut off the transmission of Ethernet frames if
the TFC module transfers more than 2,048 (default) bytes. The time-out is changed to 10,240 bytes when
the jumbo frame is enabled.

The transmit state machine uses the deferral mechanism for the flow control (back pressure) in half-duplex
mode. When the application asks to stop receiving frames, the module sends a JAM pattern of 32 bytes
whenever it senses a reception of a frame, provided the transmit flow control is enabled. This results in a
collision and the remote station backs off.

The application can request a flow control signal by setting the EMAC_FLOWCTL.FCBBPA bit. If the applica-
tion requests a frame to be transmitted, then it is scheduled and transmitted even when the back pressure
is activated. Note that if the back pressure is kept activated for a long time (and more than 16 consecutive
collision events occur) then the remote stations abort their transmissions due to excessive collisions.

Transmit Scheduler Module (STX)

The Transmit Scheduler is responsible for scheduling the frame transmission on the RMII. The two major
functions of this module are:

• Maintain the inter-frame gap between two transmitted frames.

• Follow the truncated binary exponential back-off algorithm for half-duplex mode.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–45

The scheduler maintains an idle period of the configured inter-frame gap (EMAC_MACCFG.IFG bits)
between any two transmitted frames. The scheduler starts its IFG counter as soon as the carrier signal of
the RMII goes inactive. In half-duplex mode and when IFG is configured for 96 bit times, the scheduler
follows the rule of deference specified in Section 4.2.3.2.1 of the IEEE 802.3 specification. The module
resets its IFG counter if a carrier is detected during the first two-thirds (64-bit times for all IFG values) of
the IFG interval. If the carrier is detected during the final one third of the IFG interval, the scheduler
continues the IFG count and enables the transmitter after the IFG interval.

Transmit CRC Generator Module (CTX)

The transmit CRC generator module generates CRC for the FCS field of the Ethernet frame (DA + SA +
LT + DATA + PAD).

This module calculates the 32-bit CRC for the FCS field of the Ethernet frame. The encoding is defined by
the following polynomial:

G (x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1.

Transmit Flow Control Module (FTX)

The transmit flow control module generates pause frames and transmits them to the frame controller as
necessary, in full-duplex mode. The application can request the flow control module to send a pause frame
by setting the EMAC_FLOWCTL.FCBBPA bit.

If the application has requested for flow control, the flow control module generate and transmit a single
pause frame. The value of the pause time in the generated frame contains the programmed pause time
value configured using the EMAC_FLOWCTL.PT bit. To extend the pause or end the pause prior to the time
specified in the previously transmitted pause frame, the application must request another pause frame
transmission after programming the EMAC_FLOWCTL.PT bit with an appropriate value.

If the flow control signal goes inactive prior to the sampling time, the flow control module transmits a
pause frame with zero pause time to indicate to the remote end that the receive buffer is ready to receive
new data frames.

EMAC CORE Reception Engine

The following are the functional blocks (reception engine components) in the receive path of the EMAC
core.

• Receive Protocol Engine Module (RPE)

• Receive CRC Module (CRX)

• Receive Frame Controller Module (RFC)

• Receive Flow Control Module (FRX)

• Receive Checksum Offload Engine (RCOE)

• Receive Bus Interface Unit Module (RBU)

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Address Filtering Module (AFM)

Receive Protocol Engine Module (RPE)

The receive protocol engine is a state-machine that strips the incoming preamble and SFD. Once the
receive data valid signal (ETH_CRS) signal of the RMII becomes active, the protocol engine begins hunting
for the SFD field from the receive modifier logic. Until then, the state machine drops the receiving pream-
bles. Once the SFD is detected, it begins sending the data of the Ethernet frame to the frame controller,
beginning with the first byte following the SFD (destination address).

NOTE: According to the IEEE 802.3 Ethernet specifications, the EMAC receiver need not look or check for
the preamble pattern. It has to wait only for the SFD pattern to identify the start of a frame. Then
the EMAC receiver accepts a frame even when no preamble is received before the SFD pattern.

The protocol engine also decodes the length/type field of the receiving Ethernet frame. If the length/type
field is less than 0x600 and if the MAC is programmed for the auto CRC/PAD stripping option, the state
machine sends the data of the frame up to the count specified in the length/type field, then starts dropping
bytes (including the FCS field).

If the length/type field is greater than or equal to 0x600, the protocol engine sends all received Ethernet
frame data to the frame controller, irrespective of the value on the programmed auto-CRC strip option.

The EMAC is programmed with the watchdog timer enabled (default setting). In this configuration frames
above 2,048 (10,240 if jumbo frame is enabled) bytes (DA + SA + LT + DATA + PAD + FCS) are cut off at
the protocol engine. This feature can be disabled by setting the EMAC_MACCFG.WD bit. However even if the
watchdog timer is disabled, frames greater than 16 KB in size are cut off and a watchdog time-out status is
issued.

The EMAC supports loopback of transmitted frames onto its receiver. By default, the EMAC loopback
function is disabled, but can be enabled by setting the EMAC_MACCFG.LM bit.

At the end of every received frame, the protocol engine generates received frame status and sends it to the
frame controller. Control, missed frame, and filter fail status are added to the receive status in the frame
controller.

Receive CRC Module (CRX)

The receive CRC module checks for any CRC errors in the receiving frame.

This module calculates the 32-bit CRC for the received frame that includes the destination address field
through the FCS field (DA+SA+LT+DATA+PAD+FCS). The encoding is defined by the following gener-
ating polynomial.

G (x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

Irrespective of the auto pad/CRC strip, the CRC module receives the entire frame to compute the CRC
check for received frame.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–47

Receive Frame Controller Module (RFC)

The main functions of the frame controller are:

• Converting the 8-bit stream data to 32-bit data.

• Frame filtering.

• Attaching the calculated IP Checksum.

• Update the receive status.

If the EMAC_MACFRMFILT.RA bit is set, the RFC module initiates the data transfer as soon as possible. At the
end of the data transfer, the frame controller sends out the received frame status that includes the address
filtering pass/fail status.

If the EMAC_MACFRMFILT.RA bit is reset, the frame controller performs frame filtering based on the desti-
nation/source address (the application still needs to perform another level of filtering if it decides not to
receive any bad frames like runt, CRC error frames, for example). After receiving the destination/source
address bytes, the frame controller checks the filter-fail signal from the AFM module for an address match.
On detecting a filter-fail from AFB, the frame is dropped and not transferred to the application.

Receive Flow Control Module (FRX)

The receive flow controller detects the receiving pause frame and pauses the frame transmission for the
delay specified within the received pause frame. The flow controller is enabled only in full-duplex mode.
The pause frame detection function can be enabled or disabled with the EMAC_FLOWCTL.RFE bit.

Once the receive flow control is enabled, the flow controller begins monitoring the received frame desti-
nation address for any match with the multicast address of the control frame (0x0180C2000001). If a
match is detected, it indicates to the frame controller, that the destination address of the received frame
matches the reserved control frame destination address. The RFC module then decides whether or not to
transfer the received control frame to the application, based on the EMAC_MACFRMFILT.PCF bit setting.

The receive flow controller also decodes the type, op-code, and pause timer field of the receiving control
frame. If the byte count of the frame status indicates 64 bytes, and if there is no CRC error, the flow
controller requests the MAC transmitter to pause the transmission of any data frame for the duration of
the decoded pause time value, multiplied by the slot time (64 byte times). Meanwhile, if another pause
frame is detected with a zero pause time value, the module resets the pause time and gives another pause
request to the transmitter. If the received control frame matches neither the type field (0x8808), opcode
(0x00001), nor byte length (64 bytes), or if there is a CRC error, the module does not generate a pause
request to the transmitter.

In the case of a pause frame with a multicast destination address, the frame controller filters the frame
based on the address match from the flow controller. For a pause frame with a unicast destination address,
the filtering in the FRX module depends on whether the destination address matched the contents of the
MAC address register 0 (EMAC_ADDR0_HI/EMAC_ADDR0_LO) and the EMAC_FLOWCTL.UP bit is set (detecting
a pause frame even with a unicast destination address). The EMAC_MACFRMFILT.PCF bits control the
filtering for control frames in addition to the address filter module.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Receive Checksum Offload Engine (RCOE)

When checksum offloading is enabled, both IPv4 and IPv6 frames in the received Ethernet frames are
detected and processed for data integrity. Programs can enable this module by setting the EMAC_MACCFG.
IPC bit. The EMAC receiver identifies IPv4 or IPv6 frames by checking for value 0x0800 or 0x86DD,
respectively, in the received Ethernet frames’ type field. This identification applies to VLAN-tagged frames
as well. Extended descriptor mode (8 x32-bit words) must be enabled to get the IPC checksum engine status
in RDES4. Status can be checked by polling the bit 0 of RDES0 word of receive descriptor and then if this
bit is set, further parsing bits [7:0] of RDES4 word.

The receive checksum offload engine calculates IPv4 header checksums and checks if they match the
received IPv4 header checksums. The IP header error bit is set for any mismatch between the indicated
payload type (Ethernet type field) and the IP header version, or when the received frame does not have
enough bytes, as indicated by the IPv4 header’s length field (or when fewer than 20 bytes are available in
an IPv4 or IPv6 header).

This engine also identifies a TCP, UDP or ICMP payload in the received IP datagrams (IPv4 or IPv6) and
calculates the checksum of such payloads properly, as defined in the TCP, UDP, or ICMP specifications.
This engine includes the TCP/UDP/ICMPv6 pseudo-header bytes for checksum calculation and checks
whether the received checksum field matches the calculated value. The result of this operation is given as
a payload checksum error bit in the receive status word. This status bit is also set if the length of the TCP,
UDP, or ICMP payload does not tally to the expected payload length given in the IP header.

NOTE: The COE engine bypasses the payload of fragmented IP datagrams, IP datagrams with security
features, IPv6 routing headers, and payloads other than TCP, UDP or ICMP. This information
(whether the checksum engine is bypassed or not) is given in the receive status.

The meaning of checksum related errors can be understood using the table below which shows bit combi-
nation in receive descriptors (frame status with full checksum offload engine enabled and advanced time-
stamps not enabled).

Table 21-26: Checksum Error Status

IEEE802.3 Frame: bit 5
of RDES0

Header Checksum
Error: bit 3 of RDES4

Payload Checksum
Error: bit 4 of RDES4 Frame Status

0 0 0 The frame is an IEEE 802.3 frame (length field value is
less than 0x0600).

1 0 0 IPv4/IPv6 type frame in which no checksum error is
detected.

1 0 1 IPv4/IPv6 type frame in which a payload checksum
error (as described for PCE) is detected

1 1 0 IPv4/IPv6 type frame in which IP header checksum
error (as described for IPC HCE) is detected.

1 1 1 IPv4/IPv6 type frame in which both PCE and IPC HCE
is detected.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–49

Receive Bus Interface Unit Module (RBU)

The receive bus interface unit (RBU) constructs the 32-bit data received from the frame controller into a
32-bit FIFO based protocol.

Address Filtering Module (AFM)

The address filtering (AFM) module performs the destination checking function on all received frames
and reports the address filtering status to the frame controller. The address checking is based on different
parameters (frame filter register, EMAC_MACFRMFILT) chosen by the application. These parameters are
inputs to the AFM module as control signals, and the AFM module reports the status of the address
filtering based on the combination of these inputs. The AFM module also reports whether the receiving
frame is a multicast frame or a broadcast frame, as well as the address filter status. The AFM module uses
the station’s physical (MAC) address and the multicast hash table for address checking.

• Hash or Perfect Address Filter. The destination address filter can be configured to pass a frame when
its destination address matches either the hash filter or the perfect filter by setting the EMAC_
MACFRMFILT.HPF bit and setting the corresponding EMAC_MACFRMFILT.HUC or EMAC_MACFRMFILT.HMC
bits. This configuration applies to both unicast and multicast frames. If the EMAC_MACFRMFILT.HPF bit
is reset, only one of the filters (hash or perfect) is applied to the received frame.

NOTE: Hash filtering is not perfect filtering because a 48-bit MAC address is reduced to a 6-bit hash value.
Consequently, there may be instances where more than one address has the same hash value.

• Unicast Destination Address Filter.

– The AFM supports 1 MAC address for unicast perfect filtering. If perfect filtering is selected (EMAC_
MACFRMFILT.HUC bit is reset), the AFM compares all 48 bits of the received unicast address with the
programmed MAC address for any match.

– In hash filtering mode (When EMAC_MACFRMFILT.HUC bit is set), the AFM performs imperfect
filtering for unicast addresses using a 64-bit hash table. For hash filtering, the AFM uses the upper
6 bit CRC of the received destination address to index the content of the hash table. A value of
000000 selects bit 0 of the selected register, and a value of 111111 selects bit 63 of the hash table
register. If the corresponding bit (indicated by the 6-bit CRC) is set to 1, the unicast frame is said to
have passed the hash filter; otherwise, the frame has failed the hash filter.

• Multicast Destination Address Filter.

0 0 1 IPv4/IPv6 type frame in which there is no IP HCE and
the payload check is bypassed due to unsupported
payload.

0 1 1 Type frame which is neither IPv4 or IPv6 (COE
bypasses the checksum check completely)

0 1 0 Reserved

Table 21-26: Checksum Error Status (Continued)

IEEE802.3 Frame: bit 5
of RDES0

Header Checksum
Error: bit 3 of RDES4

Payload Checksum
Error: bit 4 of RDES4 Frame Status

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

– The EMAC can be programmed to pass all multicast frames by setting the EMAC_MACFRMFILT.PM
bit. If the EMAC_MACFRMFILT.PM bit is reset, the AFM performs the filtering for multicast addresses
based on the EMAC_MACFRMFILT.HMC bit. In perfect filtering mode, the multicast address is
compared with the programmed MAC destination address register. Group address filtering is also
supported.

– In hash filtering mode, the AFM performs imperfect filtering using a 64-bit hash table. For hash
filtering, the AFM uses the upper 6 bit CRC of the received multicast address to index the content
of the hash table. A value of 000000 selects bit 0 of the selected register and a value of 111111 selects
bit 63 of the hash table register. If the corresponding bit is set to 1, then the multicast frame is said
to have passed the hash filter; otherwise, the frame has failed the hash filter.

• Broadcast Address Filter. The AFM doesn’t filter any broadcast frames in the default mode. However,
if the EMAC is programmed to reject all broadcast frames by setting the EMAC_MACFRMFILT.DBF bit,
the AFM asserts the filter fail signal, whenever a broadcast frame is received.

• Inverse Filtering Operation. There is an option to invert the filter-match result at the final output.
This is controlled by the EMAC_MACFRMFILT.DAIF bit. The this bit is applicable for both unicast and
multicast DA frames. The result of the unicast /multicast destination address filter is inverted in this
mode.

Destination Address Filtering

The following table provides various address filtering possibilities using the EMAC AFM module. The bits
are located in the MAC receive frame filter register (EMAC_MACFRMFILT).

Table 21-27: Destination Address Filtering

Frame Type

Bit Setting (0 = Cleared, 1 = Set, X = Don’t Care)

DA Filter OperationPR HPF HUC HMC DAIF PM DBF

Broadcast 1 X X X X X X Pass

0 X X X X X 0 Pass

0 X X X X X 1 Fail

Unicast 1 X X X X X X Pass all frames

0 X 0 0 X X X Pass on Perfect/Group filter
match

0 X 0 1 X X X Fail on Perfect/Group filter
match

0 0 1 0 X X X Pass on Hash filter match

0 0 1 1 X X X Fail on Hash filter match

0 1 1 0 X X X Pass on Hash or Perfect/
Group filter match

0 1 1 1 X X X Fail on Hash or Perfect/
Group filter match

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–51

EMAC Station Management Interface (SMI)

The IEEE 802.3 MII station management interface (applicable for RMII as well), also known as the MDIO
management interface, allows the processor to monitor and control one or more external Ethernet phys-
ical-layer transceivers (commonly called PHYs). The management interface physically consists of a 2-wire
serial connection composed of the MDC (management data clock) output signal and the MDIO (manage-
ment data input/output) bidirectional data signal.

The application can select one of the 32 PHYs and one of the 32 registers within any PHY and send control
data or receive status information. Only one register in one PHY can be addressed at any given time. All
the transfers are initiated by the EMAC CORE, and the PHY chip only acts as a slave device.

Standard PHY control and status registers typically provide device capability status bits (for example, auto-
negotiation, duplex modes, 10/100 speeds and protocols), device status bits (for example, auto-negotiation
complete, link status, remote fault), and device control bits (for example, reset, speed selection, loopback,
and auto-negotiation start). The features supported by the PHY may be determined at power-up by an
MDIO read access (at default rates) of device capabilities in PHY status registers.

Multicast 1 X X X X X X Pass all frames

X X X X X 1 X Pass all frames

0 X X 0 0 0 X Pass on Perfect/Group filter
match and drop PAUSE
control frames if PCF = 0x

0 0 X 0 1 0 X Pass on Hash filter match and
drop PAUSE control frames if
PCF = 0x

0 1 X 0 1 0 X Pass on Hash or Perfect/
Group filter match and drop
PAUSE control frames if PCF
= 0x

0 X X 1 0 0 X Fail on Perfect/Group filter
match and drop PAUSE
control frames if PCF = 0x

0 0 X 1 1 0 X Fail on Hash filter match and
drop PAUSE control frames if
PCF = 0x

0 1 X 1 1 0 X Fail on Hash or Perfect/
Group filter match and drop
PAUSE control frames if PCF
= 0x

Table 21-27: Destination Address Filtering (Continued)

Frame Type

Bit Setting (0 = Cleared, 1 = Set, X = Don’t Care)

DA Filter OperationPR HPF HUC HMC DAIF PM DBF

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–52 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The MII management logical interface specifies:

• A set of 16-bit device control/status registers within the PHYs, including both required registers with
standardized bit definitions as well as optional vendor-specified registers.

• A 5-bit device addressing scheme which allows the MAC to select one of up to 32 externally-connected
PHY devices.

• A 5-bit register addressing scheme for selecting the target register within the addressed device.

• A transfer frame protocol for 16-bit read and write accesses to PHY registers via the MDC and MDIO
signals under control of the MAC.

MDC Clock Frequency

The frequency of MDC is determined by the EMAC_SMI_ADDR.CR bit field as shown in the table below. The
clock range selection determines the frequency of the clock relative to the SCLK frequency. The suggested
range of SCLK frequency applicable for each value of the EMAC_SMI_ADDR.CR field is shown in the table
below. The programmability based on SCLK frequency range ensures that the MDC clock frequency range
is within the IEEE specifications of 1.0 MHz to 2.4 MHz. However, the EMAC MDC can also support
higher frequencies for PHY devices that support the frequencies.

MDIO data transfer parameters are provided in the table below. The write and read sequences provided in
the tables, MDIO Write Data Sequence and MDIO Read Data Sequence, are based on these parameters.

Table 21-28: Station Management Interface pins

Station Management Interface Pins Pin Description

MDIO – Management Data IO A periodic clock that runs at a maximum period of 400 ns. Always
driven by the EMAC to PHY.

MDC – Management Data Clock Data signal driven by EMAC or PHY, depending on write or read
access with respect to EMAC; synchronous to MDC.

Table 21-29: MDC Clock Frequency Selection

EMAC_SMI_ADDR.CR
Selection

Programmed SCLK Frequency
Range Frequency of MDC

Min and Max MDC Freq
(Per Specifications)

0000 60–100 MHz SCLK/42 MIN = 1.43 MHz and MAX = 2.
39 MHz

0010 20–35 MHz SCLK/16 MIN = 1.25 MHz and MAX = 2.
19MHz

0011 35–60 MHz SCLK/26 MIN = 1.35 MHz and MAX = 2.
31 MHz

Table 21-30: MDIO Frame Parameters

Parameter Description

IDLE The MDIO line is three-state (noted as Z in sequence); there is no clock on MDC.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–53

SMI Write Operation

When programs set the EMAC_SMI_ADDR.SMIW (write) and EMAC_SMI_ADDR.SMIB (busy) bits, the Station
Management Interface initiates a write operation into the PHY registers with the management frame
format (the PHY address, the register address in PHY, and the write data) specified in the IEEE specifica-
tions (Section 22.2.4.5 of IEEE standard). The application should not change the EMAC_SMI_ADDR register
contents or the EMAC_SMI_DATA register while the transaction is ongoing.

Write operations to the EMAC_SMI_ADDR register or the EMAC_SMI_DATA register during the transfer period
are ignored (while the EMAC_SMI_ADDR.SMIB bit is high), and the transaction is completed without any
error. After the write operation has completed, the SMI indicates the same by resetting the EMAC_SMI_
ADDR.SMIB bit. The EMAC drives the MDIO line for the complete duration of the frame as shown in the
following figure.

PREAMBLE 32 continuous bits, each of value 1.

START Start-of-frame is 01.

OPCODE 10 for read and 01 for write.

PHY ADDR 5-bit address select for one of 32 PHYs (noted as AAAAA in sequence).

REG ADDR Register address in the selected PHY (noted as RRRRR in sequence).

TA Turnaround is Z0 for read and 10 for write (Z = high impedance).

DATA Any 16-bit value. Driven by MAC or PHY based on direction (noted as DDD...DDD).

Table 21-31: MDIO Write Data Sequence

IDLE PREAMBLE START OPCODE PHY ADDR REG ADDR TA DATA IDLE

Z 111...111 01 01 AAAAA RRRRR 10 DDD... DDD Z

Table 21-32: MDIO Read Data Sequence

IDLE PREAMBLE START OPCODE PHY ADDR REG ADDR TA DATA IDLE

Z 111...111 01 10 AAAAA RRRRR Z0 DDD... DDD Z

Table 21-30: MDIO Frame Parameters (Continued)

Parameter Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–54 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-9: SMI Write Operation via MDIO/MDC Pins

SMI Read Operation

When programs set the EMAC_SMI_ADDR.SMIB bit with the EMAC_SMI_ADDR.SMIW bit cleared (=0), the
Station Management Interface transfers the PHY address and the register address in the PHY to the SMI
to initiate a read operation in the PHY registers. The application should not change the EMAC_SMI_ADDR
register contents or the EMAC_SMI_DATA register while the transaction is ongoing.

Write operations to the EMAC_SMI_ADDR register or the EMAC_SMI_DATA register during the transfer period
are ignored (while the EMAC_SMI_ADDR.SMIB bit is high) and the transaction is completed without any
error. After the read operation has completed, the SMI indicates this by resetting the EMAC_SMI_ADDR.
SMIB bit and updates the EMAC_SMI_DATA register with the data read from the PHY. The EMAC drives the
MDIO line for the complete duration of the frame except during the data fields when the PHY is driving
the MDIO line as shown in the following figure.

Figure 21-10: SMI Read Operation via MDIO/MDC Pins

EMAC Management Counters (MMC)

The EMAC provides a comprehensive set of 32-bit MAC management counters. These counters are used
for gathering statistics on the received and transmitted frames. The MMC sub-block also includes a control
register (EMAC_MMC_CTL) for controlling the behavior of the counters, two 32-bit registers containing inter-
rupts generated (EMAC_MMC_RXINT and EMAC_MMC_TXINT), and two 32-bit registers containing masks for
the interrupt register (EMAC_MMC_RXIMSK and EMAC_MMC_TXIMSK).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–55

The MMC receive counters are updated for frames that are passed by the address filtering sub-block in the
EMAC CORE. Statistics of frames that are dropped by the AFM module are not updated unless they are
runt frames of less than 6 bytes (destination address bytes are not received fully). The module is also
capable of gathering statistics on encapsulated IPv4, IPv6, and TCP, UDP, or ICMP payloads in received
Ethernet frames.

For more information about statistical counters available in EMAC, see the ADSP-CM40x EMAC Register
Descriptions. The MMC register naming conventions are as follows:

• TX as a prefix or suffix indicates counters associated with transmission.

• RX as a prefix or suffix indicates counters associated with reception.

• _G as a suffix indicates registers that count good frames only.

• _GB as a suffix indicates registers that count frames regardless of whether they are good or bad.

Transmitted frames are considered good if transmitted successfully. In other words, a transmitted frame is
good if the frame transmission is not aborted due to any of the following errors:

• Jabber Timeout

• No Carrier/Loss of Carrier

• Late Collision

• Frame Underflow

• Excessive Deferral

• Excessive Collision

Received frames are considered good if none of the following errors exists:

• CRC error

• Runt Frame (shorter than 64 bytes)

• Alignment error

• Length error (non-Type frames only)

• Out of Range (non-Type frames only, longer than maximum size)

The maximum frame size depends on the frame type, as follows:

• Untagged frame maxsize = 1518

• VLAN Frame maxsize = 1522

• Jumbo Frame maxsize = 9018

• Jumbo VLAN Frame maxsize = 9022

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–56 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The EMAC_MMC_CTL register also contains bits that control preset, freeze and roll-over of counters. Addi-
tional configuration include EMAC_MMC_CTL.RDRST bit that enables an auto-reset feature whenever the
counters are read and the EMAC_MMC_CTL.RST bit for resetting all the counters.

The MMC can also trigger an interrupt when the corresponding bits are enabled in the transmit, receive
and IPC mask registers, and when the particular counter reaches half/full. The status is also updated in the
corresponding interrupt register.

MMC Receive Interrupt Register

The EMAC_MMC_RXINT register maintains the interrupts that are generated when receive statistic counters
reach half their maximum values (0x80000000), and when they cross their maximum values
(0xFFFFFFFF). When EMAC_MMC_CTL.NOROLL is set, then interrupts are set but the counter remains at all-
ones. The EMAC_MMC_RXINT register is a 32-bit wide register. An interrupt bit is cleared when the respective
MMC counter that caused the interrupt is read. The least significant byte lane (bits 7–0) of the respective
counter must be read in order to clear the interrupt bit.

MMC Transmit Interrupt Register

The EMAC_MMC_TXINT register maintains the interrupts generated when transmit statistic counters reach
half their maximum values (0x80000000), and when they cross their maximum values (0xFFFFFFFF).
When EMAC_MMC_CTL.NOROLL is set, then interrupts are set but the counter remains at all-ones. The EMAC_
MMC_TXINT register is a 32-bit wide register. An interrupt bit is cleared when the respective MMC counter
that caused the interrupt is read. The least significant byte lane (bits 7–0) of the respective counter must be
read in order to clear the interrupt bit.

MMC Receive Checksum Offload Interrupt Register

The EMAC_MMC_RXINT.CRCERR register maintains the interrupts generated when receive IPC statistic
counters reach half their maximum values (0x80000000), and when they cross their maximum values
(0xFFFFFFFF). When EMAC_MMC_CTL.NOROLL is set, then interrupts are set but the counter remains at all-
ones. The EMAC_MMC_RXINT.CRCERR register is 32-bits wide. When the MMC IPC counter that caused the
interrupt is read, its corresponding interrupt bit is cleared. The counter’s least-significant byte lane (bits
7–0) must be read to clear the interrupt bit.

EMAC Precision Time Protocol (PTP) Engine

The following sections describe the Precision Time Protocol engine.

IEEE1588 and the PTP Engine

The Ethernet MAC peripheral includes a PTP Engine to assist applications requiring time synchroniza-
tion. The PTP module is tightly integrated with the EMAC CORE to aid hardware time stamping defined
in the IEEE1588 2002/2008 standards. Applications can make use of accurate hardware time stamps via
TCP/IP stacks (if using Network layer communication) or via Ethernet device drivers (if using MAC layer
communication), to exchange time information across devices connected over network.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–57

PTP Engine

For calculation of drift in time between two Ethernet devices, the device should note down its system time
whenever a timing message is sent or received (IEEE 1588 protocol). Due to the indeterministic delay of a
node’s software system, the software is unable to capture an accurate time when the message is sent or
received. However, the hardware is capable of monitoring the signal on the communication media and get
accurate message arrival/departure time.

The PTP (Precision Time Protocol) module is closely integrated with the EMAC module and provides
hardware assistance to implement both the IEEE 1588-2002 and IEEE 1588-2008 standards on Ethernet
(IEEE 802.3). It takes one input clock signal as its PTP clock and maintains the timing information (called
system time) at the nanosecond level.

The PTP module includes hardware for clock and system time adjustment. The system time is physically
represented by Pulse -Per-Second (PPS) signal. PPS can be programmed to a fixed frequency or provide
flexibility to the signal in terms of pulse width, interval, start and stop time of the signal. The PTP module
can be programmed to trigger an alarm interrupt when system time reaches specified time.

The PTP module can be programmed to detect different types of received frames, capture the system time
and timestamp those frames with the captured system time. Programs can configure any frame so that the
PTP module capture the system time when it is transmitted. The PTP module can also capture the system
time when an event is detected on the Auxiliary Snapshot Trigger input pin (ETH_PTPAUXIn).

IEEE1588 Standard

Many systems require two independent devices to operate in a time synchronized fashion. If each system
were to rely solely on its own oscillator, differences between the specific characteristics and operating
conditions of the individual oscillators would limit the ability of the clocks to operate synchronously. To
serve applications requiring synchronized clocks, a periodic correction mechanism is employed.

A simple way to synchronize multiple systems is to choose one system (with the best clock) as a master.
The system master broadcasts the clock and timing information to other systems (slaves) and then the
slaves adjust their clocks and timing according to that of master. However, this method has limitations
such as the master cannot broadcast the time at infinitesimal intervals, path delay (propagation delay)
exists between a master and a slave, and the delay varies between each slave and master.

IEEE 1588 (also known as Precision Time Protocol or PTP) standard specifies a protocol used to synchro-
nize the time and clock of multiple devices, dispersed but interconnected by any communication, for
example, Ethernet (IEEE 802.3). According to the protocol, timing messages are exchanged between two
devices (both devices should have the same representation of their system time), and then one of the device
calculates its drift from other device and corrects its system time. The protocol resolves path delay between
devices and also helps synchronize the clocks of multiple devices and all of the limitations mentioned
above are resolved.

IEEE 1588 was published in 2002 where four types of timing messages were defined: Sync, Follow_Up,
Delay_Req, and Delay_Resp. Here the protocol synchronizes two or more devices where one is a master
and others are slaves. The Sync, Follow_Up, and Delay_Resp messages are sent from the master device to

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–58 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

the slave device in the system, while the Delay_Req message is sent from a slave device to master device.
More information on IEEE 1588-2002 is provided in a following section.

In 2008 a newer version of IEEE 1588 was introduced which provides further mechanisms to measure the
peer-to-peer delay. Three additional timing messages (PdelayReq, PdelayResp, and PdelayRespFollowup)
were added to implement peer-to-peer synchronization. More information on IEEE 1588-2008 is provided
in a following section.

IEEE 1588-2002

The IEEE 1588-2002 standard defines the Precision Time Protocol (PTP) that allows precise synchroniza-
tion of clocks in measurement and control systems that use network communication, local computing, and
distributed objects. The protocol applies to systems that communicate by local area networks that support
multicast messaging, including (but not limited to) Ethernet. This protocol also allows heterogeneous
systems that include clocks of varying inherent precision, resolution, and stability to synchronize. The
protocol supports system-wide synchronization accuracy in the sub-microsecond range with minimal
network and local clock computing resources.

The PTP is transported over UDP/IP. The system or network is classified into master and slave nodes for
distributing the timing/clock information. The following figure shows the process that PTP uses for
synchronizing a slave node to a master node by exchanging PTP messages.

Figure 21-11: IEEE 1588-2002 PTP Process

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–59

As shown in the figure, the PTP uses the following process:

1. The master broadcasts the PTP Sync messages to all its nodes. The Sync message contains the master’s
reference time information. The time at which this message leaves the master’s system is t1. This time
must be captured by the Master, for Ethernet ports, at RMII.

2. The slave receives the Sync message and also captures the exact time, t2, using its timing reference.

3. The master sends a Follow_up message to the slave, which contains t1 information for later use.

4. The slave sends a Delay_Req message to the master, noting the exact time, t3, at which this frame leaves
the RMII.

5. The master receives the message, capturing the exact time, t4, at which it enters its system.

6. The master sends the t4 information to the slave in the Delay_Resp message.

7. The slave uses the four values of t1, t2, t3, and t4 to synchronize its local timing reference to the master’s
timing reference.

Most of the PTP implementation is done in the software above the UDP layer. However, the hardware
support is required to capture the exact time when specific PTP packets enter or leave the Ethernet port at
the RMII. This timing information must be captured and returned to the software for the proper imple-
mentation of PTP with high accuracy.

IEEE 1588-2008 Advanced Timestamps

In addition to the basic timestamp features mentioned in IEEE 1588-2002 Timestamps, the EMAC
supports the following advanced timestamp features defined in the IEEE 1588-2008 standard.

• Support for the IEEE 1588-2008 (Version 2) timestamp format.

• Provides an option to take snapshot of all frames or only PTP type frames.

• Provides an option to take snapshot of only event messages.

• Provides an option to select the node to be a master or slave.

• Identifies the PTP message type, version, and PTP payload in frames sent directly over Ethernet and
sends the status.

• Provides an option to run nanoseconds time in digital or binary format.

Peer-to-Peer (P2P) PTP Message Support

The IEEE 1588-2008 version supports Peer-to-Peer PTP (Pdelay) message in addition to SYNC, Delay
Request, Follow-up, and Delay Response messages. Figure below shows the method to calculate the prop-
agation delay between nodes supporting peer-to-peer path correction.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–60 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-12: Propagation Delay Calculation between Nodes Supporting Peer-to-Peer Path Correction

As shown in Figure above, the propagation delay is calculated in the following way:

1. Port-1 issues a Pdelay_Req message and generates a timestamp, t1, for the Pdelay_Req message.

2. Port-2 receives the Pdelay_Req message and generates a timestamp, t2, for this message.

3. Port-2 returns a Pdelay_Resp message and generates a timestamp, t3, for this message. To minimize
errors because of any frequency offset between the two ports, Port-2 returns the Pdelay_Resp message
as quickly as possible after the receipt of the Pdelay_Req message. The Port-2 returns any one of the
following:

• The difference between the timestamps t2 and t3 in the Pdelay_Resp message.

• The difference between the timestamps t2 and t3 in the Pdelay_Resp_Follow_Up message.

• The timestamps t2 and t3 in the Pdelay_Resp and Pdelay_Resp_Follow_Up messages respec-
tively.

4. Port-1 generates a timestamp, t4, on receiving the Pdelay_Resp message.

Port-1 uses all four timestamps to compute the mean link delay.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–61

Block Diagram

The following figure shows the functional block diagram of PTP module.

Figure 21-13: PTP Block Diagram

A system time module is present which keeps the time of PTP module. It consists of hardware which can
be programmed for time initialization, time correction and clock correction.

The timestamp module is capable of capturing the time (provided by the system time module) at various
conditions such as when a frame is sent or received by the EMAC, or the rising edge of the auxiliary snap-
shot trigger (ETH_PTPAUXIn) pin. When system time is captured after detection of a frame, the timestamp
module automatically includes the time information in the frame descriptor. Time stamping on the detec-
tion of a frame can be programmed on a per frame basis.

The PTP module is driven by PTP clock. This clock can be selected from three different clock sources.

The Pulse per Second (PPS) module is used to generate a pulse or train of pulse on the PPS output pin,
(ETH_PTPPPS) and it is the physical representation of system time. PPS can be fixed (where only frequency
can be varied) or flexible (where width, interval, start time and stop time can be programmed).

The Target Time module acts as an alarm for the PTP module. Whenever system time reaches a value equal
to programmed target time, the target time trigger interrupt is generated. By appropriate programming,
The target time trigger can also be used to start or stop flexible PPS output at specific time.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–62 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

PTP Module Clock

The PTP module clock features include Clock Source Selection and Clock Frequency Range.

Clock Source Selection

The PTP module can take one of three clock sources as its input clock — SCLK, RMII clock or PTP external
clock.

As shown in the PTP Clock Source Selection table, the PADS_EMAC_PTP_CLKSEL register selects the PTP
clock source.

Clock Frequency Range

The resolution, or granularity, of the reference time source determines the accuracy of the synchroniza-
tion. Therefore, a higher PTP clock frequency gives better system performance. The maximum PTP clock
frequency is limited by the timing constraints achievable for logic operating on the selected PTP clock
source.

The minimum PTP clock frequency depends on the time required between two consecutive frames.
Because the RMII clock frequency is fixed by the IEEE specification, the minimum PTP clock frequency
required for proper operation depends upon the operating mode and operating speed of the MAC as
shown in the following table.

A minimum delay required between two consecutive timestamp captures is 8 clock cycles of RMII and 3
clock cycles of PTP clocks. If the delay between two timestamp captures is less than this delay, the EMAC
does not take a timestamp snapshot for the second frame.

Timestamp Module

The timestamp module captures time in seconds and nanoseconds maintained as system time. The time-
stamp module also captures time when specific events occur. Events include detection of a frame trans-
mitted or received over the EMAC and a rising edge on the ETH_PTPAUXIn pin. The timestamp module

Table 21-33: PTP Clock Source Selection

PADS_EMAC_PTP_CLKSEL.EMAC0 PTP Clock Source Clock Description

00 EMAC_RMII RMII reference clock

10 PTP External Clock Clock available on ETH_PTPCLKIn pin

X1 SCLK Processor System Clock

Table 21-34: Minimum PTP Clock Frequency

Mode Minimum Gap Between Two Frames Minimum PTP Frequency

100-Mbps full-duplex
operation

336 RMII clocks
(256 clocks for a 64-byte frame + 48 clocks of
min IFG + 32 clocks of preamble)

(3 × PTP period) + (8 × RMII period) ≤ (336 × RMII period)
Maximum PTP period = (336 – 8) × 20 ns ÷ 3 = 2,186 ns
Minimum PTP frequency = 0.46 MHz

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–63

does not need to timestamp all of the transmitted or received frames over the EMAC. The PTP module can
be programmed to detect specific kinds of frames for timestamping.

Frame Detection and Timestamping

The PTP module automatically monitors all received and transmitted IEEE 1588 event messages on the
Ethernet. If an event message is detected, the module takes a snapshot of the system time and stores its
value to the 64-bit fields in Transmit or receive descriptor. The timestamping is done at the EMAC RMII
interface when the module sees the start of frame of an event message packet.

Transmit Path Timestamping

The EMAC captures a timestamp when a frame is being sent on RMII. Timestamp capture is controllable
on a per-frame basis. In other words, each transmit frame can be marked to indicate whether a timestamp
should be captured for that frame or not.

Applications should extend the descriptor word length from 4 words to 8 words by setting the EMAC_DMA_
BUSMODE.ATDS bit. In order to enable the timestamp function, the TTSE (transmit timestamp enable) bit
in transmit descriptor word TDES0 should be set. When the PTP module captures a timestamp of a trans-
mitted frame, it notifies the application by setting the TTSS (transmit timestamp status) in TDES0.

The EMAC returns the timestamp to the software inside the corresponding transmit descriptor, automat-
ically connecting the timestamp to the specific frame. The 64-bit timestamp information is written to the
TDES6 and TDES7 fields. The TDES6 field holds the 32 LSBs of the timestamp (system time nanoseconds),
except as described in transmit timestamp field and TDES7 field holds the 32 MSBs (system time seconds).
After the PTP module timestamps the frame, the application can get the timestamp along with the transmit
status from the EMAC.

NOTE: The PTP module timestamps all the transmitting frames that has TTSE set in its TDES0. It does not
distinguish according to the type of transmitting frame.

Receive Path Timestamping

The PTP module automatically monitors all received and transmitted IEEE 1588 event messages on the
Ethernet. If an event message is detected, the module takes a snapshot of the System Time and stores its
value to the 64-bit fields in transmit or receive descriptor. The timestamping is done at the EMAC RMII
interface when the module sees the start of frame of an event message packet.

PTP module captures the timestamp of received frames on the RMII. Timestamp capture is controllable
on a per-frame and per-type basis. In other words each received frame is timestamped according to the
frame type.

Applications should extend the descriptor word length from 4 words to 8 words by setting EMAC_DMA_
BUSMODE.ATDS to store timestamp and received message status. The PTP notifies the application of receive
time stamp availability when it sets bit 7 (timestamp available) in receive descriptor word RDES0.

When bit 0 (extended status available) is set in RDES0, it indicates that the extended status of the PTP
frame is provided in the RDES4 word. Extended status include PTP Version, PTP frame type and message

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–64 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

type. The EMAC returns the timestamp to the software inside the corresponding receive descriptor. The
64-bit timestamp information is written back to the RDES6 and RDES7 fields in memory. The RDES6
holds the 32 LSBs of the timestamp (system time nanoseconds), except as mentioned in receive timestamp
field and RDES7 field holds 32 MSBs (system time seconds).

The timestamp is written only to that receive descriptor for which the last descriptor status field has been
set to 1. When the timestamp is not available (for example, because of an RxFIFO overflow), an all-ones
pattern is written to the descriptors (RDES6 and RDES7), indicating that timestamp is not correct. RDES0
[7] indicates whether the time-stamp is updated in RDES6/7 or not.

Processing of received frames to identify valid PTP frames is done by the PTP module. The snapshot of the
time to be sent to the application can be controlled using the EMAC_TM_CTL register.

The PTP module can be programmed to detect all received frames or only some types of PTP frames,
according to bit settings in the EMAC_TM_CTL register. Refer to the following table.

PTP Processing and Control

When the EMAC receives a frame, frame detection and timestamping by timestamp module of the PTP is
done on the basis of some of the PTP fields in the frame. The PTP Message Format (IEEE 1588-2008)
table shows the common message header for the PTP messages. This format is taken from IEEE standard
1588-2008. When the EMAC needs to send a PTP frame, the frame has to follow this format.

When a frame is received, PTP module compares these fields with standard values and finds out the type
of PTP frame and other information such as PTP version, IP version, and others. It then updates the related

Table 21-35: PTP Frame Type Selections

TSENALL (bit 8)
SNAPTYPSEL (bits

[17:16]) TSMSTRENA (bit 15) TSEVNTENA (bit 14) Frames

1 X X X All

0 00 X 0 Sync, Follow_Up, Delay_
Req, Delay_Resp

0 00 0 1 Sync

0 00 1 1 Delay_Req

0 01 X 0 Sync, Follow_Up, Delay_
Req, Delay_Resp, Pdelay_
Req, Pdelay_Resp,
Pdelay_Resp_
 Follow_Up

0 01 0 1 Sync, Pdelay_Req,
Pdelay_Resp

0 01 1 1 Delay_Req, Pdelay_Req,
Pdelay_Resp

0 10 X X Sync, Delay_Req

0 11 X X Pdelay_Req, Pdelay_Resp

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–65

fields in RDES4. When a frame is transmitted programs should ensure that all the fields are appropriate so
that a PTP module on the other end of a communication can correctly detect and decode the frame.

There are some fields in the Ethernet payload that user can use to detect the PTP packet type and control
the snapshot to be taken. These fields are different for the following PTP frames:

• PTP Frames Over IPv4

• PTP Frames Over IPv6

• PTP Frames Over Ethernet

For any of the above PTP frames, EMAC does not consider the PTP version 1 messages as valid PTP
messages when frame consists of Peer delay multicast address as destination address (DA).

PTP Frame Over IPv4

The IPv4-UDP PTP Frame Fields Required for Control and Status table provides information about the
fields that are matched to control snapshot for the PTP packets sent over UDP over IPv4 for IEEE 1588
version 1 and 2. The octet positions for the tagged frames are offset by 4. This is based on IEEE 1588-2008
standards and the message format defined in the PTP Message Format (IEEE 1588-2008) table in the PTP
Processing and Control section.

Table 21-36: PTP Message Format (IEEE 1588-2008)

Bits Octets Offset

7 6 5 4 3 2 1 0

transportSpecific messageType 1 0

Reserved versionPTP 1 1

messageLength 2 2

domainNumber 1 4

Reserved 1 5

flagField 2 6

correctionField 8 8

Reserved 4 16

sourcePortIdentity 10 20

sequenceId 2 30

controlField (used in version 1. For version 2, messageType field is used for detecting
different message types.)

1 32

logMessageInterva 1 33

Table 21-37: IPv4-UDP PTP Frame Fields Required for Control and Status

Field Matched Octet Position Matched Value Description

MAC Frame type 12, 13 0x0800 IPv4 datagram

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–66 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

PTP Frame Over IPv6

The IPv6-UDP PTP Frame Fields Required for Control And Status table provides information about the
fields that are matched to control the snapshots for the PTP packets sent over UDP over IPv6 for IEEE 1588
version 1 and 2. The octet positions for the tagged frames are offset by 4. This is based on IEEE 1588-2008
standards and the message format defined in PTP Message Format (IEEE 1588-2008).

IP Version and Header Length 14 0x45 IP version is IPv4

Layer 4 Protocol 23 0x11 UDP

IP Multicast Address (IEEE
1588 Version 1)

30, 31, 32, 33 0xE0,0x00, 0x01,0x81 (or 0x82 or
0x83 or 0x84)

Multicast IPv4 addresses allowed.
224.0.1.129
224.0.1.130
224.0.1.131
224.0.1.132

IP Multicast Address (IEEE
1588 Version 2)

30, 31, 32, 33 0xE0, 0x00, 0x01, 0x81 (Hex)

0xE0, 0x00, 0x00, 0x6B (Hex)

PTP-Primary multicast address: 224.0.1.
129
PTP-Peer delay multicast address: 224.0.
0.107

UDP Destination Port 36, 37 0x013F
0x0140

0x013F - PTP Event Messages. These are
SYNC, Delay_Req (IEEE 1588 version 1
and 2) or Pdelay_Req, Pdelay_Resp (IEEE
1588 version 2 only).

0x0140 - PTP general messages

PTP Control Field (IEEE
version 1)

74 0x00/0x01/0x02/ 0x03/0x04 0x00 - SYNC
0x01 - Delay_Req
0x02 - Follow_Up
0x03 - Delay_Resp
0x04 - Management

PTP Message Type Field
(IEEE version 2)

42 (nibble) 0x0/0x1/0x2/0x3/0x8/0x9/0xA/0xB/
0xC/0xD

0x0 - SYNC
0x1 - Delay_Req
0x2 - Pdelay_Req
0x3 - Pdelay_Resp
0x8 - Follow_Up
0x9 - Delay_Resp
0xA - Pdelay_Resp_Follow_Up
0xB - Announce
0xC - Signaling
0xD - Management

PTP Version 43 (nibble) 0x1 or 0x2 0x1 - Supports PTP version 1
0x2 - Supports PTP version 2

Table 21-37: IPv4-UDP PTP Frame Fields Required for Control and Status (Continued)

Field Matched Octet Position Matched Value Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–67

PTP Frame Over Ethernet

The following table provides information about the fields that are matched to control the snapshots for the
PTP packets sent over Ethernet for IEEE 1588 version 1 and 2. The octet positions for the tagged frames
are offset by 4. This is based on IEEE 1588-2008 standards and the message format defined in the table.

Table 21-38: IPv6-UDP PTP Frame Fields Required for Control and Status

Field Matched Octet Position Matched Value Description

MAC Frame type 12, 13 0x86DD IP datagram

IP Version 14 (bits [7:4]) 0x06 IP version is IPv6

Layer 4 Protocol 20 (IPv6 extension
header not defined
for PTP packets)

0x11 UDP

PTP Multicast Address 38–53 FF0x:0:0:0:0:0:0:0:0:181 (Hex)
FF02:0:0:0:0:0:0:0:0:6B (Hex)

PTP - primary multicast address:
FF0x:0:0:0:0:0:0:0:0:181 (Hex)
PTP - Peer delay multicast address:
FF02:0:0:0:0:0:0:0:0:6B (Hex)

UDP Destination Port 56, 57 (IPv6
extension header not
defined for PTP
packets)

0x013F, 0x0140 0x013F - PTP event messages

0x0140 - PTP general messages

PTP Control Field (IEEE 1588
version 1)

93 (IPv6 extension
header not defined
for PTP packets)

0x00/0x01/0x02/ 0x03/0x04 0x00 - SYNC
0x01 - Delay_Req
0x02 - Follow_Up
0x03 - Delay_Resp
0x04 - Management (version1)

PTP Message Type Field
(IEEE version 2)

74 (nibble) (IPv6
extension header not
defined for PTP
packets)

0x0/0x1/0x2/0x3/0x8/0x9/0xA/0xB/
0xC/0xD

0x0 - SYNC
0x1 - Delay_Req
0x2 - Pdelay_Req
0x3 - Pdelay_Resp
0x8 - Follow_Up
0x9 - Delay_Resp
0xA - Pdelay_Resp_Follow_Up
0xB - Announce
0xC - Signaling
0xD - Management

PTP Version 75 (nibble) 0x1 or 0x2 0x1 - Supports PTP version 1
0x2 - Supports PTP version 2

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–68 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Auxiliary Timestamp Snapshot

The auxiliary snapshot feature stores snapshots of the system time whenever a rising edge is detected on
the ETH_PTPAUXIn pin.

The PTP stores 64-bits of captured timestamp in a 4-deep FIFO. When a snapshot is stored, the PTP indi-
cates this to the EMAC with the auxiliary snapshot interrupt and the EMAC_TM_STMPSTAT.ATSTS bit is set.
The value of the snapshot is read through the EMAC_TM_AUXSTMP_SEC and EMAC_TM_AUXSTMP_NSEC regis-
ters. If the FIFO becomes full and an external trigger to take the snapshot is asserted, then the snapshot
trigger-missed status is set in the EMAC_TM_STMPSTAT.ATSSTM bit. The latest snapshot is not written to the
FIFO when it is full.

When a host reads the 64-bit timestamp from the FIFO through the EMAC_TM_AUXSTMP_SEC and EMAC_
TM_AUXSTMP_NSEC registers, the space becomes available to store the next snapshot.

NOTE: A space in the FIFO is created whenever the EMAC_TM_AUXSTMP_SEC register is read. Therefore the
EMAC_TM_AUXSTMP_NSEC register should be read before reading the EMAC_TM_AUXSTMP_SEC
register.

Table 21-39: Ethernet PTP Frame Fields Required for Control and Status

Field Matched Octet Position Matched value Description

MAC Destination Multicast
Address (The address match
of destination address (DA)
programmed in MAC address
0 is used if the EMAC_TM_
CTL.TSENMACADDRbit is
set)

0–5 01-1B-19-00-00-00
01-80-C2-00-00-0E

All PTP messages can use any of the
following multicast addresses:
01-1B-19-00-00-00
01-80-C2-00-00-0E

MAC Frame Type 12, 13 0x88F7 PTP Ethernet frame

PTP control field (IEEE
Version 1)

45 0x00/0x01/0x02/ 0x03/0x04 0x00 - SYNC
0x01 - Delay_Req
0x02 - Follow_Up
0x03 - Delay_Resp
0x04 - Management

PTP Message Type Field
(IEEE version 2)

14 (nibble) 0x0/0x1/0x2/0x3/0x8/0x9/
0xA/0xB/ 0xC/0xD

0x0 - SYNC
0x1 - Delay_Req
0x2 - Pdelay_Req
0x3 - Pdelay_Resp
0x8 - Follow_Up
0x9 - Delay_Resp
0xA - Pdelay_Resp_Follow_Up
0xB - Announce
0xC - Signaling
0xD - Management

PTP Version 15(nibble) 0x1 or 0x2 0x1 - Supports PTP version 1
0x2 - Supports PTP version 2

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–69

The program can clear the FIFO by setting the EMAC_TM_CTL.ATSFC bit. When multiple snapshots are
present in the FIFO, the count is indicated in the EMAC_TM_STMPSTAT.ATSNS bits.

NOTE: The minimum gap between two events on the ETH_PTPAUXIn pin must be 4 cycles of PTP_CLK +
3 cycles of SCLK). Otherwise, the rising-edge of the trigger is missed by the logic.

System Time

To get a snapshot of the time, the EMAC requires a reference time in 64-bit format as defined in the IEEE
1588 specification. The PTP module maintains 80-bit time, known as system time and it is updated using
the PTP clock.

The 80-bit timing reference is split into the following three registers:

• EMAC_TM_NSEC – 32-bit nanoseconds register which provides time in nanoseconds

• EMAC_TM_SEC – 32-bit seconds register which provides time in seconds

• EMAC_TM_HISEC – 16-bit high seconds register which provides time beyond the seconds register. This
register is not included in the IEEE 1588 standard, and its use is application specific.

The 64-bit system time (seconds and nanoseconds) is the source for taking timestamps for Ethernet frames
being transmitted or received at the RMII.

Since the PTP clock frequency does not correspond to a 1 ns period, the EMAC_TM_NSEC register should be
incremented with a value equal to the PTP clock period for every PTP clock cycle. This is achieved by use
of EMAC_TM_SUBSEC register. The EMAC_TM_NSEC value is incremented with value programmed in EMAC_
TM_SUBSEC register every PTP clock cycle.

Whenever the EMAC_TM_SEC register overflows from 0xFFFFFFFF to 0x00000000, the seconds overflow
interrupt is triggered and indicated by the EMAC_TM_STMPSTAT.TSSOVF bit. After a seconds overflow the
EMAC_TM_HISEC register increments by one.

The system time module supports the following two types of rollover modes for the EMAC_TM_NSEC
register. digital rollover and binary rollover.

• Digital rollover mode. The maximum value in the nanoseconds field is 0x3B9AC9FF, that is, 109 nano-
seconds. After it reaches this value, the EMAC_TM_SEC register is incremented and the EMAC_TM_NSEC
register restarts counting from zero. Accuracy in digital rollover mode it is 1 ns per bit.

• Binary rollover mode. The nanoseconds field rolls over and increments the seconds field after the value
reaches 0x7FFFFFFF. Accuracy in binary rollover mode is ~0.466 ns per bit.

System Time Adjustment

The following sections describe the process for system time adjustment.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–70 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

System Time Initialization

System time can be initialized with 64-bit time when the PTP module is enabled. The initial value is written
to the EMAC_TM_SECUPDT and EMAC_TM_NSECUPDT system time update registers. The system time counter
is written with the value in these registers when the EMAC_TM_CTL.TSINIT bit is set.

Coarse Correction Method

If slave system time has an offset with respect to the master’s system time, then it can be corrected using
the coarse correction method. The time offset value is written to the EMAC_TM_SECUPDT and EMAC_TM_
NSECUPDT registers. The offset value is then added to or subtracted from the system time when the EMAC_
TM_CTL.TSUPDT bit is set. Addition or subtraction can be chosen by using the EMAC_TM_NSECUPDT.ADDSUB
bit. System time correction is done in one clock cycle using the coarse correction method.

NOTE: During subtraction, the EMAC_TM_SECUPDT register value should be less than the value of the EMAC_
TM_SEC register. This should be checked prior to performing subtraction through coarse correc-
tion.

Fine Correction Method

If a slave PTP clock’s frequency has a drift with respect to the master PTP clock (as defined in IEEE 1588),
then it can be corrected using the fine correction method. Using this method, system time is corrected over
a period of time (unlike coarse correction where it is done in one clock cycle). This helps maintain linear
time and does not introduce drastic changes (or a large jitter) in the reference time between PTP Sync
message intervals.

Using this method, an accumulator sums the contents of the EMAC_TM_ADDEND register, as shown in the
algorithm illustrated in the figure below. The arithmetic carry that the accumulator generates is used as a
pulse to increment the system time counter. The accumulator and the addend are 32-bit registers. Here,
the accumulator acts as a high-precision frequency divider.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–71

Figure 21-14: System Time Update, Fine Correction Method

Calculating Addend Value

This section describes the process for system time fine correction.

In this example, the master clock runs at 50 MHz and the slave clock has drifted to 66MHz. The goal is to
adjust the slave system time to 50 MHz, so that the slave PTP module is synchronized with the master.
Using the figure in Fine Correction Method, the nanoseconds increment signal should run at 50 MHz. The
nanoseconds increment is the carry from accumulator register, which is incremented by the addend value
at the rate of the slave clock (66 MHz).

The accumulator overflows and generates a carry every N addend values, so N × Addend = 232.

The accumulator increments at 66 MHz. This brings the carry to 50 MHz N = 66/50 = 1.32.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–72 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Hence, the addend = 232/1.32 = 0xC1F07C1F.

Therefore, if addend is programmed with 0xC1F07C1F, the slave system time runs at 50 MHz which is
synchronized with the master.

In the Fine Correction Method figure, the sub second increment is the value programmed in the EMAC_TM_
SUBSEC register which increments the EMAC_TM_NSEC register according to the frequency of the nanosec-
onds increment signal.

In the example, the sub second increment should be 20 (for digital rollover) or 43 (for binary rollover).
This increments the EMAC_TM_NSEC register by 20 ns (1/50 MHz).

The software must calculate the drift in frequency and update the EMAC_TM_ADDEND register accordingly.

NOTE: The PTP reference clock is the clock at which the system time is updated.When the EMAC_TM_CTL.
TSCFUPDT bit is set to 0, this clock equals the PTP clock. Using fine correction, the PTP reference
clock is generated on the nanoseconds increment signal at which the system time is updated.

Target Time Trigger (Alarm)

The PTP module provides an alarm function by triggering an alarm at a preset time. It sets the EMAC_TM_
STMPSTAT.TSTARGT bit when the system time matches the value of the EMAC_TM_TGTM and EMAC_TM_
NTGTM registers. This trigger can be used to generate an interrupt and/or command the flexible PPS module
to start/stop PPS output, depending on value programmed in EMAC_TM_PPSCTL.TRGTMODSEL bits.

The trigger is enabled by setting EMAC_TM_CTL.TSTRIG bit. Once an alarm has occurred, if another alarm
is needed, the software must clear the status bit, reprogram the EMAC_TM_TGTM and EMAC_TM_NTGTM regis-
ters to a future value, and set the EMAC_TM_CTL.TSTRIG bit.

If the time programmed in the target time registers has elapsed, then a target time programming error is
indicated by setting the EMAC_TM_STMPSTAT.TSTRGTERR bit.

The alarm time is represented in absolute units, not relative units. For example, if the software needs to
generate an alarm after 10 seconds, it must read the current system time value, add the number corre-
sponding to 10 seconds, and write the result back to the target time registers.

Pulse-Per-Second (PPS)

Pulse-per-second (PPS) is a physical representation of system time. It is composed of a single pulse or train
of pulses. PPS can be used for additional synchronization or to monitor the synchronization performance
between clocks. With proper configuration, the PTP module can be programmed to generate PPS signals
that are output on the ETH_PTPPPS pin. The PTP supports two kinds of PPS output, fixed and flexible.

Fixed Pulse-Per-Second Output

The EMAC supports fixed pulse-per-second (PPS) output that indicates 1 second intervals (default). The
frequency of the PPS output can be changed by configuring the EMAC_TM_PPSCTL.PPSCTL bits. The default
value for these bits is 0000, which configures a 1 Hz signal with a pulse width equal to the period of the PTP
clock.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–73

The following table shows various PPS output frequencies.

In binary rollover mode, the PPS output has a duty cycle of 50% with these frequencies.

In digital rollover mode, the PPS output frequency is an average number. The actual clock is a different
frequency that is synchronized every second. PPS output pulses have different periods and duty cycles and
this behavior is because of the non-linear toggling of the bits in digital rollover mode. For example:

• When EMAC_TM_PPSCTL.PPSCTL = 0001, the PPS (1 Hz) has a low period of 537 ms and a high period
of 463 ms.

• When EMAC_TM_PPSCTL.PPSCTL = 0010, the PPS (2 Hz) is a sequence of:

– One clock of 50 percent duty cycle and 537 ms period

– Second clock of 463 ms period (268 ms low and 195 ms high).

• When EMAC_TM_PPSCTL.PPSCTL = 0011, the PPS (4 Hz) is a sequence of:

– Three clocks of 50 percent duty cycle and 268 ms period

– Fourth clock of 195 ms period (134 ms low and 61 ms high)

Flexible Pulse-Per-Second Output

The EMAC also provides the flexibility to program the start or stop time, width, and interval of the pulse
generated on the PPS output. This feature is called Flexible PPS and can be enabled by setting the EMAC_
TM_PPSCTL.PPSEN bit.

The Flexible PPS output options are:

• Supports programming the start point of the single pulse and start and stop points of the pulse train in
terms of system time. The target time registers are used to program the start and stop time.

• Supports programming the stop time in advance, that is, programs can configure the stop time before
the actual start time has elapsed.

• Supports programming the width, between the rising edge and corresponding falling edge of the PPS
signal output, in terms of number of units of sub-second increment. This value is configured in the
EMAC_TM_SUBSEC register.

Table 21-40: PPS Output Frequencies

PPSCTL Bit Setting Binary Rollover Digital Rollover

0001 2 Hz 1 Hz

0010 4 Hz 2 Hz

0011 8 Hz 4 Hz

...

1111 32.768 kHz 16.384 kHz

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

21–74 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Supports programming the interval, between the rising edges of PPS signal, in terms of number of units
of sub-second increment. This value is configured in the EMAC_TM_SUBSEC register.

• Provides the option to cancel the programmed PPS start or stop request.

• Indicates error if the start or stop time being programmed has already elapsed.

PPS Start or Stop Time

Start time can initially be programmed in the target time registers. If required, the start or stop time can be
programmed again but it can be done only after the earlier programmed value is synchronized to the PTP
clock domain. The EMAC_TM_NTGTM.TSTRBUSY bit indicates the status of synchronization. This enables
programs to configure the start or stop time in advance, even before the earlier stop or start time has
elapsed.

The start or stop time should be programmed with advanced system time to ensure proper PPS signal
output. If the application programs a start or stop time that has already elapsed, then the EMAC sets the
EMAC_TM_STMPSTAT.TSTRGTERR bit, indicating the error. If enabled, the EMAC also sets the target time
trigger (alarm) interrupt event. The application can cancel the start or stop request only if the corre-
sponding start or stop time has not elapsed. If the time has elapsed, the cancel command has no effect.

PPS Width and Interval

The PPS width and interval are programmed in terms of granularity of system time, that is, the number of
the units of sub-second increment value. For example, with the PTP reference clock of 50MHz: for a PPS
pulse width of 40 ns and an interval of 100 ns, the width and interval should be programmed to values 2
and 5 respectively.

Smaller granularity can be achieved by using a faster PTP reference clock. Before giving the command to
trigger a pulse or pulse train on the PPS output, programs should configure or update the interval and
width of the PPS signal output.

PPS Command

When the PPS module is configured for flexible PPS output, the EMAC_TM_PPSCTL.PPSCTL bits can be used
to command the PPS module for using any of the flexible PPS features.

Programming these bits with a non-zero value instructs the PPS module to initiate an event. Once the
command is transferred or synchronized to the PTP clock domain, these bits are cleared automatically.
Software should ensure that these bits are programmed only when they are all-zero.

The following table explains the different commands and their function.

Table 21-41: Flexible PPS Output Commands

PPSCTL (Bits 3–0) Command Description

0000 No Command

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–75

PTP Interrupts

Interrupts from PTP module can be enabled by setting the EMAC_IMSK.TS bit. The status of the interrupt
is indicated on the EMAC_ISTAT.TS bit. The PTP supports the following three types of interrupts.

Auxiliary Snapshot Trigger

This interrupt is triggered when an external event occurs on ETH_PTPAUXIn pin and timestamp snapshot
occurs. This is indicated on EMAC_TM_STMPSTAT.ATSTS bit.

Target Time Reached

This interrupt is triggered when the system time becomes equal to the value written in the EMAC_TM_
TGTMand EMAC_TM_NTGTM registers. It can be enabled or disabled by using the EMAC_TM_CTL.TSTRIG and
EMAC_TM_PPSCTL.TRGTMODSEL bits. This interrupt can be used as an alarm and is indicated on the EMAC_
TM_STMPSTAT.TSTARGT bit.

System Time Seconds Register Overflow

This interrupt is triggered when the EMAC_TM_SEC register overflows from 0xFFFF FFFF to 0x0000 0000.
This interrupt is indicated on the EMAC_TM_STMPSTAT.TSSOVF bit. As soon as EMAC_TM_SEC register over-
flows, the EMAC_TM_HISEC register increments by one.

0001 Start Single Pulse Generates single pulse rising at start point defined in target time registers and of
duration defined in EMAC_TM_PPSWIDTH register.

0010 Start Pulse train Generates train of pulses rising at the start time configured in the Target Time
registers, of duration configured in the EMAC_TM_PPSWIDTH register and repeated
at interval configured in the EMAC_TM_PPSINTVL register. By default, the PPS pulse
train is free-running unless stopped by stop pulse train at time or stop pulse train
immediately commands.

0011 Cancel Start Cancels the start single pulse and start pulse train commands if the system time has
not crossed the programmed start time.

0100 Stop Pulse train at
time

Stops the train of pulses initiated by the start pulse train command after the time
programmed in the target time registers elapses.

0101 Stop Pulse train
immediately

Immediately stops the train of pulses initiated by the Start Pulse train command.

0110 Cancel Stop Pulse
train

Cancels the Stop Pulse train at time command if the programmed stop time has not
elapsed. The PPS pulse train becomes free-running on the successful execution of this
command.

0111-1111 Reserved

Table 21-41: Flexible PPS Output Commands (Continued)

PPSCTL (Bits 3–0) Command Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC EVENT CONTROL

21–76 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

EMAC Event Control

The EMAC has a dedicated interrupt signal registered with the processor System Event Controller (SEC).
Various interrupt sources within EMAC peripheral are shared through this interrupt line. Please refer to
the System Event Controller chapter for details on how interrupts work in this product and how to
configure them.

EMAC Interrupt Signals

Interrupts from the EMAC can be triggered from the EMAC DMA layer or the EMAC CORE layer. Inter-
rupts are triggered from EMAC DMA if a particular status bit is set in the EMAC_DMA_STAT register. An
interrupt line is asserted only when the corresponding bits are enabled in the DMA interrupt enable
register. Similarly, interrupts are triggered from the EMAC CORE if a particular MMC status bit or PTP
status bit is set in the interrupt status register.

An interrupt line is asserted only when the corresponding bits are enabled in the MMC mask registers in
case of MMC counters or the interrupt mask register in the case of PTP. Note that MMC interrupt status
is also reflected in the DMA status register. The two groups of interrupts in the DMA status register are
listed below.

NIS – Normal Interrupt source summary:

• Transmit Interrupt

• Transmit Buffer Unavailable

• Receive Interrupt

• Early Receive Interrupt

AIS – Abnormal Interrupt source summary:

• Transmit Process Stopped

• Transmit Jabber Timeout

• Receive FIFO Overflow

• Transmit Underflow

• Receive Buffer Unavailable

• Receive Process Stopped

• Receive Watchdog Timeout

• Early Transmit Interrupt

• Fatal Bus Error

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–77

An interrupt is generated only once for simultaneous, multiple events. The driver must read the EMAC_
DMA_STAT register for the cause of the interrupt. A new interrupt can be generated once the driver has
cleared the appropriate bit in DMA status register.

For example, the controller generates a receive interrupt (EMAC_DMA_STAT.RI bit) and the driver begins
reading the EMAC_DMA_STAT register. Next, a receive buffer unavailable interrupt (EMAC_DMA_STAT.RU bit)
occurs. The driver clears the EMAC_DMA_STAT.RI bit but the he internal interrupt signal is not de-asserted,
because of the active or pending rEMAC_DMA_STAT.RU interrupt. Additionally, the driver must scan all of
the descriptors, from the last recorded position to the first one owned by the DMA, in order to know which
descriptor has asserted the interrupt.

Interrupts are cleared by writing a 1 to the corresponding bit position in the EMAC_DMA_STAT register.
When all the enabled interrupts within a group are cleared, the corresponding summary bit is cleared.

An interrupt delay timer is provided (receive interrupt watchdog timer register) for flexible control of the
receive interrupt.

When the interrupt timer is programmed with a non-zero value, it is activated as soon as the RxDMA
completes a transfer of a received frame to system memory. This is done without asserting the receive
interrupt because this interrupt is not enabled in the corresponding receive descriptor (RDES1[31] in the
receive DMA descriptors).

When this timer runs out (per the programmed value), the EMAC_DMA_STAT.RI bit is set and the interrupt
is asserted if the corresponding EMAC_DMA_STAT.RI bit is enabled in the interrupt enable register. This
timer is disabled before it runs out, when a frame is transferred to memory and when the EMAC_DMA_STAT.
RI bit is set because it is enabled for that descriptor.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC EVENT CONTROL

21–78 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-15: EMAC Interrupt Flow Diagram

PHYINT Interrupt Signal

A PHY device can notify the EMAC when it detects changes to the link status, such as auto-negotiation or
a duplex-mode change. The external PHY chip typically includes an interrupt generation pin to aid this
status change notification to the MAC. This signal is typically called PHYINT and a failing/rising edge on
this signal can be used to detect a PHY interrupt at the EMAC.

In the processor, any of the GPIO pin can be a used as a PHYINT signal. Use the following procedure to
configure a GPIO as a PHYINT signal.

1. Program the GPIO to detect a falling/rising edge sensitive interrupt.

2. Program the PHY to generate the interrupt on a signal status change.

3. If PHYINT is asserted, read the PHY status register via the Station Management Interface.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–79

NOTE: The PHYINT is not part of EMAC module, but rather any GPIO pin can be configured to interrupt
the processor when a rising edge generated by PHY is detected.

Please refer to GPIO chapter for more info on configuring GPIO pins for input.

EMAC Programming Model

This section provides the programming model of Ethernet MAC peripheral for developers.

EMAC Programming Steps

The following sections provide some general programming information

DMA Initialization

Use the following procedure to initialize DMA.

1. Perform a software reset by setting the EMAC_DMA_BUSMODE.SWR bit. This resets all of the EMAC
internal registers and logic.

2. Wait for the completion of the reset process by polling the EMAC_DMA_BUSMODE.SWR bit which is only
cleared (automatically) after the reset operation is completed.

3. Poll the EMAC_DMA_BMSTAT.BUSRD and EMAC_DMA_BMSTAT.BUSWR bits to confirm that all previously
initiated (before software-reset) or ongoing SCB transactions are complete.

4. Program the required fields in the EMAC_DMA_BMMODE register:

a. Address aligned bursts.

b. Fixed burst or undefined burst.

c. Burst length values and burst mode values.

d. Descriptor length (only valid if ring mode is used).

5. Program the SCB interface options in the EMAC_DMA_BMMODE register. If fixed burst-length is enabled,
then select the maximum burst-length possible on the SCB bus (bits EMAC_DMA_BMMODE.BLEN4, EMAC_
DMA_BMMODE.BLEN8, EMAC_DMA_BMMODE.BLEN16).

6. Create a proper descriptor chain for transmit and receive. In addition, ensure that the receive descrip-
tors are owned by DMA (the OWN bit of the descriptor should be set). When OSF mode is used, at least
two descriptors are required.

7. Ensure that the software creates three or more different transmit or receive descriptors in the chain
before reusing any of the descriptors.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

21–80 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

8. Initialize the EMAC_DMA_RXDSC_CUR and EMAC_DMA_TXDSC_CUR registers with the base address of the
receive and transmit descriptors respectively.

9. Program the required fields in the EMAC_DMA_OPMODE register to initialize the mode of operation as
follows:

a. Receive and transmit store and forward.

b. Receive and transmit threshold control.

c. Error Frame and undersized good frame forwarding enable.

d. OSF mode.

10. Clear the interrupt requests by writing to those bits of the EMAC_DMA_STAT register (interrupt bits only)
that are set. For example, by writing 1 into bit 16, the normal interrupt summary clears this bit.

11. Enable the interrupts by programming the EMAC_DMA_IEN register.

12. Start the receive and transmit DMA by setting the EMAC_DMA_OPMODE.SR and EMAC_DMA_OPMODE.ST
bits.

EMAC CORE Initialization

Use the following procedure to initialize the EMAC core.

1. Program the EMAC Management Address Register (EMAC_SMI_ADDR) for controlling the management
cycles for external PHY. For example, physical layer address (EMAC_SMI_ADDR.PA). In addition, set the
EMAC_SMI_ADDR.SMIB bit for writing into PHY and reading from PHY.

2. Read the 16-bit data of Management Data Register (EMAC_SMI_DATA) from the PHY for link up, speed
of operation, and mode of operation, by specifying the appropriate address value in the EMAC_SMI_
ADDR.PA bit field.

3. Program the MAC address in the EMAC_ADDR0_HI and EMAC_ADDR0_LO registers.

4. If hash filtering is used, program the hash table high and low registers register (EMAC_HASHTBL_HI,
EMAC_HASHTBL_LO).

5. Program the required fields to set the appropriate filters for the incoming frames in the MAC frame
filter register (EMAC_MACFRMFILT):

a. Receive all.

b. Promiscuous mode.

c. Hash or perfect filter.

d. Unicast, multicast, broadcast, and control frames filter settings.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–81

6. Program the required fields for proper flow control in flow control register (EMAC_FLOWCTL):

a. Pause time and other pause frame control bits.

b. Receive and transmit flow control bits.

c. Flow control busy/backpressure activate.

7. Program the EMAC interrupt mask register bits (EMAC_IMSK), as required.

8. Program the appropriate fields in MAC configuration register (EMAC_MACCFG). For example, inter-
frame gap while transmission and jabber disable. Based on the Auto-negotiation desired, set the Duplex
mode (EMAC_MACCFG.DM bit) or speed select (EMAC_MACCFG.FES bit).

9. Set the transmit enable (EMAC_MACCFG.TE) and receive enable (EMAC_MACCFG.RE) bits.

Performing Normal Transmit and Receive Operations

PREREQUISITE:

For normal transmit and receive interrupts, the program should first read the interrupt status.

1. Poll the descriptors, reading the status of the descriptor owned by the application (either transmit or
receive).

2. Set the appropriate values for the descriptors, ensuring that transmit and receive descriptors are owned
by the DMA to resume the transmission and reception of data.

ADDITIONAL INFORMATION: If the descriptors are not owned by the DMA (or no descriptor is available),
the DMA goes into SUSPEND state.

3. Write a 0 into the Tx/Rx poll demand registers (EMAC_DMA_TXPOLL and EMAC_DMA_RXPOLL).

STEP RESULT: This resumes transmit or receive operations by freeing the descriptors and issuing a poll
demand.

4. Read (for the debug process), the values of the current host transmitter or receiver descriptor address
pointer (EMAC_DMA_TXDSC_CUR, EMAC_DMA_RXDSC_CUR) registers.

5. Read (for the debug process), the values of the current host transmit buffer address pointer and receive
buffer address pointer (EMAC_DMA_TXBUF_CUR, EMAC_DMA_TXBUF_CUR) registers.

Stopping and Starting Transfers

Use the following procedure to stop and start EMAC transfers.

1. Disable the transmit DMA (if applicable), by clearing the EMAC_DMA_OPMODE.ST bit.

2. Wait for any previous frame transmissions to complete. Check this by reading the appropriate bits of
the debug register (EMAC_DBG).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

21–82 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

3. Disable the MAC transmitter and MAC receiver by clearing the EMAC_MACCFG.TE and EMAC_MACCFG.
RE bits.

4. Disable the receive DMA (if applicable), after ensuring that the data in the receive FIFO is transferred
to the system memory by reading the EMAC_DBG register.

5. Make sure that both the transmit and receive FIFOs are empty.

6. To re-start the operation, first start the DMA, and then enable the MAC transmitter and receiver.

Interrupts and Interrupt Service Routines

Specific steps for enabling interrupts and using their ISRs are described in the following procedure.

PREREQUISITE: This procedure is typically performed with EMAC and DMA initialization and operations.

1. Receive interrupts are enabled for descriptors by default. Transmit interrupts must be enabled for indi-
vidual descriptors by setting the IC bit (bit 30) in the TDES0 word of the transmit descriptor.

2. Enable the required bits in the DMA interrupt enable register (EMAC_DMA_IEN).

ADDITIONAL INFORMATION: Setting the EMAC_DMA_IEN.NIS or EMAC_DMA_IEN.AIS bits can turn on the
occurrence of all normal/abnormal interrupt conditions. Individual conditions may also be enabled on
using individual bits in the EMAC_DMA_IEN register.

3. Enable MMC overflow interrupts by setting appropriate bits in the EMAC_MMC_RXIMSK and EMAC_MMC_
TXIMSK registers.

4. Enable PTP interrupts by setting the EMAC_IMSK.TS bit.

5. Once an EMAC interrupt is asserted and the SEC branches execution to the EMAC ISR, the following
software program sequence is performed.

a. Read DMA status from the EMAC_DMA_STAT register.

b. Clear the interrupt source by writing 1 (W1C) to the bits that are set in the EMAC_DMA_STAT register.

c. Check for normal/abnormal/mmc/ptp interrupts by parsing the status bits read earlier, and call the
appropriate service function.

ADDITIONAL INFORMATION: Typical normal interrupt assertions include Transmit and Receive Interrupt. Typical
abnormal interrupt assertion include Receive Underflow.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–83

6. The MMC handler functions use the following sequence.

a. Read the EMAC_ISTAT register and parsing for the EMAC_ISTAT.MMCTX and EMAC_ISTAT.MMCRX bits
to determine if the interrupt is a transmit counter or receive counter interrupt.

b. Read the EMAC_MMC_RXINT or EMAC_MMC_TXINT registers to determine which of the counters have
triggered the interrupt.

c. Read the respective MMC counter that caused the interrupt to clear it.

7. PTP handler functions use the following sequence:

a. Read the EMAC_ISTAT.TS bit to determine if a PTP Interrupt occurred.

b. Read EMAC_TM_STMPSTAT register to determine the interrupt source by parsing the EMAC_TM_
STMPSTAT.ATSTS, EMAC_TM_STMPSTAT.TSTARGT, and EMAC_TM_STMPSTAT.TSSOVF bits.

c. Clear the interrupt source by reading the EMAC_TM_STMPSTAT register.

Enabling Checksum for Transmit and Receive

Use the following steps to enable transmit and receive checksums.

PREREQUISITE:

Enabling receive and transmit checksums is generally performed in conjunction with EMAC and DMA
initialization and operations. Note that transmit and receive checksum features are independent of each
other.

1. To enable transmit checksum insertion:

a. Enable store forward mode in the FIFO by setting the EMAC_DMA_OPMODE.TSF bit.

b. Ensure that the transmit frame can be contained within the 256 byte Tx FIFO conforming to the
size rule: FIFO Depth – PBL – 3 FIFO locations, where PBL is burst length.

c. Program the following required parameters for transmit checksum, by programming (CIC)
checksum insertion control in TDES0: IP header checksum, IP header checksum and payload
checksum, IP Header checksum, payload checksum and pseudo header checksum.

STEP RESULT: A higher layer such as the IP stack sends out the packet to the EMAC which inserts the
checksum as configured.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

21–84 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

2. To enable receive checksum verification:

a. Enable receive checksum off-load engine by setting the EMAC_MACCFG.IPC bit.

b. Enable 8 word descriptor (32 bytes), by setting the EMAC_DMA_BUSMODE.ATDS bit.

c. Provide a total of 8 x 32-bit word space for the receive descriptor.

d. Wait for the receive interrupt and check for extended status availability by parsing bit 0 in the
RDES0 word.

e. If extended status available, read RDES4 and pass to a higher layer such as the IP stack.
STEP RESULT: The higher software layer may check for IPv4/IPv6/payload type and checksum payload/header
errors.

Programming the System Time Module

Use the following procedure to configure the PTP module

1. Enable PTP module by setting the EMAC_TM_CTL.TSENA bit 0.

2. System Time Initialization

a. The time (seconds and nanoseconds) at which System Time should be initialized should be written
into EMAC_TM_SECUPDT and EMAC_TM_NSECUPDT registers.

b. Set EMAC_TM_CTL.TSINIT bit. System time is initialized and this bit clears automatically.

c. Configure binary or digital rollover of the EMAC_TM_NSEC register using the EMAC_TM_CTL.
TSCTRLSSR bit.

3. System Time Coarse Correction

a. Write the offset time (seconds and nanoseconds) to be added to or subtracted from the system time
using the EMAC_TM_SECUPDT and EMAC_TM_NSECUPDT registers.

b. Choose between add or subtract offset time using the EMAC_TM_NSECUPDT.ADDSUB bit.

c. Set the EMAC_TM_CTL.TSUPDT bit to correct system time with offset time. This bit clears automati-
cally.

4. System Time Fine Correction

a. Calculate the required addend value based on the input PTP clock frequency and the required
frequency. See Fine Correction Method.

b. Write the calculated addend value in EMAC_TM_ADDEND register and set the EMAC_TM_CTL.TSADDREG
bit to update the addend value. This bit is cleared automatically.

c. Configure the EMAC_TM_SUBSEC register based on new PTP frequency.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–85

5. Target Time Trigger (Alarm)

a. Set the EMAC_IMSK.TS bit to enable PTP interrupts.

b. Program the EMAC_TM_PPSCTL.TRGTMODSEL bit with 00 or 10 (for PPS start/stop time program-
ming).

c. Program the time when interrupt should be triggered using the EMAC_TM_TGTM and EMAC_TM_NTGTM
registers. The programmed time should be greater than the current system time.

ADDITIONAL INFORMATION: If the programmed time is not greater than the target time, a programming error
occurs and is indicated by the EMAC_TM_STMPSTAT.TSTRGTERR bit.

d. Set the EMAC_TM_CTL.TSTRIG bit to enable the target time trigger interrupt.
STEP RESULT: After the system time reaches the programmed target time (in step 2), the target time trigger
interrupt occurs and is indicated by the EMAC_TM_STMPSTAT.TSTARGT and EMAC_ISTAT.TS bits. The
EMAC_TM_CTL.TSTRIG bit is cleared automatically.

Programming The PTP for Frame Detection and Timestamping

Use the following procedure to configure the PTP module.

1. For timestamping a transmitting frame, set the TTSE bit in the TDES0 register of the corresponding
frame.

2. Extend the descriptor word length from 4 words to 8 words by setting the EMAC_DMA_BUSMODE.ATDS
bit.

3. Configure bi 18–10 in the EMAC_TM_CTL register so that the PTP module detects and/or timestamps
only specific types of received frames. Refer to the EMAC_TM_CTL register description for more informa-
tion.

4. Select the PTP clock source by programming the PADS_EMAC_PTP_CLKSEL register.

5. Enable the PTP module by setting the EMAC_TM_CTL.TSENA bit.

6. Initialize the system time.

7. Verify the RDES4 register for the status of the received frame and the RDES6 and RDES7 registers for
timestamp nanoseconds and seconds value.

Programming for Auxiliary Timestamps

1. Set the EMAC_IMSK.TS bit to enable PTP interrupts.

2. Set the EMAC_TM_CTL.TSENA bit to enable the PTP module.

3. Initialize system time.

ADDITIONAL INFORMATION: Whenever a rising edge on auxiliary timestamp trigger pin is detected, system
time seconds and nanoseconds are captured and stored into 4-deep auxiliary timestamp FIFO. An

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING MODEL

21–86 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

auxiliary timestamp trigger interrupt occurs and is indicated by the EMAC_TM_STMPSTAT.ATSTS and the
EMAC_IMSK.TS bit.

4. The contents of the FIFO can be read one by one through EMAC_TM_AUXSTMP_SEC and EMAC_TM_
AUXSTMP_NSEC registers. One level of the FIFO is cleared when the EMAC_TM_AUXSTMP_SEC register is
read. Therefore read the EMAC_TM_AUXSTMP_NSEC register before the EMAC_TM_AUXSTMP_SEC register.

5. Set the EMAC_TM_CTL.ATSFC bit to clear the FIFO.

Programming Fixed Pulse-Per-Second Output

Use the following procedure to program PPS output fixed pulse-per-second output.

1. Enable the PTP module by setting the EMAC_TM_CTL.TSENA bit.

2. Configure the EMAC_TM_PPSCTL.PPSCTL bits and configure binary or digital rollover by configuring
the EMAC_TM_CTL.TSCTRLSSR bit, so as to output the required PPS waveform. See Fixed Pulse-Per-
Second Output.

Programming Flexible Pulse-Per-Second Output

Use the following procedure to program flexible PPS output.

1. Enable the PTP module by setting the EMAC_TM_CTL.TSENA bit.

2. Set the EMAC_TM_PPSCTL.PPSEN bit to enable flexible PPS output.

3. Program the EMAC_TM_PPSCTL.TRGTMODSEL bits with 11 or 10 (for target time trigger interrupt).

4. Program the start time value when the PPS output should start using the EMAC_TM_TGTM and EMAC_TM_
NTGTM registers. Ensure that the EMAC_TM_NTGTM.TSTRBUSY bit is reset before programming the target
time registers again.

5. Program the period of the PPS signal output using the EMAC_TM_PPSINTVL register for pulse train
output, and the width of the PPS signal output in the EMAC_TM_PPSWIDTH register for single pulse or
pulse train output.

6. Ensure that the EMAC_TM_PPSCTL.PPSCTL bits are cleared and then program the bits to 0001 to start
single pulse, or to 0010 to start pulse train at programmed start time (Step 4).

ADDITIONAL INFORMATION: The PPS pulse train is free-running unless stopped by a STOP pulse train at
time command (EMAC_TM_PPSCTL.PPSCTL = 0100) or STOP pulse train immediately command EMAC_
TM_PPSCTL.PPSCTL = 0101).

7. The start of pulse generation can be canceled by giving the cancel start command (EMAC_TM_PPSCTL.
PPSCTL = 0011) before the programmed start time (Step 4) elapses.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING CONCEPTS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–87

8. Program the stop time value when the PPS output should stop using the EMAC_TM_TGTM and EMAC_TM_
NTGTM registers. Ensure that the EMAC_TM_NTGTM.TSTRBUSY bit is reset before programming the target
time registers again.

9. Ensure that the EMAC_TM_PPSCTL.PPSCTL bits are cleared and then program them to 0100. This stops
the train of pulses on PPS signal output after the programmed stop time (Step 8) elapses.

ADDITIONAL INFORMATION: The pulse train can be stopped immediately by giving the STOP pulse train
immediately command (EMAC_TM_PPSCTL.PPSCTL = 0101). Similarly, the stop pulse train command
(given in Step 9) can be canceled by programming the EMAC_TM_PPSCTL.PPSCTL bits to 0110 before the
programmed stop time (Step 8) elapses.

EMAC Programming Concepts

The following sections provide basic information and guidelines to assist in programming the EMAC
module.

IEEE 802.3 Ethernet Packet Structure

The typical frame format of an Ethernet packet is provided in the following table. Please refer to the IEEE
standards for detailed information on Ethernet packets and their format.

Table 21-42: IEEE 802.3 Frame Structure

Parameter Description
Position

in Ethernet Packet Total Bytes

PREAMBLE This is a 56-bit (7-byte) pattern of alternating 1 and 0 bits (#10101010),
which allows devices on the network to detect a new incoming frame for
synchronization.

1 7

SFD The SFD (#10101011) is a 1-byte pattern designed to break the preamble
pattern, and signal the start of the actual frame.

2 1

DA 48-bit destination address. This can be a unicast, multicast or broadcast
address.

3 6

SA 48-bit long source address, typically a unicast, multicast or broadcast
address.

4 6

LT Typically this field is the length, in terms of the number of bytes, and can be
anywhere between 0 – 1500. When the value is greater than or equal to
0x0600, this field is also used to indicate the type of special payload carried
by the frame. Examples include 0x8808 for flow control and 0x0800 for IPv4.

5 2

DATA Actual application data payload, usually between 0 – 1500. 6 0–1500

PAD This field compensates for data frames that are shorter than 64 bytes long,
not including the preamble.

7 0–46

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING CONCEPTS

21–88 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Frame Size Statistics for Application Software

Software Visualization of Programmable Packet Size

The following table provides the byte sizes of packets with various configurations.

FCS The frame check sequence is a 32-bit cyclic redundancy check that detects
corrupted data within the entire frame. This is generated from a CRC-32
polynomial code (CRC-32-IEEE): G (x) = x32 + x26 + x23 + x22 + x16 + x12
+ x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1.

8 4

Table 21-43: Ethernet Frame Size Statistics

Frame size statistics
VLAN specific change

Comments

Information bytes/Header 4 byte 802.1Q header inserted after Source Address
and before Type/LAN in 802.3 packets = 22 bytes.

6 x 2 + 2 + 4 = 18 bytes (DA+SA+LT+FCS)

Minimum Frame Size
(typical)

If DATA is NULL, 42 byte padding is done to make
64 bytes (42 +22)

64 bytes. If DATA is NULL, 46 byte padding is done
to make 64 bytes (46 +18)

Maximum Frame Size
(typical)

1522 bytes 1518 bytes (1500 bytes DATA and 18 bytes header)

Jumbo Frame Size 9022 bytes Typical industry standard Ethernet jumbo frame size
may be treated as 9018 bytes.

Table 21-44: Visualization of Programmable Packet Size

Size in Bytes Comments

16384 Receive watchdog and transmit jabber disabled, jumbo frames enabled.

10240 Receive watchdog and transmit jabber disabled, jumbo frames disabled.

2048 Receive Watchdog and Transmit Jabber enabled.

1518 Typical max size of Ethernet frame. Receive watchdog and transmit jabber enabled.

64 Typical minimum size of Ethernet frame.

< 64 Runt frames requiring Zero-PAD.

Table 21-42: IEEE 802.3 Frame Structure (Continued)

Parameter Description
Position

in Ethernet Packet Total Bytes

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
EMAC PROGRAMMING CONCEPTS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–89

Ethernet Packet Structure in C

The following is an example for Ethernet packet structure in the C language.

typedef struct ETHER_PACKET
{
 char dst_addr[6]; //destination address
 char src_addr[6]; //source address
 char length[2]; //length of actual data
 char data[DATA_SIZE]; //application data
 char fdlimit[DELIMIT_SIZE];//32-bit delimit (if manual appending)
 char fcs[4]; //crc frame checksum, used by RX buffer.
} ETHER_PACKET;

DMA Descriptor Implementation in C

The following code is a simple implementation of descriptors in ring and chain model in C language. Typi-
cally 4 WORDs (32-bit) are used for descriptors. Using checksum off load or the PTP engine requires 8
WORDs. Only high-level common functions across transmit and receive descriptors are considered here.

/* DMA Ring Descriptor */
typedef struct EMAC_DMADESC_RING
{
 unsigned int Status; //TDES0 OR RDES0
 unsigned int ControlDesc; //TDES1 OR RDES1
 unsigned int StartAddr1; //TDES2 OR RDES2
 unsigned int StartAddr2; //TDES3 OR RDES3
 #ifdef CHECKSUM_OFFLOAD
 struct EMAC_EXT_STAT ExtendedStat;
 #endif
} EMAC_DMADESC_RING;
/* DMA Chain Descriptor */
typedef struct EMAC_DMADESC_CHAIN
{
 unsigned int Status; //TDES0 OR RDES0
 unsigned int ControlDesc; //TDES1 OR RDES1
 unsigned int StartAddr; //TDES2 OR RDES2
 struct EMAC_DMADESC_CHAIN *pNextDesc; //TDES3 OR RDES3
 #ifdef CHECKSUM_OFFLOAD
 struct EMAC_EXT_STAT ExtendedStat;
 #endif
} EMAC_DMADESC_CHAIN;
/* Extended Status Descriptor with PTP not enabled*/
typedef struct EMAC_EXT_STAT
{
 #ifdef RX_DESC
 unsigned int CheckSumStat;//RDES4
 #ifdef TX_DESC
 unsigned int Reserved; //TDES4
 #endif
 unsigned int Reserved; //RDES5 OR TDES5

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–90 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 unsigned int Reserved; //RDES6 OR TDES6
 unsigned int Reserved; //RDES7 OR TDES7
} EMAC_EXT_STAT;

PTP Header Structure in C

The following code is an example of the PTM message format.

/* PTP Message Format (Refer to PTP Frame Over IPv4)*/
 typedef struct EMAC_PTP_HEADER
 {
 unsigned charmessageType:4, //PTP Version 2 message type
 transportSpecific:4;
 unsigned charversionPTP; //PTP Version (1 or 2)
 unsigned shortmessageLength;
 unsigned chardomainNumber;
 unsigned charRESERVED1;
 unsigned shortflagField;
 unsigned charcorrectionField[8];
 unsigned charRESERVED2[4];
 unsigned charsourcePortIdentity[10];
 unsigned shortsequenceid;
 unsigned charcontrolField;//PTP Version 1 message type
 unsigned charlogMessageInterval;
 }EMAC_PTP_HEADER;

ADSP-CM40x EMAC Register Descriptions

Ethernet MAC (EMAC) contains the following registers.

Table 21-45: ADSP-CM40x EMAC Register List

Name Description

EMAC_MACCFG MAC Configuration Register

EMAC_MACFRMFILT MAC Rx Frame Filter Register

EMAC_HASHTBL_HI Hash Table High Register

EMAC_HASHTBL_LO Hash Table Low Register

EMAC_SMI_ADDR SMI Address Register

EMAC_SMI_DATA SMI Data Register

EMAC_FLOWCTL FLow Control Register

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–91

EMAC_VLANTAG VLAN Tag Register

EMAC_DBG Debug Register

EMAC_ISTAT Interrupt Status Register

EMAC_IMSK Interrupt Mask Register

EMAC_ADDR0_HI MAC Address 0 High Register

EMAC_ADDR0_LO MAC Address 0 Low Register

EMAC_MMC_CTL MMC Control Register

EMAC_MMC_RXINT MMC Rx Interrupt Register

EMAC_MMC_TXINT MMC Tx Interrupt Register

EMAC_MMC_RXIMSK MMC Rx Interrupt Mask Register

EMAC_MMC_TXIMSK MMC TX Interrupt Mask Register

EMAC_TXOCTCNT_GB Tx OCT Count (Good/Bad) Register

EMAC_TXFRMCNT_GB Tx Frame Count (Good/Bad) Register

EMAC_TXBCASTFRM_G Tx Broadcast Frames (Good) Register

EMAC_TXMCASTFRM_G Tx Multicast Frames (Good) Register

EMAC_TX64_GB Tx 64-Byte Frames (Good/Bad) Register

EMAC_TX65TO127_GB Tx 65- to 127-Byte Frames (Good/Bad) Register

EMAC_TX128TO255_GB Tx 128- to 255-Byte Frames (Good/Bad) Register

EMAC_TX256TO511_GB Tx 256- to 511-Byte Frames (Good/Bad) Register

EMAC_TX512TO1023_GB Tx 512- to 1023-Byte Frames (Good/Bad) Register

EMAC_TX1024TOMAX_GB Tx 1024- to Max-Byte Frames (Good/Bad) Register

EMAC_TXUCASTFRM_GB Tx Unicast Frames (Good/Bad) Register

EMAC_TXMCASTFRM_GB Tx Multicast Frames (Good/Bad) Register

EMAC_TXBCASTFRM_GB Tx Broadcast Frames (Good/Bad) Register

Table 21-45: ADSP-CM40x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–92 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

EMAC_TXUNDR_ERR Tx Underflow Error Register

EMAC_TXSNGCOL_G Tx Single Collision (Good) Register

EMAC_TXMULTCOL_G Tx Multiple Collision (Good) Register

EMAC_TXDEFERRED Tx Deferred Register

EMAC_TXLATECOL Tx Late Collision Register

EMAC_TXEXCESSCOL Tx Excess Collision Register

EMAC_TXCARR_ERR Tx Carrier Error Register

EMAC_TXOCTCNT_G Tx Octet Count (Good) Register

EMAC_TXFRMCNT_G Tx Frame Count (Good) Register

EMAC_TXEXCESSDEF Tx Excess Deferral Register

EMAC_TXPAUSEFRM Tx Pause Frame Register

EMAC_TXVLANFRM_G Tx VLAN Frames (Good) Register

EMAC_RXFRMCNT_GB Rx Frame Count (Good/Bad) Register

EMAC_RXOCTCNT_GB Rx Octet Count (Good/Bad) Register

EMAC_RXOCTCNT_G Rx Octet Count (Good) Register

EMAC_RXBCASTFRM_G Rx Broadcast Frames (Good) Register

EMAC_RXMCASTFRM_G Rx Multicast Frames (Good) Register

EMAC_RXCRC_ERR Rx CRC Error Register

EMAC_RXALIGN_ERR Rx alignment Error Register

EMAC_RXRUNT_ERR Rx Runt Error Register

EMAC_RXJAB_ERR Rx Jab Error Register

EMAC_RXUSIZE_G Rx Undersize (Good) Register

EMAC_RXOSIZE_G Rx Oversize (Good) Register

EMAC_RX64_GB Rx 64-Byte Frames (Good/Bad) Register

Table 21-45: ADSP-CM40x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–93

EMAC_RX65TO127_GB Rx 65- to 127-Byte Frames (Good/Bad) Register

EMAC_RX128TO255_GB Rx 128- to 255-Byte Frames (Good/Bad) Register

EMAC_RX256TO511_GB Rx 256- to 511-Byte Frames (Good/Bad) Register

EMAC_RX512TO1023_GB Rx 512- to 1023-Byte Frames (Good/Bad) Register

EMAC_RX1024TOMAX_GB Rx 1024- to Max-Byte Frames (Good/Bad) Register

EMAC_RXUCASTFRM_G Rx Unicast Frames (Good) Register

EMAC_RXLEN_ERR Rx Length Error Register

EMAC_RXOORTYPE Rx Out Of Range Type Register

EMAC_RXPAUSEFRM Rx Pause Frames Register

EMAC_RXFIFO_OVF Rx FIFO Overflow Register

EMAC_RXVLANFRM_GB Rx VLAN Frames (Good/Bad) Register

EMAC_RXWDOG_ERR Rx Watch Dog Error Register

EMAC_IPC_RXIMSK MMC IPC Rx Interrupt Mask Register

EMAC_IPC_RXINT MMC IPC Rx Interrupt Register

EMAC_RXIPV4_GD_FRM Rx IPv4 Datagrams (Good) Register

EMAC_RXIPV4_HDR_ERR_FRM Rx IPv4 Datagrams Header Errors Register

EMAC_RXIPV4_NOPAY_FRM Rx IPv4 Datagrams No Payload Frame Register

EMAC_RXIPV4_FRAG_FRM Rx IPv4 Datagrams Fragmented Frames Register

EMAC_RXIPV4_UDSBL_FRM Rx IPv4 UDP Disabled Frames Register

EMAC_RXIPV6_GD_FRM Rx IPv6 Datagrams Good Frames Register

EMAC_RXIPV6_HDR_ERR_FRM Rx IPv6 Datagrams Header Error Frames Register

EMAC_RXIPV6_NOPAY_FRM Rx IPv6 Datagrams No Payload Frames Register

EMAC_RXUDP_GD_FRM Rx UDP Good Frames Register

EMAC_RXUDP_ERR_FRM Rx UDP Error Frames Register

Table 21-45: ADSP-CM40x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–94 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

EMAC_RXTCP_GD_FRM Rx TCP Good Frames Register

EMAC_RXTCP_ERR_FRM Rx TCP Error Frames Register

EMAC_RXICMP_GD_FRM Rx ICMP Good Frames Register

EMAC_RXICMP_ERR_FRM Rx ICMP Error Frames Register

EMAC_RXIPV4_GD_OCT Rx IPv4 Datagrams Good Octets Register

EMAC_RXIPV4_HDR_ERR_OCT Rx IPv4 Datagrams Header Errors Register

EMAC_RXIPV4_NOPAY_OCT Rx IPv4 Datagrams No Payload Octets Register

EMAC_RXIPV4_FRAG_OCT Rx IPv4 Datagrams Fragmented Octets Register

EMAC_RXIPV4_UDSBL_OCT Rx IPv4 UDP Disabled Octets Register

EMAC_RXIPV6_GD_OCT Rx IPv6 Good Octets Register

EMAC_RXIPV6_HDR_ERR_OCT Rx IPv6 Header Errors Register

EMAC_RXIPV6_NOPAY_OCT Rx IPv6 No Payload Octets Register

EMAC_RXUDP_GD_OCT Rx UDP Good Octets Register

EMAC_RXUDP_ERR_OCT Rx UDP Error Octets Register

EMAC_RXTCP_GD_OCT Rx TCP Good Octets Register

EMAC_RXTCP_ERR_OCT Rx TCP Error Octets Register

EMAC_RXICMP_GD_OCT Rx ICMP Good Octets Register

EMAC_RXICMP_ERR_OCT Rx ICMP Error Octets Register

EMAC_TM_CTL Time Stamp Control Register

EMAC_TM_SUBSEC Time Stamp Sub Second Increment Register

EMAC_TM_SEC Time Stamp Low Seconds Register

EMAC_TM_NSEC Time Stamp Nanoseconds Register

EMAC_TM_SECUPDT Time Stamp Seconds Update Register

EMAC_TM_NSECUPDT Time Stamp Nanoseconds Update Register

Table 21-45: ADSP-CM40x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–95

EMAC_TM_ADDEND Time Stamp Addend Register

EMAC_TM_TGTM Time Stamp Target Time Seconds Register

EMAC_TM_NTGTM Time Stamp Target Time Nanoseconds Register

EMAC_TM_HISEC Time Stamp High Second Register

EMAC_TM_STMPSTAT Time Stamp Status Register

EMAC_TM_PPSCTL PPS Control Register

EMAC_TM_AUXSTMP_NSEC Time Stamp Auxiliary TS Nano Seconds Register

EMAC_TM_AUXSTMP_SEC Time Stamp Auxiliary TM Seconds Register

EMAC_TM_PPSINTVL Time Stamp PPS Interval Register

EMAC_TM_PPSWIDTH PPS Width Register

EMAC_DMA_BUSMODE DMA Bus Mode Register

EMAC_DMA_TXPOLL DMA Tx Poll Demand Register

EMAC_DMA_RXPOLL DMA Rx Poll Demand register

EMAC_DMA_RXDSC_ADDR DMA Rx Descriptor List Address Register

EMAC_DMA_TXDSC_ADDR DMA Tx Descriptor List Address Register

EMAC_DMA_STAT DMA Status Register

EMAC_DMA_OPMODE DMA Operation Mode Register

EMAC_DMA_IEN DMA Interrupt Enable Register

EMAC_DMA_MISS_FRM DMA Missed Frame Register

EMAC_DMA_RXIWDOG DMA Rx Interrupt Watch Dog Register

EMAC_DMA_BMMODE DMA SCB Bus Mode Register

EMAC_DMA_BMSTAT DMA SCB Status Register

EMAC_DMA_TXDSC_CUR DMA Tx Descriptor Current Register

EMAC_DMA_RXDSC_CUR DMA Rx Descriptor Current Register

Table 21-45: ADSP-CM40x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–96 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

MAC Configuration Register

The EMAC_MACCFG register configures MAC features.

Figure 21-16: EMAC_MACCFG Register Diagram

EMAC_DMA_TXBUF_CUR DMA Tx Buffer Current Register

EMAC_DMA_RXBUF_CUR DMA Rx Buffer Current Register

Table 21-46: EMAC_MACCFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

25
(R/W)

CST CRC Stripping.
The EMAC_MACCFG.CST bit, when set, directs the MAC to strip the last 4 bytes
(FCS) of all frames of Ether type (Type field of frame greater than 0x0600) and drop
these bytes before forwarding the frame to the application.

Table 21-45: ADSP-CM40x EMAC Register List (Continued)

Name Description

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–97

23
(R/W)

WD Watch Dog Disable.
The EMAC_MACCFG.WD bit, when set, disables the watchdog timer on the receiver,
and can receive frames of up to 16,384 bytes. When this bit is reset, the MAC allows
no more than 2,048 bytes (10,240 if EMAC_MACCFG.JE is set high) of the frame
being received and cuts off any bytes received after that.

22
(R/W)

JB Jabber Disable.
The EMAC_MACCFG.JB bit, when set, disables the jabber timer on the transmitter,
and can transfer frames of up to 16,384 bytes. When this bit is reset, the MAC cuts off
the transmitter if the application sends out more than 2,048 bytes of data (10,240 if
EMAC_MACCFG.JE is set high) during transmission.

20
(R/W)

JE Jumbo Frame Enable.
The EMAC_MACCFG.JE bit, when set, directs the MAC to allow Jumbo frames of
9,018 bytes (9,022 bytes for VLAN tagged frames).

19:17
(R/W)

IFG Inter-Frame Gap.
The EMAC_MACCFG.IFG bits control the minimum inter-frame gap between
frames during transmission. Note that in Half-Duplex mode, the minimum gap can
be configured for 64 bit times (EMAC_MACCFG.IFG =100) only. Lower values are
not considered.

0 96 bit times

1 88 bit times

2 80 bit times

3 72 bit times

4 64 bit times

5 56 bit times

6 48 bit times

7 40 bit times

16
(R/W)

DCRS Disable Carrier Sense.
The EMAC_MACCFG.DCRS bit, when set, makes the MAC transmitter ignore the
CRS signal during frame transmission in Half-Duplex mode. This request results in
no errors generated due to Loss of Carrier or No Carrier during such transmission.
When this bit is low, the MAC transmitter generates such errors due to Carrier Sense
and will even abort the transmissions.

14
(R/W)

FES Speed of Operation.
The EMAC_MACCFG.FES bit indicates the Ethernet speed as 10 Mbps (bit =0) or
100 Mbps (bit =1).

13
(R/W)

DO Disable Receive Own.
The EMAC_MACCFG.DO bit, when set, disables MAC reception of frames when
MAC is transmitting in Half-Duplex mode. When this bit is reset, the MAC receives
all packets that are given by the PHY while transmitting. This bit is not applicable if
the MAC is operating in Full-Duplex mode.

Table 21-46: EMAC_MACCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–98 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

12
(R/W)

LM Loopback Mode.
The EMAC_MACCFG.LM bit, when set, directs the MAC to operate in internal loop
back mode. (The media independent interface pins are not driven or sampled.)

11
(R/W)

DM Duplex Mode.
The EMAC_MACCFG.DM bit, when set, directs the MAC to operate in a Full-Duplex
mode where it can transmit and receive simultaneously.

10
(R/W)

IPC IP Checksum.
The EMAC_MACCFG.IPC bit, when set, directs the MAC to calculate the 16-bit
one's complement of the one's complement sum of all received Ethernet frame
payloads. It also checks whether the IPv4 Header checksum (assumed to be bytes 25-
26 or 29-30 (VLAN-tagged) of the received Ethernet frame) is correct for the
received frame and gives the status in the receive status word. The EMAC_MACCFG.
IPC bit, when set, enables IPv4 checksum checking for received frame payloads'
TCP/UDP/ICMP headers. When this bit is reset, the Checksum Offload Engine
function in the receiver is disabled and the corresponding PCE and IP HCE status
bits are always cleared.

9
(R/W)

DR Disable Retry.
The EMAC_MACCFG.DR bit, when set, directs the MAC to attempt only 1
transmission. When a collision occurs on the media independent interface, the MAC
ignores the current frame transmission and reports a Frame Abort with excessive
collision error in the transmit frame status. When the EMAC_MACCFG.DR bit is
reset, the MAC attempts retries based on the settings of BL. This bit is applicable only
to Half-Duplex mode.

0 Retry enabled

1 Retry disabled

7
(R/W)

ACS Automatic Pad/CRC Stripping.
The EMAC_MACCFG.ACS bit, when set, directs the MAC to strip the Pad/FCS field
on incoming frames only if the length fields value is less than or equal to 1,500 bytes.
All received frames with length field greater than or equal to 1,501 bytes are passed to
the application without stripping the Pad/FCS field. When the EMAC_MACCFG.ACS
bit is reset, the MAC passes all incoming frames to the Host unmodified.

6:5
(R/W)

BL Back Off Limit.
The EMAC_MACCFG.BL bit selects the back-off limit, determining the random
integer number (r) of slot time delays (512 bit times for 10/100 Mbps) the MAC waits
before rescheduling a transmission attempt during retries after a collision. This bit is
applicable only to Half-Duplex mode.The random integer r takes the value in the
range:
0 less-than-equal-to r less-than 2k

Where k is the minimum of n (number of transmission attempts) or a limit value.

0 k = min (n, 10)

1 k = min (n, 8)

2 k = min (n, 4)

3 k = min (n, 1)

Table 21-46: EMAC_MACCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–99

MAC Rx Frame Filter Register

The EMAC_MACFRMFILT register controls receive frame filter features.

4
(R/W)

DC Deferral Check.
The EMAC_MACCFG.DC bit, when set, enables the deferral check function in the
MAC. The MAC issues a Frame Abort status, along with the excessive deferral error
bit set in the transmit frame status when the transmit state machine is deferred for
more than 24,288 bit times in 10/100-Mbps mode. If the Jumbo frame mode is
enabled in 10/100-Mbps mode, the threshold for deferral is 155,680 bits times.
Deferral begins when the transmitter is ready to transmit, but is prevented because of
an active CRS (carrier sense) signal. Defer time is not cumulative. If the transmitter
defers for 10,000 bit times, then transmits, collides, backs off, and then has to defer
again after completion of back-off, the deferral timer resets to 0 and restarts. When
the EMAC_MACCFG.DC bit is reset, the deferral check function is disabled and the
MAC defers until the CRS signal goes inactive. This bit is applicable only in Half-
Duplex mode.

3
(R/W)

TE Transmitter Enable.
The EMAC_MACCFG.TE bit, when set, enables the transmit state machine of the
MAC for transmission. When this bit is reset, the MAC transmit state machine is
disabled after the completion of the transmission of the current frame, and will not
transmit any further frames.

2
(R/W)

RE Receiver Enable.
The EMAC_MACCFG.RE bit, when set, enables the receiver state machine of the
MAC for receiving frames. When this bit is reset, the MAC receive state machine is
disabled after the completion of the reception of the current frame, and does not
receive any further frames.

Table 21-46: EMAC_MACCFG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–100 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-17: EMAC_MACFRMFILT Register Diagram

Table 21-47: EMAC_MACFRMFILT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

RA Receive All Frames.
The EMAC_MACFRMFILT.RA bit, when set, directs the MAC Receiver module to
pass to the Application all frames received irrespective of whether they pass the
address filter. The result of the DA filtering is updated (pass or fail) in the
corresponding bits in the Receive Status Word. When this bit is reset, the Receiver
module passes to the Application only those frames that pass the DA address filter.

10
(R/W)

HPF Hash or Perfect Filter.
The EMAC_MACFRMFILT.HPF bit. when set, configures the address filter to pass a
frame if it matches either the perfect filtering or the hash filtering as set by EMAC_
MACFRMFILT.HMC or EMAC_MACFRMFILT.HUC bits. When EMAC_
MACFRMFILT.HPF is low and either the EMAC_MACFRMFILT.HUC bit or EMAC_
MACFRMFILT.HMC bit is set, the frame is passed only if it matches the Hash filter.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–101

7:6
(R/W)

PCF Pass Control Frames.
The EMAC_MACFRMFILT.PCF bits control the forwarding of all control frames
(including unicast and multicast PAUSE frames). Note that the processing of PAUSE
control frames depends only on the value of the EMAC_FLOWCTL.RFE bit.

0 Pass no control frames
All control frames are filtered from reaching the
application.

1 Pass no PAUSE frames
All control frames are passed to the application (even if
the fail the address filter), except for PAUSE frames.

2 Pass all control frames
All control frames are passed to the application (even if
the fail the address filter).

3 Pass address filtered control frames
All control frames that pass the address filter are passed
to the application.

5
(R/W)

DBF Disable Broadcast Frames.
The EMAC_MACFRMFILT.DBF bit, when set, directs the AFM module to filter all
incoming broadcast frames. When this bit is reset, the AFM module passes all
received broadcast frames.

0 AFM module passes all received broadcast frames

1 AFM module filters all incoming broadcast frames

4
(R/W)

PM Pass All Multicast Frames.
The EMAC_MACFRMFILT.PM bit, when set, indicates that all received frames with a
multicast destination address (first bit in the destination address field is =1) are
passed. When this bit is reset, filtering of multicast frame depends on EMAC_
MACFRMFILT.HMC bit.

3
(R/W)

DAIF Destination Address Inverse Filtering.
The EMAC_MACFRMFILT.DAIF bit, when set, directs the Address Check block to
operate in inverse filtering mode for the DA address comparison for both unicast and
multicast frames. When this bit is reset, normal filtering of frames is performed.

2
(R/W)

HMC Hash Multicast.
The EMAC_MACFRMFILT.HMC bit, when set, directs the EMAC to perform
destination address filtering of received multicast frames according to the hash table.
When this bit is reset, the MAC performs a perfect destination address filtering for
multicast frames, that is, the MAC compares the DA field with the values
programmed in the EMAC_ADDR0_HI and EMAC_ADDR0_LO address registers.

1
(R/W)

HUC Hash Unicast.
The EMAC_MACFRMFILT.HUC bit, when set, directs the EMAC to perform
destination address filtering of unicast frames according to the hash table. When this
bit is reset, the MAC performs a perfect destination address filtering for unicast
frames, that is, it compares the DA field with the values programmed in the EMAC_
ADDR0_HI and EMAC_ADDR0_LO address registers.

Table 21-47: EMAC_MACFRMFILT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–102 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Hash Table High Register

The EMAC_HASHTBL_HI register contains the upper 32 bits of the hash table.

Figure 21-18: EMAC_HASHTBL_HI Register Diagram

Hash Table Low Register

The EMAC_HASHTBL_LO register contains the lower 32 bits of the hash table.

0
(R/W)

PR Promiscuous Mode.
The EMAC_MACFRMFILT.PR bit, when set, directs the Address Filter module to
pass all incoming frames regardless of its destination or source address. The DA Filter
Fails status bits of the Receive Status Word is always cleared when EMAC_
MACFRMFILT.PR is set.

Table 21-48: EMAC_HASHTBL_HI Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Hash Table High.
The EMAC_HASHTBL_HI.VALUE bits contain the upper 32 bits of Hash table.

Table 21-47: EMAC_MACFRMFILT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–103

Figure 21-19: EMAC_HASHTBL_LO Register Diagram

SMI Address Register

The EMAC_SMI_ADDR register contains the station management interface address and feature settings.

Figure 21-20: EMAC_SMI_ADDR Register Diagram

Table 21-49: EMAC_HASHTBL_LO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Hash Table Low.
The EMAC_HASHTBL_LO.VALUE bits contain the lower 32 bits of Hash table.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–104 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 21-50: EMAC_SMI_ADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:11
(R/W)

PA Physical Layer Address.
The EMAC_SMI_ADDR.PA bits select the PHY. This field tells which of the 32
possible PHY devices are being accessed.

10:6
(R/W)

SMIR SMI Register Address.
The EMAC_SMI_ADDR.SMIR bits select the desired Station Management Interface
register in the selected PHY device.

5:2
(R/W)

CR Clock Range.
The EMAC_SMI_ADDR.CR bits select the Clock Range, determining the frequency
of the MDC clock as per the SCLK frequency. The suggested range of SCLK
frequency applicable for each value below (when Bit[5] =0) ensures that the MDC
clock is approximately between the frequency range 1.0 MHz - 2.5 MHz. When the
MSB of this field is set, you can achieve MDC clock of frequency higher than the
IEEE 802.3 specified frequency limit of 2.5 MHz and program a clock divider of
lower value. For example, when SCLK=100 MHz and you program these bits to
b#1010, the resulting MDC clock is 12.5 MHz, which is outside the limit of IEEE 802.
3 specified range. Use the values shown only if the interface chips support faster
MDC clocks.

0 MDC Clock=SCLK/42
(for SCLK=60-100MHz)

1 Reserved
Reserved

2 MDC Clock= SCLK/16
(for SCLK=20-35 MHz)

3 MDC Clock= SCLK/26
(for SCLK=35-60 MHz)

8 MDC Clock=SCLK/4

9 MDC Clock=SCLK/6

10 MDC Clock=SCLK/8

11 MDC Clock=SCLK/10

12 MDC Clock=SCLK/12

13 MDC Clock=SCLK/14

14 MDC Clock=SCLK/16

15 MDC Clock=SCLK/18

1
(R/W)

SMIW SMI Write.
The EMAC_SMI_ADDR.SMIW bit, when set, tells the PHY this is a Write operation
using the Station Management Interface Data register. If this bit is not set, this is a
Read operation.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–105

SMI Data Register

The EMAC_SMI_DATA register contains the station management interface data.

Figure 21-21: EMAC_SMI_DATA Register Diagram

FLow Control Register

The EMAC_FLOWCTL register controls EMAC flow control features.

0
(R/W1S)

SMIB SMI Busy.
The EMAC_SMI_ADDR.SMIB bit should read low (=0) before writing to the EMAC_
SMI_ADDR and EMAC_SMI_DATA registers. This bit must also =0 during a Write to
EMAC_SMI_ADDR. During a PHY register access, this bit is set (=1) by the
Application to indicate that a Read or Write access is in progress. The EMAC_SMI_
DATA register should be kept valid until this bit is cleared by the MAC during a PHY
Write operation. EMAC_SMI_DATA is invalid until this bit is cleared by the MAC
during a PHY Read operation. The EMAC_SMI_ADDR should not be written to until
this bit is cleared.

Table 21-51: EMAC_SMI_DATA Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

SMID SMI Data.
The EMAC_SMI_DATA.SMID bits contain the 16-bit data value read from the PHY
after a Management Read operation or the 16-bit data value to be written to the PHY
before a Management Write operation.

Table 21-50: EMAC_SMI_ADDR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–106 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-22: EMAC_FLOWCTL Register Diagram

Table 21-52: EMAC_FLOWCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

PT Pause Time.
The EMAC_FLOWCTL.PT bits hold the value to be used in the Pause Time field in
the transmit control frame.

3
(R/W)

UP Unicast Pause Frame Detect.
The EMAC_FLOWCTL.UP bit, when set, directs the MAC to detect the Pause frames
with the station's unicast address specified in EMAC_ADDR0_HI and EMAC_
ADDR0_LO address registers. This bit also directs the MAC to the detect Pause
frames with the unique multicast address. When this bit is reset, the MAC will detect
only a Pause frame with the unique multicast address specified in the 802.3x
standard.

2
(R/W)

RFE Receive Flow Control Enable.
The EMAC_FLOWCTL.RFE bit, when set, directs the MAC to decode the received
Pause frame and disable its transmitter for a specified (Pause Time) time. When this
bit is reset, the decode function of the Pause frame is disabled.

1
(R/W)

TFE Transmit Flow Control Enable.
In Full-Duplex mode, when the EMAC_FLOWCTL.TFE bit is set, the MAC enables
the flow control operation to transmit Pause frames. When this bit is reset, the flow
control operation in the MAC is disabled, and the MAC does not transmit any Pause
frames. In Half-Duplex mode, when this bit is set, the MAC enables the back pressure
operation. When this bit is reset, the back pressure feature is disabled.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–107

VLAN Tag Register

The EMAC_VLANTAG register contains the VLAN tag.

Figure 21-23: EMAC_VLANTAG Register Diagram

0
(R/W1S)

FCBBPA Initiate Pause Control Frame.
The EMAC_FLOWCTL.FCBBPA bit initiates a Pause Control frame in Full-Duplex
mode and activates the back pressure function in Half-Duplex mode if TFE bit is set.
In Full-Duplex mode, this bit should be read as =0 before writing to the EMAC_
FLOWCTL register. To initiate a Pause control frame, the Application must set this bit
to =1. During a transfer of the Control Frame, this bit continues to be set to signify
that a frame transmission is in progress. After the completion of Pause control frame
transmission, the MAC resets this bit to =0. The EMAC_FLOWCTL register should
not be written to until this bit is cleared. In Half-Duplex mode, when this bit is set
(and EMAC_FLOWCTL.TFE is set), the back pressure is asserted by the MAC Core.
During back pressure, when the MAC receives a new frame, the transmitter starts
sending a JAM pattern resulting in a collision. The EMAC_FLOWCTL.FCBBPA bit is
logically OR'ed with the flow control input signal for the back pressure function.
When the MAC is configured to Full-Duplex mode, the back pressure function is
automatically disabled.

Table 21-53: EMAC_VLANTAG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/W)

ETV Enable Tag VLAN Comparison.
The EMAC_VLANTAG.ETV bit, when set, directs the EMAC to use a 12-bit VLAN
identifier, rather than the complete 16-bit VLAN tag, for comparison and filtering.
Bits[11:0] of the VLAN tag are compared with the corresponding field in the received
VLAN-tagged frame. When this bit is reset, all 16 bits of the received VLAN frame's
fifteenth and sixteenth bytes are used for comparison.

Table 21-52: EMAC_FLOWCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–108 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Debug Register

The EMAC_DBG register contains EMAC debug status information.

Figure 21-24: EMAC_DBG Register Diagram

15:0
(R/W)

VL VLAN Tag Id Receive Frames.
The EMAC_VLANTAG.VL bits contain the 802.1Q VLAN tag to identify VLAN
frames, and is compared to the fifteenth and sixteenth bytes of the frames being
received for VLAN frames. Bits[15:13] are the User Priority, Bit[12] is the Canonical
Format Indicator (CFI) and bits[11:0] are the VLAN tag's VLAN Identifier (VID)
field. When the ETV bit is set, only the VID (Bits[11:0]) is used for comparison. If VL
(VL[11:0] if ETV is set) is all zeros, the MAC does not check the fifteenth and
sixteenth bytes for VLAN tag comparison, and declares all frames with a Type field
value of 0x8100 to be VLAN frames.

Table 21-53: EMAC_VLANTAG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–109

Table 21-54: EMAC_DBG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

25
(R/NW)

TXFIFOFULL Tx FIFO Full.
The EMAC_DBG.TXFIFOFULL bit, when high, indicates that the MFL TxStatus
FIFO is full, and the MFL cannot accept any more frames for transmission.

24
(R/NW)

TXFIFONE Tx FIFO Not Empty.
The EMAC_DBG.TXFIFONE bit, when high, indicates that the MFL TxFIFO is not
empty and has some data left for transmission.

22
(R/NW)

TXFIFOACT Tx FIFO Active.
The EMAC_DBG.TXFIFOACT bit, when high, indicates that the MFL TxFIFO write
controller is active and transferring data to the TxFIFO.

21:20
(R/NW)

TXFIFOCTLST Tx FIFO Controller State.
The EMAC_DBG.TXFIFOCTLST bits indicate the state of the TxFIFO read
controller as: 00=IDLE state, 01=READ state (transferring data to MAC transmitter),
10=Waiting for TxStatus from MAC transmitter, and 11=Writing the received
TxStatus or flushing the TxFIFO

19
(R/NW)

TXPAUSE Tx Paused.
The EMAC_DBG.TXPAUSE bit, when high, indicates that the MAC transmitter is in
PAUSE condition (in full-duplex only) and does not schedule any frame for
transmission.

18:17
(R/NW)

TXFRCTL Tx Frame Controller State.
The EMAC_DBG.TXFRCTL bits indicate the state of the MAC transmit frame
controller module.

0 Idle
Frame controller is in idle state.

1 Wait
Frame controller is waiting for status of previous frame
or IFG/backoff period end.

2 Pause
Frame controller is generating and transmitting a
PAUSE control frame (in full duplex mode).

3 Transmit
Frame controller is transferring input frame for
transmission.

16
(R/NW)

MMTEA MM Tx Engine Active.
The EMAC_DBG.MMTEA bit, when high, indicates that the MAC core transmit
protocol engine is actively transmitting data and is not in IDLE state.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–110 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Interrupt Status Register

The EMAC_ISTAT register indicates EMAC interrupt status.

9:8
(R/NW)

RXFIFOST Rx FIFO State.
The EMAC_DBG.RXFIFOST bits give the status of the RxFIFO fill level and indicate
the relationship to the flow-control activation threshold.

0 Rx FIFO Empty

1 Rx FIFO Below De-activate FCT

2 Rx FIFO Above De-activate FCT

3 Rx FIFO Full

6:5
(R/NW)

RXFIFOCTLST Rx FIFO Controller State.
The EMAC_DBG.RXFIFOCTLST bits give the state of the RxFIFO read controller.

0 Idle
Read controller is in idle state.

1 Read Data
Read controller is reading frame data.

2 Read Status
Read controller is reading frame status or time-stamp.

3 Flush
Read controller is flushing the frame data and status.

4
(R/NW)

RXFIFOACT Rx FIFO Active.
The EMAC_DBG.RXFIFOACT bit, when high, indicates that the MFL RxFIFO write
controller is active and is transferring a received frame to the FIFO.

2:1
(R/NW)

SFIFOST Small FIFO State.
The EMAC_DBG.SFIFOST bit, when high, indicates the active state of the small
FIFO read and write controllers respectively of the MAC receive frame controller
module.

0
(R/NW)

MMREA MM Rx Engine Active.
The EMAC_DBG.MMREA bit, when high, indicates that the MAC core receive
protocol engine is actively receiving data and is not in IDLE state.

Table 21-54: EMAC_DBG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–111

Figure 21-25: EMAC_ISTAT Register Diagram

Table 21-55: EMAC_ISTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/NW)

TS Time Stamp Interrupt Status.
The EMAC_ISTAT.TS bit is set when:

• The system time value equals or exceeds the value specified in the
EMAC_TM_TGTM and EMAC_TM_NTGTM registers, or

• There is an overflow in the EMAC_TM_SEC register, or
• When the EMAC_TM_STMPSTAT.ATSTS bit is asserted.
The EMAC_ISTAT.TS bit is cleared on reading the byte 0 of the EMAC_TM_
STMPSTAT register. Otherwise, when default Time-Stamping is enabled, this bit,
when set, indicates that the system time value equals or exceeds the value specified in
the EMAC_TM_TGTM and EMAC_TM_NTGTM registers. In this mode, this bit is
cleared after the completion of the read of the EMAC_ISTAT register. In all other
modes, this bit is reserved.

7
(R/NW)

MMCRC MMC Receive Checksum Offload Interrupt Status.
The EMAC_ISTAT.MMCRC bit is set high whenever an interrupt is generated in the
EMAC_IPC_RXINT. This bit is cleared when all the bits in this interrupt register are
cleared.

6
(R/NW)

MMCTX MMC Transmit Interrupt Status.
The EMAC_ISTAT.MMCTX bit is set high whenever an interrupt is generated in the
EMAC_MMC_TXINT register. This bit is cleared when all the bits in this interrupt
register are cleared.

5
(R/NW)

MMCRX MMC Receive Interrupt Status.
The EMAC_ISTAT.MMCRX bit is set high whenever an interrupt is generated in the
EMAC_MMC_RXINT register. This bit is cleared when all the bits in this interrupt
register are cleared.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–112 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Interrupt Mask Register

The EMAC_IMSK register enables (unmasks) EMAC interrupts.

Figure 21-26: EMAC_IMSK Register Diagram

MAC Address 0 High Register

The EMAC_ADDR0_HI register holds the address 0 high bits.

4
(R/NW)

MMC MMC Interrupt Status.
The EMAC_ISTAT.MMC bit is set high whenever any of EMAC_ISTAT bits [7:5] is
set (=1) and is cleared only when all of these bits are cleared (=0).

Table 21-56: EMAC_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/W)

TS Time Stamp Interrupt Mask.
The EMAC_IMSK.TS bit, when set, disables the assertion of the interrupt signal,
which is generated when the EMAC_ISTAT.TS bit is set.

Table 21-55: EMAC_ISTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–113

Figure 21-27: EMAC_ADDR0_HI Register Diagram

MAC Address 0 Low Register

The EMAC_ADDR0_LO register holds the address 0 low bits.

Figure 21-28: EMAC_ADDR0_LO Register Diagram

Table 21-57: EMAC_ADDR0_HI Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

ADDR Address.
The EMAC_ADDR0_HI.ADDR bits contain the upper 16 bits (47:32) of the 6-byte
first MAC address. This address is used by the MAC for filtering for received frames
and for inserting the MAC address in the Transmit Flow Control (PAUSE) Frames.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–114 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

MMC Control Register

The EMAC_MMC_CTL register selects the MMC operating mode.

Figure 21-29: EMAC_MMC_CTL Register Diagram

Table 21-58: EMAC_ADDR0_LO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

ADDR Address.
The EMAC_ADDR0_LO.ADDR bits contain the lower 32 bits of the 6-byte first MAC
address. This address is used by the MAC for filtering for received frames and for
inserting the MAC address in the Transmit Flow Control (PAUSE) Frames.

Table 21-59: EMAC_MMC_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5
(R/W)

FULLPSET Full Preset.
The EMAC_MMC_CTL.FULLPSET bit, when =0 (and EMAC_MMC_CTL.
CNTRPSET =1), presets all MMC counters to almost-half value. All octet counters
get preset to 0x7FFF_F800 (half - 2KBytes) and all frame-counters gets preset to
0x7FFF_FFF0 (half - 16). When EMAC_MMC_CTL.FULLPSET =1 (and EMAC_
MMC_CTL.CNTRPSET =1), all MMC counters get preset to almost-full value. All
octet counters get preset to 0xFFFF_F800 (full - 2KBytes) and all frame-counters gets
preset to 0xFFFF_FFF0 (full - 16). For 16-bit counters, the almost-half preset values
are 0x7800 and 0x7FF0 for the respective octet and frame counters. Similarly, the
almost-full preset values for the 16-bit counters are 0xF800 and 0xFFF0.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–115

MMC Rx Interrupt Register

The EMAC_MMC_RXINT register indicates status of MMC receive interrupts.

4
(R/W)

CNTRPSET Counter Reset/Preset.
The EMAC_MMC_CTL.CNTRPSET bit, when set, initializes all counters or presets
counters to almost full or almost half as per EMAC_MMC_CTL.FULLPSET. The
EMAC_MMC_CTL.CNTRPSET bit is cleared automatically after 1 clock cycle. This
bit along with bit5 is useful for debugging and testing the assertion of interrupts
because of MMC counter becoming half-full or full.

3
(R/W)

CNTRFRZ Counter Freeze.
The EMAC_MMC_CTL.CNTRFRZ bit, when set, freezes all the MMC counters to
their current value. None of the MMC counters are updated due to any transmitted
or received frame, until this bit is reset to 0. If any MMC counter is read with the
EMAC_MMC_CTL.RDRST bit set, then that counter is also cleared in this mode.

2
(R/W)

RDRST Read Reset.
The EMAC_MMC_CTL.RDRST bit, when set, resets the MMC counters to zero after
Read (self-clearing after reset). The counters are cleared when the least significant
byte lane (bits[7:0]) is read.

1
(R/W)

NOROLL No Rollover.
The EMAC_MMC_CTL.NOROLL bit, when set, prevents counter rolls over to 0 after
reaching max.

0
(R/W)

RST Reset.
The EMAC_MMC_CTL.RST bit, when set, resets all counters. This bit is cleared
automatically after 1 clock cycle

Table 21-59: EMAC_MMC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–116 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-30: EMAC_MMC_RXINT Register Diagram

Table 21-60: EMAC_MMC_RXINT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23
(R/NW)

WDOGERR Rx Watch Dog Error Count Half/Full.
The EMAC_MMC_RXINT.WDOGERR bit is set when the EMAC_RXWDOG_ERR
counter reaches full or half.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–117

22
(R/NW)

VLANFRGB Rx VLAN Frames (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.VLANFRGB bit is set when EMAC_RXVLANFRM_GB
counter reaches full or half.

21
(R/NW)

FIFOOVF Rx FIFO Overflow Count Half/Full.
The EMAC_MMC_RXINT.FIFOOVF bit is set when EMAC_RXFIFO_OVF counter
reaches full or half.

20
(R/NW)

PAUSEFR Rx Pause Frames Count Half/Full.
The EMAC_MMC_RXINT.PAUSEFR bit is set when EMAC_RXPAUSEFRM counter
reaches full or half.

19
(R/NW)

OUTRANGE Rx Out Of Range Type Count Half/Full.
The EMAC_MMC_RXINT.OUTRANGE bit is set when EMAC_RXOORTYPE counter
reaches full or half.

18
(R/NW)

LENERR Rx Length Error Count Half/Full.
The EMAC_MMC_RXINT.LENERR bit is set when EMAC_RXLEN_ERR counter
reaches full or half.

17
(R/NW)

UCASTG Rx Unicast Frames (Good) Count Half/Full.
The EMAC_MMC_RXINT.UCASTG bit is set when EMAC_RXUCASTFRM_G
counter reaches full or half.

16
(R/NW)

R1024TOMAX Rx 1024-to-max Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.R1024TOMAX bit is set when EMAC_RX1024TOMAX_
GBcounter reaches full or half.

15
(R/NW)

R512TO1023 Rx 512-to-1023 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.R512TO1023 bit is set when EMAC_RX512TO1023_
GB counter reaches full or half.

14
(R/NW)

R256TO511 Rx 255-to-511 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.R256TO511 bit is set when EMAC_RX256TO511_GB
counter reaches full or half.

13
(R/NW)

R128TO255 Rx 128-to-255 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.R128TO255 bit is set when EMAC_RX128TO255_GB
counter reaches full or half.

12
(R/NW)

R65TO127 Rx 65-to-127 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.R65TO127 bit is set when EMAC_RX65TO127_GB
counter reaches full or half.

11
(R/NW)

R64 Rx 64 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_RXINT.R64 bit is set when EMAC_RX64_GB counter reaches full
or half.

10
(R/NW)

OSIZEG Rx Oversize (Good) Count Half/Full.
The EMAC_MMC_RXINT.OSIZEG bit is set when EMAC_RXOSIZE_G counter
reaches full or half.

9
(R/NW)

USIZEG Rx Undersize (Good) Count Half/Full.
The EMAC_MMC_RXINT.USIZEG bit is set when EMAC_RXUSIZE_G counter
reaches full or half.

Table 21-60: EMAC_MMC_RXINT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–118 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

MMC Tx Interrupt Register

The EMAC_MMC_TXINT register indicates status of MMC transmit interrupts.

8
(R/NW)

JABERR Rx Jabber Error Count Half/Full.
The EMAC_MMC_RXINT.JABERR bit is set when EMAC_RXJAB_ERR counter
reaches full or half.

7
(R/NW)

RUNTERR Rx Runt Error Count Half/Full.
The EMAC_MMC_RXINT.RUNTERR bit is set when EMAC_RXRUNT_ERR counter
reaches full or half.

6
(R/NW)

ALIGNERR Rx Alignment Error Count Half/Full.
The EMAC_MMC_RXINT.ALIGNERR bit is set when EMAC_RXALIGN_ERR
counter reaches full or half

5
(R/NW)

CRCERR Rx CRC Error Counter Half/Full.
The EMAC_MMC_RXINT.CRCERR bit is set when EMAC_RXCRC_ERR counter
reaches full or half.

4
(R/NW)

MCASTG Rx Multicast Count (Good) Half/Full.
The EMAC_MMC_RXINT.MCASTG bit is set when EMAC_RXMCASTFRM_G
counter reaches full or half.

3
(R/NW)

BCASTG Rx Broadcast Count (Good) Half/Full.
The EMAC_MMC_RXINT.BCASTG bit is set when EMAC_RXBCASTFRM_G
counter reaches full or half.

2
(R/NW)

OCTCNTG Octet Count (Good) Half/Full.
The EMAC_MMC_RXINT.OCTCNTG bit is set when EMAC_RXOCTCNT_G counter
reaches full or half.

1
(R/NW)

OCTCNTGB Octet Count (Good/Bad) Half/Full.
The EMAC_MMC_RXINT.OCTCNTGB bit is set when EMAC_RXOCTCNT_GB
counter reaches half or full.

0
(R/NW)

FRCNTGB Frame Count (Good/Bad) Half/Full.
The EMAC_MMC_RXINT.FRCNTGB bit is set when EMAC_RXFRMCNT_GB
counter reaches half or full.

Table 21-60: EMAC_MMC_RXINT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–119

Figure 21-31: EMAC_MMC_TXINT Register Diagram

Table 21-61: EMAC_MMC_TXINT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24
(R/NW)

VLANFRGB Tx VLAN Frames (Good) Count Half/Full.
The EMAC_MMC_TXINT.VLANFRGB bit is set when EMAC_TXVLANFRM_G
counter reaches full or half.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–120 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

23
(R/NW)

PAUSEFRM Tx Pause Frames Count Half/Full.
The EMAC_MMC_TXINT.PAUSEFRM bit is set when EMAC_TXPAUSEFRM
counter reaches full or half.

22
(R/NW)

EXCESSDEF Tx Excess Deferred Count Half/Full.
The EMAC_MMC_TXINT.EXCESSDEF bit is set when EMAC_TXEXCESSDEF
counter reaches full or half.

21
(R/NW)

FRCNTG Tx Frame Count (Good) Count Half/Full.
The EMAC_MMC_TXINT.FRCNTG bit is set when EMAC_TXFRMCNT_G counter
reaches full or half.

20
(R/NW)

OCTCNTG Tx Octet Count (Good) Count Half/Full.
The EMAC_MMC_TXINT.OCTCNTG bit is set when EMAC_TXOCTCNT_G counter
reaches full or half.

19
(R/NW)

CARRERR Tx Carrier Error Count Half/Full.
The EMAC_MMC_TXINT.CARRERR bit is set when EMAC_TXCARR_ERR counter
reaches full or half.

18
(R/NW)

EXCESSCOL Tx Excess Collision Count Half/Full.
The EMAC_MMC_TXINT.EXCESSCOL bit is set when EMAC_TXEXCESSCOL
counter reaches full or half.

17
(R/NW)

LATECOL Tx Late Collision Count Half/Full.
The EMAC_MMC_TXINT.LATECOL bit is set when EMAC_TXLATECOL counter
reaches full or half.

16
(R/NW)

DEFERRED Tx Deferred Count Half/Full.
The EMAC_MMC_TXINT.DEFERRED bit is set when EMAC_TXDEFERRED
counter reaches full or half.

15
(R/NW)

MULTCOLG Tx Multiple collision (Good) Count Half/Full.
The EMAC_MMC_TXINT.MULTCOLG bit is set when EMAC_TXMULTCOL_G
counter reaches full or half.

14
(R/NW)

SNGCOLG Tx Single Collision (Good) Count Half/Full.
The EMAC_MMC_TXINT.SNGCOLG bit is set when EMAC_TXSNGCOL_G counter
reaches full or half.

13
(R/NW)

UNDERR Tx Underflow Error Count Half/Full.
The EMAC_MMC_TXINT.UNDERR bit is set when EMAC_TXUNDR_ERR counter
reaches full or half.

12
(R/NW)

BCASTGB Tx Broadcast Frames (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.BCASTGB bit is set when EMAC_TXBCASTFRM_GB
counter reaches full or half.

11
(R/NW)

MCASTGB Tx Multicast Frames (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.MCASTGB bit is set when EMAC_TXMCASTFRM_GB
counter reaches full or half.

10
(R/NW)

UCASTGB Tx Unicast Frames (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.UCASTGB bit is set when EMAC_TXUCASTFRM_GB
counter reaches full or half.

Table 21-61: EMAC_MMC_TXINT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–121

MMC Rx Interrupt Mask Register

The EMAC_MMC_RXIMSK register enables (unmasks) MMC receive interrupts.

9
(R/NW)

T1024TOMAX Tx 1024-to-max Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.T1024TOMAX bit is set when EMAC_TX1024TOMAX_
GB counter reaches full or half.

8
(R/NW)

T512TO1023 Tx 512-to-1023 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.T512TO1023 bit is set when EMAC_TX512TO1023_
GB counter reaches full or half.

7
(R/NW)

T256TO511 Tx 256-to-511 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.T256TO511 bit is set when EMAC_TX256TO511_GB
counter reaches full or half.

6
(R/NW)

T128TO255 Tx 128-to-255 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.T128TO255 bit is set when EMAC_TX128TO255_GB
counter reaches full or half.

5
(R/NW)

T65TO127 Tx 65-to-127 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.T65TO127 bit is set when EMAC_TX65TO127_GB
counter reaches full or half.

4
(R/NW)

T64 Tx 64 Octets (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.T64 bit is set when EMAC_TX64_GB counter reaches full
or half.

3
(R/NW)

MCASTG Tx Multicast Frames (Good) Count Half/Full.
The EMAC_MMC_TXINT.MCASTG bit is set when EMAC_TXMCASTFRM_G
counter reaches full or half.

2
(R/NW)

BCASTG Tx Broadcast Frames (Good) Count Half/Full.
The EMAC_MMC_TXINT.BCASTG bit is set when EMAC_TXBCASTFRM_G
counter reaches full or half.

1
(R/NW)

FRCNTGB Tx Frame Count (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.FRCNTGB bit is set when EMAC_TXFRMCNT_GB
counter reaches full or half.

0
(R/NW)

OCTCNTGB Tx Octet Count (Good/Bad) Count Half/Full.
The EMAC_MMC_TXINT.OCTCNTGB bit is set when EMAC_TXOCTCNT_GB
counter reaches full or half.

Table 21-61: EMAC_MMC_TXINT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–122 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-32: EMAC_MMC_RXIMSK Register Diagram

Table 21-62: EMAC_MMC_RXIMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23
(R/W)

WATCHERR Rx Watch Dog Error Count Half/Full Mask.
The EMAC_MMC_RXIMSK.WATCHERR bit, when set, masks the interrupt when
EMAC_RXWDOG_ERR counter reaches full or half.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–123

22
(R/W)

VLANFRGB Rx VLAN Frames (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.VLANFRGB bit, when set, masks the interrupt when
EMAC_RXVLANFRM_GB counter reaches full or half.

21
(R/W)

FIFOOV Rx FIFO Overflow Count Half/Full Mask.
The EMAC_MMC_RXIMSK.FIFOOV bit, when set, masks the interrupt when
EMAC_RXFIFO_OVF counter reaches full or half.

20
(R/W)

PAUSEFRM Rx Pause Frames Count Half/Full Mask.
The EMAC_MMC_RXIMSK.PAUSEFRM bit, when set, masks the interrupt when
EMAC_RXPAUSEFRM counter reaches full or half.

19
(R/W)

OUTRANGE Rx Out Of Range Type Count Half/Full Mask.
The EMAC_MMC_RXIMSK.OUTRANGE bit, when set, masks the interrupt when
EMAC_RXOORTYPE counter reaches full or half.

18
(R/W)

LENERR Rx Length Error Count Half/Full Mask.
The EMAC_MMC_RXIMSK.LENERR bit, when set, masks the interrupt when
EMAC_RXLEN_ERR counter reaches full or half.

17
(R/W)

UCASTG Rx Unicast Frames (Good) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.UCASTG bit, when set, masks the interrupt when
EMAC_RXUCASTFRM_G counter reaches full or half.

16
(R/W)

R1024TOMAX Rx 1024-to-max Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.R1024TOMAX bit, when set, masks the interrupt when
EMAC_RX1024TOMAX_GB counter reaches full or half.

15
(R/W)

R512TO1023 Rx 512-to-1023 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.R512TO1023 bit, when set, masks the interrupt when
EMAC_RX512TO1023_GB counter reaches full or half.

14
(R/W)

R256TO511 Rx 255-to-511 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.R256TO511 bit, when set, masks the interrupt when
EMAC_RX256TO511_GB counter reaches full or half.

13
(R/W)

R128TO255 Rx 128-to-255 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.R128TO255 bit, when set, masks the interrupt when
EMAC_RX128TO255_GB counter reaches full or half.

12
(R/W)

R65TO127 Rx 65-to-127 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.R65TO127 bit, when set, masks the interrupt when
EMAC_RX65TO127_GB counter reaches full or half.

11
(R/W)

R64 Rx 64 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.R64 bit, when set, masks the interrupt when EMAC_
RX64_GB counter reaches full or half.

10
(R/W)

OSIZEG Rx Oversize (Good) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.OSIZEG bit, when set, masks the interrupt when
EMAC_RXOSIZE_G counter reaches full or half.

9
(R/W)

USIZEG Rx Undersize (Good) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.USIZEG bit, when set, masks the interrupt when
EMAC_RXUSIZE_G counter reaches full or half.

Table 21-62: EMAC_MMC_RXIMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–124 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

MMC TX Interrupt Mask Register

The EMAC_MMC_TXIMSK register enables (unmasks) MMC transmit interrupts.

8
(R/W)

JABERR Rx Jabber Error Count Half/Full Mask.
The EMAC_MMC_RXIMSK.JABERR bit, when set, masks the interrupt when
EMAC_RXJAB_ERR counter reaches full or half.

7
(R/W)

RUNTERR Rx Runt Error Count Half/Full Mask.
The EMAC_MMC_RXIMSK.RUNTERR bit, when set, masks the interrupt when
EMAC_RXRUNT_ERR counter reaches full or half.

6
(R/W)

ALIGNERR Rx Alignment Error Count Half/Full Mask.
The EMAC_MMC_RXIMSK.ALIGNERR bit, when set, masks the interrupt when
EMAC_RXALIGN_ERR counter reaches full or half.

5
(R/W)

CRCERR Rx CRC Error Count Half/Full Mask.
The EMAC_MMC_RXIMSK.CRCERR bit, when set, masks the interrupt when
EMAC_RXCRC_ERR counter reaches full or half.

4
(R/W)

MCASTG Rx Multicast Frames (Good) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.MCASTG bit, when set, masks the interrupt when
EMAC_RXMCASTFRM_G counter reaches full or half.

3
(R/W)

BCASTG Rx Broadcast Frames (Good) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.BCASTG bit, when set, masks the interrupt when
EMAC_RXBCASTFRM_G counter reaches full or half.

2
(R/W)

OCTCNTG Rx Octet Count (Good) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.OCTCNTG bit, when set, masks the interrupt when
EMAC_RXOCTCNT_G counter reaches full or half.

1
(R/W)

OCTCNTGB Rx Octet Count (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.OCTCNTGB bit, when set, masks the interrupt when
EMAC_RXOCTCNT_GB counter reaches half or full.

0
(R/W)

FRCNTGB Rx Frame Count (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_RXIMSK.FRCNTGB bit, when set, masks the interrupt when
EMAC_RXFRMCNT_GB counter reaches half or full.

Table 21-62: EMAC_MMC_RXIMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–125

Figure 21-33: EMAC_MMC_TXIMSK Register Diagram

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–126 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 21-63: EMAC_MMC_TXIMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24
(R/W)

VLANFRG Tx VLAN Frames (Good) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.VLANFRG bit, when set, masks the interrupt when
EMAC_TXVLANFRM_G counter reaches full or half.

23
(R/W)

PAUSEFRM Tx Pause Frames Count Half/Full Mask.
The EMAC_MMC_TXIMSK.PAUSEFRM bit, when set, masks the interrupt when
EMAC_TXPAUSEFRM counter reaches full or half.

22
(R/W)

EXCESSDEF Tx Excess Deferred Count Half/Full Mask.
The EMAC_MMC_TXIMSK.EXCESSDEF bit, when set, masks the interrupt when
EMAC_TXEXCESSDEF counter reaches full or half.

21
(R/W)

FRCNTG Tx Frame Count (Good) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.FRCNTG bit, when set, masks the interrupt when
EMAC_TXFRMCNT_G counter reaches full or half.

20
(R/W)

OCTCNTG Tx Octet Count (Good) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.OCTCNTG bit, when set, masks the interrupt when
EMAC_TXOCTCNT_G counter reaches full or half.

19
(R/W)

CARRERR Tx Carrier Error Count Half/Full Mask.
The EMAC_MMC_TXIMSK.CARRERR bit, when set, masks the interrupt when
EMAC_TXCARR_ERR counter reaches full or half.

18
(R/W)

EXCESSCOL Tx Exes collision Count Half/Full Mask.
The EMAC_MMC_TXIMSK.EXCESSCOL bit, when set, masks the interrupt when
EMAC_TXEXCESSCOL counter reaches full or half.

17
(R/W)

LATECOL Tx Late Collision Count Half/Full Mask.
The EMAC_MMC_TXIMSK.LATECOL bit, when set, masks the interrupt when
EMAC_TXLATECOL counter reaches full or half.

16
(R/W)

DEFERRED Tx Deferred Count Half/Full Mask.
The EMAC_MMC_TXIMSK.DEFERRED bit, when set, masks the interrupt when
EMAC_TXDEFERRED counter reaches full or half.

15
(R/W)

MULTCOLG Tx Multiple Collisions (Good) Count Mask.
The EMAC_MMC_TXIMSK.MULTCOLG bit, when set, masks the interrupt when
EMAC_TXMULTCOL_G counter reaches full or half.

14
(R/W)

SNGCOLG Tx Single Collision (Good) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.SNGCOLG bit, when set, masks the interrupt when
EMAC_TXSNGCOL_G counter reaches full or half.

13
(R/W)

UNDERR Tx Underflow Error Count Half/Full Mask.
The EMAC_MMC_TXIMSK.UNDERR bit, when set, masks the interrupt when
EMAC_TXUNDR_ERR counter reaches full or half.

12
(R/W)

BCASTGB Tx Broadcast Frames (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.BCASTGB bit, when set, masks the interrupt when
EMAC_TXBCASTFRM_GB counter reaches full or half.

11
(R/W)

MCASTGB Tx Multicast Frames (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.MCASTGB bit, when set, masks the interrupt when
EMAC_TXMCASTFRM_GB counter reaches full or half.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–127

Tx OCT Count (Good/Bad) Register

The EMAC_TXOCTCNT_GB register contains the count of the number of bytes transmitted, exclusive of the
preamble and retried bytes, in good and bad frames.

10
(R/W)

UCASTGB Tx Unicast Frames (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.UCASTGB bit, when set, masks the interrupt when
EMAC_TXUCASTFRM_GB counter reaches full or half.

9
(R/W)

T1024TOMAX Tx 1024-to-max Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.T1024TOMAX bit, when set, masks the interrupt when
EMAC_TX1024TOMAX_GB counter reaches full or half.

8
(R/W)

T512TO1023 Tx 512-to-1023 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.T512TO1023 bit, when set, masks the interrupt when
EMAC_TX512TO1023_GB counter reaches full or half.

7
(R/W)

T256TO511 Tx 256-to-511 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.T256TO511 bit, when set, masks the interrupt when
EMAC_TX256TO511_GB counter reaches full or half.

6
(R/W)

T128TO255 Tx 128-to-255 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.T128TO255 bit, when set, masks the interrupt when
EMAC_TX128TO255_GB counter reaches full or half.

5
(R/W)

T65TO127 Tx 65-to-127 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.T65TO127 bit, when set, masks the interrupt when
EMAC_TX65TO127_GB counter reaches full or half.

4
(R/W)

T64 Tx 64 Octets (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.T64 bit, when set, masks the interrupt when EMAC_
TX64_GB counter reaches full or half.

3
(R/W)

MCASTG Tx Multicast Frames (Good) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.MCASTG bit, when set, masks the interrupt when
EMAC_TXMCASTFRM_G counter reaches full or half.

2
(R/W)

BCASTG Tx Broadcast Frames (Good) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.BCASTG bit, when set, masks the interrupt when
EMAC_TXBCASTFRM_G counter reaches full or half.

1
(R/W)

FRCNTGB Tx Frame Count (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.FRCNTGB bit, when set, masks the interrupt when
EMAC_TXFRMCNT_GB counter reaches full or half.

0
(R/W)

OCTCNTGB Tx Octet Count (Good/Bad) Count Half/Full Mask.
The EMAC_MMC_TXIMSK.OCTCNTGB bit, when set, masks the interrupt when
EMAC_TXOCTCNT_GB counter reaches full or half.

Table 21-63: EMAC_MMC_TXIMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–128 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-34: EMAC_TXOCTCNT_GB Register Diagram

Tx Frame Count (Good/Bad) Register

The EMAC_TXFRMCNT_GB register contains the count of the number of good and bad frames transmitted,
exclusive of retried frames.

Figure 21-35: EMAC_TXFRMCNT_GB Register Diagram

Table 21-64: EMAC_TXOCTCNT_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-65: EMAC_TXFRMCNT_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–129

Tx Broadcast Frames (Good) Register

The EMAC_TXBCASTFRM_G register contains the count of the number of good broadcast frames transmitted.

Figure 21-36: EMAC_TXBCASTFRM_G Register Diagram

Tx Multicast Frames (Good) Register

The EMAC_TXMCASTFRM_G register contains the count of the number of good multicast frames transmitted.

Figure 21-37: EMAC_TXMCASTFRM_G Register Diagram

Table 21-66: EMAC_TXBCASTFRM_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–130 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Tx 64-Byte Frames (Good/Bad) Register

The EMAC_TX64_GB register contains the count of the number of good and bad frames transmitted with
length 64 bytes, exclusive of preamble and retried frames.

Figure 21-38: EMAC_TX64_GB Register Diagram

Tx 65- to 127-Byte Frames (Good/Bad) Register

The EMAC_TX65TO127_GB register contains the count of the number of good and bad frames transmitted
with length between 65 and 127 (inclusive) bytes, exclusive of preamble and retried frames.

Table 21-67: EMAC_TXMCASTFRM_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-68: EMAC_TX64_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–131

Figure 21-39: EMAC_TX65TO127_GB Register Diagram

Tx 128- to 255-Byte Frames (Good/Bad) Register

The EMAC_TX128TO255_GB register contains the count of the number of good and bad frames transmitted
with length between 128 and 255 (inclusive) bytes, exclusive of preamble and retried frames.

Figure 21-40: EMAC_TX128TO255_GB Register Diagram

Table 21-69: EMAC_TX65TO127_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-70: EMAC_TX128TO255_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–132 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Tx 256- to 511-Byte Frames (Good/Bad) Register

The EMAC_TX256TO511_GB register contains the count of the number of good and bad frames transmitted
with length between 256 and 511 (inclusive) bytes, exclusive of preamble and retried frames.

Figure 21-41: EMAC_TX256TO511_GB Register Diagram

Tx 512- to 1023-Byte Frames (Good/Bad) Register

The EMAC_TX512TO1023_GB register contains the count of the number of good and bad frames transmitted
with length between 512 and 1023 (inclusive) bytes, exclusive of preamble and retried frames.

Figure 21-42: EMAC_TX512TO1023_GB Register Diagram

Table 21-71: EMAC_TX256TO511_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–133

Tx 1024- to Max-Byte Frames (Good/Bad) Register

The EMAC_TX1024TOMAX_GB register contains the count of the number of good and bad frames transmitted
with length between 1024 and maxsize (inclusive) bytes, exclusive of preamble and retried frames.

Figure 21-43: EMAC_TX1024TOMAX_GB Register Diagram

Tx Unicast Frames (Good/Bad) Register

The EMAC_TXUCASTFRM_GB register contains the count of the number of good and bad unicast frames
transmitted.

Table 21-72: EMAC_TX512TO1023_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-73: EMAC_TX1024TOMAX_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–134 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-44: EMAC_TXUCASTFRM_GB Register Diagram

Tx Multicast Frames (Good/Bad) Register

The EMAC_TXMCASTFRM_GB register contains the count of the number of good and bad multicast frames
transmitted.

Figure 21-45: EMAC_TXMCASTFRM_GB Register Diagram

Table 21-74: EMAC_TXUCASTFRM_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-75: EMAC_TXMCASTFRM_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–135

Tx Broadcast Frames (Good/Bad) Register

The EMAC_TXBCASTFRM_GB register contains the count of the number of good and bad broadcast frames
transmitted.

Figure 21-46: EMAC_TXBCASTFRM_GB Register Diagram

Tx Underflow Error Register

The EMAC_TXUNDR_ERR register contains a count of the number of frames aborted due to frame underflow
error.

Figure 21-47: EMAC_TXUNDR_ERR Register Diagram

Table 21-76: EMAC_TXBCASTFRM_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–136 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Tx Single Collision (Good) Register

The EMAC_TXSNGCOL_G register contains a count of the number of successfully transmitted frames after a
single collision in Half-duplex mode.

Figure 21-48: EMAC_TXSNGCOL_G Register Diagram

Tx Multiple Collision (Good) Register

The EMAC_TXMULTCOL_G register contains a count of the number of successfully transmitted frames after
more than a single collision in Half-duplex mode.

Table 21-77: EMAC_TXUNDR_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-78: EMAC_TXSNGCOL_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–137

Figure 21-49: EMAC_TXMULTCOL_G Register Diagram

Tx Deferred Register

The EMAC_TXDEFERRED register contains a count of the number of successfully transmitted frames after a
deferral in Half-duplex mode.

Figure 21-50: EMAC_TXDEFERRED Register Diagram

Table 21-79: EMAC_TXMULTCOL_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-80: EMAC_TXDEFERRED Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–138 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Tx Late Collision Register

The EMAC_TXLATECOL register contains a count of the number of frames aborted due to late collision error.

Figure 21-51: EMAC_TXLATECOL Register Diagram

Tx Excess Collision Register

The EMAC_TXEXCESSCOL register contains a count of the number of frames aborted due to excessive (16)
collision errors.

Figure 21-52: EMAC_TXEXCESSCOL Register Diagram

Table 21-81: EMAC_TXLATECOL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–139

Tx Carrier Error Register

The EMAC_TXCARR_ERR register contains a count of the number of frames aborted due to carrier sense error
(no carrier or loss of carrier).

Figure 21-53: EMAC_TXCARR_ERR Register Diagram

Tx Octet Count (Good) Register

The EMAC_TXOCTCNT_G register contains a count of the number of bytes transmitted, exclusive of
preamble, in good frames only.

Table 21-82: EMAC_TXEXCESSCOL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-83: EMAC_TXCARR_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–140 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-54: EMAC_TXOCTCNT_G Register Diagram

Tx Frame Count (Good) Register

The EMAC_TXFRMCNT_G register contains a count of the number of good frames transmitted.

Figure 21-55: EMAC_TXFRMCNT_G Register Diagram

Table 21-84: EMAC_TXOCTCNT_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-85: EMAC_TXFRMCNT_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–141

Tx Excess Deferral Register

The EMAC_TXEXCESSDEF register contains a count of the number of frames aborted due to excessive
deferral error (deferred for more than two max-sized frame times).

Figure 21-56: EMAC_TXEXCESSDEF Register Diagram

Tx Pause Frame Register

The EMAC_TXPAUSEFRM register contains a count of the number of good PAUSE frames transmitted.

Figure 21-57: EMAC_TXPAUSEFRM Register Diagram

Table 21-86: EMAC_TXEXCESSDEF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–142 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Tx VLAN Frames (Good) Register

The EMAC_TXVLANFRM_G register contains a count of the number of good VLAN frames transmitted, exclu-
sive of retried frames.

Figure 21-58: EMAC_TXVLANFRM_G Register Diagram

Rx Frame Count (Good/Bad) Register

The EMAC_RXFRMCNT_GB register contains a count of the number of good and bad frames received.

Table 21-87: EMAC_TXPAUSEFRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-88: EMAC_TXVLANFRM_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–143

Figure 21-59: EMAC_RXFRMCNT_GB Register Diagram

Rx Octet Count (Good/Bad) Register

The EMAC_RXOCTCNT_GB register contains a count of the number of bytes received, exclusive of preamble,
in good and bad frames.

Figure 21-60: EMAC_RXOCTCNT_GB Register Diagram

Table 21-89: EMAC_RXFRMCNT_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-90: EMAC_RXOCTCNT_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–144 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Rx Octet Count (Good) Register

The EMAC_RXOCTCNT_G register contains a count of the number of bytes received, exclusive of preamble,
only in good frames.

Figure 21-61: EMAC_RXOCTCNT_G Register Diagram

Rx Broadcast Frames (Good) Register

The EMAC_RXBCASTFRM_G register contains a count of the number of good broadcast frames received.

Figure 21-62: EMAC_RXBCASTFRM_G Register Diagram

Table 21-91: EMAC_RXOCTCNT_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–145

Rx Multicast Frames (Good) Register

The EMAC_RXMCASTFRM_G register contains a count of the number of good multicast frames received.

Figure 21-63: EMAC_RXMCASTFRM_G Register Diagram

Rx CRC Error Register

The EMAC_RXCRC_ERR register contains a count of the number of frames received with CRC error.

Table 21-92: EMAC_RXBCASTFRM_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-93: EMAC_RXMCASTFRM_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–146 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-64: EMAC_RXCRC_ERR Register Diagram

Rx alignment Error Register

The EMAC_RXALIGN_ERR register contains a count of the number of frames received with alignment
(dribble) error. Valid only in 10/100 mode.

Figure 21-65: EMAC_RXALIGN_ERR Register Diagram

Table 21-94: EMAC_RXCRC_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-95: EMAC_RXALIGN_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–147

Rx Runt Error Register

The EMAC_RXRUNT_ERR register contains a count of the number of frames received with runt error.

Figure 21-66: EMAC_RXRUNT_ERR Register Diagram

Rx Jab Error Register

The EMAC_RXJAB_ERR register contains a count of the number of giant frames received with length greater
than 1,518 bytes and with CRC error.

Figure 21-67: EMAC_RXJAB_ERR Register Diagram

Table 21-96: EMAC_RXRUNT_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–148 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Rx Undersize (Good) Register

The EMAC_RXUSIZE_G register contains a count of the number of frames received with length less than 64
bytes, without any errors.

Figure 21-68: EMAC_RXUSIZE_G Register Diagram

Rx Oversize (Good) Register

The EMAC_RXOSIZE_G register contains a count of the number of frames received with length greater than
the maxsize, without errors.

Table 21-97: EMAC_RXJAB_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-98: EMAC_RXUSIZE_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–149

Figure 21-69: EMAC_RXOSIZE_G Register Diagram

Rx 64-Byte Frames (Good/Bad) Register

The EMAC_RX64_GB register contains a count of the number of good and bad frames received with length
64 bytes, exclusive of preamble.

Figure 21-70: EMAC_RX64_GB Register Diagram

Table 21-99: EMAC_RXOSIZE_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-100: EMAC_RX64_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–150 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Rx 65- to 127-Byte Frames (Good/Bad) Register

The EMAC_RX65TO127_GB register contains a count of the number of good and bad frames received with
length between 65 and 127 (inclusive) bytes, exclusive of preamble.

Figure 21-71: EMAC_RX65TO127_GB Register Diagram

Rx 128- to 255-Byte Frames (Good/Bad) Register

The EMAC_RX128TO255_GB register contains a count of the number of good and bad frames received with
length between 128 and 255 (inclusive) bytes, exclusive of preamble.

Figure 21-72: EMAC_RX128TO255_GB Register Diagram

Table 21-101: EMAC_RX65TO127_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–151

Rx 256- to 511-Byte Frames (Good/Bad) Register

The EMAC_RX256TO511_GB register contains a count of the number of good and bad frames received with
length between 256 and 511 (inclusive) bytes, exclusive of preamble.

Figure 21-73: EMAC_RX256TO511_GB Register Diagram

Rx 512- to 1023-Byte Frames (Good/Bad) Register

The EMAC_RX512TO1023_GB register contains a count of the number of good and bad frames received with
length between 512 and 1023 (inclusive) bytes, exclusive of preamble.

Table 21-102: EMAC_RX128TO255_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-103: EMAC_RX256TO511_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–152 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-74: EMAC_RX512TO1023_GB Register Diagram

Rx 1024- to Max-Byte Frames (Good/Bad) Register

The EMAC_RX1024TOMAX_GB register contains a count of the number of good and bad frames received with
length between 1024 and maxsize (inclusive) bytes, exclusive of preamble.

Figure 21-75: EMAC_RX1024TOMAX_GB Register Diagram

Table 21-104: EMAC_RX512TO1023_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-105: EMAC_RX1024TOMAX_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–153

Rx Unicast Frames (Good) Register

The EMAC_RXUCASTFRM_G register contains a count of the number of good unicast frames received.

Figure 21-76: EMAC_RXUCASTFRM_G Register Diagram

Rx Length Error Register

The EMAC_RXLEN_ERR register contains a count of the number of frames received with length error (Length
type field frame size), for all frames with valid length field.

Figure 21-77: EMAC_RXLEN_ERR Register Diagram

Table 21-106: EMAC_RXUCASTFRM_G Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–154 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Rx Out Of Range Type Register

The EMAC_RXOORTYPE register contains a count of the number of frames received with length field not
equal to the valid frame size (greater than 1,500 but less than 1,536).

Figure 21-78: EMAC_RXOORTYPE Register Diagram

Rx Pause Frames Register

The EMAC_RXPAUSEFRM register contains a count of the number of good and valid PAUSE frames received.

Table 21-107: EMAC_RXLEN_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-108: EMAC_RXOORTYPE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–155

Figure 21-79: EMAC_RXPAUSEFRM Register Diagram

Rx FIFO Overflow Register

The EMAC_RXFIFO_OVF register contains a count of the number of missed received frames due to FIFO
overflow.

Figure 21-80: EMAC_RXFIFO_OVF Register Diagram

Table 21-109: EMAC_RXPAUSEFRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-110: EMAC_RXFIFO_OVF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–156 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Rx VLAN Frames (Good/Bad) Register

The EMAC_RXVLANFRM_GB register contains a count of the number of good and bad VLAN frames received.

Figure 21-81: EMAC_RXVLANFRM_GB Register Diagram

Rx Watch Dog Error Register

The EMAC_RXWDOG_ERR register contains a count of the number of frames received with error due to
watchdog timeout error (frames with a data load larger than 2,048 bytes).

Figure 21-82: EMAC_RXWDOG_ERR Register Diagram

Table 21-111: EMAC_RXVLANFRM_GB Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–157

MMC IPC Rx Interrupt Mask Register

The EMAC_IPC_RXIMSK register enables (unmasks) MMC IPC receive interrupts.

Table 21-112: EMAC_RXWDOG_ERR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–158 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-83: EMAC_IPC_RXIMSK Register Diagram

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–159

Table 21-113: EMAC_IPC_RXIMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29
(R/W)

ICMPERROCT Rx ICMP Error Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.ICMPERROCT bit, when set, masks the interrupt when
the EMAC_RXICMP_ERR_OCT counter reaches half the maximum value, and also
when it reaches the maximum value.

28
(R/W)

ICMPGOCT Rx ICMP (Good) Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.ICMPGOCT bit, when set, masks the interrupt when the
EMAC_RXICMP_GD_OCT counter reaches half the maximum value, and also when
it reaches the maximum value.

27
(R/W)

TCPERROCT Rx TCP Error Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.TCPERROCT bit, when set, masks the interrupt when
the EMAC_RXTCP_ERR_OCT counter reaches half the maximum value, and also
when it reaches the maximum value.

26
(R/W)

TCPGOCT Rx TCP (Good) Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.TCPGOCT bit, when set, masks the interrupt when the
EMAC_RXTCP_GD_OCT counter reaches half the maximum value, and also when it
reaches the maximum value.

25
(R/W)

UDPERROCT Rx UDP Error Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.UDPERROCT bit, when set, masks the interrupt when
the EMAC_RXUDP_ERR_OCT counter reaches half the maximum value, and also
when it reaches the maximum value.

24
(R/W)

UDPGOCT Rx UDP (Good) Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.UDPGOCT bit, when set, masks the interrupt when the
EMAC_RXUDP_GD_OCT counter reaches half the maximum value, and also when it
reaches the maximum value.

23
(R/W)

V6NOPAYOCT Rx IPv6 No Payload Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V6NOPAYOCT bit, when set, masks the interrupt when
the EMAC_RXIPV6_NOPAY_OCT counter reaches half the maximum value, and
also when it reaches the maximum value.

22
(R/W)

V6HDERROCT Rx IPv6 Header Error Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V6HDERROCT bit, when set, masks the interrupt when
the EMAC_RXIPV6_HDR_ERR_OCT counter reaches half the maximum value, and
also when it reaches the maximum value.

21
(R/W)

V6GOCT Rx IPv6 (Good) Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V6GOCT bit, when set, masks the interrupt when the
EMAC_RXIPV6_GD_OCT counter reaches half the maximum value, and also when
it reaches the maximum value.

20
(R/W)

V4UDSBLOCT Rx IPv4 UDS Disable Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4UDSBLOCT bit, when set, masks the interrupt when
the EMAC_RXIPV4_UDSBL_OCT counter reaches half the maximum value, and
also when it reaches the maximum value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–160 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

19
(R/W)

V4FRAGOCT Rx IPv4 Fragmented Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4FRAGOCT bit, when set, masks the interrupt when
the EMAC_RXIPV4_FRAG_OCT counter reaches half the maximum value, and also
when it reaches the maximum value.

18
(R/W)

V4NOPAYOCT Rx IPv4 No Payload Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4NOPAYOCT bit, when set, masks the interrupt when
the EMAC_RXIPV4_NOPAY_OCT counter reaches half the maximum value, and
also when it reaches the maximum value.

17
(R/W)

V4HDERROCT Rx IPv4 Header Error Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4HDERROCT bit, when set, masks the interrupt when
the EMAC_RXIPV4_HDR_ERR_OCT counter reaches half the maximum value, and
also when it reaches the maximum value.

16
(R/W)

V4GOCT Rx IPv4 (Good) Octets Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4GOCT bit, when set, masks the interrupt when the
EMAC_RXIPV4_GD_OCT counter reaches half the maximum value, and also when
it reaches the maximum value.

13
(R/W)

ICMPERRFRM Rx ICMP Error Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.ICMPERRFRM bit, when set, masks the interrupt when
the EMAC_RXICMP_ERR_FRM counter reaches half the maximum value, and also
when it reaches the maximum value.

12
(R/W)

ICMPGFRM Rx ICMP (Good) Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.ICMPGFRM bit, when set, masks the interrupt when the
EMAC_RXICMP_GD_FRM counter reaches half the maximum value, and also when
it reaches the maximum value.

11
(R/W)

TCPERRFRM Rx TCP Error Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.TCPERRFRM bit, when set, masks the interrupt when
the EMAC_RXTCP_ERR_FRM counter reaches half the maximum value, and also
when it reaches the maximum value.

10
(R/W)

TCPGFRM Rx TCP (Good) Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.TCPGFRM bit, when set, masks the interrupt when the
EMAC_RXTCP_GD_FRM counter reaches half the maximum value, and also when it
reaches the maximum value.

9
(R/W)

UDPERRFRM Rx UDP Error Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.UDPERRFRM bit, when set, masks the interrupt when
the EMAC_RXUDP_ERR_FRM counter reaches half the maximum value, and also
when it reaches the maximum value.

8
(R/W)

UDPGFRM Rx UDP (Good) Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.UDPGFRM bit, when set, masks the interrupt when the
EMAC_RXUDP_GD_FRM counter reaches half the maximum value, and also when it
reaches the maximum value.

7
(R/W)

V6NOPAYFRM Rx IPv6 No Payload Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V6NOPAYFRM bit, when set, masks the interrupt when
the EMAC_RXIPV6_NOPAY_FRM counter reaches half the maximum value, and
also when it reaches the maximum value.

Table 21-113: EMAC_IPC_RXIMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–161

MMC IPC Rx Interrupt Register

The EMAC_IPC_RXINT register indicates status of MMC IPC receive interrupts.

6
(R/W)

V6HDERRFRM Rx IPv6 Header Error Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V6HDERRFRM bit, when set, masks the interrupt when
the EMAC_RXIPV6_HDR_ERR_FRM counter reaches half the maximum value, and
also when it reaches the maximum value.

5
(R/W)

V6GFRM Rx IPv6 (Good) Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V6GFRM bit, when set, masks the interrupt when the
EMAC_RXIPV6_GD_FRM counter reaches half the maximum value, and also when
it reaches the maximum value.

4
(R/W)

V4UDSBLFRM Rx IPv4 UDS Disable Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4UDSBLFRM bit, when set, masks the interrupt when
the EMAC_RXIPV4_UDSBL_FRM counter reaches half the maximum value, and
also when it reaches the maximum value.

3
(R/W)

V4FRAGFRM Rx IPv4 Fragmented Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4FRAGFRM bit, when set, masks the interrupt when
the EMAC_RXIPV4_FRAG_FRM counter reaches half the maximum value, and also
when it reaches the maximum value.

2
(R/W)

V4NOPAYFRM Rx IPv4 No Payload Frame Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4NOPAYFRM bit, when set, masks the interrupt when
the EMAC_RXIPV4_NOPAY_FRM counter reaches half the maximum value, and
also when it reaches the maximum value.

1
(R/W)

V4HDERRFRM Rx IPv4 Header Error Frame Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4HDERRFRM bit, when set, masks the interrupt when
the EMAC_RXIPV4_HDR_ERR_FRM counter reaches half the maximum value, and
also when it reaches the maximum value.

0
(R/W)

V4GFRM Rx IPv4 (Good) Frames Count Half/Full Mask.
The EMAC_IPC_RXIMSK.V4GFRM bit, when set, masks the interrupt when the
EMAC_RXIPV4_GD_FRM counter reaches half the maximum value, and also when
it reaches the maximum value.

Table 21-113: EMAC_IPC_RXIMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–162 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-84: EMAC_IPC_RXINT Register Diagram

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–163

Table 21-114: EMAC_IPC_RXINT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29
(R/NW)

ICMPERROCT Rx ICMP Error Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.ICMPERROCT bit is set when the EMAC_RXICMP_
ERR_OCT counter reaches half the maximum value, and also when it reaches the
maximum value.

28
(R/NW)

ICMPGOCT Rx ICMP (Good) Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.ICMPGOCT bit is set when the EMAC_RXICMP_GD_
OCT counter reaches half the maximum value, and also when it reaches the
maximum value.

27
(R/NW)

TCPERROCT Rx TCP Error Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.TCPERROCT bit is set when the EMAC_RXTCP_ERR_
OCT counter reaches half the maximum value, and also when it reaches the
maximum value.

26
(R/NW)

TCPGOCT Rx TCP (Good) Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.TCPGOCT bit is set when the EMAC_RXTCP_GD_OCT
counter reaches half the maximum value, and also when it reaches the maximum
value.

25
(R/NW)

UDPERROCT Rx UDP Error Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.UDPERROCT bit is set when the EMAC_RXUDP_ERR_
OCT counter reaches half the maximum value, and also when it reaches the
maximum value.

24
(R/NW)

UDPGOCT Rx UDP (Good) Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.UDPGOCT bit is set when the EMAC_RXUDP_GD_OCT
counter reaches half the maximum value, and also when it reaches the maximum
value.

23
(R/NW)

V6NOPAYOCT Rx IPv6 No Payload Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V6NOPAYOCT bit is set when the EMAC_RXIPV6_
NOPAY_OCT counter reaches half the maximum value, and also when it reaches the
maximum value.

22
(R/NW)

V6HDERROCT Rx IPv6 Header Error Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V6HDERROCT bit is set when the EMAC_RXIPV6_
HDR_ERR_OCT counter reaches half the maximum value, and also when it reaches
the maximum value.

21
(R/NW)

V6GOCT Rx IPv6 (Good) Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V6GOCT bit is set when the EMAC_RXIPV6_GD_OCT
counter reaches half the maximum value, and also when it reaches the maximum
value.

20
(R/NW)

V4UDSBLOCT Rx IPv4 UDS Disable Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4UDSBLOCT bit is set when the EMAC_RXIPV4_
UDSBL_OCT counter reaches half the maximum value, and also when it reaches the
maximum value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–164 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

19
(R/NW)

V4FRAGOCT Rx IPv4 Fragmented Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4FRAGOCT bit is set when the EMAC_RXIPV4_
FRAG_OCT counter reaches half the maximum value, and also when it reaches the
maximum value.

18
(R/NW)

V4NOPAYOCT Rx IPv4 No Payload Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4NOPAYOCT bit set when the EMAC_RXIPV4_
NOPAY_OCT counter reaches half the maximum value, and also when it reaches the
maximum value.

17
(R/NW)

V4HDERROCT Rx IPv4 Header Error Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4HDERROCT bit is set when the EMAC_RXIPV4_
HDR_ERR_OCT counter reaches half the maximum value, and also when it reaches
the maximum value.

16
(R/NW)

V4GOCT Rx IPv4 (Good) Octets Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4GOCT bit is set when the EMAC_RXIPV4_GD_OCT
counter reaches half the maximum value, and also when it reaches the maximum
value.

13
(R/NW)

ICMPERRFRM Rx ICMP Error Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.ICMPERRFRM bit is set when the EMAC_RXICMP_
ERR_FRM counter reaches half the maximum value, and also when it reaches the
maximum value.

12
(R/NW)

ICMPGFRM Rx ICMP (Good) Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.ICMPGFRM bit is set when the EMAC_RXICMP_GD_
FRM counter reaches half the maximum value, and also when it reaches the
maximum value.

11
(R/NW)

TCPERRFRM Rx TCP Error Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.TCPERRFRM bit is set when the EMAC_RXTCP_ERR_
FRM counter reaches half the maximum value, and also when it reaches the
maximum value.

10
(R/NW)

TCPGFRM Rx TCP (Good) Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.TCPGFRM bit is set when the EMAC_RXTCP_GD_FRM
counter reaches half the maximum value, and also when it reaches the maximum
value.

9
(R/NW)

UDPERRFRM Rx IDP Error Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.UDPERRFRM bit is set when the EMAC_RXUDP_ERR_
FRM counter reaches half the maximum value, and also when it reaches the
maximum value.

8
(R/NW)

UDPGFRM Rx UDP (Good) Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.UDPGFRM bit is set when the EMAC_RXUDP_GD_FRM
counter reaches half the maximum value, and also when it reaches the maximum
value.

7
(R/NW)

V6NOPAYFRM Rx IPv6 No Payload Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V6NOPAYFRM bit is set when the EMAC_RXIPV6_
NOPAY_FRM counter reaches half the maximum value, and also when it reaches the
maximum value.

Table 21-114: EMAC_IPC_RXINT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–165

Rx IPv4 Datagrams (Good) Register

The EMAC_RXIPV4_GD_FRM register contains a count of the number of good IPv4 datagrams received with
the TCP, UDP, or ICMP payload.

6
(R/NW)

V6HDERRFRM Rx IPv6 Header Error Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V6HDERRFRM bit is set when the EMAC_RXIPV6_
HDR_ERR_FRM counter reaches half the maximum value, and also when it reaches
the maximum value.

5
(R/NW)

V6GFRM Rx IPv6 (Good) Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V6GFRM bit is set when the EMAC_RXIPV6_GD_FRM
counter reaches half the maximum value, and also when it reaches the maximum
value.

4
(R/NW)

V4UDSBLFRM Rx IPv4 UDS Disable Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4UDSBLFRM bit is set when the EMAC_RXIPV4_
UDSBL_FRM counter reaches half the maximum value, and also when it reaches the
maximum value.

3
(R/NW)

V4FRAGFRM Rx IPv4 Fragmented Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4FRAGFRM bit is set when the EMAC_RXIPV4_
FRAG_FRM counter reaches half the maximum value, and also when it reaches the
maximum value.

2
(R/NW)

V4NOPAYFRM Rx IPv4 No Payload Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4NOPAYFRM bit is set when the EMAC_RXIPV4_
NOPAY_FRM counter reaches half the maximum value, and also when it reaches the
maximum value.

1
(R/NW)

V4HDERRFRM Rx IPv4 Header Error Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4HDERRFRM bit is set when the EMAC_RXIPV4_
HDR_ERR_FRM counter reaches half the maximum value, and also when it reaches
the maximum value.

0
(R/NW)

V4GFRM Rx IPv4 (Good) Frames Count Half/Full Interrupt.
The EMAC_IPC_RXINT.V4GFRM bit is set when the EMAC_RXIPV4_GD_FRM
counter reaches half the maximum value, and also when it reaches the maximum
value.

Table 21-114: EMAC_IPC_RXINT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–166 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-85: EMAC_RXIPV4_GD_FRM Register Diagram

Rx IPv4 Datagrams Header Errors Register

The EMAC_RXIPV4_HDR_ERR_FRM register contains a count of the number of IPv4 datagrams received with
header (checksum, length, or version mismatch) errors.

Figure 21-86: EMAC_RXIPV4_HDR_ERR_FRM Register Diagram

Table 21-115: EMAC_RXIPV4_GD_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-116: EMAC_RXIPV4_HDR_ERR_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–167

Rx IPv4 Datagrams No Payload Frame Register

The EMAC_RXIPV4_NOPAY_FRM register contains a count of the number of IPv4 datagram frames received
that did not have a TCP, UDP, or ICMP payload processed by the Checksum engine.

Figure 21-87: EMAC_RXIPV4_NOPAY_FRM Register Diagram

Rx IPv4 Datagrams Fragmented Frames Register

The EMAC_RXIPV4_FRAG_FRM register contains a count of the number of good IPv4 datagrams with frag-
mentation.

Figure 21-88: EMAC_RXIPV4_FRAG_FRM Register Diagram

Table 21-117: EMAC_RXIPV4_NOPAY_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–168 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Rx IPv4 UDP Disabled Frames Register

The EMAC_RXIPV4_UDSBL_FRM register contains a count of the number of good IPv4 datagrams received
that had a UDP payload with checksum disabled.

Figure 21-89: EMAC_RXIPV4_UDSBL_FRM Register Diagram

Rx IPv6 Datagrams Good Frames Register

The EMAC_RXIPV6_GD_FRM register contains a count of the number of good IPv6 datagrams received with
TCP, UDP, or ICMP payloads.

Table 21-118: EMAC_RXIPV4_FRAG_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-119: EMAC_RXIPV4_UDSBL_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–169

Figure 21-90: EMAC_RXIPV6_GD_FRM Register Diagram

Rx IPv6 Datagrams Header Error Frames Register

The EMAC_RXIPV6_HDR_ERR_FRM register contains a count of the number of IPv6 datagrams received with
header errors (length or version mismatch).

Figure 21-91: EMAC_RXIPV6_HDR_ERR_FRM Register Diagram

Table 21-120: EMAC_RXIPV6_GD_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-121: EMAC_RXIPV6_HDR_ERR_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–170 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Rx IPv6 Datagrams No Payload Frames Register

The EMAC_RXIPV6_NOPAY_FRM register contains a count of the number of IPv6 datagram frames received
that did not have a TCP, UDP, or ICMP payload. This includes all IPv6 datagrams with fragmentation or
security extension headers.

Figure 21-92: EMAC_RXIPV6_NOPAY_FRM Register Diagram

Rx UDP Good Frames Register

The EMAC_RXUDP_GD_FRM register contains a count of the number of good IP datagrams with a good UDP
payload. This counter is not updated when the rxipv4_udsbl_frms counter is incremented.

Figure 21-93: EMAC_RXUDP_GD_FRM Register Diagram

Table 21-122: EMAC_RXIPV6_NOPAY_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–171

Rx UDP Error Frames Register

The EMAC_RXUDP_ERR_FRM register contains a count of the number of good IP datagrams whose UDP
payload has a checksum error.

Figure 21-94: EMAC_RXUDP_ERR_FRM Register Diagram

Rx TCP Good Frames Register

The EMAC_RXTCP_GD_FRM register contains a count of the number of good IP datagrams with a good TCP
payload.

Table 21-123: EMAC_RXUDP_GD_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-124: EMAC_RXUDP_ERR_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–172 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-95: EMAC_RXTCP_GD_FRM Register Diagram

Rx TCP Error Frames Register

The EMAC_RXTCP_ERR_FRM register contains a count of the number of good IP datagrams whose TCP
payload has a checksum error.

Figure 21-96: EMAC_RXTCP_ERR_FRM Register Diagram

Table 21-125: EMAC_RXTCP_GD_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-126: EMAC_RXTCP_ERR_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–173

Rx ICMP Good Frames Register

The EMAC_RXICMP_GD_FRM register contains a count of the number of good IP datagrams with a good
ICMP payload.

Figure 21-97: EMAC_RXICMP_GD_FRM Register Diagram

Rx ICMP Error Frames Register

The EMAC_RXICMP_ERR_FRM register contains a count of the number of good IP datagrams whose ICMP
payload has a checksum error.

Figure 21-98: EMAC_RXICMP_ERR_FRM Register Diagram

Table 21-127: EMAC_RXICMP_GD_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–174 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Rx IPv4 Datagrams Good Octets Register

The EMAC_RXIPV4_GD_OCT register contains a count of the number of bytes received in good IPv4 data-
grams encapsulating TCP, UDP, or ICMP data.

Figure 21-99: EMAC_RXIPV4_GD_OCT Register Diagram

Rx IPv4 Datagrams Header Errors Register

The EMAC_RXIPV4_HDR_ERR_OCT register contains a count of the number of bytes received in IPv4 data-
grams with header errors (checksum, length, version mismatch). The value in the Length field of IPv4
header is used to update this counter.

Table 21-128: EMAC_RXICMP_ERR_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-129: EMAC_RXIPV4_GD_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–175

Figure 21-100: EMAC_RXIPV4_HDR_ERR_OCT Register Diagram

Rx IPv4 Datagrams No Payload Octets Register

The EMAC_RXIPV4_NOPAY_OCT register contains a count of the number of bytes received in IPv4 datagrams
that did not have a TCP, UDP, or ICMP payload. The value in the IPv4 headers Length field is used to
update this counter.

Figure 21-101: EMAC_RXIPV4_NOPAY_OCT Register Diagram

Table 21-130: EMAC_RXIPV4_HDR_ERR_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–176 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Rx IPv4 Datagrams Fragmented Octets Register

The EMAC_RXIPV4_FRAG_OCT register contains a count of the number of bytes received in fragmented IPv4
datagrams. The value in the IPv4 headers Length field is used to update this counter.

Figure 21-102: EMAC_RXIPV4_FRAG_OCT Register Diagram

Rx IPv4 UDP Disabled Octets Register

The EMAC_RXIPV4_UDSBL_OCT register contains a count of the number of bytes received in a UDP segment
that had the UDP checksum disabled. This counter does not count IP Header bytes.

Table 21-131: EMAC_RXIPV4_NOPAY_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-132: EMAC_RXIPV4_FRAG_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–177

Figure 21-103: EMAC_RXIPV4_UDSBL_OCT Register Diagram

Rx IPv6 Good Octets Register

The EMAC_RXIPV6_GD_OCT register contains a count of the number of bytes received in good IPv6 data-
grams encapsulating TCP, UDP or ICMPv6 data

Figure 21-104: EMAC_RXIPV6_GD_OCT Register Diagram

Table 21-133: EMAC_RXIPV4_UDSBL_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-134: EMAC_RXIPV6_GD_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–178 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Rx IPv6 Header Errors Register

The EMAC_RXIPV6_HDR_ERR_OCT register contains a count of the number of bytes received in IPv6 data-
grams with header errors (length, version mismatch). The value in the IPv6 headers Length field is used to
update this counter.

Figure 21-105: EMAC_RXIPV6_HDR_ERR_OCT Register Diagram

Rx IPv6 No Payload Octets Register

The EMAC_RXIPV6_NOPAY_OCT register contains a count of the number of bytes received in IPv6 datagrams
that did not have a TCP, UDP, or ICMP payload. The value in the IPv6 headers Length field is used to
update this counter.

Figure 21-106: EMAC_RXIPV6_NOPAY_OCT Register Diagram

Table 21-135: EMAC_RXIPV6_HDR_ERR_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–179

Rx UDP Good Octets Register

The EMAC_RXUDP_GD_OCT register contains a count of the number of bytes received in a good UDP
segment. This counter (and the counters below) does not count IP header bytes.

Figure 21-107: EMAC_RXUDP_GD_OCT Register Diagram

Rx UDP Error Octets Register

The EMAC_RXUDP_ERR_OCT register contains a count of the number of bytes received in a UDP segment
that had checksum errors.

Table 21-136: EMAC_RXIPV6_NOPAY_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-137: EMAC_RXUDP_GD_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–180 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-108: EMAC_RXUDP_ERR_OCT Register Diagram

Rx TCP Good Octets Register

The EMAC_RXTCP_GD_OCT register contains a count of the number of bytes received in a good TCP
segment.

Figure 21-109: EMAC_RXTCP_GD_OCT Register Diagram

Table 21-138: EMAC_RXUDP_ERR_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-139: EMAC_RXTCP_GD_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–181

Rx TCP Error Octets Register

The EMAC_RXTCP_ERR_OCT register contains a count of the number of bytes received in a TCP segment
with checksum errors.

Figure 21-110: EMAC_RXTCP_ERR_OCT Register Diagram

Rx ICMP Good Octets Register

The EMAC_RXICMP_GD_OCT register contains a count of the Number of bytes received in a good ICMP
segment.

Figure 21-111: EMAC_RXICMP_GD_OCT Register Diagram

Table 21-140: EMAC_RXTCP_ERR_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–182 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Rx ICMP Error Octets Register

The EMAC_RXICMP_ERR_OCT register contains a count of the number of bytes received in an ICMP segment
with checksum errors.

Figure 21-112: EMAC_RXICMP_ERR_OCT Register Diagram

Time Stamp Control Register

The EMAC_TM_CTL register controls time stamp generation and update. The EMAC_TM_CTL.SNAPTYPSEL,
EMAC_TM_CTL.TSMSTRENA, and EMAC_TM_CTL.TSEVNTENA bits work together to decide the set of PTP
packet types for which snapshot needs to be taken. (Encoding shown in table.)

Table 21-141: EMAC_RXICMP_GD_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-142: EMAC_RXICMP_ERR_OCT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Count Value.

Table 21-143:

SNAPTYPSEL() TSMSTRENA TSEVNTENA Messages for which snapshot is taken

00 X 0 SYNC, Follow_Up, Delay_Req, Delay_Resp

00 0 1 SYNC

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–183

Figure 21-113: EMAC_TM_CTL Register Diagram

00 1 1 Delay_Req

01 X 0 SYNC, Follow_Up, Delay_Req, Delay_Resp, Pdelay_Req, Pdelay_Resp,
Pdelay_Resp_Follow_Up

01 0 1 SYNC, Pdelay_Req, Pdelay_Resp

01 1 1 Delay_Req, Pdelay_Req, Pdelay_Resp

10 X X SYNC, Delay_Req

11 X X Pdelay_Req, Pdelay_Resp

Table 21-143: (Continued)

SNAPTYPSEL() TSMSTRENA TSEVNTENA Messages for which snapshot is taken

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–184 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 21-144: EMAC_TM_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

24
(R/W)

ATSFC Auxiliary Time Stamp FIFO Clear.
The EMAC_TM_CTL.ATSFC bit, when set, resets the pointers of the Auxiliary
Snapshot FIFO. This bit is cleared when the pointers are reset and the FIFO is empty.
When this bit is cleared, auxiliary snapshots gets stored in the FIFO.

18
(R/W)

TSENMACADDR Time Stamp Enable MAC Address.
The EMAC_TM_CTL.TSENMACADDR bit, when set, uses the DA MAC address (that
matches the EMAC_ADDR0_LO and EMAC_ADDR0_HI registers) to filter the PTP
frames when PTP is sent directly over Ethernet.

0 Disable PTP MAC address filter

1 Enable PTP MAC address filter

17:16
(R/W)

SNAPTYPSEL Snapshot Type Select.
The EMAC_TM_CTL.SNAPTYPSEL bits along with bit 15 and 14 decide the set of
PTP packet types for which snapshot needs to be taken. (See the table in the EMAC_
TM_CTL register description.)

15
(R/W)

TSMSTRENA Time Stamp Master (Frames) Enable.
The EMAC_TM_CTL.TSMSTRENA bit, when set, takes the snapshot for messages
relevant to master node only else snapshot is taken for PTP messages relevant to slave
node.

0 Enable Snapshot for Slave Messages

1 Enable Snapshot for Master Messages

14
(R/W)

TSEVNTENA Time Stamp Event (PTP Frames) Enable.
The EMAC_TM_CTL.TSEVNTENA bit, when set, takes the time stamp snapshot for
PTP event messages only (SYNC, Delay_Req, Pdelay_Req, or Pdelay_Resp). When
reset, the snapshot is taken for all PTP messages except Announce, Management, and
Signaling.

0 Enable Time Stamp for All Messages

1 Enable Time Stamp for Event Messages Only

13
(R/W)

TSIPV4ENA Time Stamp IPV4 (PTP Frames) Enable.
The EMAC_TM_CTL.TSIPV4ENA bit, when set, directs the EMAC receiver to
process the PTP packets encapsulated in UDP over IPv4 packets. When this bit is
clear, the MAC ignores the PTP transported over UDP-IPv4 packets. This bit is set by
default.

0 Disable Time Stamp for PTP Over IPv4 Frames

1 Enable Time Stamp for PTP Over IPv4 Frames

12
(R/W)

TSIPV6ENA Time Stamp IPV6 (PTP Frames) Enable.
The EMAC_TM_CTL.TSIPV6ENA bit, when set, directs the EMAC receiver to
process PTP packets encapsulated in UDP over IPv6 packets. When this bit is clear,
the MAC ignores the PTP transported over UDP-IPv6 packets.

0 Disable Time Stamp for PTP Over IPv6 frames

1 Enable Time Stamp for PTP Over IPv6 Frames

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–185

11
(R/W)

TSIPENA Time Stamp IP Enable.
The EMAC_TM_CTL.TSIPENA bit, when set, directs the EMAC receiver to process
the PTP packets encapsulated directly in the Ethernet frames. When this bit is clear,
the MAC ignores PTP over Ethernet packets.

0 Disable PTP Over Ethernet Frames

1 Enable PTP Over Ethernet Frames

10
(R/W)

TSVER2ENA Time Stamp VER2 (Snooping) Enable.
The EMAC_TM_CTL.TSVER2ENA bit, when set, processes the PTP packets using
the 1588 version 2 format (enables PTP packet snooping for VER2) else processed
using the version 1 format.

0 Disable packet snooping for V2 frames

1 Enable packet snooping for V2 frames

9
(R/W)

TSCTRLSSR Time Stamp Control Nanosecond Rollover.
The EMAC_TM_CTL.TSCTRLSSR bit, when set, rolls over the EMAC_TM_NSEC
register after 0x3B9A_C9FF value (109-1) and increments the EMAC_TM_SEC
register. When reset, the roll over value of EMAC_TM_NSEC register is 0x7FFF_FFFF.
The nanosecond increment has to be programmed correctly depending on the PTP
reference clock frequency and this bit value.

0 Roll Over Nanosecond After 0x7FFFFFFF

1 Roll Over Nanosecond After 0x3B9AC9FF

8
(R/W)

TSENALL Time Stamp Enable All (Frames).
The EMAC_TM_CTL.TSENALL bit, when set, enables the time stamp snapshot for
all frames received by the core.

0 Disable timestamp for all frames

1 Enable timestamp for all frames

5
(R/W1S)

TSADDREG Time Stamp Addend Register Update.
The EMAC_TM_CTL.TSADDREG bit, when set, updates the contents of the EMAC_
TM_ADDEND register for fine correction. This bit is cleared when the update is
completed. This bit should be zero before setting it.

4
(R/W1S)

TSTRIG Time Stamp (Target Time) Trigger Enable.
The EMAC_TM_CTL.TSTRIG bit, when set, generates the time stamp interrupt
when the System Time becomes greater than the value written in EMAC_TM_TGTM
register. This bit is reset after the generation of the Time Stamp Trigger Interrupt.

1 Interrupt (TS) if system time is greater than target time
register

3
(R/W1S)

TSUPDT Time Stamp (System Time) Update.
The EMAC_TM_CTL.TSUPDT bit, when set, updates (adds/subtracts) the system
time with the value specified in the EMAC_TM_SECUPDT register and EMAC_TM_
NSECUPDT register. This bit should read =0 before updating it. This bit is reset when
the update is completed in hardware. The EMAC_TM_NSEC register is not updated.

1 System time updated with Time stamp register values

Table 21-144: EMAC_TM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–186 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Time Stamp Sub Second Increment Register

The EMAC_TM_SUBSEC register contains the value by which the system time nano second is incremented.

Figure 21-114: EMAC_TM_SUBSEC Register Diagram

2
(R/W1S)

TSINIT Time Stamp (System Time) Initialize.
The EMAC_TM_CTL.TSINIT bit, when set, initializes (over-writes) the system
time with the value specified in the EMAC_TM_SECUPDT register and EMAC_TM_
NSECUPDT register. This bit should read =0 before updating it. This bit is reset when
the initialization is complete. The EMAC_TM_NSEC register can only be initialized.

1 System time initialized with Time stamp register values

1
(R/W)

TSCFUPDT Time Stamp (System Time) Fine/Coarse Update.
The EMAC_TM_CTL.TSCFUPDT bit, when set, indicates that the system times
update to be done using fine correction method. When reset, it indicates the system
time correction to be done using Coarse method.

0 Use Coarse Correction Method for System Time
Update

1 Use Fine Correction Method for System Time Update

0
(R/W)

TSENA Time Stamp (PTP) Enable.
The EMAC_TM_CTL.TSENA bit, when set, enables PTP module for time stamping
transmitted and received frames. It also enables System Time which will be used for
time stamping the frames. User should initialize the System Time after setting this bit.

0 Disable PTP Module

1 Enable PTP Module

Table 21-144: EMAC_TM_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–187

Time Stamp Low Seconds Register

The EMAC_TM_SEC register contains the lower 32 bits of the seconds field of the system time.

Figure 21-115: EMAC_TM_SEC Register Diagram

Time Stamp Nanoseconds Register

The EMAC_TM_NSEC register contains the nanoseconds field of the system time.

Table 21-145: EMAC_TM_SUBSEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

SSINC Sub-Second Increment Value.
The value in the EMAC_TM_SUBSEC.SSINC bits is accumulated every PTP clock
cycle with the contents of the nanosecond register. For example, when PTP clock is
50 MHz (period is 20 ns), the processor should program 20 (0x14) when the EMAC_
TM_NSEC register has an accuracy of 1 ns (EMAC_TM_CTL.TSCTRLSSR bit is set).
When EMAC_TM_CTL.TSCTRLSSR is clear, the EMAC_TM_NSEC register has a
resolution of ~0.465ns. In this case, the processor should program a value of 43
(0x2B) that is derived by 20ns/0.465.

Table 21-146: EMAC_TM_SEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

TSS Time Stamp Second.
The value in the EMAC_TM_SEC.TSS bit field indicates the current value in
seconds of the System Time maintained by the core.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–188 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-116: EMAC_TM_NSEC Register Diagram

Time Stamp Seconds Update Register

The EMAC_TM_SECUPDT register contains the low 32 bits to be added to, subtracted from, or written to the
seconds field of the system time.

Figure 21-117: EMAC_TM_SECUPDT Register Diagram

Table 21-147: EMAC_TM_NSEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30:0
(R/NW)

TSSS Time Stamp Nanoseconds.
The value in the EMAC_TM_NSEC.TSSS bit field has the nanosecond
representation of time, with an accuracy of 0.46 nanosecond. (When EMAC_TM_
CTL.TSCTRLSSR is set, each bit represents 1 ns and the maximum value will be
0x3B9A_C9FF, after which it rolls-over to zero).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–189

Time Stamp Nanoseconds Update Register

The EMAC_TM_NSECUPDT register contains the low 32 bits to be added to, subtracted from, or written to the
nanoseconds field of the system time.

Figure 21-118: EMAC_TM_NSECUPDT Register Diagram

Time Stamp Addend Register

The EMAC_TM_ADDEND register lets software adjust the clock frequency linearly to match the master clock
frequency.

Table 21-148: EMAC_TM_SECUPDT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

TSS Time Stamp Second Initialize/Update.
The value in the EMAC_TM_SECUPDT.TSS bit field indicates the time, in seconds,
to be initialized or added to or subtracted from the system time seconds.

Table 21-149: EMAC_TM_NSECUPDT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

ADDSUB Add or Subtract the Time.
The EMAC_TM_NSECUPDT.ADDSUB bit, when set, subtracts the time value with
the contents of the update registers. When this bit is reset, the time value is added
with the contents of the update registers.

30:0
(R/W)

TSSS Time Stamp Sub Second Initialize/Increment.
The value in the EMAC_TM_NSECUPDT.TSSS bit field indicates the time, in
nanoseconds, to be initialized or added to or subtracted from the system time
nanoseconds.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–190 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-119: EMAC_TM_ADDEND Register Diagram

Time Stamp Target Time Seconds Register

The EMAC_TM_TGTM register contains the high 32 bits of the target seconds field for comparison to the
corresponding system time field.

Figure 21-120: EMAC_TM_TGTM Register Diagram

Table 21-150: EMAC_TM_ADDEND Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

TSAR Time Stamp Addend Register.
The EMAC_TM_ADDEND.TSAR bits indicate the 32-bit time value to be added to
the Accumulator register to achieve time synchronization.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–191

Time Stamp Target Time Nanoseconds Register

The EMAC_TM_NTGTM register contains the high 32 bits of the target nanoseconds field for comparison to
the corresponding system time field.

Figure 21-121: EMAC_TM_NTGTM Register Diagram

Table 21-151: EMAC_TM_TGTM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

TSTR Target Time Seconds Register.
The EMAC_TM_TGTM.TSTR bit field stores the time in seconds. When the time
stamp value matches or exceeds both EMAC_TM_TGTM and EMAC_TM_NTGTM
registers, based on the selection in the EMAC_TM_PPSCTL.TRGTMODSEL bits, the
MAC starts or stops the PPS signal output and generates an interrupt (if enabled).

Table 21-152: EMAC_TM_NTGTM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

TSTRBUSY Target Time Register Busy.
The EMAC_TM_NTGTM.TSTRBUSY bit is set when Flexible PPS is enabled and the
EMAC_TM_PPSCTL.PPSCTL field is programmed to 0001, 0010 or 0100.
Programming the EMAC_TM_PPSCTL.PPSCTL field to 0001, 0010 or 0100,
instructs the core to synchronize the EMAC_TM_TGTM and EMAC_TM_NTGTM
registers to the PTP clock domain. The EMAC clears this bit after synchronizing the
EMAC_TM_TGTM and EMAC_TM_NTGTM registers to the PTP clock domain The
application must not update the EMAC_TM_TGTM and EMAC_TM_NTGTM registers
when this bit is read as 1. Otherwise, the synchronization of the previous
programmed time gets corrupted.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–192 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Time Stamp High Second Register

The EMAC_TM_HISEC register contains the upper 32 bits of the seconds field of the system time.

Figure 21-122: EMAC_TM_HISEC Register Diagram

Time Stamp Status Register

The EMAC_TM_STMPSTAT register contains the PTP status.

30:0
(R/W)

TSTR Target Time Nano Seconds.
The EMAC_TM_NTGTM.TSTR bit field stores the time in (signed) nanoseconds.
When the value of the time stamp matches the both EMAC_TM_TGTM and EMAC_
TM_NTGTM registers, based on the EMAC_TM_PPSCTL.TRGTMODSEL field, the
MAC starts or stops the PPS signal output and generates an interrupt (if enabled).
This value should not exceed 0x3B9A_C9FF when EMAC_TM_PPSCTL.
TRGTMODSEL is set. The actual start or stop time of the PPS signal output may have
an error margin up to one unit of sub-second increment value.

Table 21-153: EMAC_TM_HISEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

TSHWR Time Stamp Higher Word Seconds Register.
The EMAC_TM_HISEC.TSHWR bit field contains the most significant 16-bits of the
time stamp seconds value. The register is directly written to initialize the value. This
register is incremented when there is an overflow from the 32-bits of the EMAC_TM_
SEC register.

Table 21-152: EMAC_TM_NTGTM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–193

Figure 21-123: EMAC_TM_STMPSTAT Register Diagram

Table 21-154: EMAC_TM_STMPSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27:25
(R/NW)

ATSNS Auxiliary Time Stamp Number of Snapshots.
The EMAC_TM_STMPSTAT.ATSNS bits indicate the number of Snapshots available
in the FIFO. A value of 4 (100) indicates that the Auxiliary Snapshot FIFO is full.
These bits are cleared (to 000) when the Auxiliary snapshot FIFO clear bit is set.

24
(RC/NW)

ATSSTM Auxiliary Time Stamp Snapshot Trigger Missed.
The EMAC_TM_STMPSTAT.ATSSTM bit is set when the Auxiliary time stamp
snapshot FIFO is full and external trigger was set. This indicates that the latest
snapshot was not stored in the FIFO.

3
(R/W)

TSTRGTERR Time Stamp Target Time Programming Error.
The EMAC_TM_STMPSTAT.TSTRGTERR bit is set when the target time, which is
being programmed in the EMAC_TM_SEC and EMAC_TM_NSEC registers, has
already elapsed. This bit is cleared when read by the application.

2
(RC/NW)

ATSTS Auxiliary Time Stamp Trigger Snapshot.
The EMAC_TM_STMPSTAT.ATSTS bit is set high when the auxiliary snapshot is
written to the FIFO.

1
(RC/NW)

TSTARGT Time Stamp Target Time Reached.
The EMAC_TM_STMPSTAT.TSTARGT bit, when set, indicates the value of system
time has reached or passed the value specified in the EMAC_TM_TGTM and EMAC_
TM_NTGTM registers.

0
(RC/NW)

TSSOVF Time Stamp Seconds Overflow.
The EMAC_TM_STMPSTAT.TSSOVF bit, when set, indicates that the seconds value
of the time stamp (when supporting PTP version 2 format) has overflowed beyond
0xFFFF_FFFF.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–194 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

PPS Control Register

The EMAC_TM_PPSCTL register controls the interval of PPS output.

When the EMAC_TM_PPSCTL.PPSEN bit is disabled (=0, fixed PPS output), the EMAC_TM_PPSCTL.PPSCTL
bits control the behavior of the PPS output signal. The default value of PPSCTRL is 0000 and the PPS
output is 1 pulse every second. For other values of PPSCTRL, the PPS output becomes a generated clock.
(See bit enumerations for frequencies.) In the binary rollover mode, the PPS output has a duty cycle of 50
percent with these frequencies. In the digital rollover mode, the PPS output frequency is an average
number. The actual clock is of different frequency that gets synchronized every second. This behavior is
because of the non-linear toggling of the bits in the digital rollover mode in System Time - Nanoseconds
Register.

When the EMAC_TM_PPSCTL.PPSEN bit is enabled (=1, flexible PPS output), the EMAC_TM_PPSCTL.PPSCTL
bits function as PPSCMD. (See bit enumerations for commands.)Programming these bits with a non-zero
value instructs the core to initiate an event. After the command is transferred or synchronized to the PTP
clock domain, these bits gets cleared automatically. Software should ensure that these bits are programmed
only when they are "all-zero".

Figure 21-124: EMAC_TM_PPSCTL Register Diagram

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–195

Table 21-155: EMAC_TM_PPSCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6:5
(R/W)

TRGTMODSEL Target Time Register Mode.
The EMAC_TM_PPSCTL.TRGTMODSEL bits select the target time register mode.

0 Interrupt Only
The Target Time registers are programmed only for
interrupt event generation.

1 Reserved

2 Interrupt and PPS Start/Stop
The Target Time registers are programmed for
interrupt event and for starting or stopping the PPS
output signal generation.

3 PPS Start/Stop Only
The Target Time registers are programmed only for
starting or stopping the PPS output signal generation.
No interrupt is asserted.

4
(R/W)

PPSEN Enable the flexible PPS output mode.
The EMAC_TM_PPSCTL.PPSEN bit enables PPS operation. When set low, the
EMAC_TM_PPSCTL.PPSCTL field controls frequency of Fixed PPS output. When
set high, EMAC_TM_PPSCTL.PPSCTL field is used to command Flexible PPS
output.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–196 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Time Stamp Auxiliary TS Nano Seconds Register

The EMAC_TM_AUXSTMP_NSEC register contains the low 32 bits (nanoseconds field) of the auxiliary time
stamp.

3:0
(R/W)

PPSCTL PPS Frequency Control.
When the EMAC_TM_PPSCTL.PPSEN bit is disabled (=0, fixed PPS output), the
EMAC_TM_PPSCTL.PPSCTL bits control the behavior of the PPS output signal.
When the EMAC_TM_PPSCTL.PPSEN bit is enabled (=1, flexible PPS output), the
EMAC_TM_PPSCTL.PPSCTL bits function as PPSCMD. (See bit enumerations for
PPS output frequency, rollover, and PPS commands.)Programming these bits with a
non-zero value instructs the core to initiate an event. After the command is
transferred or synchronized to the PTP clock domain, these bits gets cleared
automatically. Software should ensure that these bits are programmed only when they
are "all-zero". All values not shown in the bit enumerations are reserved. For more
information about the EMAC_TM_PPSCTL.PPSCTL bits, see the pulse-per-second
functional description.

0 CMD=No Command

1 CMD=START Single; BR=2kHz; DR=1kHz
For more info, see register description.

2 CMD=START Pulse; BR=4kHz; DR=2kHz
For more info, see register description.

3 CMD=Cancel START; BR=8kHz; DR=4kHz
For more info, see register description.

4 CMD=STOP Pulse Time; BR=16kHz; DR=8kHz
For more info, see register description.

5 CMD=STOP Pulse Now
For more info, see register description.

6 CMD=Cancel STOP Pulse
For more info, see register description.

Table 21-155: EMAC_TM_PPSCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–197

Figure 21-125: EMAC_TM_AUXSTMP_NSEC Register Diagram

Time Stamp Auxiliary TM Seconds Register

The EMAC_TM_AUXSTMP_SEC register contains the low 32 bits of the seconds field of the auxiliary time
stamp.

Figure 21-126: EMAC_TM_AUXSTMP_SEC Register Diagram

Table 21-156: EMAC_TM_AUXSTMP_NSEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Time Value.

Table 21-157: EMAC_TM_AUXSTMP_SEC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Time Value.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–198 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Time Stamp PPS Interval Register

The EMAC_TM_PPSINTVL register contains the interval value for the time between rising edges (period) of
PPS output.

Figure 21-127: EMAC_TM_PPSINTVL Register Diagram

PPS Width Register

The EMAC_TM_PPSWIDTH register contains the interval value for the time between a rising and the next
falling edge (width) of PPS output.

Table 21-158: EMAC_TM_PPSINTVL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

PPSINT PPS Output Signal Interval.
The EMAC_TM_PPSINTVL.PPSINT bits store the interval between the rising
edges of PPS signal output in terms of units of sub-second increment value. You need
to program one value less than the required interval. For example, if the PTP
reference clock is 50 MHz (period of 20ns), and desired interval between rising edges
of PPS signal output is 100ns (that is, 5 units of sub-second increment value), then
you should program value 4 (5-1) in this register.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–199

Figure 21-128: EMAC_TM_PPSWIDTH Register Diagram

DMA Bus Mode Register

The EMAC_DMA_BUSMODE register selects the DMA bus operating modes for EMAC DMA.

Table 21-159: EMAC_TM_PPSWIDTH Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

PPSINT PPS Output Signal Interval.
The EMAC_TM_PPSWIDTH.PPSINT bits store the interval between a rising edge
and the next falling edge (width) of PPS output in terms of units of sub second
increment value. The user needs to program one value less than the required interval.
For example, if the PTP reference clock is 50 MHz (period of 20ns) and the desired
width of the PPS signal output is 60ns (that is, 3 units of sub-second increment
value), the user should program value 2 (3-1) in this register.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–200 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-129: EMAC_DMA_BUSMODE Register Diagram

Table 21-160: EMAC_DMA_BUSMODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

25
(R/W)

AAL Address Aligned Bursts.
The EMAC_DMA_BUSMODE.AAL bit, when set high and the FB bit equals 1, directs
the SCB interface to generate all bursts aligned to the start address LS bits. If the FB
bit is equal to 0, the first burst (accessing the data buffers start address) is not aligned,
but subsequent bursts are aligned to the address.

24
(R/W)

PBL8 PBL * 8.
The EMAC_DMA_BUSMODE.PBL8 bit, when set high, multiplies the PBL value
programmed (bits [22:17] and bits [13:8]) eight times. Therefore, the DMA transfers
the data in 8, 16, and 32 beats depending on the PBL value.

23
(R/W)

USP Use Separate PBL.
The EMAC_DMA_BUSMODE.USP bit, when set high, configures the Rx DMA to use
the value configured in bits [22:17] as PBL while the PBL value in bits [13:8] is
applicable to Tx DMA operations only.

22:17
(R/W)

RPBL Receive Programmable Burst Length.
The EMAC_DMA_BUSMODE.RPBL bits indicate the maximum number of beats to
be transferred in one Rx DMA transaction. This is the maximum value that is used in
a single block Read/Write. The Rx DMA always attempts to burst as specified in
RPBL every time it starts a Burst transfer on the host bus. RPBL can be programmed
with permissible values of 1, 2, 4, 8, 16, and 32. Any other value results in undefined
behavior. These bits are valid and applicable only when USP is set high.

16
(R/W)

FB Fixed Burst.
The EMAC_DMA_BUSMODE.FB bit controls whether the SCB Master interface
performs fixed burst transfers or not. See the EMAC_DMA_BMMODE.UNDEF bit
description for more information.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–201

DMA Tx Poll Demand Register

The EMAC_DMA_TXPOLL register directs the EMAC to poll the transmit descriptor list.

13:8
(R/W)

PBL Programmable Burst Length.
The EMAC_DMA_BUSMODE.PBL bits indicate the maximum number of beats to be
transferred in one DMA transaction. This is the maximum value that is used in a
single block Read/Write. The DMA always attempts to burst as specified in PBL each
time it starts a Burst transfer on the host bus. Any other value results in undefined
behavior. When USP is set high, this PBL value is applicable for Tx DMA
transactions only.

PBL-max limit = (FIFO size / 2) / 4.
PBL-max limit (transmit) = 256 bytes / 2 /4 = 32.
PBL-max limit (receive) = 128 bytes / 2 /4 = 16.

Note that this PBL is at the DMA end. If PBL= 32 and if BLEN16 is enabled, the DMA
automatically splits 32 bursts in to 2 x 16 bursts. If EMAC_DMA_BUSMODE.PBL =8,
and if EMAC_DMA_BMMODE.BLEN16 is enabled, the max burst is limited to EMAC_
DMA_BMMODE.BLEN8. If EMAC_DMA_BUSMODE.PBL8 bit is set, the
programmed PBL value is multiplied by 8 times internally. However, the result
cannot be more than the above maximum limits specified above.

7
(R/W)

ATDS Alternate Descriptor Size.
The EMAC_DMA_BUSMODE.ATDS bit, when set, increases the size of the alternate
descriptor to 32 bytes (8 DWORDS). This is required when the Advanced Time
Stamp feature or Full IPC Offload Engine is enabled in the receiver. When reset, the
descriptor size reverts back to 4 DWORDs (16 bytes). The enhanced descriptor is not
required if the Advanced Time Stamp and IPC Full Checksum Offload features are
not enabled. In such case, you can use the 16 bytes descriptor to save 4 bytes of
memory.

6:2
(R/W)

DSL Descriptor Skip Length.
The EMAC_DMA_BUSMODE.DSL bit specifies the number of 32-bit words to skip
between two unchained descriptors. The address skipping starts from the end of
current descriptor to the start of next descriptor. When DSL value is equal to zero,
then the descriptor table is taken as contiguous by the DMA, in Ring mode.

0
(R/W1S)

SWR Software Reset.
The EMAC_DMA_BUSMODE.SWR bit, when set, directs the MAC DMA Controller
to reset all MAC Subsystem internal registers and logic. It is cleared automatically
after the reset operation has completed in all of the core clock domains. Read a 0
value in this bit before re-programming any register of the core. Note: The reset
operation is completed only when all the resets in all the active clock domains are de-
asserted. Therefore, it is essential that all the PHY inputs clocks (applicable for the
selected PHY interface) are present for software reset completion.

Table 21-160: EMAC_DMA_BUSMODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–202 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 21-130: EMAC_DMA_TXPOLL Register Diagram

DMA Rx Poll Demand register

The EMAC_DMA_RXPOLL register directs the EMAC to poll the receive descriptor list.

Figure 21-131: EMAC_DMA_RXPOLL Register Diagram

Table 21-161: EMAC_DMA_TXPOLL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

START Transmit Poll Demand.
The EMAC_DMA_TXPOLL.START bits, when written with any value, cause the
DMA to read the current descriptor pointed to by EMAC_DMA_TXDSC_CUR
register. If that descriptor is not available (owned by application), transmission
returns to the Suspend state, and the EMAC_DMA_STAT.TU bit is asserted. If the
descriptor is available, transmission resumes.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–203

DMA Rx Descriptor List Address Register

The EMAC_DMA_RXDSC_ADDR register holds the address for the DMA receive descriptor list. Writing to this
Register is permitted only when reception is stopped. When stopped, this must be written to before the
receive Start command is given. The processor can write to EMAC_DMA_RXDSC_ADDR only when Rx DMA
has stopped (EMAC_DMA_OPMODE.SR bit =0). When stopped, it can be written with a new descriptor list
address. When the processor sets the EMAC_DMA_OPMODE.SR bit to 1, the DMA takes the newly
programmed descriptor base address. If this register is not changed when the EMAC_DMA_OPMODE.SR bit is
cleared to 0, the DMA takes the descriptor address where it was stopped earlier.

Figure 21-132: EMAC_DMA_RXDSC_ADDR Register Diagram

Table 21-162: EMAC_DMA_RXPOLL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

START Receive Poll Demand.
The EMAC_DMA_RXPOLL.START bits, when written with any value, cause the
DMA to read the current descriptor pointed to by the EMAC_DMA_RXDSC_CUR
register. If that descriptor is not available (owned by application), reception returns to
the Suspended state, and the EMAC_DMA_STAT.RU bit is asserted. If the descriptor
is available, the Receive DMA returns to the active state.

Table 21-163: EMAC_DMA_RXDSC_ADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Start of Receive List.
The EMAC_DMA_RXDSC_ADDR.VALUE bit field contains the base address of the
First Descriptor in the Receive Descriptor list. The LSB bits [1:0] for the 32bit bus
width are ignored and are taken as all-zero by the DMA internally. Therefore, these
LSB bits are Read-Only (RO).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–204 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA Tx Descriptor List Address Register

The EMAC_DMA_TXDSC_ADDR register holds the address for the DMA transmit descriptor list. The processor
can write to this Register only when Tx DMA has stopped (EMAC_DMA_OPMODE.ST bit =0). When stopped,
this can be written with a new descriptor list address. When the processor sets the EMAC_DMA_OPMODE.ST
bit to 1, the DMA takes the newly programmed descriptor base address. If this register is not changed when
the EMAC_DMA_OPMODE.ST bit is cleared to 0, then the DMA takes the descriptor address where it was
stopped earlier.

Figure 21-133: EMAC_DMA_TXDSC_ADDR Register Diagram

DMA Status Register

The EMAC_DMA_STAT register indicates EMAC DMA status.

Table 21-164: EMAC_DMA_TXDSC_ADDR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Start of Transmit List.
The EMAC_DMA_TXDSC_ADDR.VALUE bit field contains the base address of the
First Descriptor in the Transmit Descriptor list. The LSB bits [1:0] for 32bit bus width
are ignored and are taken as all-zero by the DMA internally. Therefore, these LSB bits
are Read-Only (RO).

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–205

Figure 21-134: EMAC_DMA_STAT Register Diagram

Table 21-165: EMAC_DMA_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29
(R/NW)

TTI Time Stamp Trigger Interrupt.
The EMAC_DMA_STAT.TTI bit indicates an interrupt event in the MAC core's
Time Stamp Generator block. The software must read the corresponding registers in
the MAC core to get the exact cause of interrupt and clear its source to reset this bit to
=0. When this bit is high, the interrupt signal from the MAC is high.

27
(R/NW)

MCI MAC MMC Interrupt.
The EMAC_DMA_STAT.MCI bit reflects an interrupt event in the MMC module of
the MAC core. The software must read the corresponding registers in the MAC core
to get the exact cause of interrupt and clear the source of interrupt to make this bit as
=0. The interrupt signal from the MAC is high when this bit is high.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–206 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

25:23
(R/NW)

EB Error Bits.
The EMAC_DMA_STAT.EB bits indicate the type of error that caused a Bus Error
(for example, error response on the SCB interface). These bits are valid only when the
EMAC_DMA_STAT.FBI bit is set. This field does not generate an interrupt.

0 Error during data buffer access, write transfer, Rx DMA

1 Error during data buffer access, write transfer, Tx DMA

2 Error during data buffer access, read transfer, Rx DMA

3 Error during data buffer access, read transfer, Tx DMA

4 Error during descriptor access, write transfer, Rx DMA

5 Error during descriptor access, write transfer, Tx DMA

6 Error during descriptor access, read transfer, Rx DMA

7 Error during descriptor access, read transfer, Tx DMA

22:20
(R/NW)

TS Tx Process State.
The EMAC_DMA_STAT.TS bits indicate the transmit DMA state. This field does not
generate an interrupt.

0 Stopped; Reset or Stop Tx Command Issued

1 Running; Fetching Tx Transfer Descriptor

2 Running; Waiting for Status

3 Reading Data from Host Memory Buffer and Queuing
It to Tx Buffer

4 TIME_STAMP Write State

5 Reserved

6 Suspended; Tx Descriptor Unavailable or Tx Buffer
Underflow

7 Closing Tx Descriptor

19:17
(R/NW)

RS Rx Process State.
The EMAC_DMA_STAT.RS bits indicate the receive DMA state. This field does not
generate an interrupt.

0 Stopped: Reset or Stop Rx Command Issued.

1 Running: Fetching Rx Transfer Descriptor.

2 Reserved

3 Running: Waiting for Rx Packet

4 Suspended: Rx Descriptor Unavailable

5 Running: Closing Rx Descriptor

6 TIME_STAMP Write State

7 Running: Transferring Rx Packet Data from Rx Buffer
to Host Memory

Table 21-165: EMAC_DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–207

16
(R/W1C)

NIS Normal Interrupt Summary.
The value of the EMAC_DMA_STAT.NIS bit field is the logical OR of the following
when the corresponding interrupt bits are enabled in DMA Interrupt Enable
Register: EMAC_DMA_STAT.TI, EMAC_DMA_STAT.TU, EMAC_DMA_STAT.RI,
and EMAC_DMA_STAT.ERI. Only unmasked bits affect the Normal Interrupt
Summary bit. This is a sticky bit and must be cleared (by writing a 1 to this bit) each
time a corresponding bit that causes EMAC_DMA_STAT.NIS to be set is cleared.

15
(R/W1C)

AIS Abnormal Interrupt Summary.
The value of the EMAC_DMA_STAT.AIS bit field is the logical OR of the following
when the corresponding interrupt bits are enabled in DMA Interrupt Enable
Register: EMAC_DMA_IEN.TPS, EMAC_DMA_IEN.TJT, EMAC_DMA_IEN.OVF,
EMAC_DMA_IEN.UNF, EMAC_DMA_IEN.RU, EMAC_DMA_IEN.RPS, EMAC_
DMA_IEN.RWT, EMAC_DMA_IEN.ETI, and EMAC_DMA_IEN.FBI. Only
unmasked bits affect the Abnormal Interrupt Summary bit. This is a sticky bit and
must be cleared each time a corresponding bit that causes EMAC_DMA_STAT.AIS
to be set is cleared.

14
(R/W1C)

ERI Early Receive Interrupt.
The EMAC_DMA_STAT.ERI bit indicates that the DMA had filled the first data
buffer of the packet. The EMAC_DMA_STAT.RI bit automatically clears this bit.

13
(R/W1C)

FBI Fatal Bus Error Interrupt.
The EMAC_DMA_STAT.FBI bit indicates that a bus error occurred, as detailed in
the EMAC_DMA_STAT.EB field. When this bit is set, the corresponding DMA
engine disables all its bus accesses.

10
(R/W1C)

ETI Early Transmit Interrupt.
The EMAC_DMA_STAT.ETI bit indicates that the frame to be transmitted was fully
transferred to the MFL Transmit FIFO.

9
(R/W1C)

RWT Receive WatchDog Timeout.
The EMAC_DMA_STAT.RWT bit is asserted when a frame with a length greater than
2,048 bytes is received (10, 240 when Jumbo Frame mode is enabled).

8
(R/W1C)

RPS Receive Process Stopped.
The EMAC_DMA_STAT.RPS bit is asserted when the Receive Process enters the
Stopped state.

7
(R/W1C)

RU Receive Buffer Unavailable.
The EMAC_DMA_STAT.RU bit indicates that the Next Descriptor in the Receive List
is owned by the application and cannot be acquired by the DMA. Receive Process is
suspended. To resume processing Receive descriptors, the application should change
the ownership of the descriptor and issue a Receive Poll Demand command. If no
Receive Poll Demand is issued, Receive Process resumes when the next recognized
incoming frame is received. This bit is set only when the previous Receive Descriptor
was owned by the DMA.

6
(R/W1C)

RI Receive Interrupt.
The EMAC_DMA_STAT.RI bit indicates the completion of frame reception. Specific
frame status information has been posted in the descriptor. Reception remains in the
Running state.

Table 21-165: EMAC_DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–208 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA Operation Mode Register

The EMAC_DMA_OPMODE register selects receive and transmit DMA operating modes.

5
(R/W1C)

UNF Transmit Buffer Underflow.
The EMAC_DMA_STAT.UNF bit indicates that the Transmit Buffer had an
Underflow during frame transmission. Transmission is suspended and an Underflow
Error TDES0[1] is set.

4
(R/W1C)

OVF Receive Buffer Overflow.
The EMAC_DMA_STAT.OVF bit indicates that the Receive Buffer had an Overflow
during frame reception. If the partial frame is transferred to application, the overflow
status is set in RDES0[11].

3
(R/W1C)

TJT Transmit Jabber Timeout.
The EMAC_DMA_STAT.TJT bit indicates that the Transmit Jabber Timer expired,
meaning that the transmitter had been excessively active. The transmission process is
aborted and placed in the Stopped state. This causes the Transmit Jabber Timeout
TDES0[14] flag to assert.

2
(R/W1C)

TU Transmit Buffer Unavailable.
The EMAC_DMA_STAT.TU bit indicates that the Next Descriptor in the Transmit
List is owned by the application and cannot be acquired by the DMA. Transmission is
suspended. The value in the EMAC_DMA_STAT.TS bits explain the Transmit
Process state transitions. To resume processing transmit descriptors, the application
should change the ownership of the bit of the descriptor and then issue a Transmit
Poll Demand command.

1
(R/W1C)

TPS Transmit Process Stopped.
The EMAC_DMA_STAT.TPS bit is set when the transmission is stopped.

0
(R/W1C)

TI Transmit Interrupt.
The EMAC_DMA_STAT.TI bit indicates that frame transmission is finished and
TDES1[31] is set in the First Descriptor.

Table 21-165: EMAC_DMA_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–209

Figure 21-135: EMAC_DMA_OPMODE Register Diagram

Table 21-166: EMAC_DMA_OPMODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

26
(R/W)

DT Disable Dropping TCP/IP Errors.
The EMAC_DMA_OPMODE.DT bit, when set, directs the core not to drop frames that
only have errors detected by the Receive Checksum Offload engine. Such frames do
not have any errors (including FCS error) in the Ethernet frame received by the MAC
but have errors in the encapsulated payload only. When this bit is reset, all error
frames are dropped if the EMAC_DMA_OPMODE.FEF bit is reset.

25
(R/W)

RSF Receive Store and Forward.
The EMAC_DMA_OPMODE.RSF bit, when set, directs the MFL only to read a frame
from the Rx FIFO after the complete frame has been written to it, ignoring the
EMAC_DMA_OPMODE.RTC bits. When this bit is reset, the Rx FIFO operates in
threshold mode, subject to the threshold specified by the EMAC_DMA_OPMODE.
RTC bits.

24
(R/W)

DFF Disable Flushing of received Frames.
The EMAC_DMA_OPMODE.DFF bit, when set, directs the Rx DMA not to flush any
frames because of the unavailability of receive descriptors/buffers as it does normally
when this bit is reset.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–210 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

21
(R/W)

TSF Transmit Store and Forward.
The EMAC_DMA_OPMODE.TSF bit, when set, starts transmission when a full frame
resides in the MFL Transmit FIFO. When this bit is set, the TTC values specified in
Register 6[16:14] are ignored. This bit should be changed only when transmission is
stopped.

20
(R/W)

FTF Flush Transmit FIFO.
The EMAC_DMA_OPMODE.FTF bit, when set, directs the transmit FIFO controller
logic to reset to its default values and thus all data in the Tx FIFO is lost/flushed. This
bit is cleared internally when the flushing operation is completed fully. The
Operation Mode register should not be written to until this bit is cleared. The data
which is already accepted by the MAC transmitter is not flushed. It is scheduled for
transmission and results in underflow and runt frame transmission. Note: The flush
operation completes only after emptying the Tx FIFO of its contents and all the
pending Transmit Status of the transmitted frames are accepted by the host. In order
to complete this flush operation, the PHY transmit clock is required to be active.

16:14
(R/W)

TTC Transmit Threshold Control.
The EMAC_DMA_OPMODE.TTC bits control the threshold level of the MFL
Transmit FIFO. Transmission starts when the frame size within the MFL Transmit
FIFO is larger than the threshold. In addition, full frames with a length less than the
threshold are also transmitted. These bits are used only when the EMAC_DMA_
OPMODE.TSF bit is reset. The value =011 is not used.

0 64

1 128

2 192

3 256

4 40

5 32

6 24

7 16

Table 21-166: EMAC_DMA_OPMODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–211

13
(R/W)

ST Start/Stop Transmission.
The EMAC_DMA_OPMODE.ST bit, when set, places transmission in the Running
state, and the DMA checks the Transmit List at the current position for a frame to be
transmitted. Descriptor acquisition is attempted either from the current position in
the list, which is the Transmit List Base Address set by Transmit Descriptor List
Address, or from the position retained when transmission was stopped previously. If
the current descriptor is not owned by the DMA, transmission enters the Suspended
state, and the EMAC_DMA_STAT.TU bit is set.
The Start Transmission command is effective only when transmission is stopped. If
the command is issued before setting the EMAC_DMA_TXDSC_CUR address register,
then the DMA behavior is unpredictable. When this bit is reset, the transmission
process is placed in the Stopped state after completing the transmission of the current
frame. The Next Descriptor position in the Transmit List is saved, and becomes the
current position when transmission is restarted. The stop transmission command is
effective only when the transmission of the current frame is complete or the
transmission is in the Suspended state.

7
(R/W)

FEF Forward Error Frames.
The EMAC_DMA_OPMODE.FEF bit, when reset, directs the Rx FIFO to drop frames
with error status (CRC error, collision error, giant frame, watchdog timeout,
overflow). However, if the frames start byte (write) pointer is already transferred to
the read controller side (in Threshold mode), then the frames are not dropped. When
EMAC_DMA_OPMODE.FEF bit is set, all frames except runt error frames are
forwarded to the DMA. But when Rx FIFO overflows when a partial frame is written,
then such frames are dropped even when EMAC_DMA_OPMODE.FEF is set.

6
(R/W)

FUF Forward Undersized good Frames.
The EMAC_DMA_OPMODE.FUF bit, when set, directs the Rx FIFO to forward
Undersized frames (frames with no Error and length less than 64 bytes) including
pad-bytes and CRC). When reset, the Rx FIFO drops all frames of less than 64 bytes,
unless it is already transferred because of lower value of Receive Threshold (for
example, EMAC_DMA_OPMODE.RTC =01).

4:3
(R/W)

RTC Receive Threshold Control.
The EMAC_DMA_OPMODE.RTC bits control the threshold level of the MFL Receive
FIFO. Transfer (request) to DMA starts when the frame size within the MFL Receive
FIFO is larger than the threshold. In addition, full frames with a length less than the
threshold are transferred automatically. These bits are valid only when the EMAC_
DMA_OPMODE.RSF bit is zero, and are ignored when the EMAC_DMA_OPMODE.
RSF bit is set to 1. The value =11 is not used.

0 64

1 32

2 96

3 128

2
(R/W)

OSF Operate on Second Frame.
The EMAC_DMA_OPMODE.OSF bit, when set, instructs the DMA to process a
second frame of Transmit data even before status for first frame is obtained.

Table 21-166: EMAC_DMA_OPMODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–212 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA Interrupt Enable Register

The EMAC_DMA_IEN register enables (unmasks) EMAC DMA interrupts.

1
(R/W)

SR Start/Stop Receive.
The EMAC_DMA_OPMODE.SR bit, when set, places the Receive process in the
Running state. The DMA attempts to acquire the descriptor from the Receive list and
processes incoming frames. Descriptor acquisition is attempted from the current
position in the list, which is the address set by DMA Receive Descriptor List Address
or the position retained when the Receive process was previously stopped. If no
descriptor is owned by the DMA, reception is suspended, and the EMAC_DMA_
STAT.RU bit is set.
The Start Receive command is effective only when reception has stopped. If the
command was issued before setting EMAC_DMA_RXDSC_CURaddress register,
DMA behavior is unpredictable. When this bit is cleared, Rx DMA operation is
stopped after the transfer of the current frame. The next descriptor position in the
Receive list is saved and becomes the current position after the Receive process is
restarted. The Stop Receive command is effective only when the Receive process is in
either the Running (waiting for receive packet) or in the Suspended state.

Table 21-166: EMAC_DMA_OPMODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–213

Figure 21-136: EMAC_DMA_IEN Register Diagram

Table 21-167: EMAC_DMA_IEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/W)

NIS Normal Interrupt Summary Enable.
The EMAC_DMA_IEN.NIS bit, when set, enables a normal interrupt. When this bit
is reset, a normal interrupt is disabled. This bit enables the following bits: EMAC_
DMA_STAT.TI, EMAC_DMA_STAT.TU, EMAC_DMA_STAT.RI, and EMAC_
DMA_STAT.ERI.

15
(R/W)

AIS Abnormal Interrupt Summary Enable.
The EMAC_DMA_IEN.AIS bit, when set, enables an abnormal interrupt. When this
bit is reset, an Abnormal Interrupt is disabled. This bit enables the following bits:
EMAC_DMA_STAT.TPS, EMAC_DMA_STAT.TJT, EMAC_DMA_STAT.OVF,
EMAC_DMA_STAT.RU, EMAC_DMA_STAT.RPS, EMAC_DMA_STAT.RWT,
EMAC_DMA_STAT.ETI, and EMAC_DMA_STAT.FBI.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–214 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

14
(R/W)

ERI Early Receive Interrupt Enable.
The EMAC_DMA_IEN.ERI bit, when set (and with EMAC_DMA_IEN.NIS =1),
enables the Early Receive Interrupt. When this bit is reset, Early Receive Interrupt is
disabled.

13
(R/W)

FBI Fatal Bus Error Enable.
The EMAC_DMA_IEN.FBI bit, when set (and with EMAC_DMA_IEN.AIS =1),
enables the Fatal Bus Error Interrupt. When this bit is reset, Fatal Bus Error Enable
Interrupt is disabled.

10
(R/W)

ETI Early Transmit Interrupt Enable.
The EMAC_DMA_IEN.ETI bit, when this bit is set (and with EMAC_DMA_IEN.
AIS =1), enables the Early Transmit Interrupt. When this bit is reset, Early Transmit
Interrupt is disabled.

9
(R/W)

RWT Receive WatchdogTimeout Enable.
The EMAC_DMA_IEN.RWT bit, when set (and with EMAC_DMA_IEN.AIS =1),
enables the Receive Watchdog Timeout Interrupt. When this bit is reset, Receive
Watchdog Timeout Interrupt is disabled.

8
(R/W)

RPS Receive Stopped Enable.
The EMAC_DMA_IEN.RPS bit, when set (and with EMAC_DMA_IEN.AIS =1),
enables the Receive Stopped Interrupt is enabled. When this bit is reset, Receive
Stopped Interrupt is disabled.

7
(R/W)

RU Receive Buffer Unavailable Enable.
The EMAC_DMA_IEN.RU bit, when set (and with EMAC_DMA_IEN.AIS =1),
enables the Receive Buffer Unavailable Interrupt. When this bit is reset, the Receive
Buffer Unavailable Interrupt is disabled.

6
(R/W)

RI Receive Interrupt Enable.
The EMAC_DMA_IEN.RI bit, when set (and with EMAC_DMA_IEN.NIS =1),
enables the Receive Interrupt. When this bit is reset, Receive Interrupt is disabled.

5
(R/W)

UNF Underflow Interrupt Enable.
The EMAC_DMA_IEN.UNF bit, when set (and with EMAC_DMA_IEN.AIS =1),
enables the Transmit Underflow Interrupt. When this bit is reset, Underflow
Interrupt is disabled.

4
(R/W)

OVF Overflow Interrupt Enable.
The EMAC_DMA_IEN.OVF bit, when set (and with EMAC_DMA_IEN.AIS =1),
enables the Receive Overflow Interrupt. When this bit is reset, Overflow Interrupt is
disabled.

3
(R/W)

TJT Transmit Jabber Timeout Enable.
The EMAC_DMA_IEN.TJT bit, when set (and with EMAC_DMA_IEN.AIS =1),
enables the Transmit Jabber Timeout Interrupt. When this bit is reset, Transmit
Jabber Timeout Interrupt is disabled.

2
(R/W)

TU Transmit Buffer Unavailable Enable.
The EMAC_DMA_IEN.TU bit, when set (and with EMAC_DMA_IEN.NIS =1),
enables the Transmit Buffer Unavailable Interrupt. When this bit is reset, Transmit
Buffer Unavailable Interrupt is disabled.

Table 21-167: EMAC_DMA_IEN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–215

DMA Missed Frame Register

The EMAC_DMA_MISS_FRM register contains counters for EMAC DMA missed frames and buffer overflows.

Figure 21-137: EMAC_DMA_MISS_FRM Register Diagram

1
(R/W)

TPS Transmit Stopped Enable.
The EMAC_DMA_IEN.TPS bit, when set (and with EMAC_DMA_IEN.AIS =1),
enables the Transmission Stopped Interrupt. When this bit is reset, Transmission
Stopped Interrupt is disabled.

0
(R/W)

TI Transmit Interrupt Enable.
The EMAC_DMA_IEN.TI bit, when set (and with EMAC_DMA_IEN.NIS =1),
enables the Transmit Interrupt. When this bit is reset, Transmit Interrupt is disabled.

Table 21-168: EMAC_DMA_MISS_FRM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

28
(RC/NW)

OVFFIFO Overflow bit for FIFO Overflow Counter.
The EMAC_DMA_MISS_FRM.OVFFIFO bit holds the overflow bit for FIFO
Overflow Counter.

27:17
(RC/NW)

MISSFROV Missed Frames Buffer Overflow.
The EMAC_DMA_MISS_FRM.MISSFROV bits indicate the number of frames
missed by the application due to buffer overflow.

16
(RC/NW)

OVFMISS Overflow bit for Missed Frame Counter.
The EMAC_DMA_MISS_FRM.OVFMISS bit holds the overflow bit for the Missed
Frame Counter.

Table 21-167: EMAC_DMA_IEN Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–216 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA Rx Interrupt Watch Dog Register

The EMAC_DMA_RXIWDOG register contains the timeout value for the EMAC DMA receive interrupt watch
dog timer.

Figure 21-138: EMAC_DMA_RXIWDOG Register Diagram

DMA SCB Bus Mode Register

The EMAC_DMA_BMMODE register selects EMAC DMA system cross bar bus mode features.

15:0
(RC/NW)

MISSFRUN Missed Frames Unavailable Buffer.
The EMAC_DMA_MISS_FRM.MISSFRUN bits indicate the number of frames
missed by the controller because of the Application Receive Buffer being unavailable.

Table 21-169: EMAC_DMA_RXIWDOG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7:0
(R/W)

RIWT RI WatchDog Timer Count.
The EMAC_DMA_RXIWDOG.RIWT bit field indicates the number of system clock
cycles multiplied by 256 for which the watchdog timer is set. The watchdog timer gets
triggered with the programmed value after the Rx DMA completes the transfer of a
frame for which the RI status bit is not set because of the setting in the corresponding
descriptor RDES1[31]. When the watch-dog timer runs out, the RI bit is set and the
timer is stopped. The watchdog timer is reset when EMAC_DMA_STAT.RI bit is set
high because of automatic setting of EMAC_DMA_STAT.RI as per RDES1[31] of
any received frame.

Table 21-168: EMAC_DMA_MISS_FRM Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–217

Figure 21-139: EMAC_DMA_BMMODE Register Diagram

Table 21-170: EMAC_DMA_BMMODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

22:20
(R/W)

WROSRLMT SCB Maximum Write Outstanding Request.
The EMAC_DMA_BMMODE.WROSRLMT bit field's value limits the maximum
outstanding request on the SCB write interface. Maximum outstanding requests =
WR_OSR_LMT+1. EMAC-SCB supports up to 4 outstanding write requests.

18:16
(R/W)

RDOSRLMT SCB Maximum Read Outstanding Request.
The EMAC_DMA_BMMODE.RDOSRLMT bit field's value limits the maximum
outstanding request on the SCB read interface. Maximum outstanding requests =
RD_OSR_LMT+1. EMAC-SCB supports up to 4 outstanding read requests.

12
(R/NW)

AAL Address Aligned Beats.
The EMAC_DMA_BMMODE.AAL bit (read-only) reflects the state of the EMAC_
DMA_BUSMODE.AAL bit. When this bit is set to 1, EMAC-SCB performs address-
aligned burst transfers on both read and write channels.

3
(R/W)

BLEN16 SCB Burst Length 16.
The EMAC_DMA_BMMODE.BLEN16 bit, when set (or when EMAC_DMA_BMMODE.
UNDEF is set to 1), directs the EMAC-SCB to select a burst length of 16 on the SCB
master interface.

2
(R/W)

BLEN8 SCB Burst Length 8.
The EMAC_DMA_BMMODE.BLEN8 bit, when set (or when EMAC_DMA_BMMODE.
UNDEF is set to 1), directs the EMAC-SCB to select a burst length of 8 on the SCB
master interface.

1
(R/W)

BLEN4 SCB Burst Length 4.
The EMAC_DMA_BMMODE.BLEN4 bit, when set (or when EMAC_DMA_BMMODE.
UNDEF is set to 1), directs the EMAC-SCB to select a burst length of 4 on the SCB
master interface.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–218 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA SCB Status Register

The EMAC_DMA_BMSTAT register indicates EMAC DMA system cross bar status.

Figure 21-140: EMAC_DMA_BMSTAT Register Diagram

DMA Tx Descriptor Current Register

The EMAC_DMA_TXDSC_CUR register contains the current DMA transmit descriptor.

0
(R/NW)

UNDEF SCB Undefined Burst Length.
The EMAC_DMA_BMMODE.UNDEF bit (read-only) indicates the complement
(invert) value of EMAC_DMA_BUSMODE.FB bit. When this bit is set to 1, the
EMAC-SCB is allowed to perform any burst length equal to or below the maximum
allowed burst length as programmed in bits[3:1]. When this bit is set to 0, the EMAC-
SCB is allowed to perform only fixed burst lengths as indicated by 16/8/4, or a burst
length of 1.

Table 21-171: EMAC_DMA_BMSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/NW)

BUSRD Bus (SCB master) Read Active.
The EMAC_DMA_BMSTAT.BUSRD bit, when high, indicates that SCB Master's read
channel is active and transferring data.

0
(R/NW)

BUSWR Bus (SCB master) Write Active.
The EMAC_DMA_BMSTAT.BUSWR bit, when high, indicates that SCB Master's write
channel is active and transferring data.

Table 21-170: EMAC_DMA_BMMODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–219

Figure 21-141: EMAC_DMA_TXDSC_CUR Register Diagram

DMA Rx Descriptor Current Register

The EMAC_DMA_RXDSC_CUR register contains the current DMA receive descriptor.

Figure 21-142: EMAC_DMA_RXDSC_CUR Register Diagram

Table 21-172: EMAC_DMA_TXDSC_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

ADDR Host Transmit Descriptor Address.
The EMAC_DMA_TXDSC_CUR.ADDR bit field points to the start address of the
current Transmit Descriptor read by the DMA. Pointer updated by DMA during
operation. Cleared on Reset.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–220 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA Tx Buffer Current Register

The EMAC_DMA_TXBUF_CUR register holds the pointer to the current transmit DMA buffer.

Figure 21-143: EMAC_DMA_TXBUF_CUR Register Diagram

DMA Rx Buffer Current Register

The EMAC_DMA_RXBUF_CUR register holds the pointer to the current receive DMA buffer.

Table 21-173: EMAC_DMA_RXDSC_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

ADDR Host Receive Current Descriptor Address.
The EMAC_DMA_RXDSC_CUR.ADDR bit field points to the start address of the
current Receive Descriptor read by the DMA. Pointer updated by DMA during
operation. Cleared on Reset.

Table 21-174: EMAC_DMA_TXBUF_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

ADDR Host Transmit Current Buffer Address.
The EMAC_DMA_TXBUF_CUR.ADDR bit field points to the current Transmit Buffer
Address being read by the DMA. Pointer updated by DMA during operation. Cleared
on Reset.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 21–221

Figure 21-144: EMAC_DMA_RXBUF_CUR Register Diagram

Table 21-175: EMAC_DMA_RXBUF_CUR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

ADDR Host Receive Current Buffer Address.
The EMAC_DMA_RXBUF_CUR.ADDR bit field points to the current Receive Buffer
address being read by the DMA. Pointer updated by DMA during operation. Cleared
on Reset.

ETHERNET MEDIA ACCESS CONTROLLER (EMAC)
ADSP-CM40X EMAC REGISTER DESCRIPTIONS

21–222 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–1

22 Serial Peripheral Interface (SPI)

The Serial Peripheral Interface is an industry-standard synchronous serial link that supports communica-
tion with multiple SPI compatible devices. The baseline SPI peripheral is a synchronous, four-wire inter-
face consisting of two data pins, one device select pin, and a gated clock pin. With the two data pins, it
allows for full-duplex operation to other SPI compatible devices. An additional two (optional) data pins
are provided to support quad SPI operation. Enhanced modes of operation such as flow control, Fast Mode
and dual-I/O mode (DIOM) are also supported. Moreover, a direct memory access (DMA) mode allows
for transferring several words with minimal CPU interaction.

With a range of configurable options, the SPI ports provide a glueless hardware interface with other SPI-
compatible devices in master mode, slave mode, and multimaster environments. The SPI interface
includes programmable baud rates, clock phase, and clock polarity. It can operate in a multi-master envi-
ronment by interfacing with several other devices, acting as either a master device or a slave device. In a
multi-master environment, the SPI interface uses open drain outputs to avoid data bus contention. The
flow Control features enable slow slave devices to interface with fast master devices by providing a SPI
Ready pin which flexibly control the transfers.

SPI Features

The SPI module supports the following features:

• Full-duplex, synchronous serial interface

• Supports 8, 16 and 32-bit word sizes

• Programmable baud rate, clock phase and polarity

• Programmable inter-frame latency

• Flow control

• Support for Fast, DIOM and Quad SPI enhanced modes

• Independent receive and transmit DMA channels

• Burst transfer mode for non-DMA write accesses

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SPI Functional Description

The following sections provide functional descriptions of the SPI:

• ADSP-CM40x SPI Register List

• ADSP-CM40x SPI Interrupt List

• ADSP-CM40x SPI Trigger List

• SPI Block Diagram

The SPI is essentially a shift register that serially transmits and receives data bits to/from other SPI devices.
During an SPI transfer, data is simultaneously transmitted (shifted out serially) and received (shifted in
serially). A serial clock line synchronizes shifting and sampling of the information on the two serial data
lines.

During a data transfer, one SPI system acts as the link master which controls the data flow, while the other
system acts as the slave, which has data shifted into and out of it by the master. Different devices can take
turn being masters, and one master may simultaneously shift data into multiple slaves (broadcast mode).
However, only one slave may drive its output to write data back to the master at any given time. This must
be enforced in the broadcast mode, where several slaves can be selected to receive data from the master,
but only one slave can be enabled to send data back to the master.

SPI supports enhanced modes of operation like Fast Mode, DIOM and Quad-SPI, as well as providing
optional flow control. In Fast Mode, received data is sampled on the transmit edge instead of the standard
receive edge, thus enabling a full-cycle path for the received data. In DIOM, both MOSI and MISO are
configured as input or output pins, and two bits are shifted in or out on each receive or transmit edge. In
Quad-SPI mode, SPI_D3:0 are configured as input or output pins and four bits are shifted in or out on each
receive or transmit edge. Flow control can be used by a slower slave to stall a faster master device.

The SPI can be used in a single master as well as multi-master environment. The SPI_MOSI, SPI_MISO, and
the SPI_CLK signals are all tied together in both configurations. SPI transmission and reception may be
enabled simultaneously or individually, depending on SPI_RXCTL and SPI_TXCTL settings. In Broadcast
mode, several slaves can be enabled to receive, but only one slaves must be in transmit mode and driving
the SPI_MISO line.

ADSP-CM40x SPI Register List

The serial peripheral interface SPI provides a full-duplex, synchronous serial interface, which supports
both master/slave modes and multi-master environments. The SPI's baud rate and clock phase/polarities
are programmable, and it has integrated DMA channels for both transmit and receive data streams. A set
of registers govern SPI operations. For more information on SPI functionality, see the SPI register descrip-
tions.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–3

Table 22-1: ADSP-CM40x SPI Register List

Name Description

SPI_CTL Control Register

SPI_RXCTL Receive Control Register

SPI_TXCTL Transmit Control Register

SPI_CLK Clock Rate Register

SPI_DLY Delay Register

SPI_SLVSEL Slave Select Register

SPI_RWC Received Word Count Register

SPI_RWCR Received Word Count Reload Register

SPI_TWC Transmitted Word Count Register

SPI_TWCR Transmitted Word Count Reload Register

SPI_IMSK Interrupt Mask Register

SPI_IMSK_CLR Interrupt Mask Clear Register

SPI_IMSK_SET Interrupt Mask Set Register

SPI_STAT Status Register

SPI_ILAT Masked Interrupt Condition Register

SPI_ILAT_CLR Masked Interrupt Clear Register

SPI_RFIFO Receive FIFO Data Register

SPI_TFIFO Transmit FIFO Data Register

SPI_MMRDH Memory Mapped Read Header

SPI_MMTOP SPI Memory Top Address

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x SPI Interrupt List

ADSP-CM40x SPI Trigger List

Table 22-2: ADSP-CM40x SPI Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

41 SPI0_ERR SPI0 Error LEVEL

42 SPI1_ERR SPI1 Error LEVEL

43 SPI2_ERR SPI2 Error LEVEL

71 SPI0_STAT SPI0 Status LEVEL

72 SPI0_TXDMA SPI0 TX DMA Channel Transfer Complete LEVEL 2

73 SPI0_RXDMA SPI0 RX DMA Channel Transfer Complete LEVEL 3

81 SPI1_STAT SPI1 Status LEVEL

82 SPI1_TXDMA SPI1 TX DMA Channel Transfer Complete LEVEL 8

83 SPI1_RXDMA SPI1 RX DMA Channel Transfer Complete LEVEL 9

84 SPI2_TX SPI2 TX Channel (non-DMA) Transfer
Complete

LEVEL

85 SPI2_RX SPI2 RX Channel (non-DMA) Transfer
Complete

LEVEL

98 SPI2_STAT SPI2 Status LEVEL

Table 22-3: ADSP-CM40x SPI Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

28 SPI0_TXDMA SPI0 TX DMA Channel Transfer Complete PULSE/EDGE

29 SPI0_RXDMA SPI0 RX DMA Channel Transfer Complete PULSE/EDGE

30 SPI1_TXDMA SPI1 TX DMA Channel Transfer Complete PULSE/EDGE

31 SPI1_RXDMA SPI1 RX DMA Channel Transfer Complete PULSE/EDGE

Table 22-4: ADSP-CM40x SPI Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

20 SPI0_TXDMA SPI0 TX DMA Channel Transfer Start

21 SPI0_RXDMA SPI0 RX DMA Channel Transfer Start

22 SPI1_TXDMA SPI1 TX DMA Channel Transfer Start

23 SPI1_RXDMA SPI1 RX DMA Channel Transfer Start

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–5

SPI Block Diagram

The figure below illustrates the block diagram of the SPI module. The module is comprised of three
primary parts:

• SPI core contains the receive and transmit FIFOs and their associated shift registers.

• Control blocks contain the synchronizer and logic to control the data flow through the data pipelines.

• Register block.

Figure 22-1: SPI Controller Block Diagram

Transfer Protocol

The SPI module implements two channels that are independent of each other. These channels are
controlled by the SPI_RXCTL and SPI_TXCTL dedicated control registers. Except in dual and quad modes,
both channels may be enabled and used simultaneously.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The SPI protocol supports four different combinations of serial clock phase and polarity. These combina-
tions are selected through the SPI_CTL.CPOL and SPI_CTL.CPHA bits.

The figures below demonstrate the two basic transfer formats as defined by the CPHA bit. Two waveforms
are shown for SPI_CLK—one for SPI_CTL.CPOL=0 and the other for SPI_CTL.CPOL=1. The diagrams may
be interpreted as master or slave timing diagrams since the SPI_CLK, SPI_MISO and SPI_MOSI pins are
directly connected between the master and the slave. The SPI_MISO signal is the output from the slave
(slave transmission), and the SPI_MOSI signal is the output from the master (master transmission). The
SPI_CLK signal is generated by the master, and the SPI_SS signal is the slave device select input to the slave
from the master. The diagrams represent an 8-bit transfer (SPI_CTL.SIZE=0) with the MSB first (SPI_
CTL.LSBF=0). Any combination of the SPI_CTL.SIZE and SPI_CTL.LSBF bits is allowed. For example, a
16-bit transfer with the LSB first is another possible configuration.

The clock polarity and the clock phase should be identical for the master device and the slave device
involved in the communication link. The transfer format from the master may be changed between trans-
fers to adjust to various requirements of a slave device.

The SPI_CTL.ASSEL bit determines if the SPI_SS line is controlled by the SPI hardware or by software.
When SPI_CTL.ASSEL=1, the slave select line must be set to the polarity set in the SPI_CTL.SELST field
between each serial transfer. The actual behavior of SPI_SS also depends on the parameters programmed
into the SPI_DLY register. This is controlled automatically by the SPI hardware logic. When SPI_CTL.
ASSEL=0, SPI_SS may either remain active between successive transfers or be inactive. This must be
controlled by the software via manipulation of the SPI_SLVSEL register.

The figures below illustrate the case when SPI_CTL.ASSEL = 1 and the SPI_SS line is inactive between
frames. If ASSEL = 0, the SPI_SS line may remain active between frames; however, the first bit will only be
driven when an active transition of SPI_CLK occurs.

Figure 22-2: SPI Transfer Protocol for CPHA=0

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–7

Figure 22-3: SPI Transfer Protocol for CPHA=1

Clock Considerations

The SPI_CLK signal is a gated clock that is only active during data transfers, for the duration of the trans-
ferred word. In normal mode, the number of active edges is equal to the number of bits to be transmitted
or received. In dual-I/O mode it is half of the number of bits to be transmitted or received, and in quad-
SPI mode it is one-fourth of the number. The clock rate can be as high as the SCLK rate, and both even and
odd dividers from SCLK are supported. For master devices, the clock rate is determined by the SPI_CLK
register value, whereas this value is ignored for slave devices.

When the SPI controller is a master, SPI_CLK is an output signal. Conversely, when the SPI controller is a
slave, SPI_CLK is an input signal. Slave devices ignore the SPI clock if the slave select input is driven inac-
tive. The SPI_CLK signal is used to shift out and shift in the data driven onto the SPI_MISO and SPI_MOSI
lines. The data is always shifted out on one edge of the clock (the active edge) and sampled on the opposite
edge of the clock (the sampling edge). Clock polarity and clock phase relative to data are programmable
through the SPI_CTL register and define the transfer format.

Controlling Delay Between Frames

The figure below illustrates SPI timing with SPI_DLY.LEADX and SPI_DLY.LAGX programming. The LAGX
controls the timing between the Slave Select (SPI_SEL) assertion and the first SPI_CLK edge, while LEADX
controls the timing between the last SPI_CLK edge and de-assertion of SPI_SEL. The lead and lag timing
can be extended by 1 SPI_CLK duration to ease timing restrictions on the slave device.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 22-4: SPI Timing with Lead and Lag Programming (independent of SPI_CTL.CPHA setting)

The figure below illustrates SPI timing with STOP programming which is used to insert multiples of SPI_
CLK period delays between transfers. The SPI_SEL line is deasserted for the duration specified in the SPI_
DLY.STOP field, assuming the SPI_CTL.SELST bit is configured for de-assertion between transfers.

If SPI_DLY.STOP is programmed to zero, the master operates in a continuous mode, resulting in immediate
start of the second word after the last bit is transferred from the first word. During this mode of operation,
the slave select line is continuously asserted.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–9

Figure 22-5: SPI Timing with SPI_DLY.STOP Programming (Independent of SPI_CTL.CPHA Setting)

When SPI_DLY.STOP is zero and initial conditions for a transfer are not met, the interface pauses before
the next transfer. During this pause, the state of the slave select pin is determined by the SPI_CTL.SELST
bit, and the SPI_DLY.LEAD and SPI_DLY.LAG bits determine the timing between SPI_CLK edges and the
slave select line.

Flow Control

In Master mode, the SPI_RDY pin acts as an input signal and should be driven by the slave device. SPI_RDY
can be de-asserted by the slave to stop the master from initiating any new transfer. If SPI_RDY is de-
asserted in the middle of a transfer, the current transfer will continue, and the next transfer will not start
unless the slave asserts the SPI_RDY signal. Whenever the slave de-asserts SPI_RDY and stalls the master,
the SPI controller goes into a waiting state, and the SPI_STAT.FCS bit is set. When the slave asserts SPI_
RDY, the SPI controller resumes operation, and the SPI_STAT.FCS bit is cleared.

In Slave mode, the SPI_RDY pin acts as an output signal. Flow control can be configured on either the TX
channel or the RX channel. This is controlled by the SPI_CTL.FCCH bit. If flow control is configured on
the TX channel, as the SPI_TFIFO status nears the empty condition, SPI_RDY is de-asserted. If flow control
is configured on the RX channel, as the SPI_RFIFO status nears the full condition, SPI_RDY is de-asserted.
The FIFO status at which SPI_RDY de-assertion should take place can be controlled by the SPI_CTL.FCWM
bits. Note that flow control in Slave mode is purely based on the FIFO status and does not depend on the
word counters.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 22-6: SPI Flow Control Timing in Master Mode.

Slave Select Operation

If the SPI is in slave mode, SPI_SS acts as the slave select input. When SPI is enabled as a master, SPI_SS
can serve as an error detection input for the SPI in a multi-master environment. The SPI_CTL.PSSE bit
enables this feature. When SPI_CTL.PSSE=1, the SPI_SS input is the master mode error input. Otherwise,
SPI_SS is ignored.

The SPI_SS signal is an active-low signal and should be asserted during the transfer by the master. It can
be deasserted or remain asserted between transfers. When SPI_SS is deasserted, SPI_CLK and inputs are
ignored, and outputs are three-stated.

The slave select bits (SPI_SLVSEL.SSE1 – SPI_SLVSEL.SSEL7) are used in a multiple-slave SPI environ-
ment. For example, if there are eight SPI devices in the system including a processor master, the master

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–11

processor can support the SPI mode transactions across the other seven devices. This configuration
requires only one master processor in this multi-slave environment.

For example, assume that the processor's SPI is the master. The SPI_SLVSEL.SSE1 – SPI_SLVSEL.SSEL7
bits on the processor can be connected to the slave select pin of each slave device. In this configuration, the
slave select bits can be used in three ways. In cases 1 and 2, the processor is the master and the seven micro
controllers/peripherals with SPI interfaces are slaves. The processor can do one of the following:

1. Transmit to all seven SPI devices at the same time in a broadcast mode. Here, all slave select bits are set.

2. Receive and transmit from one SPI device by enabling only one slave SPI device at a time.

3. If all the slaves are also processors, then the requester can receive data from only one processor (enabled
by clearing the SPI_CTL.EMISO bit in the six other slave processors) at a time and transmit broadcast
data to all seven at the same time. This EMISO feature may be available in some other micro controllers.
Therefore, it is possible to use the EMISO feature with any other SPI device that includes this function-
ality.

Figure 22-7: Single-Master, Multiple-Slave Configuration

Beginning and Ending a Non-DMA SPI Transfer

The start and finish of a non-DMA SPI transfer depend on the following settings.

1. Whether the device is configured as a master or a slave.

2. The state of the SPI_CTL.ASSEL bit, which selects between hardware and software control over SPI_
SLVSEL.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

When SPI_CTL.CPHA=0, the enabled slave select outputs are driven active. However, the SPI_CLK signal
remains inactive for the first half of the first cycle of SPI_CLK. For a slave with SPI_CTL.CPHA=0, the
transfer starts as soon as the SPI_SS input goes low.

When SPI_CTL.CPHA=1, a transfer starts with the first active edge of SPI_CLK for both slave and master
devices. For a master device, a transfer is considered finished after it sends the last data and simultaneously
receives the last data bit. A transfer for a slave device ends after the last sampling edge of SPI_CLK. If SPI_
CTL.ASSEL=0, the hardware maintains responsibility for toggling SPI_SS between frames. If SPI_CTL.
ASSEL=1, software controls the SPI_SS line and may keep it active between frames.

The SPI_STAT.RFE bit defines when the receive buffer can be read, indicating that SPI_RFIFO is not
empty. The SPI_STAT.TFF bit defines when the transmit buffer can be written, indicating that the SPI_
TFIFO is not full. The end of a single word transfer occurs when the SPI_STAT.RFE bit is cleared, indicating
that a new word has just been received and written into the receive FIFO. The SPI_STAT.RFE bit remains
cleared as long as the receive FIFO has valid data.

To maintain software compatibility with other SPI devices, the SPI_STAT.SPIF bit is also available for
polling. This bit may have a slightly different behavior from that of other commercially available devices.

In master mode with the SPI_CTL.ASSEL bit cleared, software should manually assert the required slave
select signal before starting the transaction. After all data has been transferred, software typically releases
the slave select line.

When the receive or transmit word counters are enabled in the SPI_TXCTL or SPI_RXCTL registers, a finish
interrupt is generated at the end of the transfer to signal the end of all transfers relating to that transaction.

Transmit Operation in Non-DMA Mode

Transmit operation on non-DMA mode is enabled through the SPI_TXCTL.TEN bit. Transmit operation
can be enabled independently from receive operation, and the transmit channel can become the initiating
channel based on the SPI_TXCTL.TTI setting.

Transmit underrun is not possible in this mode, as no new transfer would be initiated unless the transmit
FIFO is empty (in the case that SPI_TXCTL.TTI=1). A receive overflow is detected when data from a new
frame transfer replaces older data in a full receive FIFO. This can occur if SPI_TXCTL.TTI=1 and the
receive channel is enabled in a non-initiating capacity.

A SPI transmit interrupt is signalled once the transmit channel has been enabled and the transmit FIFO is
not full. The frequency of the interrupt is controlled by the SPI_TXCTL.TDR setting.

Receive Operation in Non-DMA Mode

Receive operation on non-DMA mode is enabled through the SPI_RXCTL.REN bit. Receive operation can
be enabled independently from transmit operation, and the receive channel can become the initiating
channel based on the SPI_RXCTL.RTI bit setting.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–13

Receive overflow is not possible in this mode, as no new transfer would be initiated when the receive FIFO
is full (in the case of SPI_RXCTL.RTI=1). A transmit underrun can occur (SPI_TXCTL.TDU bit) if no valid
data is in the SPI_TFIFO register when a transfer is initiated. This can occur if SPI_RXCTL.RTI=1 and the
transmit channel is enabled in a non-initiating capacity.

A SPI receive interrupt is signaled once the receive channel has been enabled and there is data waiting to
be read. The frequency of the interrupt is controlled by the SPI_RXCTL.RDR bit setting.

Dual I/O Mode

In dual I/O mode, the SPI_MISO and SPI_MOSI pins are configured to operate in the same direction which
doubles bandwidth. The order of bits on the pins are determined by the SPI_CTL.SOSI bit which, when
set, sends the first bit on the SPI_MOSI pin and the second bit on the SPI_MISO pin. If the SPI_CTL.SOSI
bit is cleared, the order is reversed. Since dual I/O mode uses both pins to transmit or receive data, only
one channel can be enabled, either transmit or receive. Flow control through the SPI_RDY pin is supported.
Interrupt generation is unaffected by dual I/O mode. However, the gap between successive interrupts is
reduced, since the individual transfer latency is halved.

Changing to Quad SPI mode should be done when the SPI is in a quiescent state.

Figure 22-8: Dual I/O Mode Transfer Protocol for CPHA=0, SOSI=1, 8-Bit Transfer, LSBF=0.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 22-9: Dual I/O Mode Transfer Protocol for CPHA=1, SOSI=0, 8-Bit Transfer, LSBF=0.

Quad I/O Mode

In quad SPI mode, the SPI_MISO and SPI_MOSI pins, in tandem with the SPI_D2 and SPI_D3 pins, are
configured to operate in the same direction. The order of bits on the pins are determined by the SPI_CTL.
SOSI bit which, when set, sends the first bit on the SPI_MOSI pin, the second bit on the SPI_MISO pin, the
third bit on the SPI_D2 pin and the fourth bit on the SPI_D3 pin. If the SPI_CTL.SOSI bit is cleared, the
order is reversed. Since quad SPI mode uses all four pins to transmit or receive data, only one channel can
be enabled, either transmit or receive. Flow control through the SPI_RDY pin is supported. Interrupt gener-
ation is unaffected by quad SPI mode.

Changing to quad SPI mode should be done when the SPI is in a quiescent state.

While using Dual or Quad I/O mode for communicating with SPI Flash devices, it is advised to program
the SPI_CTL.CPHA and the SPI_CTL.CPOL bits =1. This programming is to avoid bus contention during
read operations, because the SPI flash device starts driving out the bits immediately after dummy cycles in
read header.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–15

Figure 22-10: Quad Mode Timing for CPHA=0, SOSI=1, 16-Bit Transfer, LSBF=0.

NOTE: Quad SPI 8-bit transfer is not supported in Slave Continuous mode of operation with a SCLK:SPI_
CLK ratio less than 1:2. A minimum of 2 SCLK cycles is required between transfers in 8-bit quad SPI
slave mode with SCLK:SPI_CLK ratio less than 1:2.

Fast Mode

Fast Mode is similar to normal mode of operation when transmitting. When receiving, data is sampled at
the next transmit edge allowing a full cycle of timing in the receive direction. This mode is valid in master
mode operation only. When the SPI is operating in fast mode, the slave should drive the data for one full
cycle.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 22-11: SPI Transfer Protocol in Fast Mode for SPI_CTL.CPHA = 0

Figure 22-12: SPI Transfer Protocol in Fast Mode for SPI_CTL.CPHA = 1

SPI Memory-Mapped Mode

The SPI supports direct memory mapped read accesses of a SPI memory device. This memory mapped
access mode allows direct execution of instructions from a SPI memory without the need of a low-level
software driver. All overhead tasks such as transmission of the read header, pin turnaround timing and
receive data sizing are handled in hardware. The memory mapped access mode is enabled by setting the
SPI_CTL.MMSE (memory mapped SPI enable) bit. Additional programming flexibility is provided in the
memory mapped read header register (SPI_MMRDH) to support and allow compatibility with a wide range
of SPI memory devices.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–17

This memory mapped mode differs from non-memory mapped mode in the following way:

• In non-memory mapped in order to access the SPI memory devices, one should send command,
address, dummy bytes by directly accessing transmit data buffer (TFIFO) of SPI module by either in
code mode or using peripheral DMA. After setting up the SPI memory device for read/write opera-
tions, the data can be accessed in core mode (by directly accessing TFIFO or RFIFO registers of SPI) or
in DMA mode. This may also require polling the status bits of memory device, which adds core over-
head. In such cases, executing directly from flash is not possible.

• The memory mapped mode of processor SPI addresses some of these concerns by providing a dedi-
cated hardware for SPI memory read accesses. In this mode, communication to a SPI memory device
is automated such that the memory it contains is accessible directly through reads of processor address
space. The read accesses can be code or data accesses in core mode or using MDMA. This allows code
to be directly executed from SPI memory devices (true eXecute-In-Place operations); and the contents
can be cached to experience good performance. It is not required to access the SPI Data Buffer registers
or poll for any status bits. However, the hardware does not support read accesses by other peripheral
DMA’s in the SPI memory region. It also does not support any kind of write operations.

The following table summarizes the types of operations possible in SPI non-memory mapped mode and
in memory mapped mode.

CAUTION: Some variants of ADSP-CM40x processor have integrated SPI flash memory. This internal
flash memory is connected to a dedicated SPI module, SPI2. It does not provide any peripheral
DMA. So, the internal SPI memory should be programmed in non-memory mapped mode
using core mode of SPI.

Because the SPI memory write operations are not supported and accessing SPI TFIFO and RFIFO
Data registers is not allowed by SPI memory mapped hardware, the SPI should be programmed or
configured in non-memory mapped mode.

SPI Operations SPI Non-Memory Mapped Mode SPI Memory Mapped Mode

Core data write Y N

Core data read Y Y

Code fetch: Execute-In-Place (XIP) N Y

Read/Write accesses using SPI Peripheral
DMA

Y N

Read/Write accesses by other peripheral
DMA’s

N N

MDMA read N Y

MDMA write N N

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Memory-Mapped Description of Operation

The SPI memory mapped mode is enabled by setting SPI_CTL.MMSE bit. When enabled, the SPI (if ready)
accepts the read requests through a dedicated on-chip slave interface. This dedicated interface is driven by
the memory subsystem master through the SCB fabric.

In a typical scenario, the memory subsystem master issues read requests to the fabric, and the fabric routes
these requests to slave port of SPI peripheral. The master describes the read access by number of parame-
ters such as starting address, transfer size, burst type. The SPI responds to this read access request, if it is
ready for new transfer, by loading the opcode, specified number of address bytes and optional mode byte
into the transmit FIFO (TFIFO). If both transmit and receive channels of SPI are enabled with Transmit
Transfer initiation bit set (SPI_TXCTL.TTI =1) and receive initiation bit zero (SPI_RXCTL.RTI =0), then
SPI memory state machine begins.

The SPI Memory read sequence starts with the assertion of SPI_SEL1 (If the SPI memory state machine is
in reset state, it will look for a command). The SPI hardware then sends the 8-bit Read command specified
(which can be optionally skipped), followed by SPI memory read address. Then a dummy period is
inserted, in which optionally a mode byte is sent and the pins are held or three-stated during the dummy
clocking period.

NOTE: This read header is transmitted over the SPI standard protocol pins (SPI_CLK, SPI_MOSI, SPI_
MISO, SPI_SEL1) or over the extended SPI protocol pins (SPI_CLK, SPI_MOSI, SPI_MISO, SPI_D2,
SPI_D3, SPI_SEL1), based on SPI_MMRDH.CMDPINS, SPI_MMRDH.ADRPINS, and SPI_CTL.MIOM bit
settings (SPI memory devices usually supports communication in MSB bit first mode. In dual
mode, typically SPI_MISO is used as IO1 and SPI_MOSI as IO0; whereas in Quad mode, typically
SPI_D3 pin is used as IO3, SPI_D2 as IO2, SPI_MISO as IO1 and SPI_MOSI as IO0).

When all IO data pins are three-stated, The SPI continues clocking the SPI memory device (which drives
out the data bits at the addressed location) until all bytes have been received. The SPI hardware reads the
data as configured by the SPI_CTL.MIOM bit setting. On reception of the last byte, the SPI typically de-
asserts the SPI_SEL1 to prepare for the next requested read header.

Programs must ensure that the opcode sent is consistent with multiple I/O programming and also ensure
that the parameters specified in the memory-mapped read header register are with timings of flash read
access.

The following flow-chart explains how the fields of SPI_MMRDH register determines the read header while
initiating the transfers in memory mapped mode (it excludes the merge bit settings).

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–19

Figure 22-13: SPI Memory-Mapped Register Operations Flow

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Memory-Mapped Architectural Concepts

In memory-mapped mode, the SPI accepts read requests through a dedicated on-chip slave interface. The
SPI (if ready) accepts these requests and begins the process of assembling the read header based on access
attributes described in both the SPI_MMRDH register and the internal bus request itself. After the read
header transmission is complete, a pin turnaround period is timed and the receiver is enabled. The SPI
continues clocking the SPI memory device until all bytes have been received.

To accommodate different memory devices with different read timing, additional capabilities have been
added to the SPI memory-mapped hardware. These capabilities include additional mode bits, flexible
dummy period timing and three-state control. The memory-mapped read header register (SPI_MMRDH) is
used to configure these capabilities and the bits are described in the following table. The Memory-Mapped
Protocol is shown in the following figure.

Table 22-5: Memory Mapped Read Header (MMRDH) register

Configuration bits Description

OPCODE [8] Read Command Opcode

CMDPINS [1] No of pins used for sending Command read

CMDSKIP [1] Command skip enable (for XIP operation)

ADRSIZE [3] No of Address bytes for Read address

ADRPINS [1] No of pins used for sending Address

DMYSIZE [3] No of Dummy bytes

MODE [8] Mode field (control byte to be driven during dummy period)

TRIDMY [2] Three-state timing during dummy period

WRAP [1] Enable Wrapping burst

MERGE [1] Enable Merging of two successive transfers

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–21

Figure 22-14: Memory-Mapped Protocol

OPCODE (Read command opcode):

In response to a read request of SPI memory, the value placed in this field is the first byte transmitted as
part of the read header immediately following the reassertion of the SPI_SELn signal. This 8-bit value is
interpreted by the SPI memory as a Read command. Any 8-bit read opcode whose timing is compliant with
processor SPI and features provided by memory-mapped hardware is allowed. The most common are
standard Read (0x03), Fast Read (0x0B), Fast Read Dual Output (0x3B), Fast Read Dual I/O (0x6B), Fast
Read Quad Output (0xBB), Fast Read Quad I/O (0xEB), Word Read Quad I/O (0xE7), Octal Word Read
Quad I/O (0xE3).

Opcode is sent by the SPI peripheral without interpretation.

CMDPINS (Number of pins used for sending read command opcode)

This bit specifies the number of pins to be used for command transmission. This bit must be set consistent
with expectations established by the read command. SPI hardware does not interpret the OPCODE, but
rather relies on this bit to specify behavior.

If SPI_MMRDH.CMDPINS bit =0, the command is sent on single a SPI_MOSI pin of the SPI and 8 SPI clocks
are used to transmit the command.

If SPI_MMRDH.CMDPINS bit =1, the number of pins used is determined by the multiple I/O configuration
bit field SPI_CTL.MIOM. If SPI_CTL.MIOM=1 (Dual mode), the command is sent on SPI_MOSI and MISO
pins of SPI and 4 SPI clocks are used to send command. If SPI_CTL.MIOM=2 (Quad mode), the command

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

is sent on the SPI_MOSI, SPI_MISO, SPI_D2 and SPI_D3 pins of the SPI and the send command is
completed within 2 SPI clocks.

CMDSKIP (Command opcode skip enable)

This bit determines whether the command is sent as part of the read header (SPI_MMRDH.CMDSKIP=0) or
skipped (SPI_MMRDH.CMDSKIP=1). Command skip mode is useful for supporting XIP (Execute-In-Place)
operation where only the address is sent and the same read command is assumed. The SPI flash device
must be primed with an initial read command before the (SPI_MMRDH.CMDSKIP bit is set.

ADRSIZE (Number of address bytes for read address)

This 3-bit field determines how many address bytes should be transmitted as part of the read header. The
number of address bytes is determined by the particular SPI memory device. The read address is sent
immediately following the transmission of the opcode. The number of bytes can be 1, 2, 3 or 4 as the
processor can generate 32-bit absolute addresses. The address sent to a connected SPI memory device is
an echo of the read address received by the SPI peripheral’s SCB slave port. Typically SPI flash memory
devices require a 3-byte address.

ADRPINS (Number of pins used for sending address)

Similar to the SPI_MMRDH.CMDPINS bit for sending opcode, this bit specifies the number of pins to be used
for address transmission.

If this bit =0, address is sent on a single SPI_MOSI pin. If this bit =1, the address is sent on multiple pins as
determined by the multiple I/O configuration field of SPI control register (SPI_CTL.MIOM).

DMYSIZE (Number of dummy bytes)

When operating at a high clock frequency in multi-IO modes, most flash devices require some dummy
clocks after address bits. These dummy clock cycles allow the device’s internal circuits additional time for
setting up the initial address. These bits specify the number of bytes separating address transmission and
read data return.

The number of dummy cycles required varies per manufacturer, the read command used, and in some
cases, the SPI access time. The SPI hardware allows dummy cycles to be programmed in bytes and the
number of dummy clock cycles is dependent upon the number of pins used to transmit the address (SPI_
MMRDH.ADRPINS) as shown in the table below.

Table 22-6: Pins Used to Transmit the Address (ADRPINS)

Dummy clock cycles

DMYSIZE<2:0>
 (ADRPINS=0, MIOM=x)

Dummy bytes elapse over 1-pin

(ADRPINS=1, MIOM=1)
Dummy bytes elapse over 2-

pins

 (ADRPINS=1, MIOM=2)
Dummy bytes elapse over 4-

pins

000 0 0 0

001 8 4 2

010 16 8 4

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–23

This dummy clocking period allows the mode bits to be sent, the pins to be three-stated and the pins to be
turned around in preparation for the receive data.

MODE (Mode bits)

The value placed in this field is the last byte transmitted as part of the read header. It specifies the leading
byte to transmit during the interval of time specified by the SPI_MMRDH.DMYSIZE bits after the completion
of the address phase. Mode bits are sent using the same number of pins which were used to transmit the
address (configured using the SPI_MMRDH.ADRPINS bit).

This first byte, or a portion of it, is interpreted as mode bits when certain opcodes are used in conjunction
with certain SPI memory devices. This 8-bit value may be uniquely interpreted by each vendor and
different devices from a specific vendor. Some vendors use this field to enable/disable opcode skipping
(XIP) or to describe a wrapping burst type access. Typically this field is programmed with a default value
of either 0x00 or 0xFF which has no impact on the instruction.

Once these mode bits are sent, the SPI output pins are held in their final state until the conclusion of all
dummy byte periods, unless three-stating of outputs is specified with the SPI_MMRDH.TRIDMY bits.

TRIDMY (Three-state dummy timing)

In most SPI flash read operations, after transmitting the read header, the IO data pins should be three-
stated the before the flash starts to drive the data bits out.

The SPI_MMRDH.TRIDMY bit field specifies whether and when output pins are three-stated during the
interval of time specified by the SPI_MMRDH.DMYSIZE, as shown in the below table. During the pin turn-
around time, programs may three-state the output pins immediately after the address bytes are sent, after
the mode bytes, or for the brief period before the SPI flash device starts sending the first byte of data.

011 24 12 6

100 32 16 8

101 40 20 10

110 48 24 12

111 56 28 14

Table 22-7: TRIDMY field and Three-State Period

TRIDMY<1:0> Three-State Period Start

00 Beginning of Dummy Period (MODE bits will not be sent)

01 After sending First Nibble of MODE byte

10 After sending MODE Byte

Table 22-6: Pins Used to Transmit the Address (ADRPINS) (Continued)

Dummy clock cycles

DMYSIZE<2:0>
 (ADRPINS=0, MIOM=x)

Dummy bytes elapse over 1-pin

(ADRPINS=1, MIOM=1)
Dummy bytes elapse over 2-

pins

 (ADRPINS=1, MIOM=2)
Dummy bytes elapse over 4-

pins

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

WRAP (Wrapping Enable):

When this bit is set, the SPI fetches the critical word first against the line base fetch first. For more infor-
mation refer to the Wrap section.

MERGE (Merging Enable):

When this bit is set, SPI hardware combines the two successive transfers. This increases the throughput
rate when accessing a large number of sequential memory locations. For more information refer to the
Merge section.

Memory-Mapped Read Accesses

The SPI hardware supports the most commonly used read operations.

• Two standard SPI reads (read and read fast), which use the unidirectional SPI_MOSI and SPI_MISO
pins in addition to SPI_SELn and SPI_CLK.

• Four extended SPI multiple I/O reads: dual output, quad output, dual I/O and quad I/O reads.

The following table and figures summarize the six types of read operations. Each read operation must be
programmed in a way that is compatible with the description given in the SPI flash data sheet.

Some memory devices also support word quad I/O read (0xE7) and octal quad I/O read (0xE3) operations
that require fewer dummy cycles compared to normal quad I/O read operations.

11 End of Dummy Period

Operation

Read
Command
(Opcode) CMDPIN ADRPIN DMYSIZE TRISTATE

Multiple I/O
Mode Data Pins

Read 0x03 1 1 zero No No 1

Fast Read 0x0B 1 1 Non-Zero Yes No 1

Dual Output
Read

0x3B 1 1 Non-Zero Yes Yes(IO0-1) 2

Quad Output
Read

0x6B 1 1 Non-Zero Yes Yes(IO0-3) 4

Dual I/O Read 0xBB 1, 2 2 Non-Zero yes Yes (IO0-1) 2

Quad I/O Read 0xEB 1, 4 4 Non-Zero yes Yes (IO0-3) 4

Table 22-7: TRIDMY field and Three-State Period (Continued)

TRIDMY<1:0> Three-State Period Start

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–25

Figure 22-15: SPI Flash Fast Read Sequence

Figure 22-16: SPI Flash Fast Read (Dual Output) Sequence

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 22-17: SPI Flash Fast Read (Dual I/O) Sequence

Figure 22-18: SPI Flash Quad Output Read Sequence

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–27

Figure 22-19: SPI Flash Quad I/O Read Sequence

Programs should enable the cache for the SPI memory mapped operations (CMODE and PEMODE bits
=0). The number of read data bytes, (N in the figures) is based on the following:

• For an instruction fetch by core (when in XIP mode); the number of instruction bytes to fetch depends
on instruction line (ILINE) bit field setting of the cache.

• For a data fetch by the core (data read), the number of data bytes to fetch depends on Data Line
(DLINE) field setting of cache.

ILINE = 0 = 32-bit instruction cache line N = 4 bytes

ILINE = 1 = 64-bit instruction cache line N = 8 bytes

ILINE = 2 = 128-bit instruction cache line N = 16 bytes

ILINE = 3 = 256-bit instruction cache line N = 32 bytes

DLINE = 0 = 32-bit data cache line N = 4 bytes

DLINE = 1 = 64-bit data cache line N = 8 bytes

DLINE = 2 = 128-bit data cache line N = 16 bytes

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Even though the minimum size of a memory-mapped data read transfer is 4-bytes, applications can fetch
a single byte or a 2-byte data (for example unsigned char or short access in C code). In this case, only the
required bytes are provided to the core and the other bytes are cached.

For more information about cache settings, refer to the Cache chapter.

The on-chip memory subsystem master provides a starting address for the burst and the SPI hardware
issues this address as part of the read header. The address provided is N-byte aligned. For example, if the
30th byte is to be read from SPI memory, then the typical address provided is 28 (0x0000_001C) for a 32-
bit cache line, 24 (0x0000_0018) for a 64-bit cache line, 16 (0x0000_0010) for a 128-bit cache line or 0
(0x0000_0000) for a 256-bit cache line.

The read data is returned to the memory subsystem in the order provided by the SPI memory. There may
be considerable delay for the expected data provided to the master. In order to minimize this delay, the
Wrap feature can be used where the memory subsystem provides the address of the critical word.

• For MDMA reads, the number of read data bytes (N) is always equal to 4 bytes. The MDMA read does
not depend on the cache setting. Programs should use the MSIZE field of the MDMA control register
as 1, 2 or 4 only. The address provided by the memory subsystem master to the SPI hardware is always
4-byte aligned.

Memory-Mapped High-Performance Features

I addition to automating the SPI memory read accesses, the Memory mapped hardware also provide some
features to improve SPI memory fetches, thereby increasing the system performance. These features are
described in the following sections.

Merged Read Accesses

It is common for the memory subsystem to fetch two or more cache lines from consecutive addresses (the
address sequencing is linear without any jumps). To take advantage of this situation, the SPI memory-
mapped hardware provides a feature called merging, which can be enabled by setting SPI_MMRDH.MERGE
bit and enabling the speculative fetch feature of the cache by clearing the NOSPEC bit of cache control
register.

When enabled, the hardware compares the address of an incoming read request to that of one actively
being serviced by SPI memory. It may decide to merge two accesses if the address for the second access is
just incremental. For example, if the first address of a 32-byte cache line fetch is 0x0000_0000 and the
second fetch is to address 0x0000_0020, then these two accesses can be merged. Merging increases effi-
ciency and overall fetch bandwidth by eliminating the read header for those accesses which just require
continuation of the SPI clock.

DLINE = 3 = 256-bit data cache line N = 32 bytes

DLINE = 0 = 32-bit data cache line N = 4 bytes

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–29

Wrap Around Accesses

Many SPI flash memory devices support wrapping which is used to enhance critical word fetching of cache
lines. In this mode the read address is automatically wrapped to the base of a cache line once the end of the
cache line is reached.

Wrap around accesses are enabled by setting the SPI_MMRDH.WRAP bit. In addition, critical word first
feature of the cache should also be enabled by clearing the M4P_CACHE_CFG.DLBF bit for data accesses and
the M4P_CACHE_CFG.ILBF bit for instruction fetch accesses.

The M4P_CACHE_CFG.DLBF and M4P_CACHE_CFG.ILBF bits must be set after placing the SPI memory
device in wrap mode. Some flash devices require programs to send a Set Wrap command to place the
device in wrap mode. Other flash devices provide a configuration register which should be programmed
to set the flash in wrap mode. Since the SPI memory-mapped hardware does not support any write oper-
ations to flash, this step should be performed in non-memory-mapped mode (SPI_CTL.MMSE=0) by
accessing the SPI registers. Programmers are required to set the wrap mode consistent with the chosen
cache line size as shown in following table.

Data access is limited to 8, 16 or 32-byte sections of flash page in wrap mode. During the read request to
the SPI memory-mapped hardware, the processor's memory subsystem master provides the address of a
critical word instead of the line base. The read data starts at the address specified in the instruction and
once it reaches the end boundary of the 8, 16, or 32-byte section the output automatically wraps around to
the beginning boundary to the line base address and the data fetch continues. The SPI SPI_SELn signal
does not need to be deasserted and the read header does not need to be resent to wrap to cache line base
when servicing misaligned cache fill requests.

The following table shows byte sequences in various wrap modes.

Table 22-8: Wrap Modes

Cache line size Wrap Mode Comments

4-byte Not applicable Usually flash does not support 4-byte wrapping.

8-byte 8-byte wrapping Read data wraps within an aligned 8-byte boundary starting from the specified
address.

16-byte 16-byte wrapping Read data wraps within an aligned 16-byte boundary starting from the specified
address.

32-byte 32-byte wrapping Read data wraps within an aligned 32-byte boundary starting from the specified
address.

Table 22-9: Byte Sequence in Wrap Modes

Starting Address
8-Byte Wrap (cache_line = 8

byte)
16-Byte Wrap (cache_line = 16

byte)
32-Byte Wrap (cache_line = 32

byte)

0 0-1-2- . . . -6-7 0-1-2- . . . -14-15 0-1-2- . . . -30-31

1 1-2- 3-. . . -7-0 1-2-3- . . . -14-15-0 1-2-3- . . . -30-31-0

7 7-0-1- . . . -5-6 7-8-9-. . . -14-15-0-1-. . .-5-6 7-8-9-. . . -30-31-0-1-. . .-5-6

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The burst with wrap feature allows applications to quickly fetch a critical address and then fill the cache
afterwards within a fixed length (8/16/32-byte) of data without issuing multiple read commands. Certain
applications can benefit from this feature to improve cache fill efficiency and overall system code execution
performance.

Using the merge and wrap feature together is not recommended. Using wrap bursts may unintentionally
disable merging (merging cannot occur for unaligned wrapping bursts). A wrap burst may start fetching data
words in the middle of the cache line and cannot be merged with the next access.

Execute-In-Place (XIP)

Execute-In-Place, most commonly known as XIP, allows software code to execute directly from a SPI flash
device rather than downloading the code and executing it out of RAM. XIP is a general term and can be
applied to fetching data as well.

The main difference between XIP mode and standard mode is that in XIP mode, after the SPI memory
device is selected (CS# =LOW), it does not decode the first input byte as command code, but rather as the
first part of a 3-byte address. In other words, the read header directly starts with address bytes. In standard
mode, the memory decodes the first input byte it receives as a command code.

The XIP mode dramatically reduces random access time for applications that require fast code execution
without shadowing the memory content on a RAM. The SPI memory-mapped hardware provides a
control bit, SPI_MMRDH.CMDSKIP to skip the command from read header.

Some SPI memory devices require their control register to be configured to enable the XIP mode of oper-
ation, which should be done in non-memory mapped mode of processor’s SPI operation. Typically, during
the dummy cycle period, the mode bits are used to confirm the XIP operation and the SPI_MMRDH.MODE
field should be set appropriately. A dummy memory-mapped access may be required before setting the
SPI_MMRDH.CMDSKIP bit.

For more details about how to configure SPI memories into XIP mode, refer to the device data sheet.

15 15-8-9- . . . -13-14 15-0-1- . . . -13-14 15-16- . . . -31-0-1- . . .-13-14

31 31-24-25-. . . .-29-30 31-16-17- . . . -29-30 31-0-1- . . . 29--30

Table 22-9: Byte Sequence in Wrap Modes (Continued)

Starting Address
8-Byte Wrap (cache_line = 8

byte)
16-Byte Wrap (cache_line = 16

byte)
32-Byte Wrap (cache_line = 32

byte)

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–31

Memory-Mapped Mode Error Status Bits

The SPI memory-mapped hardware provides bits in the SPI_STAT register to report errors. These bits are
provided for notification only and their state has no effect on SPI operations. The status register bits are
sticky and can be cleared by a W1C (write-1-to-clear) operation.

• Memory-Mapped Write Error (SPI_STAT.MMWE). This bit is set (=1) if an attempt is made to write
address space reserved for memory-mapped SPI memory. The SPI memory mapped hardware does not
support automated write access to SPI memory space.

• Memory-Mapped Read Error (SPI_STAT.MMRE). This bit is set (=1) if an attempt is made to read
address space reserved for memory-mapped SPI memory while memory mapping is disabled (SPI_
CTL.MMSE =0).

• Memory-Mapped Read Stall (SPI_STAT.RS). This bit is set (=1) if the SPI_RDY (flow control signal) pin
is asserted when SPI hardware flow control is enabled (SPI_CTL.FCEN =1).

• Memory-Mapped Access Error (SPI_STAT.MMAE). This bit is set (=1) if an attempt is made to access
either the Tx or Rx FIFO while memory-mapped access of SPI memory is enabled. In this case attempts
to communicate with the SPI device using legacy methods are blocked and receive fabric error
responses. Legacy methods include any direct access made to the Tx and Rx FIFOs, whether by DMA
or processor MMR.

• Memory-Mapped Write Error Mask (SPI_CTL.MMWEM) bit specifies whether an error response is
returned to the fabric on write attempts to address space that is reserved for memory-mapped SPI
memory reads. Regardless of whether or not a write error response is masked by this bit, the memory-
mapped write error (SPI_STAT.MMWE) sticky notification bit is still set.

NOTE: Unlike other bits in the SPI_STAT register, these memory-mapped mode error bits do not have
associated bits in the SPI interrupt mask (SPI_IMSK) and SPI Interrupt condition (SPI_ILAT) registers.

The memory-mapped top register (SPI_MMTOP) is used to specify the top limit of the SPI memory address.
The memory-mapped accesses to SPI memory addresses equal to or above this range are considered illegal
and are blocked and a bus error response is generated.

This register is useful to block the invalid SPI memory address accesses, especially as some SPI memory
vendors do not clearly specify (guarantee) that over-range address bits are ignored, (address spaces may
be wrapped).

Memory-Mapped Programming Guidelines

SPI Memory-mapped mode can be enabled by setting the SPI_CTL.MMSE bit. When enabled, the SPI inter-
face is forced to be consistent with SPI memory requirements regardless the settings of certain control bits.
The following tables specify typical settings for configuring the SPI in memory-mapped mode:

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 22-10: SPI Control (SPI_CTL) Register

Bits Typical values to set Description Comments

SPI_CTL.MSTR 1 Master mode enable

SPI_CTL.PSSE 0 Protected slave select enable

SPI_CTL.ODM 0 Open-Drain mode enable

SPI_CTL.CPHA-SPI_CTL.
CPOL

0-0 or 1-1 SPI mode of communication Flash dependent, usually SPI
flash supports mode-0
(CPHA=CPOL=0) and mode-3
(CPHA=CPOL=1)

SPI_CTL.ASSEL 1 Hardware Slave Select Pin
Control

SPI_CTL.SELST 1 Slave select asserted between
transfers

SPI_CTL.EMISO 1 MISO pin enable

SPI_CTL.SIZE 2 32-bit Transfer size

SPI_CTL.LSBF 0 MSB bit first mode Flash dependent, usually SPI
flash communicates in MSB bit
first mode

SPI_CTL.FCEN
SPI_CTL.FCCH
SPI_CTL.FCPL
SPI_CTL.FCWM

0 Hardware flow control related
bits

SPI_CTL.FMODE 1 FAST mode enable Typically set to 1 for full cycle
timing, 0 only works at low
speed

SPI_CTL.SOSI 0 Treat SPI_MOSI pin as IO0
pin.

Table 22-11: SPI Receive Control Register

Bits Typical values to set Description

SPI_RXCTL.REN 1 Receive channel enable

SPI_RXCTL.RTI 0 Receive Transfer initiation disable

SPI_RXCTL.RWCEN 0 Receive Word Counter disable

SPI_RXCTL.RDR 0 Receive Data Request disable

SPI_RXCTL.RDO 0 Discard incoming data if RFIFO is full

SPI_RXCTL.RRWM 0 Receive FIFO Regular watermark

SPI_RXCTL.RUWM 0 Receive FIFO Urgent watermark disable

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–33

The Multiple IO Mode (SPI_CTL.MIOM) bits are partially ignored:

• The command (opcode) is transmitted using either just one or the number of pins specified by the SPI_
CTL.MIOM bits, depending on SPI_MMRDH.CMDPINS bit setting.

• The address is then transmitted using either just one or the number of pins specified by the SPI_CTL.
MIOM bits, depending on SPI_MMRDH.ADRPINS bit setting.

• The data is always read with the number of pins specified by the SPI_CTL.MIOM bits.

NOTE: Note: The SPI module enable bits SPI_CTL.EN should be set at last after configuring all registers

Below are the programming guidelines for using the memory-mapped mode.

• The SPI memory-mapped hardware doesn’t check the flash status before initiating the access. It
assumes that SPI memory is always be able to respond to a read access. Care must be taken before
enabling memory-mapped mode (for example setting the SPI_CTL.MMSE bit) so that SPI flash is ready
for a read access. When using non-memory mapped mode, a write complete status can be examined
prior to enabling SPI in memory-mapped mode (Write in Progress bit in the SPI flash memory status
register). Also note that immediately after initial power-up, SPI memory devices may be inaccessible
until a vendor specified period.

• When SPI is enabled in memory-mapped mode, attempts to communicate with the SPI device using
legacy methods are blocked. Legacy methods include any direct access made to the transmit and/or
receive FIFOs, whether by initiated by DMA or processor MMR access.

Table 22-12: SPI Transmit Control Register

Bits Typical values to set Description

SPI_TXCTL.TEN 1 Transmit channel enable

SPI_TXCTL.TTI 1 Transmit Transfer initiation disable

SPI_TXCTL.TWCEN 0 Transmit Word Counter disable

SPI_TXCTL.TDR 0 Transmit Data Request disable

SPI_TXCTL.TDU 0 Send last word when TFIFO is empty

SPI_TXCTL.TRWM 0 Transmit FIFO Regular watermark

SPI_TXCTL.TUWM 0 Transmit FIFO Urgent watermark disable

Table 22-13: SPI DLY Control Register

Bits Typical values to set Description

Comments
see Flash data sheet for CS (for

example. SSEL) timing specs

SPI_DLY.LAGX 1 Extended LAG timing

SPI_DLY.LEADX 1 Extended LEAD timing

SPI_DLY.STOP 3 STOP bit between the transfers Can be set to 1 at lower SPI clock
frequencies.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• To use some of the features offered by SPI memory devices, programs my be required to first configure
the SPI memory device by setting its control word or sending some commands. Since SPI memory-
mapped hardware does not allow/support any kind of SPI write operations, the configuration should
be done in non-memory-mapped mode prior to enabling the memory-mapped mode.

• The memory-mapped hardware does not interpret the opcode, or it does not check the correctness of
timing that is specified in the SPI_MMRDH register for a particular opcode. Programs must set the fields
of the SPI_MMRDH register to be consistent with read type selected.

• When the core requests the data/code fetch, the memory-mapped transfer depends on cache settings.
The cache configuration register in the SPI memory device should be appropriately configured before
enabling memory-mapped mode. Some of the high performance modes like MERGE, WRAP and
transfer size depend on cache parameters.

• Read accesses made by MDMA do not use cache so do not depend on cache settings. The start address
specified in the MDMA_START_ADDR register should be the absolute address of SPI flash address.
Whereas, read accesses made by core (code/data fetch) go through the cache and depends on cache
settings. So, MEMX and/or MEMY registers of cache should be set to proper value before enabling
memory-mapped mode.

• SPI memory-mapped MDMA reads do not support wrapping. In case of MDMA reads, the DMA_
CONFIG.MSIZE field should be limited to 1 byte, 2bytes or 4-bytes.

• There may not be tool support to change the SPI memory-mapped Hardware setting or cache settings
on the fly to optimize the performance of code which accesses SPI memory in memory-mapped mode.
It is expected that user should program the SPI memory, SPI peripheral, and cache to one specific set
of control settings for the whole application. The user might do some profiling or benchmarking of
their actual application to find which setting works best.

Programming Example for Configuring SPI Memory Mapped Mode

Setting XIP for Quad I/O mode of micron N25Q32 SPI flash (assuming SPI memory device is connected
externally to SPI0 module):

Listing. Setting XIP mode (Volatile approach)
/* Configure the SPI Flash device for dummy cycles, XIP mode and Quad mode.
Dummy cycles can be programmed using bit[7:4] of volatile Configuration Register
of flash device in non-memory mapped mode of SPI. The dummy cycles field of SPI
memory mapped Read Header Register should be programmed appropriately.
The XIP can be programmed using bit[3] of same Volatile Configuration Register.
This bit should be cleared.
The Quad mode can be set using bit[7] of Enhanced Volatile Config Reg of flash.
This bit should be cleared.*/

/* configure the cache settings including MEMX or MEMY register settings. Refer
cache chapter for more details.*/

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–35

/* Enable the SPI module in memory mapped mode as shown in listing2. Make sure that
Mode bits are 0x00*/

/* Perform one Dummy access to SPI flash */
unsigned int* pSPI_MEM;
pSPI_MEM = (unsigned int*) 0x19000000;
int temp = *pSPI_MEM;

/* After the Dummy access, set the Command Skip bit of SPI Memory Mapped Read Header
register */
*pREG_SPI0_MMRDH |= BITM_SPI_MMRDH_CMDSKIP;

/* All the SPI flash read accesses after this, would be in XIP mode*/

Listing 2. SPI Initialization
/* Confiure the system clock */

/* Initialise the Pin Mux logic of processor to enable SPI pins*/
Init_SPI_PinMux();

/* Configure the SPI Baud and SPI clock setting....*/
 /* SPI clock register: SPI_CLK = SCLK / (BAUD + 1)*/
*pREG_SPI0_CLK = ((0x00 << BITP_SPI_CLK_BAUD) & BITM_SPI_CLK_BAUD);

/* SPI Delay register: STOP = 3; LEAD = 1; LAG = 1*/
*pREG_SPI0_DLY = (((3 << BITP_SPI_DLY_STOP) & BITM_SPI_DLY_STOP) |
((1 << BITP_SPI_DLY_LEADX) & BITM_SPI_DLY_LEADX)|
((1 << BITP_SPI_DLY_LAGX) & BITM_SPI_DLY_LAGX));

/* Enable the Memory Mapped mode of SPI with following settings:
Master mode, 32-bit transfer size, HW Slave select, MSB bit first, Quad Multi-IO
mode, FAST enable. CPHA-CPOL settings depends on FLASH device*/
*pREG_SPI0_CTL =(ENUM_SPI_CTL_MM_EN |
ENUM_SPI_CTL_MASTER |
ENUM_SPI_CTL_SIZE32 |
ENUM_SPI_CTL_HW_SSEL|
ENUM_SPI_CTL_ASSRT_SSEL |
ENUM_SPI_CTL_MSB_FIRST |
ENUM_SPI_CTL_FAST_EN |
ENUM_SPI_CTL_MIO_QUAD |
((CPHA << BITP_SPI_CTL_CPHA) & BITM_SPI_CTL_CPHA)|
((CPOL << BITP_SPI_CTL_CPOL) & BITM_SPI_CTL_CPOL));

/* Enable the Transmit part of SPI with TTI = 1; other bits should be kept to default
values*/
*pREG_SPI0_TXCTL = (BITM_SPI_TXCTL_TTI | BITM_SPI_TXCTL_TEN);

/* Enable the Receive part of SPI with RTI = 0; other bits should be kept to default
values*/
*pREG_SPI0_RXCTL = (BITM_SPI_RXCTL_REN);

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

22–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

/* Configure the Memory Mapped Read Header as per read mode selected*/
*pREG_SPI0_MMRDH =(
((0x0B<< BITP_SPI_MMRDH_OPCODE)& BITM_SPI_MMRDH_OPCODE)|
((3 << BITP_SPI_MMRDH_ADRSIZE) & BITM_SPI_MMRDH_ADRSIZE)|
((1 << BITP_SPI_MMRDH_ADRPINS) & BITM_SPI_MMRDH_ADRPINS)|
((2 << BITP_SPI_MMRDH_DMYSIZE) & BITM_SPI_MMRDH_DMYSIZE)|
((0 << BITP_SPI_MMRDH_MODE) & BITM_SPI_MMRDH_MODE)|
((1 << BITP_SPI_MMRDH_TRIDMY) & BITM_SPI_MMRDH_TRIDMY)|
((0 << BITP_SPI_MMRDH_MERGE) & BITM_SPI_MMRDH_MERGE)|
((0 << BITP_SPI_MMRDH_WRAP) & BITM_SPI_MMRDH_WRAP)|
((0 << BITP_SPI_MMRDH_CMDSKIP) & BITM_SPI_MMRDH_CMDSKIP)|
((1 << BITP_SPI_MMRDH_CMDPINS) & BITM_SPI_MMRDH_CMDPINS));

/* Top addr of Flash device*/
*pREG_SPI0_MMTOP = 0x50000000 + (FLASH_BLOCK_SIZE * FLASH_BLOCK_COUNT);

/* Slave Select Control reg*/
*pREG_SPI0_SLVSEL= ENUM_SPI_SLVSEL_SSEL1_HI | ENUM_SPI_SLVSEL_SSEL1_EN;

/* Enable SPI*/
*(pREG_SPI0_CTL + SPI_module_Offset*SPI_ID) |= BITM_SPI_CTL_EN;

Setting XIP or wrap for Quad I/O mode of Winbond W25Q32 SPI flash (assuming SPI memory device is
connected externally to SPI0 module):

Listing 4. SPI Initialization
 /*Initialise the Pin Mux logic of processor to enable SPI pins */
Init_SPI_PinMux();

/*Configure the SPI Baud and SPI clock setting....*/
/* SPI_CLK = SCLK / (BAUD + 1)*/
 *pREG_SPI0_CLK = ((0x00 << BITP_SPI_CLK_BAUD) & BITM_SPI_CLK_BAUD);
*pREG_SPI0_DLY = (((3 << BITP_SPI_DLY_STOP) & BITM_SPI_DLY_STOP)|
 ((1 << BITP_SPI_DLY_LEADX) & BITM_SPI_DLY_LEADX)|
 ((1 << BITP_SPI_DLY_LAGX) & BITM_SPI_DLY_LAGX));
/* Enable the Memory Mapped mode of SPI with following settings:
Master mode, 32-bit transfer size, HW Slave select, MSB bit first, Quad Multi-IO
mode, FAST enable. CPHA-CPOL settings depends on FLASH device. */
*pREG_SPI0_CTL =(ENUM_SPI_CTL_MM_EN |
ENUM_SPI_CTL_MASTER |
ENUM_SPI_CTL_SIZE32 |
ENUM_SPI_CTL_HW_SSEL |
ENUM_SPI_CTL_ASSRT_SSEL |
ENUM_SPI_CTL_MSB_FIRST |
ENUM_SPI_CTL_FAST_EN |
ENUM_SPI_CTL_MIO_QUAD |
ENUM_SPI_CTL_STMISO |
((CPHA << BITP_SPI_CTL_CPHA) & BITM_SPI_CTL_CPHA)|

SERIAL PERIPHERAL INTERFACE (SPI)
SPI FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–37

((CPOL << BITP_SPI_CTL_CPOL) & BITM_SPI_CTL_CPOL));
/* Enable the Transmit part of SPI with TTI = 1; other bits should be kept to default
values*/
*pREG_SPI0_TXCTL = (BITM_SPI_TXCTL_TTI | BITM_SPI_TXCTL_TEN);
/* Enable the Receive part of SPI with RTI = 0; other bits should be kept to default
values*/
*pREG_SPI0_RXCTL = (BITM_SPI_RXCTL_REN);
/* Configure the Memory Mapped Read Header as per read mode selected*/
*pREG_SPI0_MMRDH =(
((0xE3<< BITP_SPI_MMRDH_OPCODE)& BITM_SPI_MMRDH_OPCODE)|
((3 << BITP_SPI_MMRDH_ADRSIZE) & BITM_SPI_MMRDH_ADRSIZE)|
((1 << BITP_SPI_MMRDH_ADRPINS) & BITM_SPI_MMRDH_ADRPINS)|
((1 << BITP_SPI_MMRDH_DMYSIZE) & BITM_SPI_MMRDH_DMYSIZE)|
((0 << BITP_SPI_MMRDH_MODE) & BITM_SPI_MMRDH_MODE) |
((1 << BITP_SPI_MMRDH_TRIDMY) & BITM_SPI_MMRDH_TRIDMY) |
((0 << BITP_SPI_MMRDH_MERGE) & BITM_SPI_MMRDH_MERGE)|
((0 << BITP_SPI_MMRDH_WRAP) & BITM_SPI_MMRDH_WRAP) |
((0 << BITP_SPI_MMRDH_CMDSKIP) & BITM_SPI_MMRDH_CMDSKIP)|
((0 << BITP_SPI_MMRDH_CMDPINS) & BITM_SPI_MMRDH_CMDPINS));

/* Top addr of Flash device*/
*pREG_SPI0_MMTOP = 0x50000000 + (FLASH_BLOCK_SIZE * FLASH_BLOCK_COUNT);

/* Slave Select Control reg*/
*pREG_SPI0_SLVSEL= ENUM_SPI_SLVSEL_SSEL1_HI | ENUM_SPI_SLVSEL_SSEL1_EN;

/* Enable SPI*/
*(pREG_SPI0_CTL + SPI_module_Offset*SPI_ID) |= BITM_SPI_CTL_EN;

Listing. Setting XIP mode
/* configure the STATUS register-2 of flash to set QE bit (Quad mode enable). This
programming should be done in non-memory mapped mode */

/* Enable the SPI module in memory mapped mode as shown in listing.4*/

/* Set the Mode bit in SPI Memory mapped Read Header Reg such that M(5,4) = 1,0*/

*pREG_SPI0_MMRDH |= ((0x20 << BITP_SPI_MMRDH_MODE) & BITM_SPI_MMRDH_MODE);

/* Make one Dummy access to SPI flash */
unsigned int* pSPI_MEM;
pSPI_MEM = (unsigned int*) 0x19000000;
int temp = *pSPI_MEM;

/* After the Dummy access, set the Command Skip bit of SPI Memory Mapped Read Header
register */
*pREG_SPI0_MMRDH |= BITM_SPI_MMRDH_CMDSKIP;

/* All the SPI flash read accesses after this, would be in XIP mode*/

SERIAL PERIPHERAL INTERFACE (SPI)
SPI INTERRUPT SIGNALS

22–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Listing. Setting Wrap mode

1] Configure the Flash Device for wrap using “Set the Burst with WRAP” command for the
required cache line. (SPI is in non-memory mapped mode)
2] Configure the cache with required cache line with DLBF bit as zero
3] Enable the SPI module in memory mapped mode as shown in listing 4 with WRAP bit set
SPI Memory mapped Read Header Register:
*pREG_SPI0_MMRDH |= ((1 << BITP_SPI_MMRDH_WRAP) & BITM_SPI_MMRDH_WRAP);
4] XIP can be set additionally to get best throughput

SPI Interrupt Signals

The SPI controller supports three types of interrupt signals, corresponding to data, status, and error condi-
tions.

Data Interrupts

The SPI peripheral supports two data interrupt channels – receive and transmit. These interrupt signals
are multiplexed into the DMA request lines. Since the peripheral interfaces to independent read and write
interfaces with DMA, the read and write data interrupts are independent. When the DMA channel(s) are
not being used, the interrupts are routed directly to the system event controller, occupying the same inter-
rupt vector locations as the corresponding DMA channels do.

Each of the data interrupts can be individually controlled by programming the SPI_RXCTL.RDR and SPI_
TXCTL.TDR bit fields for receive and transmit, respectively. When receive is enabled, the RX interrupt is
issued whenever there is data available in the receive data path to be read (according to the SPI_RXCTL.
RDR bit setting). When transmit is enabled, the TX interrupt is issued whenever the transmit data path can
be written to (according to the SPI_TXCTL.TDR setting). DMA data interrupts are made compatible with
second generation DMA to incorporate urgent data request and transfer finish interrupt apart from usual
data request interrupt. Note that transmit interrupts operate independently from the word counter value
in the SPI_TWC register.

Status Interrupts

The SPI controller supports several status interrupts to indicate different conditions of the receiver and
transmitter. All status interrupts can be masked. Status interrupts are signaled directly through a single SPI
status IRQ line, which may or may not be combined with the SPI error IRQ line for a given processor. The
following table describes the status interrupts that are available for the SPI controller.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI INTERRUPT SIGNALS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–39

Error Conditions

The SPI controller supports interrupts upon several different error conditions. All interrupts are maskable.
The individual interrupt indications combine into a single SPI error IRQ signal, which may be multiplexed
on some processors with the aggregated SPI status IRQ signal. The following table details the possible error
indications.

Error conditions and interrupts arise depending on which of the channels (transmit and/or receive) are
enabled. If a channel is disabled, all errors relating to it are ignored. When both channels are enabled,
errors and interrupts from both channels are enabled.

Table 22-14: SPI Status Interrupts

SPI_STAT Bit Description

SPI_STAT.RUWM Receive FIFO Urgent Watermark Interrupt. Issued when the level of the RFIFO breaches the watermark set
in the SPI_RXCTL.RUWM field. It is cleared when the level of the RFIFO reaches the watermark set in the
SPI_RXCTL.RRWM field. If the RX channel is configured in DMA mode, RUWM is multiplexed with the
data request.

SPI_STAT.TUWM Receive FIFO Urgent Watermark Interrupt. Issued when the level of the TFIFO breaches the watermark set
using the SPI_TXCTL.TUWM bit. It is cleared when the level of the TFIFO reaches the watermark set in
the SPI_TXCTL.TRWM field. If the TX channel is configured in DMA mode, TUWM is multiplexed with
the data request.

SPI_STAT.TS Transmit Start Interrupt. Issued when the start of a transmit burst is detected by loading of the SPI_TWC
register with the contents of the SPI_TWCR register.

SPI_STAT.RS Receive Start Interrupt. Issued when the start of a receive burst is detected by loading of SPI_RWC with the
contents of SPI_RWCR.

SPI_STAT.TF Transmit Finish Interrupt. Issued when a transmit burst completes (SPI_TWC decrements to zero).

SPI_STAT.RF Receive Finish Interrupt. Issued when a receive burst completes (SPI_RWC decrements to zero).

Table 22-15: SPI Error Interrupts

Bit Description

SPI_STAT.MF Mode Fault. Signalled when another device is also trying to be a master in a multi-master system and drives the
SPI_SS input low. This error is signalled in master mode operation.

SPI_STAT.
TUR

Transmission Error. Signalled when an underflow condition occurs on the transmit channel. This occurs when a new
transfer starts but SPI_TFIFO is empty. This error does not occur in master transmit initiating mode since SPI_
TFIFO Not Empty is one of the conditions for transfer initiation.

SPI_STAT.
ROR

Reception Error. Signalled when an overflow condition occurs on the receive channel. This occurs when a new data
word is received, but the SPI_RFIFO is full. This error condition will not occur in master receive initiating mode
since SPI_RFIFO not full is one of the conditions for transfer initiation.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI PROGRAMMING CONCEPTS

22–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SPI Programming Concepts

The following sections provide general programming guidelines and procedures.

Programming Guidelines

It is acceptable to program SPI_RX_CTL and SPI_TX_CTL registers after programming SPI_CTL, but the
initiating mode register and its counter register, if enabled, should be programmed after the non-initiating
mode register. For example, if Transmit is the initiating mode and Receive is the non-initiating mode, then
SPI_RX_CTL and SPI_RWC should be programmed before SPI_TX_CTL and SPI_TWC. If both transmit and
receive are to be enabled in initiating mode, SPI_CTL should be enabled after programming both SPI_RX_
CTL and SPI_TX_CTL.

These programming guidelines prevent SPI from starting a transfer when SPI registers are still being
programmed. Other ways of programming are also allowed as long as commencement of communication
is prevented by initiating conditions until all the utilized SPI registers are programmed.

Precautions must be taken to avoid data corruption when changing the SPI module configuration. The
configuration must not be changed during a data transfer. Additionally, the clock polarity should only be
changed when no slaves are selected. An exception to this is when a SPI communication link consists of a
single master and a single slave, SPI_CTL.ASSEL = 0, and the slave select input of the slave is permanently
tied low. In this case, the slave is always selected, and data corruption can be avoided by enabling the slave
only after both the master and slave devices are configured.

The module supports 8, 16 and 32-bit word sizes. To ensure correct operation, both the master and slave
must be configured with the same word size.

SPI_STAT.TC Transmit Collision Error. Signalled when loading data to the transmit shift register happens near the first
transmitting edge of SPI_CLK. In Slave mode of operation, the SPI controller is unaware of when the next transfer
starts, so loading of data to the transmit shift register may happen just after the transmitting edge. This will result in
setup time not being met for the first bit being transmitted, and thus the transmitted data will be corrupted. In SPI_
CTL.CPHA - 1 mode, the first SPI_CLK edge is taken as first transmitting edge, whereas if SPI_CTL.CPHA=0 the
last SPI_CLK edge of the last transmission (SPI_CTL.SELST=1) or slave select de-assertion (SPI_CTL.SELST=0) is
taken as the first transmitting edge. This error is signalled only in Slave mode of operation. In Master mode of
operation, it is always ensured that loading of data happens before the first transmitting edge of SPI_CLK.

Table 22-15: SPI Error Interrupts (Continued)

Bit Description

SERIAL PERIPHERAL INTERFACE (SPI)
SPI PROGRAMMING CONCEPTS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–41

Master Operation in Non-DMA Modes

This section describes the operation of the SPI as a master in non-DMA mode.

1. Write to the SPI_SLVSEL register, setting one or more of the SPI select enable bits. This ensures that
the desired slaves are properly deselected while the master is configured.

2. The SPI_RXCTL.RTI and SPI_TXCTL.TTI bits determine the SPI initiating mode. The initiating mode
defines the primary transfer channel, and also the initiating condition for the transfer.

3. Write to the SPI_CLK, SPI_CTL, SPI_RXCTL and SPI_TXCTL registers, enabling the device as a master
and configuring the SPI system by specifying the transfer modes and channels, appropriate word
length, transfer format, baud rate, and other control information.

ADDITIONAL INFORMATION: If SPI_RXCTL.RTI is enabled and SPI_TXCTL.TTI is not, write to the SPI_
RXCTL register after writing into SPI_CTL, SPI_TXCTL and SPI_TFIFO registers to prevent a transmit
underrun for the first transfer.

4. If SPI_CTL.ASSEL=0, the user activates the desired slaves by clearing one or more of the SPI_SLVSEL
flag bits. Otherwise, the SPI hardware takes care of slave activation.

5. The SPI controller then generates the programmed clock pulses on SPI_CLK and simultaneously shifts
data out of SPI_MOSI while shifting data in from SPI_MISO. Before a shift, the shift register is loaded
with the contents of the SPI_TFIFO register. At the end of the transfer, the contents of the shift register
are loaded into SPI_RFIFO.

6. Whenever the initiating conditions are satisfied, the SPI continues to send and receive words. If the
transmit buffer remains empty or the receive buffer remains full, the device operates according to the
states of the SPI_TXCTL.TDU and SPI_RXCTL.RDO bits.

7. It is possible to program a secondary channel in addition to the initiating channel. This feature allows
the user to utilize the unused channel resources for receives or transmits simultaneously with the initi-
ating channel.

Slave Operation in Non-DMA Modes

When a device is enabled as a slave in a non-DMA mode, the start of a transfer is triggered by a transition
of the SPI_SS select signal to the active state (low), or by the first active edge of SPI_CLK, depending on the
state of SPI_CTL.CPHA bit. The interface operates in the following manner.

1. The core writes to the SPI_CTL, SPI_RXCTL and SPI_TXCTL registers to define the mode of the serial
link to be the same as the mode setup in the SPI master.

2. To prepare for the data transfer, the core writes data to be transmitted into SPI_TFIFO.

3. Once the SPI_SS falling edge is detected, the slave starts sending data on active SPI_CLK edges and
sampling data on inactive SPI_CLK edges.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI PROGRAMMING CONCEPTS

22–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

4. Reception/transmission continues until SPI_SS is released or until the slave has received the proper
number of clock cycles.

5. The slave device continues to receive/transmit with each new falling edge transition on SPI_SS and/or
active SPI_CLK edge. If the transmit buffer remains empty or the receive buffer remains full, the device
operates according to the states of the SPI_TXCTL.TDU and SPI_RXCTL.RDO bits.

Configuring DMA Master Mode

The SPI interface supports a write DMA channel and a read DMA channel. These may be used individually
or in a lock-step manner in duplex mode (SPI_TXCTL.TTI= SPI_RXCTL.RTI=1)

1. Write to the appropriate DMA registers to enable the SPI DMA channel and to configure the necessary
work units, access direction, word count, and so on.

2. Write to the SPI_SLVSEL register, setting one or more of the SPI flag select bits.

3. Write to the SPI_CLK and SPI_CTL registers, enabling the device as a master and configuring the SPI
system by specifying the appropriate word length, transfer format, baud rate, etc.

4. Write to SPI_RXCTL to configure SPI master receive mode, and/or write to SPI_TXCTL to configure SPI
Master Transmit mode.

5. Finally, write to the SPI_RXCTL.REN bit to enable the receive channel, and/or write to SPI_TXCTL.TEN
to enable the transmit channel.

6. If the SPI_RXCTL.RTI bit is enabled, a receive transfer is initiated upon enabling SPI_CTL.EN bit. If the
receive word counter is enabled (SPI_RXCTL.RWCEN, then the SPI_RWC register must be non-zero for a
transfer to initiate.

ADDITIONAL INFORMATION: If enabling both receive and transmit DMA channels, but not enabling SPI_
TXCTL.TTI, write to the SPI_RXCTL register after writing the SPI_CTL and SPI_TXCTL registers so that
a transmit underrun can be prevented for the first transfer. Subsequent transfers are initiated as the SPI
reads data from the receive shift register and writes to the SPI receive FIFO. The SPI then requests a
DMA write to memory. Upon a DMA grant, the DMA engine reads a word from the SPI Receive FIFO
and writes to memory. New requests continue to be initiated as long as the receive FIFO does not fill
up, provided that SPI_RWC does not become zero while SPI_RXCTL.RWCEN=1.

7. If SPI_TXCTL.TTI is enabled, the SPI controller requests DMA reads from memory as long as there is
space for more data in the transmit pipe. Upon a DMA grant, the DMA engine reads a word from
memory and writes to the transmit FIFO. As long as transmit data is available in the FIFO, and the SPI_
TWC register is non-zero if SPI_TXCTL.TWCEN=1, the SPI continues to initiate transfers until disabled.

8. If both the SPI_TXCTL.TTI and SPI_RXCTL.RTI bits are enabled, the SPI controller requests a DMA
read from memory as long as there is space for more data in the transmit pipe and the number of words

SERIAL PERIPHERAL INTERFACE (SPI)
SPI PROGRAMMING CONCEPTS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–43

written into the SPI is less than SPI_TWC if SPI_TXCTL.TWCEN=1. Upon a DMA grant, the DMA engine
reads a word from memory and writes to the transmit FIFO.

ADDITIONAL INFORMATION: As the SPI writes data from the transmit FIFO into the transmit shift register,
it initiates a transfer on the SPI link.

ADDITIONAL INFORMATION: Data received from the transfer is moved from the SPI receive shift register to
the receive FIFO.

ADDITIONAL INFORMATION: The SPI controller requests a DMA write to memory.

ADDITIONAL INFORMATION: Upon a DMA grant, the DMA engine reads a word from the receive FIFO and
writes to memory. Transfer continues to be initiated as long as both receives and transmits can accom-
modate new data

9. If the receive pipe fills up due to unavailability of DMA grants, the transmit pipe stalls until the pipe is
drained. If the transmit pipe fills up, the SPI stops requesting for DMA writes. If the value in SPI_RWC
expires, further write requests to DMA stop. However, data already written into the transmit FIFO is
sent, and read requests to DMA continue until the receive data is read from the receive FIFO.

10. The SPI then generates the programmed clock pulses on SPI_CLK and simultaneously shifts data out
of SPI_MOSI while shifting data in from SPI_MISO. For receive transfers, the value in the shift register
is loaded into the SPI_RFIFO register at the end of the transfer. For transmit transfers, the value in the
SPI_TFIFO register is loaded into the shift register at the start of the transfer.

Configuring DMA Slave Mode Operation

When enabled as a slave with the DMA engine configured to transmit or receive data, the start of a transfer
is triggered by a transition of the SPI_SS signal to the active-low state or by the first active edge of SPI_
CLK, depending on the state of the SPI_CTL.CPHA bit. The following steps illustrate the SPI receive or
transmit DMA sequence in an SPI slave (in response to a master command). The SPI supports a receive
DMA channel and a transmit DMA channel.

1. Write to the appropriate DMA registers to enable the SPI DMA channel and configure the necessary
work units, access direction, word count, and so on.

2. Write to the SPI_CTL, SPI_RXCTL and SPI_TXCTL registers to define the mode of the serial link to be
the same as the mode configured in the SPI master.

SERIAL PERIPHERAL INTERFACE (SPI)
SPI PROGRAMMING CONCEPTS

22–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

3. If the receive channel is enabled (SPI_RXCTL.REN is asserted), the following actions occur:

a. Once the slave select input is active, the slave starts receiving and transmitting data on active SPI_
CLK edges.

b. The value in the shift register is loaded into the SPI_RFIFO register at the end of the transfer.

c. Once SPI_RFIFO has valid data, it requests a DMA write to memory.

d. Upon a DMA grant, the DMA engine reads a word from the receive FIFO and writes to memory.

e. As long as there is data in the receive FIFO, the SPI slave continues to request a DMA write to
memory. The DMA engine continues to read a word from the FIFO and writes to memory until the
SPI_RWC counts to zero. The SPI slave continues receiving words on active SPI_CLK edges as long
as the SPI_SS input is active.

f. If the data collected in the receive pipe breaches the level set according to the SPI_CTL.FCWM field,
and the DMA engine is unable to keep up with the receive rate, the slave may de-assert the SPI_RDY
signal, throttling the master. The signal is deasserted as the DMA drains the receive FIFO. Alterna-
tively, the SPI_RXCTL.RDO bit can decide if the incoming data is discarded or overwritten into the
receive FIFO (when SPI_CTL.FCEN is inactive).

4. If the transmit channel is enabled (SPI_TXCTL.TEN is asserted), the following actions occur:

a. The SPI requests a DMA read from memory.

b. Upon a DMA grant, the DMA engine reads a word from memory and writes to the transmit FIFO.

c. The SPI then reads DMA data from the transmit FIFO and writes to the transmit shift register,
awaiting the start of the next transfer.

d. Once the slave select input is active, the slave starts receiving and transmitting data on active SPI_
CLK edges.

e. As long as there is room in the transmit FIFO, the SPI slave continues to request a DMA read from
memory. The DMA engine continues to read a word from memory and write to the transmit FIFO
until the SPI_TWC register value counts down to 0. The SPI slave continues transmitting words on
active SPI_CLK edges as long as the SPI_SS input is active.

f. If the number of outstanding data entries waiting for transmission in the transmit pipe breaches the
level set according to the SPI_CTL.FCWM field and the DMA is unable to keep up with the transmit
rate, the slave may de-assert the SPI_RDY signal, throttling the master. The signal is deasserted as
the DMA fills the transmit FIFO. Alternately the SPI_TXCTL.TDU bit decides the state of the
transmit data (when SPI_CTL.FCEN is deasserted).

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–45

5. If both receive and transmit channels are enabled, the following actions occur after the actions stated
above for each channel. Transfers will continue as long as both receives and transmits can accommo-
date new data.

a. If the receive pipe fills up due to unavailability of DMA grant, the SPI interface will stall the master
by asserting the SPI_RDY pin. This signal is deasserted as the DMA drains the receive FIFO. Alter-
nately, the SPI_RXCTL.RDO bit decides if the incoming data is discarded or overwritten into the
receive FIFO (when SPI_CTL.FCEN is deasserted).

b. If the transmit pipe fills up, the SPI will stop requesting for DMA writes until the pipe clears.

c. If there is an underflow problem in the transmit pipe, the slave will stall the master by de-asserting
SPI_RDY while DMA fills the transmit FIFO. Alternately, the SPI_TXCTL.TDU bit decides the state
of the transmit data (when SPI_CTL.FCEN is deasserted).

ADSP-CM40x SPI Register Descriptions

Serial Peripheral Interface (SPI) contains the following registers.

Table 22-16: ADSP-CM40x SPI Register List

Name Description

SPI_CTL Control Register

SPI_RXCTL Receive Control Register

SPI_TXCTL Transmit Control Register

SPI_CLK Clock Rate Register

SPI_DLY Delay Register

SPI_SLVSEL Slave Select Register

SPI_RWC Received Word Count Register

SPI_RWCR Received Word Count Reload Register

SPI_TWC Transmitted Word Count Register

SPI_TWCR Transmitted Word Count Reload Register

SPI_IMSK Interrupt Mask Register

SPI_IMSK_CLR Interrupt Mask Clear Register

SPI_IMSK_SET Interrupt Mask Set Register

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Control Register

The SPI_CTL register enables the SPI and configures settings for operating modes, communication proto-
cols, and buffer operations.

SPI_STAT Status Register

SPI_ILAT Masked Interrupt Condition Register

SPI_ILAT_CLR Masked Interrupt Clear Register

SPI_RFIFO Receive FIFO Data Register

SPI_TFIFO Transmit FIFO Data Register

SPI_MMRDH Memory Mapped Read Header

SPI_MMTOP SPI Memory Top Address

Table 22-16: ADSP-CM40x SPI Register List (Continued)

Name Description

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–47

Figure 22-20: SPI_CTL Register Diagram

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 22-17: SPI_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

MMSE Memory-Mapped SPI Enable.
When the SPI_CTL.MMSE bit is asserted, communication to a SPI memory device
is automated such that the memory it contains is accessible directly through the read
of processor address space assigned to it (As far as the SPI peripheral is concerned,
this includes all read accesses received by the SPI peripherals system crossbar slave
port). Note that when memory-mapped access of SPI memory is enabled, attempts to
communicate with the SPI device using legacy methods are blocked and receive
fabric error responses are generated. Legacy methods include any direct access made
to the TX and Rx FIFOs, whether initiated by DMA or processor MMR access.
Blocked attempts also set the SPI_STAT.MMAE bit notification bit.

0 Hardware automated access of memory-mapped SPI
memory disabled.

1 Hardware-automated access of memory-mapped SPI
memory enabled.

30
(R/W)

MMWEM Memory Mapped Write Error Mask.
The SPI_CTL.MMWEM bit specifies whether an error response is returned to the
fabric upon write attempts to address space reserved for memory-mapped reads of
SPI memory. Whether or not a write error response is masked by this bit, the
associated sticky notification bit SPI_STAT.MMWE bit is still set.

0 Write error response returned upon write attempts to
memory-mapped SPI memory

1 Write error response masked (not returned) upon write
attempts to memory-mapped SPI memory

22
(R/W)

SOSI Start on MOSI.
The SPI_CTL.SOSI bit is valid only when SPI_CTL.MIOM is enabled for either
DIOM or QIOM, and this bit selects the starting pin and the bit placement on pins
for these modes.
In DIOM, by default (SPI_CTL.SOSI =0) SPI sends first bit on the SPI_MISO pin
and second bit on the SPI_MOSI pin. In QIOM, by default, the SPI sends first bit on
the SPI_D3 pin, second bit on the SPI_D2 pin, third bit on the SPI_MISO pin and
fourth bit on the SPI_MOSI pin. This order can be reversed by setting the SPI_
CTL.SOSI bit. When this bit is set, the SPI sends first bit on the SPI_MOSI pin.
The first bit referred to here depends on the SPI_CTL.LSBF bit setting (MSB bit or
LSB bit).

0 Start on MISO (DIOM) or start on SPIQ3 (QSPI)

1 Start on MOSI

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–49

21:20
(R/W)

MIOM Multiple I/O Mode.
The SPI_CTL.MIOM bits enable SPI operation in dual I/O mode (DIOM) or quad
I/O mode (QIOM).
These bits may only be changed when the SPI is disabled (SPI_CTL.EN =0).

0 No MIOM (disabled)

1 DIOM operation

2 QIOM operation

3 Reserved

18
(R/W)

FMODE Fast-Mode Enable.
The SPI_CTL.FMODE bit enables fast mode operation for SPI receive transfers. SPI
transmit operations in fast mode are the same as normal mode.

0 Disable

1 Enable

17:16
(R/W)

FCWM Flow Control Watermark.
The SPI_CTL.FCWM bits select the watermark level of the transmit channel (SPI_
TFIFO buffer) or receive channel (SPI_RFIFO buffer) that triggers flow control
operation. These bits are applicable only when the SPI is a slave (SPI_CTL.MSTR =
0) and flow control is enabled (SPI_CTL.FCEN =1). When the watermark
condition is met, the SPI slave de-asserts the SPI_RDY pin.

0 TFIFO empty or RFIFO full

1 TFIFO 75% or more empty, or RFIFO 75% or more full

2 TFIFO 50% or more empty, or RFIFO 50% or more full

3 Reserved

15
(R/W)

FCPL Flow Control Polarity.
The SPI_CTL.FCPL bit selects flow control polarity for the SPI_RDY pin when
flow control is enabled. When the SPI_RDY pin is active, the SPI is indicating it's
ready for data transfer.

0 Active-low RDY

1 Active-high RDY

14
(R/W)

FCCH Flow Control Channel Selection.
The SPI_CTL.FCCH bit selects whether the SPI applies flow control to the transmit
channel (SPI_TFIFO buffer) or receive channel (SPI_RFIFO buffer). This bit is
applicable only when the SPI is a slave and flow control is enabled.

0 Flow control on RX buffer

1 Flow control on TX buffer

Table 22-17: SPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

13
(R/W)

FCEN Flow Control Enable.
The SPI_CTL.FCEN bit enables SPI flow control operation, which permits slow
slave devices to interface with fast master devices. This bit controls operation of the
SPI_RDY pin. Note that options for flow control operation are available using the
SPI_CTL.FCCH, SPI_CTL.FCPL, and SPI_CTL.FCWM bits.

0 Disable

1 Enable

12
(R/W)

LSBF Least Significant Bit First.
The SPI_CTL.LSBF bit selects whether the SPI transmits/receives data as LSB first
(little endian) or MSB first (big endian). This bit may only be changed when the SPI is
disabled.

0 MSB sent/received first (big endian)

1 LSB sent/received first (little endian)

10:9
(R/W)

SIZE Word Transfer Size.
The SPI_CTL.SIZE bits select the SPI transfer word size as 8, 16 or 32 bits. To
ensure correct operation, both the master and slave must be configured with the
same word size. This bit may only be changed when the SPI is disabled (SPI_CTL.
EN =0).

0 8-bit word

1 16-bit word

2 32-bit word

3 Reserved

8
(R/W)

EMISO Enable MISO.
The SPI_CTL.EMISO bit enables master-in-slave-out (MISO) mode. This SPI
mode is applicable only when the SPI is a slave.

0 Disable

1 Enable

7
(R/W)

SELST Slave Select Polarity Between Transfers.
The SPI_CTL.SELST bit selects the state (polarity) for the SPI_SELn pin in-
between SPI transfers when the SPI is a master and hardware slave select assertion is
enabled (SPI_CTL.ASSEL =1). In slave mode, this bit affects the detection of both
transmit collision (SPI_STAT.TC and under-run (SPI_STAT.TUR) errors.

0 De-assert slave select (high)

1 Assert slave select (low)

Table 22-17: SPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–51

6
(R/W)

ASSEL Slave Select Pin Control.
The SPI_CTL.ASSEL bit selects whether the SPI hardware sets the SPI_SELn pin
output value (ignoring the slave select SPI_SLVSEL.SSEL1 - SPI_SLVSEL.
SSEL7 bits) or whether software control of the slave select bits set the SPI_SELn
pin output value. This feature is applicable only when the SPI is a master.
When hardware control is enabled, the SPI_SELn pin output is asserted during the
transfers, and the pin polarity between transfers is selected by the SPI_CTL.SELST
bit.
When software control is enabled, the SPI_SELn pin output value is set through
software control of the slave select bits, and as such, the pin may either remain
asserted (low) or be deasserted between transfers.

0 Software Slave Select Control

1 Hardware Slave Select Control

5
(R/W)

CPOL Clock Polarity.
The SPI_CTL.CPOL bit selects whether the SPI uses an active-low or active-high
signal for the SPI clock (SPI_CLK). This bit works with the SPI_CTL.CPHA bit to
select combinations of clock phase and polarity for the SPI_CLK pin. This bit may
only be changed when the SPI is disabled.

0 Active-high SPI CLK

1 Active-low SPI CLK

4
(R/W)

CPHA Clock Phase.
The SPI_CTL.CPHA bit selects whether the SPI starts toggling the signal for the SPI
clock (SPI_CLK) from the start of the first data bit or from the middle of the first
data bit. The SPI_CTL.CPHA bit works with the SPI_CTL.CPOL bit to select
combinations of clock phase and polarity for the SPI_CLK pin. This bit may only be
changed when the SPI is disabled.

0 SPI CLK toggles from middle

1 SPI CLK toggles from start

3
(R/W)

ODM Open Drain Mode.
The SPI_CTL.ODM bit configures the data output pins (SPI_MOSI and SPI_
MISO) to behave as open drain outputs, which prevents contention and possible
damage to pin drivers in multi-master or multi-slave SPI systems.
When SPI_CTL.ODM is enabled and the SPI is a master, the SPI three-states the
SPI_MOSI pin when the data driven out on MOSI is a logic-high. The SPI does not
three-state the SPI_MOSI pin when the driven data is a logic-low.
When SPI_CTL.ODM is enabled and the SPI is a slave, the SPI three-states the
SPI_MISO pin when the data driven out on SPI_MISO is a logic-high.
Note that an external pull-up resistor is required on both the SPI_MOSI and SPI_
MISO pins when SPI_CTL.ODM is enabled.

0 Disable

1 Enable

Table 22-17: SPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–52 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Receive Control Register

The SPI_RXCTL register enables the SPI receive channel, initiates receive transfers, and configures SPI_
RFIFO buffer watermark settings.

Figure 22-21: SPI_RXCTL Register Diagram

2
(R/W)

PSSE Protected Slave Select Enable.
The SPI_CTL.PSSE bit enables the SPI_SS pin to provide error detection input
in a multi-master environment when the SPI is in master mode. If some other device
in the system asserts the SPI_SS pin while SPI is enabled as master (and SPI_
CTL.PSSE is enabled), this condition causes a mode fault error.

0 Disable

1 Enable

1
(R/W)

MSTR Master/Slave.
The SPI_CTL.MSTR bit toggles the SPI between master mode and slave mode. This
bit may only be changed when the SPI is disabled.

0 Slave

1 Master

0
(R/W)

EN Enable.
The SPI_CTL.EN bit enables SPI operation.

0 Disable SPI module

1 Enable

Table 22-17: SPI_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–53

Table 22-18: SPI_RXCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

18:16
(R/W)

RUWM Receive FIFO Urgent Watermark.
The SPI_RXCTL.RUWM bits select the receive FIFO (SPI_RFIFO) watermark
level for urgent data bus requests. The SPI also uses this watermark level for
generation of the SPI_ILAT.RUWM interrupt. When an urgent SPI_RFIFO
watermark is enabled with SPI_RXCTL.RUWM, the SPI_RXCTL.RRWM selection
is used as the de-assertion condition for any SPI_ILAT.RUWM interrupts that are
latched.

0 Disabled

1 25% full RFIFO

2 50% full RFIFO

3 75% full RFIFO

4 Full RFIFO

5 Reserved

6 Reserved

7 Reserved

13:12
(R/W)

RRWM Receive FIFO Regular Watermark.
The SPI_RXCTL.RRWM bits select the receive FIFO (SPI_RFIFO) watermark
level for regular data bus requests. When an urgent SPI_RFIFO watermark is
enabled with SPI_RXCTL.RUWM, the SPI_RXCTL.RRWM selection is used as the
de-assertion condition for any SPI_ILAT.RUWM interrupts that are latched.

0 Empty RFIFO

1 RFIFO less than 25% full

2 RFIFO less than 50% full

3 RFIFO less than 75% full

8
(R/W)

RDO Receive Data Overrun.
The SPI_RXCTL.RDO bit selects handling for receive data requests when the
receive buffer (SPI_RFIFO) is full. If enabled and SPI_RFIFO is full, the SPI
overwrites old data in the buffer with incoming data. If disabled and SPI_RFIFO is
full, the SPI keeps old data in the buffer and discards incoming data.

0 Discard incoming data if SPI_RFIFO is full

1 Overwrite old data if SPI_RFIFO is full

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–54 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Transmit Control Register

The SPI_TXCTL register enables the SPI transmit channel, initiates transmit transfers, and configures SPI_
TFIFO buffer watermark settings.

6:4
(R/W)

RDR Receive Data Request.
The SPI_RXCTL.RDR bits select receive FIFO (SPI_RFIFO) watermark
conditions that direct the SPI to generate a receive data request.

0 Disabled

1 Not empty RFIFO

2 25% full RFIFO

3 50% full RFIFO

4 75% full RFIFO

5 Full RFIFO

6 Reserved

7 Reserved

3
(R/W)

RWCEN Receive Word Counter Enable.
The SPI_RXCTL.RWCEN bit enables the decrement of the SPI_RWC register when
the count is not zero and SPI_RXCTL.RTI is enabled. Enabling SPI_RXCTL.
RWCEN prevents receive overrun errors from occurring. The SPI_RXCTL.RWCEN
bit is valid only when the SPI is a master.

0 Disable

1 Enable

2
(R/W)

RTI Receive Transfer Initiate.
The SPI_RXCTL.RTI bit enables initiation of receive transfers if the receive FIFO
(SPI_RFIFO) is not full. The bit also enables this initiation if SPI_RWC is not zero
when SPI_RXCTL.RWCEN is enabled. Enabling SPI_RXCTL.RTI prevents
receive overrun errors from occurring. The SPI_RXCTL.RTI bit is valid only when
the SPI is a master.

0 Disable

1 Enable

0
(R/W)

REN Receive Enable.
The SPI_RXCTL.REN bit enables SPI receive channel operation.

0 Disable

1 Enable

Table 22-18: SPI_RXCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–55

Figure 22-22: SPI_TXCTL Register Diagram

Table 22-19: SPI_TXCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

18:16
(R/W)

TUWM FIFO Urgent Watermark.
The SPI_TXCTL.TUWM bits select the transmit FIFO (SPI_TFIFO) watermark
level for urgent data bus requests. The SPI also uses this watermark level for
generation of the SPI_ILAT.TUWM interrupt. When an urgent SPI_TFIFO
watermark is enabled with SPI_TXCTL.TUWM, the SPI_TXCTL.TRWM selection
is used as the de-assertion condition for any SPI_ILAT.TUWM interrupts that are
latched.

0 Disabled

1 25% empty TFIFO

2 50% empty TFIFO

3 75% empty TFIFO

4 Empty TFIFO

13:12
(R/W)

TRWM FIFO Regular Watermark.
The SPI_TXCTL.TRWM bits select the transmit FIFO (SPI_TFIFO) watermark
level for regular data bus requests. When an urgent SPI_TFIFO watermark is
enabled with SPI_TXCTL.TUWM, the SPI_TXCTL.TRWM selection is used as the
de-assertion condition for any SPI_ILAT.TUWM interrupts that are latched.

0 Full TFIFO

1 TFIFO less than 25% empty

2 TFIFO less than 50% empty

3 TFIFO less than 75% empty

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–56 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

8
(R/W)

TDU Transmit Data Under-run.
The SPI_TXCTL.TDU bit selects handling for transmit data requests when the
transmit buffer (SPI_TFIFO) is empty. If enabled and SPI_TFIFO is empty, the
SPI transmits zero as data. If disabled and SPI_TFIFO is empty, the SPI transmits
the last word in the buffer as data.

0 Send last word when SPI_TFIFO is empty

1 Send zeros when SPI_TFIFO is empty

6:4
(R/W)

TDR Transmit Data Request.
The SPI_TXCTL.TDR bits select transmit FIFO (SPI_TFIFO) watermark
conditions that direct the SPI to generate a transmit status interrupt.

0 Disabled

1 Not full TFIFO

2 25% empty TFIFO

3 50% empty TFIFO

4 75% empty TFIFO

5 Empty TFIFO

3
(R/W)

TWCEN Transmit Word Counter Enable.
The SPI_TXCTL.TWCEN bit enables the decrement of the transmit word count
(SPI_TWC) register when the count is not zero and SPI_TXCTL.TTI is enabled.
Enabling SPI_TXCTL.TWCEN prevents transmit under-run errors from occurring.
The SPI_TXCTL.TWCEN bit is valid only when the SPI is a master.

0 Disable

1 Enable

2
(R/W)

TTI Transmit Transfer Initiate.
The SPI_TXCTL.TTI bit enables initiation of transmit transfers if the transmit
FIFO (SPI_TFIFO) is not empty. The bit also enables this initiation if SPI_TWC is
not zero when SPI_TXCTL.TWCEN is enabled. Enabling SPI_TXCTL.TTI
prevents transmit underrun errors from occurring. The SPI_TXCTL.TTI bit is
valid only when the SPI is a master.

0 Disable

1 Enable

0
(R/W)

TEN Transmit Enable.
The SPI_TXCTL.TEN bit enables SPI transmit channel operation.

0 Disable

1 Enable

Table 22-19: SPI_TXCTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–57

Clock Rate Register

The SPI_CLK register selects the baud rate for SPI data transfers, relating this rate to the SPI serial clock
(SCK) and the system clock (SCLK).

Figure 22-23: SPI_CLK Register Diagram

Delay Register

The SPI_DLY register selects a transfer delay and the lead/lag timing between slave select signals and SPI
clock edge assertion/de-assertion.

Figure 22-24: SPI_DLY Register Diagram

Table 22-20: SPI_CLK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

BAUD Baud Rate.
The SPI_CLK.BAUD bits set the SPI baud rate according to the formula:
BAUD = (SCLK / SPI Clock) - 1

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–58 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Slave Select Register

The SPI_SLVSEL register enables the SPI_SELn pins for input and indicates the state (high or low) of these
pins when enabled.

Table 22-21: SPI_DLY Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9
(R/W)

LAGX Extended SPI Clock Lag Control.
The SPI_DLY.LAGX bit enables insertion of a 1-SPI_CLK cycle lag (extend lag) in
the timing between the slave select (SPI_SELn) assertion and first SPI Clock edge.

0 Disable

1 Enable

8
(R/W)

LEADX Extended SPI Clock Lead Control.
The SPI_DLY.LEADX bit enables insertion of a 1-SPI_CLK cycle lead (extend lead)
in the timing between the slave select (SPI_SELn) de-assertion and last SPI Clock
edge.

0 Disable

1 Enable

7:0
(R/W)

STOP Transfer delay time in multiples of SPI clock period.
The SPI_DLY.STOP bits select a delay (number of stop bits in multiples of SPI
Clock duration) at the end of each SPI transfer. The default delay is the minimum
value required to comply with the SPI protocol (1-bit duration). The SPI_DLY.
STOP bits may be programmed with smaller delay values, resulting in continuous
operation (for example, stop bits =0).

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–59

Figure 22-25: SPI_SLVSEL Register Diagram

Table 22-22: SPI_SLVSEL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15
(R/W)

SSEL7 Slave Select 7 Input.
The SPI_SLVSEL.SSEL7 bit state indicates the value on the related SPI_SELn
pin.

0 Low

1 High

14
(R/W)

SSEL6 Slave Select 6 Input.
The SPI_SLVSEL.SSEL6 bit state indicates the value on the related SPI_SELn
pin.

0 Low

1 High

13
(R/W)

SSEL5 Slave Select 5 Input.
The SPI_SLVSEL.SSEL5 bit state indicates the value on the related SPI_SELn
pin.

0 Low

1 High

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–60 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

12
(R/W)

SSEL4 Slave Select 4 Input.
The SPI_SLVSEL.SSEL4 bit state indicates the value on the related SPI_SELn
pin.

0 Low

1 High

11
(R/W)

SSEL3 Slave Select 3 Input.
The SPI_SLVSEL.SSEL3 bit state indicates the value on the related SPI_SELn
pin.

0 Low

1 High

10
(R/W)

SSEL2 Slave Select 2 Input.
The SPI_SLVSEL.SSEL2 bit state indicates the value on the related SPI_SELn
pin.

0 Low

1 High

9
(R/W)

SSEL1 Slave Select 1 Input.
The SPI_SLVSEL.SSEL1 bit state indicates the value on the related SPI_SELn
pin.

0 Low

1 High

7
(R/W)

SSE7 Slave Select 7 Enable.
The SPI_SLVSEL.SSE7 bit enables the related SPI_SELn pin for input. If
disabled, the SPI three-states the related SPI_SELn pin. When the SPI is a slave, the
master (not the SPI) asserts the input during the transfer. The input may be de-
asserted or remain asserted between transfers. While the input is de-asserted, the SPI
ignores SPI Clock, ignores inputs, and three-states outputs.

0 Disable

1 Enable

6
(R/W)

SSE6 Slave Select 6 Enable.
The SPI_SLVSEL.SSE6 bit enables the related SPI_SELn pin for input. See the
SPI_SLVSEL.SSE7 bit description for more information.

0 Disable

1 Enable

5
(R/W)

SSE5 Slave Select 5 Enable.
The SPI_SLVSEL.SSE5 bit enables the related SPI_SELn pin for input. See the
SPI_SLVSEL.SSE7 bit description for more information.

0 Disable

1 Enable

Table 22-22: SPI_SLVSEL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–61

Received Word Count Register

The SPI_RWC register holds a count of the number of words remaining to be received by the SPI. To start
the decrement of the word count in SPI_RWC, enable the receive word counter (SPI_RXCTL.RWCEN =1).
The SPI uses the word count to control the duration of transfers and to signal the completion of a burst of
transfers with the receive finish interrupt (SPI_ILAT.RF). In DMA mode, the SPI uses the SPI_RWC to
ensure that the number of frames received during a DMA transfer is equal to the number of words
programmed in the DMA channel controller. The values programmed into the SPI_RWC registers should
match the word count in the DMA configuration. The SPI_RWC maintains the number of frames to be
received in a transfer. The SPI_RWC should only be changed when the counter is disabled.

4
(R/W)

SSE4 Slave Select 4 Enable.
The SPI_SLVSEL.SSE4 bit enables the related SPI_SELn pin for input. See the
SPI_SLVSEL.SSE7 bit description for more information.

0 Disable

1 Enable

3
(R/W)

SSE3 Slave Select 3 Enable.
The SPI_SLVSEL.SSE3 bit enables the related SPI_SELn pin for input. See the
SPI_SLVSEL.SSE7 bit description for more information.

0 Disable

1 Enable

2
(R/W)

SSE2 Slave Select 2 Enable.
The SPI_SLVSEL.SSE2 bit enables the related SPI_SELn pin for input. See the
SPI_SLVSEL.SSE7 bit description for more information.

0 Disable

1 Enable

1
(R/W)

SSE1 Slave Select 1 Enable.
The SPI_SLVSEL.SSE1 bit enables the related SPI_SELn pin for input. See the
SPI_SLVSEL.SSE7 bit description for more information.

0 Disable

1 Enable

Table 22-22: SPI_SLVSEL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–62 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 22-26: SPI_RWC Register Diagram

Received Word Count Reload Register

The SPI_RWCR register holds the receive word count value that the SPI loads into the SPI_RWC register
when the transfer count decrements to zero. To prevent the SPI from reloading the counter, use zero for
the reload count value. The SPI_RWCR should only be changed when the counter is disabled.

Figure 22-27: SPI_RWCR Register Diagram

Table 22-23: SPI_RWC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Received Word Count.
The SPI_RWC.VALUE bits hold the receive transfer word count.

Table 22-24: SPI_RWCR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Received Word Count Reload.
The SPI_RWCR.VALUE bits hold the receive transfer word count reload value.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–63

Transmitted Word Count Register

The SPI_TWC register holds a count of the number of words remaining to be transmitted by the SPI. To
start the decrement of the word count in SPI_TWC, enable the transmit word counter (SPI_TXCTL.TWCEN
=1). The SPI uses the word count to control the duration of transfers and to signal the completion of a burst
of transfers with the transmit finish interrupt. In DMA mode, the SPI uses the SPI_TWC to ensure that the
number of frames transmitted during a DMA transfer is equal to the number of words programmed in the
DMA channel controller. The values programmed into the SPI_TWC registers should match the word
count in the DMA configuration. The SPI_TWC maintains the number of frames to be transmitted in a
transfer. The SPI_TWC should only be changed when the counter is disabled.

Figure 22-28: SPI_TWC Register Diagram

Transmitted Word Count Reload Register

The SPI_TWCR register holds the transmit word count value that the SPI loads into the SPI_TWC register
when the transfer count decrements to zero. To prevent the SPI from reloading the counter, use zero for
the reload count value. The SPI_TWCR should only be changed when the counter is disabled.

Table 22-25: SPI_TWC Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Transmitted Word Count.
The SPI_TWC.VALUE bits hold the transmit transfer word count.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–64 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 22-29: SPI_TWCR Register Diagram

Interrupt Mask Register

The SPI_IMSK register unmasks (enables) or masks (disables) SPI interrupts. When a condition is indi-
cated by a bit in the SPI_STAT register and the corresponding interrupt is unmasked in SPI_IMSK, the SPI
latches the interrupt's bit in the SPI_ILAT register, queuing the interrupt for service.

Figure 22-30: SPI_IMSK Register Diagram

Table 22-26: SPI_TWCR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Transmitted Word Count Reload.
The SPI_TWCR.VALUE bits hold the transmit transfer word count reload value.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–65

Table 22-27: SPI_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/NW)

TF Transmit Finish Interrupt Mask.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

10
(R/NW)

RF Receive Finish Interrupt Mask.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

9
(R/NW)

TS Transmit Start Interrupt Mask.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

8
(R/NW)

RS Receive Start Interrupt Mask.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

7
(R/NW)

MF Mode Fault Interrupt Mask.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

6
(R/NW)

TC Transmit Collision Interrupt Mask.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

5
(R/NW)

TUR Transmit Underrun Interrupt Mask.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

4
(R/NW)

ROR Receive Overrun Interrupt Mask.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

2
(R/NW)

TUWM Transmit Urgent Watermark Interrupt Mask.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

1
(R/NW)

RUWM Receive Urgent Watermark Interrupt Mask.

0 Disable (mask) interrupt

1 Enable (unmask) interrupt

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–66 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Interrupt Mask Clear Register

The SPI_IMSK_CLR register permits clearing individual mask bits in the SPI_IMSK register without
affecting other bits in the register. Use write-1-to-clear on a bit in SPI_IMSK_CLR to clear the corre-
sponding bit in the SPI_IMSK register.

Figure 22-31: SPI_IMSK_CLR Register Diagram

Table 22-28: SPI_IMSK_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/W1C)

TF Clear Transmit Finish Interrupt Mask.

10
(R/W1C)

RF Clear Receive Finish Interrupt Mask.

9
(R/W1C)

TS Clear Transmit Start Interrupt Mask.

8
(R/W1C)

RS Clear Receive Start Interrupt Mask.

7
(R/W1C)

MF Clear Mode Fault Interrupt Mask.

6
(R/W1C)

TC Clear Transmit Collision Interrupt Mask.

5
(R/W1C)

TUR Clear Transmit Under-run Interrupt Mask.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–67

Interrupt Mask Set Register

The SPI_IMSK_SET register permits setting individual mask bits in the SPI_IMSK register without affecting
other bits in the register. Use write-1-to-set on a bit in SPI_IMSK_SET to set the corresponding bit in the
SPI_IMSK register.

Figure 22-32: SPI_IMSK_SET Register Diagram

4
(R/W1C)

ROR Clear Receive Overrun Interrupt Mask.

2
(R/W1C)

TUWM Clear Transmit Urgent Watermark Interrupt Mask.

1
(R/W1C)

RUWM Clear Receive Urgent Watermark Interrupt Mask.

Table 22-29: SPI_IMSK_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/W1S)

TF Set Transmit Finish Interrupt Mask.

Table 22-28: SPI_IMSK_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–68 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Status Register

The SPI_STAT register indicates SPI status including FIFO status, error conditions, and interrupt condi-
tions. When an interrupt condition from this register is unmasked (enabled) by the corresponding bit in
the SPI_IMSK register, the interrupt is latched into the corresponding bit in the SPI_ILAT register.

10
(R/W1S)

RF Set Receive Finish Interrupt Mask.

9
(R/W1S)

TS Set Transmit Start Interrupt Mask.

8
(R/W1S)

RS Set Receive Start Interrupt Mask.

7
(R/W1S)

MF Set Mode Fault Interrupt Mask.

6
(R/W1S)

TC Set Transmit Collision Interrupt Mask.

5
(R/W1S)

TUR Set Transmit Under-run Interrupt Mask.

4
(R/W1S)

ROR Set Receive Overrun Interrupt Mask.

2
(R/W1S)

TUWM Set Transmit Urgent Watermark Interrupt Mask.

1
(R/W1S)

RUWM Set Receive Urgent Watermark Interrupt Mask.

Table 22-29: SPI_IMSK_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–69

Figure 22-33: SPI_STAT Register Diagram

Table 22-30: SPI_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W1C)

MMAE Memory Mapped Access Error.
The SPI_STAT.MMAE bit =1 if an attempt is made to access either the Tx or Rx
FIFO while memory-mapped access of SPI memory is enabled (see the SPI_CTL.
MMSE) bit. The SPI_STAT.MMAE bit =0 when a 1 is written to it. The SPI_
STAT.MMAE bit is provided for software notification only. Its state has no further
effect.

29
(R/W1C)

MMRE Memory Mapped Read Error.
The SPI_STAT.MMRE bit =1 if an attempt is made to read address space reserved
for memory-mapped SPI memory while memory mapping is disabled (see the SPI_
CTL.MMSE bit. The SPI_STAT.MMRE bit =0 when a 1 is written to it. This bit is
provided for software notification only. Its state has no further effect.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–70 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

28
(R/W1C)

MMWE Memory Mapped Write Error.
The SPI_STAT.MMWE bit =1 if an attempt is made to write address space reserved
for memory-mapped SPI memory. The SPI_STAT.MMWE bit =0 when a 1 is written
to it. This bit is provided for software notification only. Its state has no further effect.

23
(R/NW)

TFF SPI_TFIFO Full.
The SPI_STAT.TFF bit indicates whether the SPI_TFIFO is full or not full.

0 Not full Tx FIFO

1 Full Tx FIFO

22
(R/NW)

RFE SPI_RFIFO Empty.
The SPI_STAT.RFE bit indicates whether the SPI_RFIFO is empty or not empty.

0 RX FIFO not empty

1 RX FIFO empty

20
(R/NW)

FCS Flow Control Stall Indication.
The SPI_STAT.FCS bit indicates whether a slave has de-asserted the SPI_RDY
pin to stall the SPI master while the slave is unable to service the SPI masters request.
This bit is valid only when the SPI is a master (SPI_CTL.MSTR =1 and flow control
is enabled (SPI_CTL.FCEN =1).

0 No Stall (RDY pin asserted)

1 Stall (RDY pin de-asserted)

18:16
(R/NW)

TFS SPI_TFIFO Status.
The SPI_STAT.TFS bits indicate the status of the SPI_TFIFO. The SPI uses this
status when evaluating transmit watermark conditions.

0 Full TFIFO

1 25% empty TFIFO

2 50% empty TFIFO

3 75% empty TFIFO

4 Empty TFIFO

14:12
(R/NW)

RFS SPI_RFIFO Status.
The SPI_STAT.RFS bits indicate the status of the SPI_RFIFO. The SPI uses this
status when evaluating receive watermark conditions.

0 Empty RFIFO

1 25% full RFIFO

2 50% full RFIFO

3 75% full RFIFO

4 Full RFIFO

Table 22-30: SPI_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–71

11
(R/W1C)

TF Transmit Finish Indication.
The SPI_STAT.TF bit indicates that the SPI has detected the finish of a transmit
burst transfer (the SPI_TWC count decrements to zero). This condition can only
occur when SPI_TXCTL.TTI and SPI_TXCTL.TWCEN are enabled.

0 No status

1 Transmit finish detected

10
(R/W1C)

RF Receive Finish Indication.
The SPI_STAT.RF bit indicates that the SPI has detected the finish of a receive
burst transfer (the SPI_RWC count decrements to zero). This condition can only
occur when SPI_RXCTL.RTI and SPI_RXCTL.RWCEN are enabled.

0 No status

1 Receive finish detected

9
(R/W1C)

TS Transmit Start.
The SPI_STAT.TS bit indicates that the SPI has detected the start of a transmit
burst transfer. A transmit bursts starts with the load of SPI_TWC from the SPI_
TWCR. This condition can only occur when SPI_TXCTL.TTI and SPI_TXCTL.
TWCEN are enabled.

0 No status

1 Transmit start detected

8
(R/W1C)

RS Receive Start.
The SPI_STAT.RS bit indicates that the SPI has detected the start of a receive burst
transfer. A receive bursts starts with the load of SPI_RWC from the SPI_RWCR. This
condition can only occur when SPI_RXCTL.RTI and SPI_RXCTL.RWCEN are
enabled.

0 No status

1 Receive start detected

7
(R/W1C)

MF Mode Fault Indication.
The SPI_STAT.MF bit, when SPI is a master and SPI_CTL.PSSE is enabled,
indicates that multiple masters have asserted slave select inputs.

0 No status

1 Mode fault occurred

6
(R/W1C)

TC Transmit Collision Indication.
The SPI_STAT.TC bit, when SPI is a slave, indicates that the load of data into the
shift register has occurred too close to the first transmitting edge of the SPI Clock.

0 No status

1 Transmit collision occurred

Table 22-30: SPI_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–72 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Masked Interrupt Condition Register

The SPI_ILAT register latches interrupts, queuing the interrupts for service. When a condition is indicated
by a bit in the SPI_STAT register and the corresponding interrupt is unmasked in SPI_IMSK, the SPI latches
the interrupt's bit in SPI_ILAT.

5
(R/W1C)

TUR Transmit Underrun Indication.
The SPI_STAT.TUR bit, when the transmit FIFO (SPI_TFIFO is empty, indicates
that the last word in the transmit FIFO has been re-sent as transmit data. Alternately,
it indicates that zero has been sent as transmit data.

0 No status

1 Transmit underrun occurred

4
(R/W1C)

ROR Receive Overrun Indication.
The SPI_STAT.ROR bit, when the receive FIFO (SPI_RFIFO is full, indicates that
a word in the receive FIFO has been overwritten with incoming receive data.
Alternately, it indicates that incoming receive data has been discarded.

0 No status

1 Receive overrun occurred

2
(R/NW)

TUWM Transmit Urgent Watermark Breached.
The SPI_STAT.TUWM bit indicates that the transmit urgent watermark (SPI_
TXCTL.TUWM) has been reached. This condition is cleared when the transmit FIFO
fills enough to reach the transmit regular watermark (SPI_TXCTL.TRWM).

0 TX Regular Watermark reached

1 TX Urgent Watermark breached

1
(R/NW)

RUWM Receive Urgent Watermark Breached.
The SPI_STAT.RUWM bit indicates that the receive urgent watermark (SPI_
RXCTL.RUWM) has been reached. This condition is cleared when the receive FIFO
empties enough to reach the receive regular watermark (SPI_RXCTL.RRWM).

0 RX Regular Watermark reached

1 RX Urgent Watermark breached

0
(R/NW)

SPIF SPI Finished.
The SPI_STAT.SPIF bit indicates that a single word transfer is complete.

0 No status

1 Completed single-word transfer

Table 22-30: SPI_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–73

Figure 22-34: SPI_ILAT Register Diagram

Table 22-31: SPI_ILAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/NW)

TF Transmit Finish Interrupt Latch.

0 No interrupt

1 Latched interrupt

10
(R/NW)

RF Receive Finish Interrupt Latch.

0 No interrupt

1 Latched interrupt

9
(R/NW)

TS Transmit Start Interrupt Latch.

0 No interrupt

1 Latched interrupt

8
(R/NW)

RS Receive Start Interrupt Latch.

0 No interrupt

1 Latched interrupt

7
(R/NW)

MF Mode Fault Interrupt Latch.

0 No interrupt

1 Latched interrupt

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–74 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Masked Interrupt Clear Register

The SPI_ILAT_CLR register permits clearing individual mask bits in the SPI_ILAT register without
affecting other bits in the register. Use write-1-to-clear on a bit in SPI_ILAT_CLR to clear the corre-
sponding bit in the SPI_ILAT register.

6
(R/NW)

TC Transmit Collision Interrupt Latch.

0 No interrupt

1 Latched interrupt

5
(R/NW)

TUR Transmit Under-run Interrupt Latch.

0 No interrupt

1 Latched interrupt

4
(R/NW)

ROR Receive Overrun Interrupt Latch.

0 No interrupt

1 Latched interrupt

2
(R/NW)

TUWM Transmit Urgent Watermark Interrupt Latch.

0 No interrupt

1 Latched interrupt

1
(R/NW)

RUWM Receive Urgent Watermark Interrupt Latch.

0 No interrupt

1 Latched interrupt

Table 22-31: SPI_ILAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–75

Figure 22-35: SPI_ILAT_CLR Register Diagram

Table 22-32: SPI_ILAT_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

11
(R/W1C)

TF Clear Transmit Finish Interrupt Latch.

10
(R/W1C)

RF Clear Receive Finish Interrupt Latch.

9
(R/W1C)

TS Clear Transmit Start Interrupt Latch.

8
(R/W1C)

RS Clear Receive Start Interrupt Latch.

7
(R/W1C)

MF Clear Mode Fault Interrupt Latch.

6
(R/W1C)

TC Clear Transmit Collision Interrupt Latch.

5
(R/W1C)

TUR Clear Transmit Under-run Interrupt Latch.

4
(R/W1C)

ROR Clear Receive Overrun Interrupt Latch.

2
(R/NW)

TUWM Clear Transmit Urgent Watermark Interrupt Latch.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–76 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Receive FIFO Data Register

The SPI_RFIFO register has an interface to the receive shift register in the SPI and has an interface to the
processor's data buses. The top level of the buffer is visible to programs as the 32-bit SPI_RFIFO register,
but the size (number of word locations) of the receive FIFO is actually flexible with transfer word size. The
size of the receive FIFO is 8 if word size is 8-bit, or the size is 4 if word size is 16-bit, or the size is 2 if word
size is 32-bit.

Both masters and slaves may stop or stall receive transfers based on FIFO status. When the receive FIFO
is full, the SPI master stops initiating new transfers on the SPI if SPI_RXCTL.RTI is enabled. A slave may
stall the SPI interface when the content of the FIFO crosses the selected watermark. If data reception
continues after SPI_RFIFO is full, the data in the receive FIFO is invalid, and the SPI indicates this condi-
tion with receive overrun (SPI_STAT.ROR). This condition is possible when SPI_RXCTL.RTI =0 and SPI_
RXCTL.REN =1 for a master, or for a slave that does not exercise flow control.

Note that the receive FIFO is reset (cleared) when the SPI is disabled after being enabled.

Figure 22-36: SPI_RFIFO Register Diagram

1
(R/NW)

RUWM Clear Receive Urgent Watermark Interrupt Latch.

Table 22-33: SPI_RFIFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

DATA Receive FIFO Data.

Table 22-32: SPI_ILAT_CLR Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–77

Transmit FIFO Data Register

The SPI_TFIFO register has an interface to the transmit shift register in the SPI and has an interface to the
processor's data buses. The top level of the buffer is visible to programs as the 32-bit SPI_TFIFO register,
but the size (number of word locations) of the transmit FIFO is actually flexible with transfer word size.
The size of the transmit FIFO is 8 if word size is 8-bit, or the size is 4 if word size is 16-bit, or the size is 2
if word size is 32-bit.

Both masters and slaves may stop or stall transmit transfers based on FIFO status. When the transmit FIFO
is empty, the SPI master stops initiating new transfers on the SPI if SPI_TXCTL.TTI is enabled. A slave may
stall the SPI interface when the content of the FIFO crosses the selected watermark. If data transmit
requests continue after SPI_TFIFO is empty, the data sent from the transmit FIFO is invalid, and the SPI
indicates this condition with transmit underrun (SPI_STAT.TUR). This condition is possible when SPI_
TXCTL.TTI =0 and SPI_TXCTL.TEN =1 for a master, or for a slave that does not exercise flow control.

Note that the transmit FIFO is reset (cleared) when the SPI is disabled after being enabled.

Figure 22-37: SPI_TFIFO Register Diagram

Memory Mapped Read Header

The SPI_MMRDH register enables the use of memory-mapped mode. This mode allows direct memory-
mapped read accesses of a SPI memory device and is primarily used to directly execute instructions from
a SPI FLASH memory without using a low-level software driver. All overhead tasks such as transmission
of the read header, pin turnaround timing and receive data sizing are handled in hardware.

Table 22-34: SPI_TFIFO Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

DATA Transmit FIFO Data.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–78 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The memory-mapped access mode is enabled by setting the SPI_CTL.MMSE bit. The features within the
SPI_MMRDH register include a command skip mode, variable length byte addressing, and independent
multi-pin support for command transmission, address transmission and data reception. In addition the
command op-code and mode bytes are fully programmable.

Figure 22-38: SPI_MMRDH Register Diagram

Table 22-35: SPI_MMRDH Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29
(R/W)

CMDPINS Pins Used for Command.
The SPI_MMRDH.CMDPINS bit specifies the number of pins to be used for
command transmission. This bit must be set consistent with expectations established
by read opcode. Hardware does not interpret the OPCODE, but rather relies on this
bit to specify behavior. When cleared, overrides SPI_CTL.MIOM bits). When set,
uses bits specified by SPI_CTL.MIOM bit setting.

0 Use only one pin: MOSI (overrides SPI_CTL.MIOM
bits in register SPI_CTL)

1 Use pins specified by SPI_CTL.MIOM bits in register
SPI_CTL

28
(R/W)

CMDSKIP Command Skip Enable.
The SPI_MMRDH.CMDSKIP bit enables command skip mode where the address is
sent first and the OPCODE field is not sent (SPI_MMRDH.CMDSKIP bit =1). This
mode is useful for supporting XIP (Execute-In-Place) operation where only the
address is sent and the same read command is assumed. The SPI flash device must be
primed with an initial read command, before the SPI_MMRDH.CMDSKIP bit is set.

0 OPCODE field is sent first followed by address

1 OPCODE field is not sent; address is sent first

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–79

27
(R/W)

WRAP SPI Memory Wrap Indicator.
The SPI_MMRDH.WRAP bit must be set by software if software places a connected
SPI memory device into a 8-byte, 16-byte or 32-byte wrap mode based on the ILINE
and DLINE field setting of the cache configuration register address wrap mode.
Software achieves this by transmitting a vendor specified command to the SPI
memory device while the SPI_CTL.MMSE bit =0.
If the SPI_MMRDH.WRAP bit =1, the SPI does not need to de-assert the SPI slave
select signal and resend the read header in order to wrap to the cache line base when
servicing misaligned cache fill requests. Although this improves cache fill efficiency,
it requires that the SPI de-assert the SPI slave select pin and resend the read header
whenever a DMA burst requests crosses 32 byte alignments. Setting this bit improves
cache throughput but decreases DMA throughput.

0 SPI Memory auto increments address purely
sequentially

1 SPI Memory auto increments address but wraps within
32 Byte lines

26
(R/W)

MERGE Merge Enable.
When the SPI_MMRDH.MERGE bit is set, SPI hardware combines the two successive
transfers. This increases the throughput rate when accessing a large number of
sequential memory locations. For more information refer to the Merged Read
Accesses section.

25:24
(R/W)

TRIDMY Tristate Dummy Timing.
These bits specify whether and when output pins are three-stated during the interval
of time specified by DMYSIZE. Output pins potentially three-stated include all pin
which were used to transmit the address

0 Tristate outputs immediately

1 Tristate outputs after 4 bits of dummy/mode are
transmitted

2 Tristate outputs after 8 bits of dummy/mode are
transmitted

3 Never Tristate outputs never (previously specified
output state is held)

23:16
(R/W)

MODE Mode Field.
These bits specify up to a leading byte to be transmitted during the interval of time
specified by DMYSIZE. This first byte, or a portion of it, is interpreted as mode bits
when certain opcodes are used in conjunction with certain SPI memory device.
Mode bits are sent using the same number of pins which were used to transmit the
address. Once sent, output pins will be held in their final resultant state until the
conclusion of all dummy byte periods, unless three-stating of outputs is specified first
by bits TRIDMY.

Table 22-35: SPI_MMRDH Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–80 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

14:12
(R/W)

DMYSIZE Bytes of Dummy/Mode.
These bits specify the number of bytes separating address transmission and read data
return. Dummy bytes elapse assuming dummy bits are transmitted using the same
number of pins which were used to transmit address.

0 0 Bytes

1 1 Bytes

2 2 Bytes

3 3 Bytes

4 4 Bytes

5 5 Bytes

6 6 Bytes

7 7 Bytes

11
(R/W)

ADRPINS Pins Used for Address.
This bit specifies the number of pins to be used for address transmission. This bit
must be set consistent with expectations established by read opcode. Hardware does
not interpret the OPCODE, but rather relies on this bit to specify behavior.

0 Use only one pin: MOSI (overrides SPI_CTL.MIOM
bits)

1 Use pins specified by SPI_CTL.MIOM bits

10:8
(R/W)

ADRSIZE Bytes of Read Address.
The SPI_MMRDH.ADRSIZE bit field defines the number of bytes used to specify
the read address. The read address is sent immediately following the transmission of
opcode. Unlike opcode bits, address bits may be sent using either one or multiple
pins. The number of pins is selected using the SPI_MMRDH.ADRPINS bit. The
address sent to a connected SPI memory device is an echo of the read address
received by the SPI peripheral slave port. Least significant bytes of address are sent
when entire address is not sent.

0 1 Byte

1 1 Byte

2 2 Bytes

3 3 Bytes

4 4 Bytes

7:0
(R/W)

OPCODE Read Opcode.
The SPI_MMRDH.OPCODE bit field specifies initial bits transmitted in response to a
read request of SPI memory. Although any opcode may be sent, values 0x03, 0x0B,
0x3B, 0x6B, 0xBB, and 0xEB are likely to be the most commonly used. Opcode is sent
by the SPI without interpretation; the states of these bits have no affect beyond
specifying what is initially shirted across the SPI interface.

Table 22-35: SPI_MMRDH Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 22–81

SPI Memory Top Address

The SPI_MMTOP register specifies the top populated address of a connected SPI memory device.

Figure 22-39: SPI_MMTOP Register Diagram

Table 22-36: SPI_MMTOP Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

TOPADR SPI Memory Top Address.
The SPI_MMTOP.TOPADR bit field specifies the top populated address of a
connected SPI memory device. Attempts to access SPI memory are not blocked if this
address is exceeded and an error is generated as part of the read response.

SERIAL PERIPHERAL INTERFACE (SPI)
ADSP-CM40X SPI REGISTER DESCRIPTIONS

22–82 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–1

23 Serial Port (SPORT)

The serial ports (SPORTs) support a variety of serial data communication protocols. In addition, the
SPORTs provide a glueless hardware interface to many industry-standard data converters and codecs.
With support for high data rates and dual half-duplex data paths, the SPORT interface is a perfect choice
for direct serial interconnection between two or more processors in a multiprocessor system. Many
processors provide compatible serial interfaces, including DSPs from Analog Devices and other manufac-
turers.

The SPORT top module comprises of two half SPORTs with identical functionality. Each SPORT half can
be independently configured as either a transmitter or receiver and can be coupled with the other HSPORT
within the same SPORT. Further, each SPORT half provides two synchronous half-duplex data lines to
double the total supported data streams.

Each SPORT half has the same capabilities and is programmed in the same way. The interface specifica-
tions of each SPORT half are shown in the following table.

Table 23-1: SPORT Specifications

Feature Availability

Connectivity

Multiplexed Pinout Yes

Internal connections between SPORT halves Yes. Only Clock and/or Frame Sync can be loopbacked internally between
paired SPORT halves.

Interrupt Control Yes

Protocol

Master Capable Yes

Slave Capable Yes

Transmission Simplex Yes

Transmission Half Duplex Yes

Transmission Full Duplex No. The paired SPORT halves can however, be effectively used for full-duplex
communication.

Access Type

Data Buffer Yes. Each SPORT half has its own set of control registers and data buffers.

Core Data Access Yes

DMA Data Access Yes

DMA Channels One per SPORT half

DMA Chaining Yes

SERIAL PORT (SPORT)
FEATURES

23–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Features

An individual SPORT module consists of two independently configurable SPORT halves with identical
functionality. These SPORT halves offer the following features.

• Two bidirectional data lines—Primary (0) and Secondary (1) per SPORT half, configurable as either
transmitters or receivers. Therefore, each SPORT half can be configured for two transmitter or two
receiver channels, permitting two unidirectional streams into or out of the same SPORT half. This bidi-
rectional functionality provides greater flexibility for serial communications. Further, two SPORT
halves can be combined to enable full-duplex, dual-stream communications.

• Six operation modes

a. Standard DSP serial mode

b. I 2S mode

c. Left-Justified mode

d. Right-Justified Mode

e. Multichannel Mode

f. Packed mode

• Improved granularity for internal clock generation, allowing both even and odd SCLK to SPORT_CLK
ratios. If both data lines of a SPORT half are active, it can have a maximum throughput of 2 x SPORT_
CLK. The SPORTs can accept an input clock from an external source.

• Configurable rising or falling edge of the SPORT_CLK for driving or sampling data and frame sync.

• Gated clock mode support for both internal clock and external clock mode in DSP serial mode and
stereo modes (Left-justified and I 2S mode).

• Operates with or without a frame synchronization signal for each data word, with internally generated
or externally generated frame signals, with active high or active low frame signals, and with either of
two configurable pulse widths and frame signal timing.

• Status flagging and optional interrupt generation for prematurely received external frame syncs.

• External frame sync signal can be configured as level-sensitive or edge-sensitive signal.

Boot Capable No

Local Memory No

Clock Operation See data sheet

Table 23-1: SPORT Specifications (Continued)

Feature Availability

SERIAL PORT (SPORT)
SIGNAL DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–3

• Serial data words between 4 and 32 bits in length, either in most significant bit (MSB) first or in least
significant bit (LSB) first format. Optional sign-extension on received data.

• Optional 16-bit to 32-bit word packing when SPORT is configured as receiver and 32-bit to 16-bit word
unpacking when configured as Transmitter.

• When configured as transmitter, both primary and secondary data paths can have optional compress
engines enabled. Similarly, in receiver mode, both paths can have optional expand engines enabled. A-
law and μ-law compression/decompression hardware companding according to G.711 specification on
transmitted and received words in all operating modes.

• Status flagging and optional interrupt generation for Transmit under-run or Receive over-flow.

• Supports multichannel mode for TDM interfaces. Each SPORT half can transmit or receive data selec-
tively from a time-division-multiplexed serial bit stream on 128 contiguous channels from a stream of
up to 1024 total channels. This mode can be useful for H.100/H.110 and other telephony interfaces as
a network communication scheme for multiple processors.

• Performs interrupt-driven, single word transfers to and from on-chip or off-chip memory under
processor control.

• Dedicated DMA channel for each SPORT half. This DMA is common for both data lines and can be
configured for multiple work units such as auto-buffer based (for a repeated, identical range of trans-
fers) or descriptor-based (individual or repeated ranges of transfers with differing DMA parameters).

• SPORT DMA's can be programmed to accept the incoming trigger when configured as Trigger Slave
and are capable of generating outgoing trigger as well.

• When using DMA in transmit mode, a Transfer Finish Interrupt (TFI) can be used to make sure that
the last word of the transfer has been shifted out of the transmit shift register.

• SPMUX, a local multiplexing block integrated between the SPORT and the PinMux logic, provides the
ability to route and share the clocks and/or frame sync between the SPORT halves of the SPORT
module. The internal routing helps to reduce the total number of processor pins required for the inter-
face. This is especially efficient when a SPORT is used for full-duplex data transfers.

Signal Descriptions

Each SPORT half module has five dedicated pins, as described in the following table. The actual pin name
varies with different SPORT halves. The individual SPORT half does not share any of its pins across the
pair. However, if required, clock and frame sync signals can be interconnected between the SPORT half
pair, as explained in SPORT pin MUX section.

All the SPORT signals are available on the GPIO pins and are multiplexed with other peripheral signals.
By default, these pins are in GPIO mode. To enable the pins for SPORT functionality, the appropriate bits
must be set in the PORTx_FER and PORTx_MUX registers. It is advised to configure PORTx_MUX register
before PORTx_FER.

SERIAL PORT (SPORT)
SIGNAL DESCRIPTIONS

23–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The signals are known as Transmit signal when the serial port is configured in transmit mode (SPORT_
CTL_A.SPTRAN = 1); while are known as Receive signals when configured in receive mode (SPORT_CTL_A.
SPTRAN = 0). These SPORT signals are described in the sections below.

Serial Clock

The serial port clock (SPT_ACLK) signal is considered a Receive serial clock if the transfer direction is
configured as receiver; while it is considered a Transmit serial clock when configured as transmitter.

The serial clock (SPT_ACLK) is one of the control signal of serial port depending on which the data bits are
shifted-in or shifted-out serially based on the direction selected. The frame sync signal is also driven (in
internal frame sync mode) or sampled (in external frame sync mode) with respect to serial clock signal.
The serial clock can be internally generated from processor's system clock (SCLK1) or externally provided,
based on SPORT_CTL_A.ICLK bit setting. If a SPORT is configured in internal clock mode (SPORT_CTL_A.
ICLK = 1), then the SPORT_DIV_A.CLKDIV field specifies the divider to generate serial port clock signal
from its fundamental clock, SCLK. This divisor is a 16-bit value, allowing a wide range of serial clock rates.
Use the following equation to calculate the serial clock frequency:

SPT_ACLK = [SCLK ÷ (SPORT_DIV_A.CLKDIV + 1)]

Use the following equation to determine the value of SPORT_DIV_A.CLKDIV, given the SCLK frequency
and desired serial port clock frequency:

SPORT_DIV_A.CLKDIV = [(SCLK ÷ SPT_ACLK) - 1]

This equation results in improved granularity for internal clock generation, allowing both odd and even
SCLK: SPT_ACLK ratios.

It also supports 1:1 SPT_ACLK to SCLK ratio, when CLKDIV field is programmed to zero, resulting in serial
port clock frequency equal to system clock. But caution must be exercised not to exceed the maximum
SPT_ACLK frequency specified in the data sheet. Therefore if SCLK is greater than the data sheet limit, SPT_

Table 23-2: SPORT Pin Descriptions

Internal Node Direction Description

SPORT_CLK I/O Transmit/Receive Serial Clock. Data and Frame Sync are driven/sampled with respect to
this clock. This signal can be either internally or externally generated.

SPORT_FS I/O Transmit/Receive Frame Sync. The frame sync pulse initiates shifting of serial data. This
signal is either generated internally or externally.

SPORT_D0 I/O Transmit/receive Primary Data channel. Bidirectional data pin. This signal can be
configured as an output to transmit serial data, or as an input to receive serial data.

SPORT_D1 I/O Transmit/receive secondary Data channel. Bidirectional data pin. This signal can be
configured as an output to transmit serial data, or as an input to receive serial data.

SPORT_TDV O Multichannel Transmit Data Valid. This signal is only active if SPORT is configured in
multichannel transmit mode. The signal is asserted during enabled slots based on the
channel selection registers (SPORT_CS0_A through SPORT_CS3_B).

SERIAL PORT (SPORT)
SIGNAL DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–5

ACLK:SCLK ratio must be limited to 1:2. For other SCLK frequencies, this ratio can be programmed up to
1:1.

In certain operating modes, the serial port can be configured to generate gated clock which is active only
for the duration of valid data. In some applications, it can be used to generate a general-purpose clock in
the system. In this case the SPORT must be enabled with appropriate SPORT_DIV_A.CLKDIV divisor field
in internal clock mode.

If a SPORT is configured in external clock mode (SPORT_CTL_A.ICLK = 0), then serial clock is a input
signal making the SPORT to operate in slave mode. The SPORT_DIV_A.CLKDIV is ignored. The optional
loopback capability provided by SPMUX block, allows slave SPORT to use the serial clock from the neigh-
boring serial port.

Note that externally supplied serial clock need not be in synchronous with processor system clock. Further,
the external clock can be a gated clock but it must comply the requirements described in Gated Clock
Mode section. Please refer appropriate product data sheet for exact a.c. timing specifications.

Frame Sync

The serial port frame sync (SPT_AFS) signal is considered a Receive Frame Sync if the transfer direction is
configured as receiver; while it is considered a Transmit Frame Sync when configured as transmitter.

Frame sync is also a control signal, generally used to determine the start of new word or frame. Upon
detecting this signal, serial port starts shifting in or out the new data bits serially based on the direction
selected. The frame sync signal can be internally generated from its serial clock (SPT_ACLK) or externally
provided, based on the SPORT_CTL_A.IFS bit setting.

If SPORT is configured for internal frame sync mode (SPORT_CTL_A.IFS = 1), then the SPORT_DIV_A.
FSDIV field specifies the divider to generate SPT_AFS signal from the serial clock. This divisor is a 16-bit
value, allowing a wide range of frame sync rates to initiate periodic transfers. The serial clock may be inter-
nally generated or externally supplied and it is counted equal to divisor specified before a frame sync pulse
is generated. The formula for the number of cycles between frame sync pulses is:

Number of serial clocks between frame syncs = (SPORT_DIV_A.FSDIV + 1)

Use the following equation to determine the value of SPORT_DIV_A.FSDIV, given the serial clock frequency
and desired frame sync frequency:

SPORT_DIV_A.FSDIV = [(SPT_ACLK ÷ SPT_AFS) – 1]

The frame sync is continuously active when SPORT_DIV_A.FSDIV = 0. The value of SPORT_DIV_A.FSDIV
should not be less than the serial word length minus one (the value of the SPORT_CTL_A.SLEN bit field), as
this may cause an external device to abort the current operation or cause other unpredictable results.

NOTE: After enabling the SPORT, the first internal frame sync appears after a delay of (SPORT_DIV_A.
FSDIV + 3) serial clocks.

SERIAL PORT (SPORT)
SIGNAL DESCRIPTIONS

23–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

If a SPORT is configured in external frame sync mode (SPORT_CTL_A.IFS = 0), then SPT_AFS is a input
signal and the SPORT_DIV_A.FSDIV field of the SPORT_DIV_A register is ignored. By default, this external
signal is level-sensitive, but can be configured as an edge-sensitive signal by setting SPORT_CTL_A.FSED bit.
The frame sync is expected to be synchronous with the serial clock. If not, it must meet the timing require-
ments that appear in the product specific data sheet.

The serial port can be used as a counter for dividing an external clock to generate periodic pulses or peri-
odic interrupts. The SPORT must be enabled with appropriate SPORT_DIV_A.FSDIV divisor field in
external clock, internal data-independent frame sync mode.

In some of the operating modes, the serial port can be programmed to treat the frame sync signal as an
optional signal by clearing the SPORT_CTL_A.FSR bit (it can be used to start the continuous transfers and
subsequently ignored). Characteristics of the frame sync depend on the settings in the SPORT control
registers and the SPORT's operating mode. For more information, refer to the SPORT control register bits
and respective operating mode details.

Data Signals

Each SPORT half has two bi-directional data lines known as the primary transmit or receive data channel
(SPT_AD0) and the secondary transmit or receive data channel (SPT_AD1). Both the data lines can be
configured as either transmitters or receivers using the SPORT_CTL_A.SPTRAN bit, permitting dual unidi-
rectional data streams to increase the data throughput of the serial port.

Both data lines can be individually enabled or disabled using the SPORT_CTL_A.SPENPRI and the SPORT_
CTL_A.SPENSEC bits. However, if using both, it is advised to enable or disable them concurrently. They do
not behave as totally separate SPORTs; rather, they operate in a synchronous manner (sharing a clock and
frame sync) but on separate data paths. All of the SPORT control settings are common for both channels
but the single DMA channel per serial half serves both primary and secondary data channels. Also, both
primary and secondary channels have separate data buffers, shift registers and optional companding logic
in their path.

When a serial port is configured in multichannel transmit mode, the data pins three-states during inactive
channel slots. This allows multiple serial port transmitters to operate on the same bus with different active
channels.

See the Architecture section for more details about data transfer operation.

Transmit Data Valid Signal

The Transmit Data Valid (SPT_ATDV) signal is available only in multichannel modes (including packed
mode) of a SPORT configured as a transmitter. This signal is active during transmission of enabled multi-
channel slots and remains in an inactive state for the disabled channels. In other words, the SPT_ATDV
signal is active whenever a serial port is driving the data pins and stays inactive when the data pins three-
states. Therefore the SPT_ATDV signal can serve as an output-enable signal for the data transmit pin.

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–7

Functional Description

The following section provides general information about functionality of the serial ports of processors.

• Architectural Concepts

• Data Types and Companding

• Transmit Path

• Receive Path

ADSP-CM40x SPORT Register List

The serial port (SPORT) controller, with its range of clock and frame synchronization options, supports a
variety of serial communication protocols and provides a glue-less hardware interface to many industry-
standard data converters and CODECs. Each SPORT has two independent halves (A and B), and each half
contains two channels (primary and secondary). A set of registers govern SPORT operations. For more
information on SPORT functionality, see the SPORT register descriptions.

Table 23-3: ADSP-CM40x SPORT Register List

Name Description

SPORT_CTL_A Half SPORT 'A' Control Register

SPORT_DIV_A Half SPORT 'A' Divisor Register

SPORT_MCTL_A Half SPORT 'A' Multi-channel Control Register

SPORT_CS0_A Half SPORT 'A' Multi-channel 0-31 Select Register

SPORT_CS1_A Half SPORT 'A' Multi-channel 32-63 Select Register

SPORT_CS2_A Half SPORT 'A' Multi-channel 64-95 Select Register

SPORT_CS3_A Half SPORT 'A' Multi-channel 96-127 Select Register

SPORT_ERR_A Half SPORT 'A' Error Register

SPORT_MSTAT_A Half SPORT 'A' Multi-channel Status Register

SPORT_CTL2_A Half SPORT 'A' Control 2 Register

SPORT_TXPRI_A Half SPORT 'A' Tx Buffer (Primary) Register

SPORT_RXPRI_A Half SPORT 'A' Rx Buffer (Primary) Register

SPORT_TXSEC_A Half SPORT 'A' Tx Buffer (Secondary) Register

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

23–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x SPORT Interrupt List

SPORT_RXSEC_A Half SPORT 'A' Rx Buffer (Secondary) Register

SPORT_CTL_B Half SPORT 'B' Control Register

SPORT_DIV_B Half SPORT 'B' Divisor Register

SPORT_MCTL_B Half SPORT 'B' Multi-channel Control Register

SPORT_CS0_B Half SPORT 'B' Multi-channel 0-31 Select Register

SPORT_CS1_B Half SPORT 'B' Multi-channel 32-63 Select Register

SPORT_CS2_B Half SPORT 'B' Multichannel 64-95 Select Register

SPORT_CS3_B Half SPORT 'B' Multichannel 96-127 Select Register

SPORT_ERR_B Half SPORT 'B' Error Register

SPORT_MSTAT_B Half SPORT 'B' Multi-channel Status Register

SPORT_CTL2_B Half SPORT 'B' Control 2 Register

SPORT_TXPRI_B Half SPORT 'B' Tx Buffer (Primary) Register

SPORT_RXPRI_B Half SPORT 'B' Rx Buffer (Primary) Register

SPORT_TXSEC_B Half SPORT 'B' Tx Buffer (Secondary) Register

SPORT_RXSEC_B Half SPORT 'B' Rx Buffer (Secondary) Register

Table 23-4: ADSP-CM40x SPORT Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

63 SPORT0_A_STAT SPORT0 Channel A Status LEVEL

64 SPORT0_A_DMA SPORT0 Channel A DMA Transfer Complete LEVEL 0

65 SPORT0_B_STAT SPORT0 Channel B Status LEVEL

66 SPORT0_B_DMA SPORT0 Channel B DMA Transfer Complete LEVEL 1

74 SPORT1_A_STAT SPORT1 Channel A Status LEVEL

75 SPORT1_A_DMA SPORT1 Channel A DMA Transfer Complete LEVEL 6

76 SPORT1_B_STAT SPORT1 Channel B Status LEVEL

Table 23-3: ADSP-CM40x SPORT Register List (Continued)

Name Description

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–9

ADSP-CM40x SPORT Trigger List

ADSP-CM40x SPORT DMA List

Block Diagram

The serial port is configured in transmit mode, if SPORT_CTL_A.SPTRAN control bit is set. If this bit is
cleared, serial port configures in receive mode. If SPORT_CTL_A.SPENPRI control bit is set, then serial port
activates primary transmit/receive path. If SPORT_CTL_A.SPENSEC control bit is set, then it activates

77 SPORT1_B_DMA SPORT1 Channel B DMA Transfer Complete LEVEL 7

Table 23-5: ADSP-CM40x SPORT Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

24 SPORT0_A_DMA SPORT0 Channel A DMA Transfer Complete PULSE/EDGE

25 SPORT0_B_DMA SPORT0 Channel B DMA Transfer Complete PULSE/EDGE

26 SPORT1_A_DMA SPORT1 Channel A DMA Transfer Complete PULSE/EDGE

27 SPORT1_B_DMA SPORT1 Channel B DMA Transfer Complete PULSE/EDGE

Table 23-6: ADSP-CM40x SPORT Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

16 SPORT0_A_DMA SPORT0 Channel A DMA Transfer Start

17 SPORT0_B_DMA SPORT0 Channel B DMA Transfer Start

18 SPORT1_A_DMA SPORT1 Channel A DMA Transfer Start

19 SPORT1_B_DMA SPORT1 Channel B DMA Transfer Start

Table 23-7: ADSP-CM40x SPORT DMA List DMA Channel List

Description DMA Channel

SPORT0 Channel A DMA Transfer Complete DMA0

SPORT0 Channel B DMA Transfer Complete DMA1

SPORT1 Channel A DMA Transfer Complete DMA6

SPORT1 Channel B DMA Transfer Complete DMA7

Table 23-4: ADSP-CM40x SPORT Interrupt List Interrupt List (Continued)

Interrupt ID Name Description Sensitivity
DMA

Channel

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

23–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

secondary transmit/receive path. Both data channels can be enabled to allow synchronous dual-stream
communication. Each path optionally supports Hardware companding or expanding as well. Once a path
is activated, data is shifted in response to a frame sync at the rate of serial clock. Inactive data buffers are
not used and should not be accessed. An application program must use the appropriate data buffers.

These serial ports are not UARTs and cannot communicate with an RS-232 device or any other asynchro-
nous communications protocol.

The following figure shows a detailed block diagram of a SPORT half side.

Figure 23-1: Serial Port Block Diagram

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–11

Architectural Concepts

Each SPORT module consists of two separate blocks, known as half-SPORT (HSPORT) A and B, with
identical functionality. These blocks can be independently configurable as either transmitter or receiver;
and optionally coupled together internally in a limited way. Each HSPORT also supports two synchronous
bidirectional data paths, referred as primary (D0) and secondary (D1) data lines, as shown in the following
figure.

Each HSPORT can be configured as either transmitter or receiver, according to which the pair of data
signals transmit or receive data bits synchronously. The SPORT_CTL_A.SPTRAN bit controls the direction
for both data paths of the HSPORT. Each HSPORT has its own set of control registers and data buffers
grouped per SPORT module. The dual data signals of each HSPORT cannot transmit and receive the data
simultaneously for full-duplex operation. Two HSPORTs must be combined to achieve full-duplex oper-
ation.

Serial communications are synchronized to the serial clock signal. Every data bit must be accompanied by
a clock pulse. Each serial port can internally generate its own serial clock signal from the processor's system
clock using the divisor field of the SPORT_DIV_A.CLKDIV bit field. If programmed, serial ports can also
operate in external clock mode. Both primary and secondary data channels shift data based on SPORT_CLK
rate and the SPORT_CTL_A.CKRE bit

In addition to the serial clock signal, data may be signaled by a frame synchronization signal. The framing
signal can occur at the beginning of an individual word or at the beginning of a block of words. The config-
uration of frame sync signal depends upon the type of serial device connected to the processor. Each serial

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

23–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

port can generate its own frame sync signal (SPORT_FS) depending on the bit settings of SPORT control
register. An internally generated frame sync is derived from the SPORT clock using the divisor field of the
SPORT_DIV_A.FSDIV bit field. Serial ports can also accept external SPORT_FS signal. Both primary and
secondary data paths starts shifting data after detecting a valid frame sync signal according to control bit
settings and operating mode of serial port. A variety of serial data communication protocols can be
emulated according to the frame sync format. All frame sync options are available whether the signal is
generated internally or externally generated.

Multiplexer Logic

There is a local muxing block, known as SPMUX, that is integrated between the SPORT and the PinMux
logic of processor. It allows flexibility to route and share the clock and frame sync signals between the
SPORT half pair of a SPORT. This is where the two independent SPORT halves of a SPORT can be coupled
together. This feature can be used to reduce the total number of pins for the interface and is considered to
be efficient when the SPORT half pair is used for full-duplex operation.

 The SPORT_CTL2_A register is used to configure this loopback feature. The control bits of this register are
as described in the "Register Descriptions" section of this chapter.

The multiplexing depends on the SPORT_CTL_A.IFS and SPORT_CTL_A.ICLK bit settings and is controlled
further by the SPORT_CTL2_A.CKMUXSEL and SPORT_CTL2_A.FSMUXSEL bit settings of the SPORT half
pair. The following two tables show the valid combinations for the SPORT_CTL_A.IFS, SPORT_CTL_A.
ICLK, SPORT_CTL2_A.CKMUXSEL and SPORT_CTL2_A.FSMUXSEL bit settings. All other settings are consid-
ered to be illegal. The illegal settings, however, are not checked or prevented by hardware. Programs
should ensure that only legal combinations are used.

The table's Routing column uses the following abbreviations.

• HSx_FI = Frame sync input. It can be provided by external device or by the neighboring SPORT half.

• HSx_FO = Frame sync output. When SPORT is configured in internal frame sync mode.

• SPx_FS = signal appearing on frame sync pin of the SPORT half.

NOTE: In the tables, the Half-SPORT pair of a SPORT, A and B, are referred as HS0 and HS1 and are
applicable for all SPORTs.

Table 23-8: Frame Sync Combinations

FS Combination ID HS0_IFS HS1_IFS FS0MUX FS1MUX Routing

1 0 0 0 0 Native FS Operation

2 0 1 0 0 Native FS Operation

3 1 0 0 0 Native FS Operation

4 1 1 0 0 Native FS Operation

5 0 0 1 0 HS0_FI ≤ SP1_FS;
HS1_FI ≤ SP1_FS

6 0 1 1 0 HS0_FI ≤ HS1_FO ≥ SP1_FS

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–13

 The table's Routing column uses the following abbreviations.

• HSx_CI = serial clock input. It can be provided by external device or by neighboring SPORT half.

• HSx_CO = serial clock output. When SPORT is configured in internal clock mode.

• SPx_CLK = signal appearing on serial clock pin of the SPORT half.

The following additional points on these combination settings should be noted.

• FS IDs 1–4 are supported with all CLK IDs 9–16.

• FS ID 5 is only supported with CLK ID 13 and vice-versa.

• FS ID 6 is only supported with CLK ID 14 and vice-versa.

• FS ID 7 is only supported with CLK ID 15 and vice-versa.

• FS ID 8 is only supported with CLK ID 16 and vice-versa.

• CLK IDs 9–12 are supported with all FS IDs 1–8.

NOTE: From these tables, one can note that a SPORT half can import serial clock signal from paired
HSPORT, only when it is configured in external clock mode similarly, it can import frame sync
signal, only when it is configured in external frame sync mode. The neighboring SPORT may be
master (generates it's own serial clock or frame sync signal) or slave (accepting external clock or
external frame sync). It can be also noticed that, SPORT_CTL2 register programming is required

7 0 0 0 1 HS1_FI ≤ SP0_FS;
HS0_FI ≤ SP0_FS

8 1 0 0 1 HS1_FI ≤ HS0_FO ≥ SP0_FS

Table 23-9: Clock Combinations

CLK Combination
ID HS0_ICLK HS1_ICLK CK0MUX CK1MUX Routing

9 0 0 0 0 Native CLK Operation

10 0 1 0 0 Native CLK Operation

11 1 0 0 0 Native CLK Operation

12 1 1 0 0 Native CLK Operation

13 0 0 1 0 HS0_CI ≤ SP1_CLK;
HS1_CI ≤ SP1_CLK

14 0 1 1 0 HS1_CI ≤ HS1_CO ≥ SP1_CLK

15 0 0 0 1 HS1_CI ≤ SP0_CLK;
HS0_CI ≤ SP0_CLK

16 1 0 0 1 HS1_CI ≤ HS0_FO ≥ SP0_CLK

Table 23-8: Frame Sync Combinations (Continued)

FS Combination ID HS0_IFS HS1_IFS FS0MUX FS1MUX Routing

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

23–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

only at the acceptor SPORT half side; and not required at the donor SPORT half side to enable this
sharing.

Polarity bits such as SPORT_CTL_A.CKRE and SPORT_CTL_A.LFS should have identical settings
when using muxing between two SPORT halves.

Data Types and Companding

The Data Type select field SPORT_CTL_A.DTYPE bit specifies one of the four data formats supported by
serial ports. These formats can be used in any of the operating mode of serial port.

These formats are applied to data words loaded into the SPORT transmit or receive data buffers. The first
two data formats (00 and 01 values of SPORT_CTL_A.DTYPE) are applicable only when SPORT is config-
ured as receiver; as when configured as transmitter, only the significant bits are transmitted (as per the field
defined in control register). Therefore the transmit data buffers are not actually zero filled or sign
extended.

The other two data formats enable the companding logic on the transmit/receive path. Companding
(compressing or expanding) is the process of logarithmically encoding and decoding data to minimize the
number of bits to be sent. The processor's SPORTs support the two most widely used companding algo-
rithms, A-law and μ-law, which is performed according to the CCITT G.711 specification.

If selected, companding applies to both the enabled data channels. When enabled as SPORT transmitter,
writes to transmit buffer causes it's content compressed to eight bits (zero filled to the width of the transmit
word) according to algorithm selected. Similarly, if configured in receive mode, the received 8-bits in the
receive data buffers are expanded in right-justified, zero fill format as per the algorithm selected. If
companding is enabled in multichannel mode, it is applied to all the active channels.

The compression for transmit data requires a minimum word length of 8 for proper function. If SPORT_
CTL_A.SLEN is less than 7, then expansion may not work correctly. Also, if the data value is greater than
13-bit A-law or 14-bit μ-law maximum, it is automatically compressed to the maximum value.

NOTE: The processor companding logic supports in-place companding feature. So, companding can be
used as debug feature without enabling SPORT. See 'Companding as a Function' section for more
details.

Table 23-10: Data Type Bit Field Settings

DTYPE field SPORT Receiver SPORT Transmitter

00 Right-Justify, zero-fill unused MSB's Normal Operation

01 Right-Justify, sign-extend unused MSB's Reserved

10 Expand using u-law Compress using u-law

11 Expand using A-law Compress using A-law

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–15

Companding as a Function

Since the values in the transmit and receive buffers are actually companded in place, the companding hard-
ware can be used without transmitting (or receiving) any data, for example during testing or debugging.
For companding to execute properly, program the SPORT registers prior to loading data values into the
SPORT buffers.

To compress data in place without transmitting use the following procedure.

1. Set the serial port as transmitter (SPORT_CTL_A.SPTRAN = 1) with both primary and secondary data
channels disabled (SPORT_CTL_A.SPENPRI = SPORT_CTL_A.SPENSEC= 0).

2. Enable companding in the SPORT_CTL_A.DTYPE field.

3. Write a 32-bit data word to the transmit buffer

4. Wait for two system clock cycles. Any instruction not accessing the transmit buffer can be used to cause
this delay. This allows the serial port companding hardware to reload the transmit buffer with the
companded value.

5. Read the 8-bit compressed value from the transmit buffer.

To expand data in place, use the same sequence of operations with the receive buffer instead of the transmit
buffer. When expanding data in this way, set the appropriate serial word length (SPORT_CTL_A.SLEN) bit.

Transmit Path

The SPORT_CTL_A.SPTRAN control bit, when set, configures the SPORT in transmit mode. It then enables
primary and/or secondary transmit paths, based on the SPORT_CTL_A.SPENPRI and SPORT_CTL_A.
SPENSEC bit settings. Both data paths, primary and secondary, are separate but identical and include
Transmit Data Buffer, optional companding logic and a Transmit Shift Register.

The data buffer on primary transmit path is known as Primary Transmit Data Buffer, or SPORT_TXPRI_A;
while the one on secondary transmit path is known as Secondary Transmit Data Buffer, or SPORT_TXSEC_
A. The transmit data buffer and output shift register forms a FIFO type of structure. When packing is
disabled (SPORT_CTL_A.PACK = 0), serial port can hold as many as 3 data; while if packing is enabled
(SPORT_CTL_A.PACK = 1), it can hold 2 packed data at any given time.

The data to be transmitted on primary and/or secondary channels is written to the SPORT_TXPRI_A and
SPORT_TXSEC_A transmit data buffers respectively. The transmit data buffers can be accessed in core mode
through peripheral bus or in DMA mode through DMA bus. The inactive data buffer must not be accessed.
This data is optionally compressed in hardware according to selected algorithm and then automatically
transferred to transmit shift register. The shift register, clocked by SPT_ACLK signal, then serially shifts out
this data on SPT_AD0 or SPT_AD1 pins, synchronously. If framing signal is used, the SPT_AFS signal indi-
cates the start of the serial word transmission.

When using DMA mode, a single DMA feeds the data buffers of the enabled channels (primary and or
secondary). When using both channels, it is required to interleave the data of these channels properly.

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

23–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

When SPORT is configured in non-multichannel mode as transmitter, the enabled SPORT data pins SPT_
AD0 and/or SPT_AD1 are always driven. When a SPORT channel is enabled, data from Transmit Data
Buffer is loaded into Transmit Shift register. The shift register then immediately latches the first bit of data
(either LSB or MSB based on the SPORT_CTL_A.LSBF bit setting) and not with respect to frame sync. Simi-
larly, if frame sync duration is greater than serial word length, then during inactive serial clock cycles
(clock cycles after data transmission in the current frame), the data pins drives first bit of next word to be
transmitted which is loaded into shift register. This does not cause any problem at the receiver end, as it
starts sampling the data pin only after detecting a valid frame sync. In multichannel mode, data pin always
three-states during inactive channel slots.

The serial port provides status of transmit data buffers and also error detection logic for transmit errors
such as under-run. Please see the "Error Detection" section for more details.

When a serial port is configured in transmit mode, the receive paths (and hence the Receive Data Buffers
and Receive Shift registers on those paths) are deactivated and do not respond to serial clock or frame sync
signals. So, reading from an empty Receive Data Buffer may cause core to hang indefinitely.

Receive Path

The SPORT_CTL_A.SPTRAN bit, when cleared, configures the SPORT in receive mode. It then enables
primary and/or secondary receive paths, based on the SPORT_CTL_A.SPENPRI and SPORT_CTL_A.
SPENSEC bit settings. Both data paths, primary and secondary, are separate but identical and include a
Receive Shift Register, optional companding logic and a Receive Data Buffer.

The data buffer on primary receive path is known as Primary Receive Data Buffer, or SPORT_RXPRI_A;
while the one on secondary receive path is known as Secondary receive Data Buffer, or SPORT_RXSEC_A.
The receive paths act like a 3-word deep (32-bit) FIFO because they have two data registers plus an input
shift register.

Upon enabling the serial port data channels, the input Shift register shifts in data bits on the SPT_AD0 and/
or SPT_AD1 pins, synchronous to the receive clock signal. If framing signal is used, the SPT_AFS signal indi-
cates the beginning of the serial word being received. When an entire word is shifted in on the primary and
secondary channels, the data is optionally expanded in hardware according to selected algorithm and then
automatically transferred to SPORT_RXPRI_A and SPORT_RXSEC_A.

The Receive Data Buffers can be read in core mode through peripheral bus or in DMA mode through
DMA bus. When DMA mode is used a single DMA reads the data buffers of enabled channels (primary
and or secondary). When using both channels, it is required to de-interleave the data of these channels
properly. The serial port provides the status of Receive Data buffers and also error detection logic for
receive errors such as overflow. See the “Error Detection” section for more details.

When a serial port is configured in receive mode, the transmit paths (and the Transmit Data Buffers and
Transmit Shift registers on those paths) are deactivated and do not respond to serial clock or frame sync
signals. Therefore programs must not try to access them.

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–17

Sampling Edge

The serial port uses two control signals to sample or drive the serial data.

1. Serial clock (SPT_ACLK) applies the bit clock for each serial data

2. Frame sync (SPT_AFS) divides the incoming data stream into frames.

These control signals can be internally generated or externally provided, determined by theSPORT_CTL_A.
ICLK and SPORT_CTL_A.IFS bit settings.

Data and frame syncs can be sampled on the rising or falling edges of the serial port clock signals.
TheSPORT_CTL_A.CKRE bit controls the sampling edge. By default, when SPORT_CTL_A.CKRE = 0, the
processor selects the falling edge of SPT_ACLK signal for sampling receive data and external frame sync. The
receive data and frame sync are sampled on the rising edge of SPT_ACLK whenSPORT_CTL_A.CKRE = 1.

Note that transmit data and internal frame sync signals are driven (change their state) on the serial clock
edge that is not selected. By default, (SPORT_CTL_A.CKRE = 0) the SPORTs drive data and frame sync
signals on the rising edge of the SPT_ACLK signal and drives on falling edge when SPORT_CTL_A.CKRE = 1.

Therefore transmit and receive functions of any two serial ports connected together should always select
the same value for SPORT_CTL_A.CKRE so internally-generated signals are driven on one edge and received
signals are sampled on the opposite edge.

The serial port which drives serial clock and frame sync is usually called as master while the receiver of
clock and frame sync is referred as slave. The following figure shows the typical SPORT signals at two sides
of serial communication for SPORT_CTL_A.CKRE = 0. The SPORT configured as Transmitter also drives
the serial clock and Frame sync signals as a master device.

When slave samples the Frame Sync signal, the SPORT_CTL_A.SLEN word counter is reloaded to the
maximum setting. Each SPT_ACLK decrements the SPORT_CTL_A.SLEN counter until the full frame is
received.

Therefore, if the transmitter drives the internal frame sync and data on the rising edge of serial clock, the
falling edge should be used by receiver to sample the external frame sync and data, and vice versa.

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

23–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Premature Frame Sync Error Detection

A SPORT framing signal is used to synchronize transmit or receive data. In external FS mode, any frame
sync received when an active frame is in progress is called premature and is invalid.

As an enhancement to processor's serial port, if a premature frame sync is received, the SPORT_ERR_A.
FSERRSTAT bit is flagged to indicate this framing error. An optional error interrupt can be generated for
this event by setting SPORT_ERR_A.FSERRMSK bit.

This feature is applicable in all the operating modes of serial port.

NOTE: The SPORT_ERR_A.FSERRSTAT bit is not set in the presence of uncleared underflow/overflow
errors.

In stereo or I2S mode, a premature frame sync may result in the SPORT receiving two consecutive left
channels or two consecutive right channels and cause channel swapping. In the processor's serial port,
swapping of channels due to a premature FS is avoided. If due to premature FS, one data gets corrupted,
data will always be dropped in pairs to avoid channel swapping. The premature FS flagging in the error
register will be done similarly.

As shown in the following figure, the frame sync error (which sets the error bit) is triggered when an early
frame sync occurs during data transfer (transmission or reception) or for late frame sync if the period of
the frame sync is smaller than the serial word length (SPORT_CTL_A.SLEN).

When a serial port is receiving or transmitting, its bit count is set to a word length (for example 32 bits).
After each clock edge the bit count is decremented. After the word is received/ transmitted, the bit count
reaches zero, and on next frame sync it is set to 32. When active transmission or reception is occurring, the
bit count value is non-zero. When a frame sync with a bit count of non-zero is detected, a frame sync error
occurs.

SERIAL PORT (SPORT)
FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–19

Support for Edge-Detected and Level-Sensitive Frame Syncs

Though the level sensitive nature of frame sync will work fine in a noise free environment, if noise corrupts
the signals coming into the SPORT, there is a chance that the start of frame sync may be missed by the
internal logic due to either the clock or frame sync becoming corrupted. The frame sync will be sampled
from the next clock edge onwards if it happens to last for more than a bit clock period.

The following figure describes a scenario when an external frame sync signal gets corrupted due to noise
and is sampled incorrectly by the slave SPORT module. Consider a frame sync, driven on the rising edge
of serial clock at tA and expected to be sampled by slave SPORT at the falling edge of serial clock at tB. But
due to the noise, the first edge of the FS is not seen by the SPORT and samples the FS only at tC as shown
in the figure. Subsequently the word length counter runs for a period equal to the SPORT_CTL_A.SLEN field
of the control register and expires at tE, instead of correctly at tD, receiving incorrect data. Further if a new
frame sync edge has come at time tD, in level sensitive mode, the SPORT samples this framing signal again
only at time tE. So, the frame sync sampling continues to be unaligned with the external data.

The enhanced SPORT module provides an option to configure the frame sync signal as edge-sensitive
signal. Edge sensitive frame sync detection looks for an edge in an external frame sync for considering it
as a valid framing signal. In active-high frame syncs, the rising edge of frame sync is considered valid; while
in active-low frame syncs, the falling edge is considered as valid. This optional feature can be activated by
programming SPORT_CTL_A.FSED (external Frame Sync Edge select) bit.

NOTE: SPORT_CTL_A.FSED is valid only in External frame sync mode. In internal frame sync mode, this
bit is a don't care.

In the example discussed above, consider frame sync configured as edge-sensitive frame sync. In this case,
frame sync will not be detected at tE because the edge of framing signal has already occurred in the previous
cycle (tD) and there is no edge to detect at tE. So the word length counter remains idle for this frame,
ignoring the incorrect data, and resumes the operation correctly at tF when a new edge detects.

This sets the SPORT_ERR_A.FSERRSTAT bit and optionally generates a premature FS error interrupt.

SERIAL PORT (SPORT)
OPERATING MODES

23–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Frame Sync edge detection is used by default for Stereo modes. MCM mode and DSP serial mode have an
option to choose between edge detection and normal mode of FS detection.

NOTE: When the SPORT is enabled, an already active externally applied frame sync is not allowed to start
operation. The SPORT waits for a valid state change from inactive to active for the external frame
sync to consider it valid.

Serial Word Length

The SPORT_CTL_A.SLEN field of serial port control register determines the word length of serial data to
transmit and receive. Each SPORT half can independently handle word lengths up to 32 bits. The
minimum allowable word length depends on operating mode selected. Words smaller than 32 bits are
right-justified in the transmit or receive buffers to least significant bit (LSB) position. However, data can
be shifted-in or out in MSB first or LSB first format according to SPORT_CTL_A.LSBF bit setting. Also, the
received word can be sign-extended while storing it in processor memory.

 The value of the SPORT_CTL_A.SLEN field can be calculated as:

SLEN = Serial port word length - 1

The range of valid word lengths in the operating modes of SPORT are as shown in the following table.

NOTE: If the companding feature is enabled on the data path, it limits the word length settings. See Data
Types and Companding for more details about word lengths required for companding. If more than
32-bits per frame sync are required to transmit/receive, the multichannel mode can be used (by
enabling more than one channel).

Operating Modes

The SPORT has a number of operating modes:

• Standard serial mode

• I2S mode

• Left-justified mode

Table 23-11: Data Length Versus SPORT Operating Modes

Mode Serial Port word length (SLEN+1)

Standard DSP Serial 4–32

I2S 5–32

Left-Justified 5–32

Right-Justified 5–32

Multichannel 5–32

Packed I2S 5–32

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–21

• Right-Justified mode

• Multichannel mode

• Packed I2S mode

The SPORT halves within a SPORT can be independently configured in any of these operating modes,
unless they are not coupled together using SPMUX logic. Each SPORT half has its own set of control and
data registers and are programmed similarly.

The main control register of serial port, SPORT_CTL_A, controls the operating modes of the SPORT. The
following table lists all the bits of the control register. The SPORT_CTL_A register is unique in that the bit
function may change depending on the operating mode selected. It should be noted that many bits in the
control registers, that control the function of the mode, are the same bit but have a different name
depending on the operating mode. The bits common across operating mode columns (for example SPORT_
CTL_A.SLEN) signifies that they function similarly across those operating modes. However, the bits divided
as per operating modes (for example SPORT_CTL_A.LFS) indicate different meaning depending on oper-
ating mode. Further, some bits are reserved depending on mode of operation (for example the SPORT_CTL_
A.FSR bit is reserved in I2S, left-justified sample pair, packed I2S and in multichannel mode).

NOTE: When changing operating modes, clear the serial port control register before the new mode is
written to the register.

Table 23-12: Control Bits comparison for different operating modes

Bit (NAME) Standard Serial
I2S and Left-

Justified Right-Justified Multichannel Packed I2S

Control Bits

0 (SPENPRI) Yes

2–1 (DTYPE) Yes Reserved Yes

3 (LSBF) Yes Reserved Yes

8–4 (SLEN) Yes

9 (PACK) Yes

10 (ICLK) Yes

11 (OPMODE) Yes

12 (CKRE) Yes Reserved Yes

13 (FSR) Yes Reserved

14 (IFS) Yes Reserved Yes

15 (DIFS) Yes Reserved

16 (LFS) Yes Yes Yes Yes

17 (LAFS) Yes Reserved

18 (RJUST) Reserved Yes Reserved

19 (FSED) Yes Reserved Yes Reserved

20 (TFIEN) Yes

SERIAL PORT (SPORT)
OPERATING MODES

23–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Mode Selection

The serial port operating mode is configured in the SPORT_CTL_A and the SPORT_MCTL_A registers. The
following table provides values for each of the bits in the SPORT serial control registers that must be set in
order to configure a specific SPORT operation mode. The shaded columns indicate that the bits come from
different control registers.

The following sections provide detailed information on each operating mode available using the serial
ports.

Standard Serial Mode

The SPORT can be configured in standard DSP serial mode by clearing the SPORT_CTL_A.OPMODE and
SPORT_MCTL_A.MCE bits. The standard serial mode lets programs configure serial ports for use by a variety

21 (GCLKEN) Yes Reserved

24 (SPENSEC) Yes

25 (SPTRAN) Yes

 Status Bits

26 (DERRSEC) Yes

28–27 (DXSSEC) Yes

29 (DERRPRI) Yes

31–30 (DXSPRI) Yes

Table 23-13: SPORT Operating Modes

Operating Modes OPMODE (11) LAFS (17) RJUST (18)

Multichannel Control
Register (SPORT_

MCTL_A)

Standard DSP Serial 0 Valid 0 0

I2S 1 0 0 0

Left-Justified 1 1 0 0

Right-Justified 1 1 1 0

Multichannel 0 x 0 1

Packed I2S mode 1 x 0 1

Table 23-12: Control Bits comparison for different operating modes (Continued)

Bit (NAME) Standard Serial
I2S and Left-

Justified Right-Justified Multichannel Packed I2S

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–23

of serial devices such as serial data converters and audio codecs. In order to connect to these devices, a
variety of clocking, framing, and data formatting options are available.

Timing Control Bits

Several bits in the serial port control register enable and configure standard serial mode operation.

• SLEN: serial word length select (4-32 bits)

• LSBF: little endian Vs big endian serial bit format

• ICLK: Internal clock generation Vs external clock mode

• CKRE: sampling edge as rising edge Vs falling edge

• IFS: Internal frame sync generation Vs external FS mode

• FSR: framed mode Vs unframed mode

• DIFS: Data-dependent frame sync Vs data-independent frame sync

• LFS: active-high FS Vs active-low FS

• LAFS: early frame sync Vs late frame sync

• PACK: 16-bit to 32-bit packing enable Vs packing disable

• GCLKEN: normal free-running clock Vs Gated clock mode

Clocking Options

In standard serial mode, the serial ports can either accept an external serial clock or generate it internally.
The SPORT_CTL_A.ICLK bit determines the selection of these options. For internally-generated serial
clocks (SPORT_CTL_A.ICLK = 1), the SPORT_DIV_A.CLKDIV field configures the serial clock rate from the
system clock.

In addition, the serial clock edge can be selected for the sampling or driving serial data and/or frame sync.
This selection is performed using the SPORT_CTL_A.CKRE bit.

• If SPORT_CTL_A.CKRE = 0, incoming data and/or frame sync signals are sampled with respect to falling
edge of serial clock; while data and/or frame sync output signals are driven at the rising edge of clock.

• If SPORT_CTL_A.CKRE = 1, incoming data and/or frame sync signals are sampled with respect to rising
edge of serial clock; while data and/or frame sync output signals are driven at the falling edge of clock.

• The SPORT_CTL_A.GCLKEN bit enables clock gating option, in which serial clock is active only during
the valid data bits.

SERIAL PORT (SPORT)
OPERATING MODES

23–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Frame Sync Options

The following sections provide generic information about how frame sync signal is used by the serial port
in an operating mode. Note that SPORT halves within a SPORT are independently configurable. Addi-
tional information about frame syncs and data sampling that applies to a specific operating mode can be
found in Operating Modes.

Data-Dependent Versus Data-Independent Frame Sync

When a SPORT is configured as a transmitter (SPORT_CTL_A.SPTRAN = 1) and if data-independent frame
sync select (SPORT_CTL_A.DIFS) bit = 0, then an internally-generated transmit frame sync is only output
when a new data word has been loaded into the channel transmit buffer of the SPORT. In other words,
frame sync signal generation and therefore data transmission is data-dependent. This mode of operation
allows data to be transmitted only at specific times.

When SPORT is configured as receiver (SPORT_CTL_A.SPTRAN = 0) and if SPORT_CTL_A.DIFS = 0, then a
receive frame sync signal is generated only when receive data buffer status is not full.

The data-independent frame sync mode allows the continuous generation of the framing signal, regardless
of new data in the buffers. Setting SPORT_CTL_A.DIFS activates this mode. When SPORT_CTL_A.DIFS = 1,
a transmit frame sync signal is generated regardless of the transmit data buffer status (if SPORT_CTL_A.
SPTRAN = 1) or receive data buffer status (if SPORT_CTL_A.SPTRAN = 0).

Note that the SPORT DMA controller typically keeps the transmit buffer full. The application is respon-
sible for filling the transmit buffers with data.

Early Versus Late Frame Syncs

The frame sync signals can be early or late. Frame sync signals can occur during the first bit of each data
word (late) or during the serial clock cycle immediately preceding the first bit (early). The SPORT_CTL_A.
LAFS bit of the serial port control register configures this option.

By default, when SPORT_CTL_A.LAFS is cleared (=0), the frame sync signal is configured as early framing
signal. This is the normal mode of operation. In this mode, the first bit of the transmit data word is avail-
able (and the first bit of the receive data word is latched) in the serial clock cycle after the frame sync is
asserted. The frame sync is not checked again until the entire word has been transmitted (or received). In
multichannel operation, this is the case when the frame delay is one.

If data transmission is continuous in early framing mode (in other words, the last bit of each word is imme-
diately followed by the first bit of the next word), then frame sync signal occurs during the last bit of each
word. Internally-generated frame syncs are asserted for one clock cycle in early framing mode. This is not
an error condition, so the SPORT_ERR_A.FSERRSTAT bit is not flagged.

When SPORT_CTL_A.LAFS is set (=1), late frame syncs are configured; this is the alternate mode of opera-
tion. In this mode, the first bit of the transmit data word is available (and the first bit of the receive data
word is latched) in the same serial clock cycle that the frame sync is asserted. In multichannel operation,
this is the case when frame delay is zero. Receive data bits are latched by serial clock edges, but the frame
sync signal is checked only during the first bit of each word. Internally-generated frame syncs remain

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–25

asserted for the entire length of the data word in late framing mode. Externally-generated frame syncs are
only checked during the first bit. They do not need to be asserted after that time period.

Therefore, for early framing, the frame sync precedes data by one cycle; for late framing, the frame sync is
checked on the first bit only. The following figure illustrates the two modes of frame signal timing.

Framed Versus Unframed Frame Syncs

The use of frame sync signal is optional in serial port communications. The SPORT_CTL_A.FSR (frame sync
required) bit determines whether framing signal is required.

When SPORT_CTL_A.FSR bit is set (=1), a frame sync signal is required for every data word. To allow
continuous transmission from the processor, each new data word must be loaded into the transmit buffer
before the previous word is shifted out and transmitted.

When SPORT_CTL_A.FSR is cleared (=0), the corresponding frame sync signal is not required. A single
frame sync is required to initiate communications but it is ignored after the first bit is transferred. Data
words are then transferred continuously in what is referred to as an unframed mode. Unframed mode is
appropriate for continuous reception. The following figure shows the framed vs unframed mode of serial
port operation.

NOTE: When DMA is enabled in a mode where frame syncs are not required, DMA requests may be held
off by chaining or may not be serviced frequently enough to guarantee continuous unframed data
flow. Monitor status bits or check for a SPORT Error interrupt to detect underflow or overflow of
data.

SERIAL PORT (SPORT)
OPERATING MODES

23–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Logic Level

The framing signals may be active high or active low. The SPORT_CTL_A.LFS bit selects the logic level of
the frame sync signals.

• When SPORT_CTL_A.LFS = 0, the corresponding frame sync signal is active high.

• When SPORT_CTL_A.LFS = 1, the corresponding frame sync signal is active low.

 Active high is the default polarity of frame sync signal.

Stereo Modes

The processor serial port support three widely used stereo modes, which are I2S mode, Left-Justified mode
and right-Justified mode. In these modes, the serial data stream consists of left and right channels. These
modes are described in the following sections.

Channel Order First

The active low frame sync (SPORT_CTL_A.LFS) bit, which determines the polarity of frame sync level in
DSP serial mode/multichannel mode, holds different meaning for stereo modes of SPORT operation. For
left-justified, I2S and packed I2S modes, the following table demonstrates which word is transmitted or
receive first depending on the SPORT_CTL_A.LFS bit setting.

I2S Mode

I2S mode is a very commonly used stereo mode. In this mode, for each frame sync cycle, two samples of
data are transmitted/received. One sample is transmitted/received on the low segment of the frame sync,
which is known as left channel. The other sample is transmitted/received on the high segment of the frame
sync, which is known as right channel.

The SPORT can be configured in I2S mode by setting SPORT_CTL_A.OPMODE = 1, SPORT_CTL_A.LFS = 0
and SPORT_MCTL_A.MCE = 0.

Table 23-14: Channel Order First Bit Settings

OPMODE LFS=0 (Left Channel First, Default) LFS=1 (Right Channel First

Left-Justified Data first after rising edge Data first after falling edge

I2S Data first after falling edge Data first after rising edge

Packed I2S Data first after rising edge Data first after falling edge

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–27

Protocol Configuration Options

 Several bits in the SPORT_CTL_A control register enable and configure I2S mode of operation:

• SLEN: serial word length select. For I2S mode, the range of allowable word length is 5-32 bits.

• LSBF: little endian or big endian serial bit format. For I2S mode, serial data should be in big endian
format (MSB bit is transmitted/received first). But, it can be changed depending on the user's prefer-
ence when emulating similar non-standard protocol

• ICLK: Internal bit clock generation or external bit clock mode

• IFS: Internal frame sync generation or external FS mode. In I2S mode, master serial port is the one
which generates bit clock and L/R clock (frame sync) internally for the serial communication. The serial
port which accepts these clocking signals is known as slave. So, in standard I2S mode, the SPORT_CTL_
A.IFS bit should depend (equal to) on SPORT_CTL_A.ICLK bit setting. However, as an enhancement,
the SPORT_CTL_A.IFS bit setting may be changed depending on the application when emulating a non-
standard protocol.

• LFS: left channel first or right channel first. This bit setting may be changed depending on user's pref-
erence to sample right channel first (LFS = 0) or left channel first (LFS = 1).

• CKRE: sampling edge as rising edge or falling edge.

• PACK: 16-bit to 32-bit packing enable or packing disable.

Serial Clock and Frame Sync Rates

The serial bit clock rate for internal clocks can be set using a SPORT_DIV_A.CLKDIV bit field; while the L/
R clock rate for internal frame sync can be set using the SPORT_DIV_A.FSDIV bit field in the same register,
depending on SPORT_CTL_A.ICLK and SPORT_CTL_A.IFS bit settings.

The following figure shows the timing in I2S mode. Note that in I2S mode, the data is delayed by one SCLK
cycle and the operation transfer starts on the left channel first.

The serial port of the processor does not generate a frame sync (L/R clock) edge after the transmission of
the last word in the DMA.

Standard I2S receivers looks for the edge to latch and read data. Therefore, I2S slave receivers connected to
the SPORT may not able to latch the last word of the TX DMA.

SERIAL PORT (SPORT)
OPERATING MODES

23–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Left-Justified Mode

Left-justified mode is a stereo mode. In this mode, for each frame sync cycle, two samples of data are trans-
mitted/received. One sample is transmitted/received on the high segment of the frame sync, which is
known as left channel. The other sample is transmitted/received on the low segment of the frame sync,
which is known as right channel.

This operating mode is simply a subset of the I2S mode. The SPORT can be configured in Left-Justified
mode by setting the SPORT_CTL_A.OPMODE and SPORT_CTL_A.LAFS bits and clearing the SPORT_MCTL_A.
MCE bit.

Protocol Configuration Options

 Several bits in the SPORT_CTL_A control register enable and configure the left-justified mode of operation:

• SLEN: serial word length select. For left-justified mode, the range of allowable word length is 5-32 bits.

• LSBF: little endian or big endian serial bit format. For left-justified mode, serial data should be in big
endian format (MSB bit is transmitted/received first). But, it can be changed depending on the user's
preference when emulating similar non-standard protocol

• ICLK: Internal bit clock generation or external bit clock mode

• IFS: Internal frame sync generation or external FS mode. In left-justified mode, master serial port is the
one which generates bit clock and L/R clock (frame sync) internally for the serial communication. The
serial port which accepts these clocking signals is known as slave. So, in standard left-justified mode,
the SPORT_CTL_A.IFS bit should depend (equal to) on SPORT_CTL_A.ICLK bit setting. However, as an
enhancement, the SPORT_CTL_A.IFS bit setting may be changed depending on the application when
emulating a non-standard protocol.

• LFS: left channel first or right channel first. In standard left-justified mode, left channel is sampled first
(corresponds to SPORT_CTL_A.LFS = 0). However, SPORT_CTL_A.LFS bit setting may be changed
depending on user's preference to sample right channel first (first data after rising edge of L/R clock).

• CKRE: sampling edge as rising edge or falling edge.

• PACK: 16-bit to 32-bit packing enable or packing disable.

Serial Clock and Frame Sync Rates

The serial bit clock rate for internal clocks can be set using a SPORT_DIV_A.CLKDIV field; while the L/R
clock rate for internal frame sync can be set using SPORT_DIV_A.FSDIV field, depending on SPORT_CTL_
A.ICLK and SPORT_CTL_A.IFS bit settings. The following figure shows the serial port timing in left-justi-
fied mode (it is shown in MSB bit first format, but LSB bit first format is also possible). As shown, the first
bit of a word is transmitted/received in the same clock cycle as the word select (SPORT_FS) signal changes.

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–29

Right-Justified Mode

Right-justified mode is a standard commonly available in most of the SPORT compatible devices such as
ADC and DACs. Right-justified mode requires that the design align the data to the end of the frame sync.
The SPORT_CTL_A.RJUST bit aligns the serial data to the end of the frame sync.

The following figure shows the SPORT timing in right-justified mode. As shown, the transmitter aligns the
data to be transmitted such that the last bit of the serial word is sent in the last clock cycle of the word select
(frame sync) signal marking the channels. The timing seems similar to left-justified mode (where the trans-
mitter sends the MSB bit of the serial word in the same clock cycle as the word select signal changes), but
data is shifted such that it aligns to end of the channel.

NOTE: For some SPORT compatible ADC or DACs (for example the AD1871) right-justified mode is
limited to some commonly used ratios such as 64 FS and 128 FS as the bit clock frequency (where
FS is the sampling frequency of ADC/DACs, known as L/R clock or the frame sync of the SPORT).

As an illustration, consider the SPORT timing for right-justified mode, as shown in the figure below. If the
L/R clock runs at the FS rate and the SPORT clock at the 64 FS rate, the frame sync width (either channel)
is limited to 32 SPORT clock periods or 32 bits per channel. If the data is confined to 24 bits, the SPORT
introduces a 32–24=8 bit clock delay before it starts to transmit/capture data.

SERIAL PORT (SPORT)
OPERATING MODES

23–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Similarly, if 128 FS bit clock frequency is to be supported, then the frame sync width becomes 64 serial
clock periods (bits) per channel. In this case, the delay can be a maximum of (64 – minimum serial data
length in right-justified mode) = 59 bits (the minimum SPORT_CTL_A.SLEN setting is 4). This implies that
a 6-bit counter is needed to set this delay.

Therefore, using this counter in right-justified mode, the starting point of the first bit is delayed so that the
serial data is aligned properly with the end of the channel. A 6-bit counter is added for this purpose in the
stereo mode. This counter is programmed by writing into the SPORT_MCTL_A 16-21 bit field. Note that
these bits are used to configure the window offset size in multichannel mode. But since stereo serial mode
and multichannel mode are mutually exclusive, the separation of role of this field in each mode is clearly
defined and implemented. The software has to configure this register with the appropriate delay keeping
in mind the word length (SPORT_CTL_A.SLEN) and the number of bit clocks in one channel (left/right).

Timing Control Bits

The following bits in the SPORT_CTL_A register enable and configure right-justified mode.

• SLEN: serial word length select. For right-justified mode, the range of allowable word length is 5-32
bits.

• LSBF: little endian or big endian serial bit format. For right-justified mode, serial data should be in big
endian format (MSB bit transmitted/received first). But, it can be changed depending on the applica-
tion when using non-standard protocol.

• ICLK: Internal bit clock generation or external bit clock mode

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–31

• IFS: Internal frame sync generation or external FS mode.

• LFS: left channel first or right channel first. In standard right-justified mode, the left channel is sampled
first (corresponds to SPORT_CTL_A.LFS = 0). However, the SPORT_CTL_A.LFS bit setting may be
changed depending on the application to sample the right channel first (first data after falling edge of
L/R clock).

• CKRE: sampling edge as rising edge or falling edge.

• PACK: 16-bit to 32-bit packing enable or packing disable.

• MCTL16-21: 6-bit counter depends on SPORT_CTL_A.SLEN and number of bit clocks in a channel.

Serial Clock and Frame Sync Rates

The serial bit clock rate for internal clocks can be set using the SPORT_DIV_A.CLKDIV; while the L/R clock
rate for internal frame sync can be set using the SPORT_DIV_A.FSDIV bit field in the same register,
depending on SPORT_CTL_A.ICLK and SPORT_CTL_A.IFS bit settings.

Multichannel Mode

The processor's SPORTs offer a multichannel mode of operation, which allows the SPORT to communi-
cate in a time division multiplexed (TDM) serial system. In multichannel communications, each data word
of the serial bit stream occupies a separate channel. Each word belongs to the next consecutive channel.
For example, a 24-word block of data contains one word for each of the 24 channels.

The multichannel mode of SPORT can be selected by setting SPORT_CTL_A.OPMODE = 0 and SPORT_MCTL_
A.MCE = 1.

Up to 128 channels are available for transmitting or receiving. The SPORT can automatically select some
words for particular channels while ignoring others. In other words, each SPORT can receive or transmit
data selectively from any of the 128 channels. These 128 channels can be any 128 out of the 1024 total chan-
nels in the system. The SPORT can do any of the following on each channel:

• Transmit data (SPORT_CTL_A.SPTRAN = 1)

• Receive data (SPORT_CTL_A.SPTRAN = 0)

• Do nothing during inactive channels

Optionally, data companding and DMA transfers can be used in multichannel mode on both primary and
secondary data lines.

The SPORT multichannel select registers (SPORT_CS0_A) must be programmed before enabling SPORT
operation for multichannel mode. This is especially important in DMA data unpacked mode, since the
SPORT data buffers begin operation immediately after the SPORT data lines are enabled. The SPORT_
MCTL_A.MCE must also be enabled prior to enabling SPORT operation.

SERIAL PORT (SPORT)
OPERATING MODES

23–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Multichannel mode operates completely independently and each SPORT uses its own serial clock and
frame sync signal either internally generated or externally provided.

Protocol Configuration Options

The following bits in the SPORT_CTL_A and SPORT_MCTL_A registers enable and configure multichannel
mode.

• SLEN: serial word length select

• LSBF: little endian or big endian serial bit format

• ICLK: Internal clock generation or external clock mode

• CKRE: sampling edge as rising edge or falling edge

• IFS: Internal frame sync generation or external FS mode

• LFS: active-high FS or active-low FS

• PACK: 16-bit to 32-bit packing enable or packing disable

• MFD: Multichannel frame delay

• WSIZE: Number of multichannel channels

• WOFFSET: window offset size

• MCPDE: Multichannel DMA packing enable

Clocking Options

In multichannel mode, the SPORTs can either accept an external serial clock or generate it internally. The
SPORT_CTL_A.ICLK bit determines the selection of these options. For internally-generated serial clock
(SPORT_CTL_A.ICLK = 1), the SPORT_DIV_A.CLKDIV bit field configures the serial clock from the system
clock.

In addition, the serial clock edge can be selected for the sampling or driving serial data and/or frame sync.
This selection is performed using the SPORT_CTL_A.CKRE bit.

• If SPORT_CTL_A.CKRE= 0, incoming data and/or frame sync signals are sampled with respect to falling
edge of serial clock; while data and/or frame sync output signals are driven at the rising edge of clock.

• If SPORT_CTL_A.CKRE = 1, incoming data and/or frame sync signals are sampled with respect to rising
edge of serial clock; while data and/or frame sync output signals are driven at the falling edge of clock.

Frame Sync Options

The frame sync signal synchronizes the channels and restarts each multichannel sequence. The SPORT_
FS signal initiates the start of the channel 0 data word. The frame sync period in multichannel is defined as:

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–33

FS period = [(SPORT_CTL_A.SLEN + 1) × number of channels] - 1

The frame sync can be configured in master or slave mode based on the setting of the SPORT_CTL_A.IFS
bit and its logic level can be changed using the SPORT_CTL_A.LFS bit.

In multichannel mode, frame sync timing is similar to late frame mode (though the SPORT_CTL_A.LAFS
bit is reserved in this mode)—the first bit of the transmit data word is available and the first bit of the
receive data word is sampled in the same serial clock cycle that the frame sync is asserted, provided that
multichannel frame delay (SPORT_MCTL_A.MFD) is set to 0.

The frame sync signal is used for the block or frame start reference, after which the word transfers are
performed continuously with no further frame sync signals required during the ongoing frame for
different channels. Therefore, internally generated frame syncs are always data independent (SPORT_CTL_
A.DIFS bit is reserved).

Transmit Data Valid (TDV)

Each serial port has its own Transmit Data Valid signal (SPT_ATDV) which is active during the transmission
of enabled words. Because the serial port signals are three-stated when the time slot is not active, the SPT_
ATDVsignal specifies if the SPORT data is being driven by the processor. It serves as an output-enabled
signal for the data transmit pin. After the transmit data buffer is loaded, transmission begins and the
SPORT_TDV signal is asserted.

The polarity of this Transmit Data Valid signal is always active high in that SPT_ATDV is asserted high when
a data is transmitted during the active channel slot of serial port.

The following figure shows an example of timing for a multichannel transfer having following character-
istics.

• The half SPORT pair of SPORT0, A and B, is configured as a transmitter and receiver respectively;
while half SPORT A of SPORT1 is configured as transmitter.

• The serial clock and frame sync signals are input to all of these HSPORTs.

• Only primary channels of these SPORTs are enabled (0).

• Multichannel is configured to 8 channels.

• SPORT0_A drives data (on its primary data line) during slot 1–0 which asserts SPORT0_ATDV for 2
slots.

• SPORT1_A drives data (on its primary data line) during slot 3–2 which asserts SPORT1_ATDV for 2
slots.

• SPORT0_B receives data (from its primary data line) during slot 3–0.

SERIAL PORT (SPORT)
OPERATING MODES

23–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Active Channel Selection Registers (SPORT_CS0_A)

In multichannel mode, SPORT supports up to 128 channels for transmitting or receiving. It can receive or
transmit data selectively from any of the 128 channels. Specific channels can be individually enabled or
disabled, using multichannel selection registers (CSx), to select the words that are transmitted or received
during multichannel communications. Data words from the enabled channels are transmitted or received,
while disabled channel words are three-stated or ignored.

Each of the four multichannel selection registers is 32 bits in length. Therefore these registers provide
channel selection for 128 (0 to 127) channels. Setting a bit enables that channel so that the serial port selects
its word from the multiple-word block of data (for either receive or transmit). The 128 channels are
sequentially numbered from bit 0 in the CS0 register to bit 31 of SPORT_CS3_A register. As an example
setting bit 13 of the SPORT_CS1_A register enables channel number 45 (31+13+1); similarly setting bit 5 of
the SPORT_CS3_A register enables channel number 101 (31+32+32+5+1).

Multichannel Frame Delay (MFD)

The 4-bit multichannel frame delay (SPORT_MCTL_A.MFD) field in the multichannel control registers
(MCTL_x) specifies a delay between the frame sync pulse and the first data bit in frame. The value of SPORT_
MCTL_A.MFD is the number of serial clock cycles of the delay. This multichannel frame delay allows the
processor to work with different types of telephony interface devices.

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–35

A value of zero for SPORT_MCTL_A.MFD causes the frame sync to be concurrent with the first data bit. The
maximum value allowed for SPORT_MCTL_A.MFD is 15. If SPORT_MCTL_A.MFD>0, a new frame sync may
occur during the last channels of a previous frame, which is considers as valid frame sync signal.

NOTE: If more than 15 bits frame delay is required, the Window Offset field may be used to delay the start
of channel 0.

Number of Multichannel Slots (WSIZE)

Select the number of channels used in multichannel operation by using the 7-bit SPORT_MCTL_A.WSIZE
field in the multichannel control register. Set SPORT_MCTL_A.WSIZE to the actual number of channels
minus one (SPORT_MCTL_A.WSIZE = Number of channels - 1). So, the granularity of number of channels
selected is 1.

A 10-bit field in the multichannel mode status register, SPORT_MSTAT_A, holds the channel number which
is being serviced in the multichannel operation.

Window Offset (WOFFSET)

The window offset (SPORT_MCTL_A.WOFFSET) field register specifies where in the 1024-channel range to
place the start of the active window. A value of 0 specifies no offset and 896 (1024 – 128) is the largest value
that allows using all 128 channels.

As an example, a program could define an active window with 8 multichannel slots (SPORT_MCTL_A.WSIZE
= 7) and an offset of 93 (SPORT_MCTL_A.WOFFSET = 93). This 8-channel window then resides in the range
from 93 to 100.

Neither the window offset nor the number of multichannel slots (SPORT_MCTL_A.WSIZE) can be changed
while the SPORT is enabled. If the combination of the window size and the window offset would place any
portion of the window outside of the range of the channel counter, none of the out-of-range channels in
the frame are enabled.

Companding Selection

Like all other operating modes, companding logic can be applied to serial data. In transmit mode,
compression logic is applied to the data to be transmitted; while in receive mode, expansion logic can be
applied to received data. The two widely used companding algorithms, A-law and μ-law can be applied by
configuring SPORT_CTL_A.DTYPE field of the control register.

If companding is enabled, the companding algorithm is applied to both the data paths. In multichannel
mode, companding can be applied to either all or none of the enabled channels, (companding cannot be
selected on a per-channel basis).

Multichannel DMA Data Packing (MCPDE)

Multichannel DMA data packing and unpacking are specified with the SPORT_MCTL_A.MCPDE bit setting.

SERIAL PORT (SPORT)
OPERATING MODES

23–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

If the bits are set, indicating that data is packed, the SPORT expects the data contained by the DMA buffer
corresponds only to the enabled SPORT channels. For example, if an MCM frame contains 10 enabled
channels, the SPORT expects the DMA buffer to contain 10 consecutive words for each frame.

If the bits are cleared (the default, indicating that data is not packed), the SPORT expects the DMA buffer
to have a word for each of the channels in the active window, whether enabled or not, so the DMA buffer
size must be equal to the size of the window. For example, if only channel number 1 and 10 are enabled,
then DMA buffer size would have to be 10 words (unless the secondary side is enabled). The data to be
transmitted or received would be placed at addresses 1 and 10 of the buffer, and the rest of the words in
the DMA buffer would be ignored.

Multichannel Frame

A multichannel frame contains more than one channel, as specified by the SPORT_MCTL_A.WSIZE field and
window offset field of multichannel control register. A complete multichannel frame consists of 1–1024
channels, starting with channel 0. The particular channels of the multichannel frame that are selected for
the SPORT are a combination of the window offset, the window size, and the multichannel select registers.

The following figure illustrates the relationship between different parameters of multichannel timings.
Frame length is set by frame sync divider or external frame sync period

Packed I2S Mode

A packed I2S mode is available in the SPORT and used for audio codec communications using multiples
channels. This mode allows applications to send more than the standard 32 bits per channel available
through standard I2S mode. Packed mode is implemented using standard multichannel mode (and is
therefore programmed similarly to multichannel mode).

SERIAL PORT (SPORT)
OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–37

The SPORT can be configured in packed I2S mode by setting the SPORT_CTL_A.OPMODE bit and the SPORT_
MCTL_A.MCE bit.

Similar to multichannel mode, packed I2S mode also supports the maximum of 128 channels as the
maximum of (128 x 32) bits per left or right channel.

As shown in the following figure, packed waveforms are the same as the wave forms used in multichannel
mode, except that the frame sync is toggled for every frame, and therefore emulates I2S mode. So it is a
hybrid between multichannel and I2S mode.

Protocol Configuration Options

Several bits in the SPORT_CTL_A and SPORT_MCTL_A registers enable and configure packed I2S mode.

• SLEN: serial word length select

• LSBF: little endian or big endian serial bit format

• ICLK: Internal clock generation or external clock mode

• CKRE: sampling edge as rising edge or falling edge

• IFS: Internal frame sync generation or external FS mode

• LFS: left-channel first or right channel first

• PACK: 16-bit to 32-bit packing enable or packing disable

• MFD: Multichannel frame delay

• WSIZE: Number of multichannel channels

• WOFFSET: window offset size

SERIAL PORT (SPORT)
GATED CLOCK MODE

23–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• MCPDE: Multichannel DMA packing enable

Clocking Options

In packed mode, the serial ports can either accept an external serial clock or generate it internally. The
SPORT_CTL_A.ICLK register determines the selection of these options. For internally-generated serial
clock (SPORT_CTL_A.ICLK = 1), the SPORT_DIV_A.CLKDIV bit field configures the serial clock rate from
the system clock.

The programs can also select the serial clock edge that is used for sampling or driving serial data and/or
frame syncs. This selection is performed using theSPORT_CTL_A.CKRE bit.

Frame Sync Options

The frame sync period in packed mode is defined as:

FS period = [(SPORT_CTL_A.SLEN + 1) × number of channels] - 1.

The frame sync can be configured in master or slave mode depending on the SPORT_CTL_A.IFS bit setting
of serial port control register. Moreover the logic level can be changed with the SPORT_CTL_A.LFS bit
setting.

Gated Clock Mode

Some of the ADC/DACs support the SPI compatible protocol for the interface. To communicate with such
ADC/DACs, the serial port must support the gated clock mode of operation, in which the data valid infor-
mation is embedded into the clock. Therefore, in gated clock mode, the clock should be active only when
active data is being transmitted or received.

The processor features the gated clock function. The SPORT_CTL_A.GCLKEN (Gated clock mode select)
control bit, is used to configure the serial port in gated clock mode. To enable gated clock mode of opera-
tion, SPORT must be programmed to comply with the following requirements.

• Gated clock mode feature is available in standard serial mode, left-justified and I2S mode of operation
only.

[Note that among the stereo modes, right justified mode cannot be operated in gated clock mode
because during the inactive period in a frame (the period between the leading edge of the frame sync
and the first active data bit), there is a delay counter running inside the serial port. The counter operates
on the serial clock and any interruption in clock makes the counter go out of sync].

• Gated clock mode has the following valid settings for other control bits.

– Both serial clock and frame sync signals generated internally

– Both serial clock and frame sync signals provided externally

– Frame sync not required' mode (SPORT_CTL_A.FSR = 0) not supported

SERIAL PORT (SPORT)
DATA TRANSFERS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–39

– SPORT_CTL_A.DIFS should be programmed as 0 in transmit mode; while it should be programmed
as 1 in receive mode.

• There are few necessary conditions to be satisfied when gated clock mode is enabled-

– Need at least 7 serial clock cycles between enabling the SPORT and first frame sync. If this require-
ment is not met, the SPORT may drop the first data. (For subsequent data this requirement is not
applicable).

– Frame sync should be in the inactive (deasserted) state when the SPORT is enabled. Else, one extra
cycle (in addition to the above mentioned) is needed before the frame sync can be applied. If this
requirement is not met, the SPORT may drop the first data.

– For edge detected frame sync, the frame sync should transition back to inactive state before the
current word transmission/reception is complete (or when the clock is still running). If this require-
ment is not met, the SPORT does not recognize the next valid frame sync and skips the channel. The
SPORT continues to skip the frame syncs until the frame sync transitions back to an inactive state
when the clock is active.

Data Transfers

Serial port data can be transferred to/from internal or external memory in two different methods:

• Core-driven single word transfers

• DMA-driven multiple words transfers, with multiple work units.

 DMA transfers can be set up to transfer a configurable number of serial words between the serial port
transmit or receive data buffers and internal memory automatically. Core-driven transfers use SPORT
interrupts to signal the processor core to perform single word transfers to/from the serial port data buffers.

The following sections provide information on core-driven and DMA-driven data transfers.

Data Buffers

When programming the serial port data channels (primary and/or secondary) as a transmitter by setting
SPORT_CTL_A.SPTRAN = 1, only the corresponding transmit data buffers (SPORT_TXPRI_A and SPORT_
TXSEC_A) become active while the receive data buffers (SPORT_RXPRI_A and SPORT_RXSEC_A) remain
inactive. Similarly, when the SPORT data channels are programmed for receive operation (SPORT_CTL_A.
SPTRAN = 0), then only corresponding receive data buffers (SPORT_RXPRI_A and SPORT_RXSEC_A) are acti-
vated. Do not attempt to read or write inactive data buffers. If the processor operates on the inactive
transmit or receive buffers while the SPORT is enabled, unpredictable results may occur.

Each of these buffers is 32-bit wide (corresponds to maximum serial data word length). When using word
lengths less than 32-bits for SPORT operation, the data in these buffers is automatically right-justified (the
LSB bit of data at the bit 0 location of the buffer). The upper unused bits may be zero-filled or sign-
extended depending on SPORT_CTL_A.DTYPE field.

SERIAL PORT (SPORT)
DATA TRANSFERS

23–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Transmit Data Buffers (SPORT_TXPRI_A and SPORT_TXSEC_A)

When enabled as a transmitter (SPORT_CTL_A.SPTRAN = 1), each SPORT half has its own set of transmit
data buffers. The primary (0) and secondary (1) data paths of each SPORT half have separate data buffers,
referred to as SPORT_TXPRI_A and SPORT_TXSEC_A respectively.

These transmit data buffers are the 32 bits wide. These buffers must be loaded with the data to be trans-
mitted on the primary and secondary data channels. The data is loaded automatically by the DMA
controller or loaded manually by the program running on the processor core.

Together with the output shift register, transmit data buffers act like a two-location FIFO. If data packing
is disabled (SPORT_CTL_A.PACK = 0), the transmit path can hold as many as three data words. If data
packing is enabled (SPORT_CTL_A.PACK = 1), it can hold two packed data words at any given time.

When the transmit shift register becomes empty (transfer out all the bits of previous word), data in the
transmit data buffer is automatically loaded into it. An interrupt occurs when the output transmit shift
register has been loaded, signifying that the transmit data buffer is empty and ready to accept the next
word. This interrupt does not occur when serial port is operating in DMA mode or when the corre-
sponding interrupt enable mask bit is set.

If only the primary data path of a SPORT half is enabled, programs should not write to the inactive
secondary transmit data buffer and vice-a-versa. If the core keeps writing to the inactive buffer, the status
of that transmit buffer becomes full and this may cause the core to hang indefinitely since data is never
transmitted to the output shift register.

Receive Data Buffers (SPORT_RXPRI_A and SPORT_RXSEC_A)

When enabled as receiver (SPORT_CTL_A.SPTRAN = 0), each SPORT half has its own set of receive data
buffers. The primary (0) and secondary (1) data paths of each SPORT half have separate data buffers,
referred as SPORT_RXPRI_A and SPORT_RXSEC_A respectively. Together with input shift register, the
receive data buffers act like a three-location FIFO, as the receive path has two data registers.

These receive data buffers are the 32 bits wide. These buffers are automatically loaded from the receive shift
register when a complete word has been received into it. An interrupt occurs when the receive data buffer
is loaded, signifying that new data is available in the receive data buffer and is ready to read. This interrupt
does not occur when the serial port is operating in DMA mode or when the corresponding interrupt enable
mask bit is set.

If only the primary data path of a SPORT half is enabled, programs should not read from the inactive
secondary receive data buffer and vice-a-versa. If the core keeps reading from the inactive buffer, the status
of that receive buffer becomes empty and this may cause the core to hang indefinitely since new data is
never received via the input shift register.

Data Buffer Status

Serial ports provide status information about data buffers via the SPORT_CTL_A.DXSPRI (primary channel
data buffer status) and SPORT_CTL_A.DXSSEC (secondary channel data buffer status) bits and error status

SERIAL PORT (SPORT)
DATA TRANSFERS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–41

via SPORT_CTL_A.DERRPRI (primary channel error status) and SPORT_CTL_A.DERRSEC (secondary
channel error status) bits. Depending on the SPORT_CTL_A.SPTRAN bit setting, these bits reflect the status
of either SPORT_TXPRI_A and SPORT_TXSEC_A transmit data buffers or SPORT_RXPRI_A and SPORT_
RXSEC_A receive data buffers. These bits indicate whether the buffers are full, partially full or empty.

When attempting to read from an empty receive buffer or to write to a full transmit buffer, the access is
delayed until the buffer is ready. This delay is called a core processor hang. To avoid these conditions,
always check the buffer status to determine if the access can be made. The status bits in the SPORT_CTL_A
register are updated during reads and writes from the core processor even when the serial port is disabled.

Two complete 32-bit words can be stored in the receive buffer while a third word is being shifted in. There-
fore, almost three complete words can be received without the receive buffer being read before an overflow
occurs. After receiving the third word completely, a shift register contents overwrite the second word if the
first word has not been read out (by the processor core or the DMA controller). When this happens, the
receive overflow status is flagged through the error status bits of the SPORT_CTL_A register. The overflow
status is generated on the last bit of the third word. The SPORT_CTL_A.DERRPRI and SPORT_CTL_A.DXSSEC
status bits are sticky read-only bits and are cleared by disabling the serial port.

NOTE: The status bits in the SPORT_CTL_A register are updated during reads and writes from the core
processor even when the serial port is disabled.

Data Buffer Packing

When the SPORT is configured as a receiver with a serial data word length of 16 or less, then received data
words may be packed into a 32-bit word. Similarly, if the SPORT is configured as transmitter with a serial
data word length of 16 or less, then 32-bit words being transmitted may be unpacked into 16-bit words.
This packing/unpacking feature is selected by the SPORT_CTL_A.PACK bit.

When SPORT_CTL_A.PACK = 1, two successive words received are packed into a single 32-bit word, or each
32-bit word is unpacked and transmitted as two 16-bit words. The first 16-bit (or smaller) word is right-
justified in bits 15–0 of the packed word, and the second 16-bit (or smaller) word is right-justified in bits
31–16. This applies to both receive (packing) and transmit (unpacking) operations. In this case, the
transmit and receive interrupts are generated for the 32-bit packed words, not for each 16-bit word.

Companding can be used with word packing or unpacking.

NOTE: When 16-bit received data is packed into 32-bit words and stored in normal word space in
processor internal memory, the 16-bit words can be read or written with short word space
addresses.

Single Word (Core) Transfers

Individual data words may also be transmitted or received by the serial ports, with interrupts occurring as
each data word is transmitted or received. When a serial port is enabled and corresponding DMA is
disabled, the SPORT interrupts are generated whenever a complete word has been received in the receive
data buffer, or whenever the transmit data buffer is not full.

SERIAL PORT (SPORT)
DATA TRANSFERS

23–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

When performing core driven transfers, write to the buffer designated by the SPORT_CTL_A.SPTRAN bit
setting. For DMA driven transfers, the SPORT logic performs the data transfer from internal memory to/
from the appropriate buffer depending on the SPORT_CTL_A.SPTRAN bit setting. If the inactive SPORT
data buffers are read or written to by the core while the SPORT is being enabled, the core may hang. For
example, if a SPORT is programmed to be a transmitter, while at the same time the core reads from the
receive buffer of the same SPORT, the core may hang just as it would if it were reading an empty buffer
that is currently active and waits for the status to change. This may lock up the core until the SPORT is
reset.

To avoid hanging the processor core, check the status of appropriate data buffers when the processor core
tries to read a word from a serial port's receive buffer or writes a word to its transmit buffer. The full/empty
status can be read using the SPORT_CTL_A.DXSPRI and SPORT_CTL_A.DXSSEC bits.

DMA Transfers

Direct memory access (DMA) provides a mechanism for receiving or transmitting an entire block of serial
data before an interrupt is generated. When SPORT DMA is not enabled, the SPORT generates an inter-
rupt every time it receives or starts to transmit a data word. The processor's on-chip DMA controller
handles the DMA transfer, allowing the processor core to continue running until the entire block of data
is transmitted or received. Service routines can then operate on the block of data rather than on single
words, significantly reducing overhead.

Therefore, set the direction bit, DMA enable bit and the serial port enable bit before initiating any opera-
tions on the SPORT data buffers. Do not try to access data buffers when the associated DMA channel of
serial port is enabled. If the processor operates on the inactive transmit or receive buffers while the SPORT
is enabled, it can cause unpredictable results.

Each SPORT half has a dedicated DMA channel, which serves both primary and secondary data paths. In
transmit mode, the DMA channel alternatively writes to the primary transmit data buffer and the
secondary transmit data buffer. Software must interleave the data of primary and secondary channels into
the DMA's transmit buffer. Similarly, in receive mode, the DMA channel alternatively reads from the
primary receive data buffer and the secondary data buffer and software must de-interleave the data corre-
sponding to the primary and secondary channels from the DMA's receive buffer.

If the SPORT is configured in stereo mode, the same DMA channel drives/receives both the left and right
channels of the enabled data paths (primary and/or secondary). Therefore, in transmit mode, software
must interleave the left and right channels’ data (of the enabled data paths) into the DMA's transmit buffer.
Similarly in receive mode, software should de-interleave the left and right channel data (of the enabled
paths) from the DMA's receive buffer.

Since both primary and secondary data paths share the single DMA channel, each SPORT half share a
common interrupt vector. Optionally the DMA controller can generate an interrupt at the end of the
completion of a DMA transfer and at the end of each work unit of DMA.

The SPORT DMA channels are assigned a higher priority than all other DMA channels (for example, the
SPI port) because of their relatively low service rate and their inability to hold off incoming data. Having

SERIAL PORT (SPORT)
DATA TRANSFERS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–43

higher priority causes the SPORT DMA transfers to be performed first when multiple DMA requests occur
in the same cycle. The serial port DMA channels are numbered and prioritized in the processor's DMA
Channel List table in the DMA chapter.

Although the DMA transfers are performed with 32-bit words, the SPORTs can handle word sizes from 4
to 32 bits (as defined by SPORT_CTL_A.SLEN field). If serial data length is 16 bits or smaller, two data can
be packed into 32-bit words for each DMA transfer. This option is selected by setting the SPORT_CTL_A.
PACK bit. When serial port data packing is enabled (SPORT_CTL_A.PACK = 1), the transmit and receive
interrupts are generated for the 32-bit packed words, not for each 16-bit word. For more information, see
Data Buffer Status.

NOTE: The DMA channel of a SPORT can access both internal memory and external memory of the
processor without any core overhead.

Error Detection

When the serial port is configured as a transmitter, the SPORT_CTL_A.DERRPRI (primary channel error
status) and SPORT_CTL_A.DERRSEC (secondary channel error status) bits provide transmit data buffer
underflow status for the primary and secondary data paths respectively (it indicates that frame sync signal
occurred when the transmit data buffer was empty). The serial port transmits data whenever it detects a
framing signal.

• 0 = No frame sync signal occurred when TX data buffer is empty (no underflow).

• 1 = Framing signal occurred when TX buffer was empty (underflow).

Similarly, if SPORT configured as a receiver, the SPORT_CTL_A.DERRPRI and SPORT_CTL_A.DERRSEC bits
provide receive overflow status of primary and secondary receive data buffers. In other words, the SPORT
indicates that a channel has received new data when the receive buffer is full, so new data overwrites
existing data. The serial port receives data whenever it detects a framing signal.

• 0 = No frame sync signal occurred when RX data buffer is full (no overflow).

• 1 = Frame sync signal occurred when RX data buffer was full (overflow).

Besides these status flagging for underflow and overflow errors, each SPORT half contains an error register
(SPORT_ERR_A) and a dedicated interrupt channel, known as status interrupt. This interrupt can be option-
ally triggered based on the error status of primary and secondary data lines as reflected in SPORT_ERR_A.
DERRPSTAT and SPORT_ERR_A.DERRSSTAT bits respectively. The SPORT_ERR_A.DERRPMSK (primary
channel data error interrupt enable) and SPORT_ERR_A.DERRSMSK (secondary channel data error interrupt
enable) bits can be used to unmask the status interrupt for primary and secondary data errors.

In addition to data underflow and data overflow errors, the status interrupt is also triggered optionally
when frame sync error is detected. The SPORT_ERR_A.FSERRMSK (frame sync error interrupt enable) bit
unmasks the status interrupt for this frame sync error. This frame sync error is generated because of
premature frame sync, as explained in "Premature Frame sync error detection" section.

SERIAL PORT (SPORT)
DATA TRANSFERS

23–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Note that a frame sync error is not detected in following cases.

• When there is no active data transmit/receive and the frame sync pulse occurs due to noise in the input
signal.

• If there is an underflow or overflow error. SPORT error logic does not run (the bit count is not set and
decremented) if there is an underflow error. Therefore, frame sync errors cannot be detected.

• When the frame sync pulse > system clock period.

The channel error status bits, SPORT_CTL_A.DERRPRI and SPORT_CTL_A.DERRSEC, in the control register
are sticky read-only bits, which can be cleared in two ways:

• By disabling the SPORT (for frame sync error) or disabling the corresponding channel by itself (for
SPORT_CTL_A.DERRPRI, SPORT_CTL_A.DERRSEC).

• By writing to R/W the SPORT_ERR_A.FSERRSTAT, SPORT_ERR_A.DERRPSTAT or SPORT_ERR_A.
DERRSSTAT status bits.

 When sticky bits are cleared, interrupts are also cleared.

Interrupts

This section describes the various scenarios in which an interrupt is generated. Both the core and DMA
are able to generate data interrupts for receive or transmit operations. Moreover, the SPORT modules
generate error conditions which have a separate status interrupt.

Internal Transfer Completion

Each SPORT half has an interrupt associated with it. Both primary and secondary data channels share the
same interrupt vector, regardless of whether they are configured as a transmitter or receiver. To determine
the source of an interrupt, applications should check the transmit or receive data buffer status (SPORT_
CTL_A.DXSPRI, SPORT_CTL_A.DXSSEC) bits. In core mode, this interrupt signifies that either the transmit
data buffer is empty (when SPORT_CTL_A.SPTRAN = 1) or new data is available in the receive data buffer
(when SPORT_CTL_A.SPTRAN = 0). When serial port data packing is enabled (SPORT_CTL_A.PACK = 1), the
transmit and receive interrupts are generated for 32-bit packed words, not for each 16-bit word.

The same interrupt can be used to indicate the completion of the transfer of a block of serial data when the
serial ports are configured for DMA. The count register of DMA must be initialized with a word count that
specifies the number of words to transfer. The count register decrements after each DMA transfer on the
channel. When the word count reaches zero (or if a work unit has finished), the DMA completion inter-
rupt is generated.

Multiple interrupts can occur if both data channels of serial port transmit or receive data in the same cycle.
Any interrupt can be masked in the IMASK register.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–45

Transfer Finish Interrupt (TFI)

When a serial port in DMA mode is configured as a transmitter (SPORT_CTL_A.SPTRAN = 1), the Transmit
Finish Interrupt feature can be used to signal the end of the transmission in a particular work unit. This
feature can be enabled by setting SPORT_CTL_A.TFIENbit. When DMA transfers the last word to the FIFO,
it also gives a signal to the SPORT indicating DMA has finished. The SPORT uses this information and
then waits until all the data in the FIFO is transmitted out (including the transmit shift register) and gener-
ates the Transmit Finish Interrupt. The Interrupt Type field in the DMA Configuration register should be
configured for Peripheral Interrupt.

ADSP-CM40x SPORT Register Descriptions

Serial Port (SPORT) contains the following registers.

Table 23-15: ADSP-CM40x SPORT Register List

Name Description

SPORT_CTL_A Half SPORT 'A' Control Register

SPORT_DIV_A Half SPORT 'A' Divisor Register

SPORT_MCTL_A Half SPORT 'A' Multi-channel Control Register

SPORT_CS0_A Half SPORT 'A' Multi-channel 0-31 Select Register

SPORT_CS1_A Half SPORT 'A' Multi-channel 32-63 Select Register

SPORT_CS2_A Half SPORT 'A' Multi-channel 64-95 Select Register

SPORT_CS3_A Half SPORT 'A' Multi-channel 96-127 Select Register

SPORT_ERR_A Half SPORT 'A' Error Register

SPORT_MSTAT_A Half SPORT 'A' Multi-channel Status Register

SPORT_CTL2_A Half SPORT 'A' Control 2 Register

SPORT_TXPRI_A Half SPORT 'A' Tx Buffer (Primary) Register

SPORT_RXPRI_A Half SPORT 'A' Rx Buffer (Primary) Register

SPORT_TXSEC_A Half SPORT 'A' Tx Buffer (Secondary) Register

SPORT_RXSEC_A Half SPORT 'A' Rx Buffer (Secondary) Register

SPORT_CTL_B Half SPORT 'B' Control Register

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'A' Control Register

The SPORT_CTL_A contains transmit and receive control bits for SPORT half 'A', including serial port
mode selection for the half SPORT's primary and secondary channels. The function of some bits in SPORT_
CTL_A vary, depending on the SPORT's operating mode. For more information, see the SPORT operating
modes description. If reading reserved bits, the read value is the last written value to these bits or is the
reset value of these bits.

SPORT_DIV_B Half SPORT 'B' Divisor Register

SPORT_MCTL_B Half SPORT 'B' Multi-channel Control Register

SPORT_CS0_B Half SPORT 'B' Multi-channel 0-31 Select Register

SPORT_CS1_B Half SPORT 'B' Multi-channel 32-63 Select Register

SPORT_CS2_B Half SPORT 'B' Multichannel 64-95 Select Register

SPORT_CS3_B Half SPORT 'B' Multichannel 96-127 Select Register

SPORT_ERR_B Half SPORT 'B' Error Register

SPORT_MSTAT_B Half SPORT 'B' Multi-channel Status Register

SPORT_CTL2_B Half SPORT 'B' Control 2 Register

SPORT_TXPRI_B Half SPORT 'B' Tx Buffer (Primary) Register

SPORT_RXPRI_B Half SPORT 'B' Rx Buffer (Primary) Register

SPORT_TXSEC_B Half SPORT 'B' Tx Buffer (Secondary) Register

SPORT_RXSEC_B Half SPORT 'B' Rx Buffer (Secondary) Register

Table 23-15: ADSP-CM40x SPORT Register List (Continued)

Name Description

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–47

Table 23-16: SPORT_CTL_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:30
(R/NW)

DXSPRI Data Transfer Buffer Status (Primary).
The SPORT_CTL_A.DXSPRI indicates the status of the half SPORT's primary
channel data buffer.

0 Empty

1 Reserved

2 Partially full

3 Full

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

29
(R/NW)

DERRPRI Data Error Status (Primary).
The SPORT_CTL_A.DERRPRI reports the half SPORT's primary channel transmit
underflow status or receive overflow status, depending on the SPORT transfer
direction.
If the SPORT_CTL_A.FSR bit =1, SPORT_CTL_A.DERRPRI indicates whether
the SPT_AFS signal (from an internal or external source) occurred while the
SPORT_TXPRI_A data buffer was empty (during transmit) or the SPORT_
RXPRI_A data buffer was full (during receive). The SPORT transmits or receives
data whenever it detects the SPT_AFS signal. It is important to note that, as a
receiver, the SPORT_CTL_A.DERRPRI indicates when the channel has received
new data while the SPORT_RXPRI_A receive buffer is full. This new data overwrites
existing data.
If the SPORT_CTL_A.FSR bit =0, SPORT_CTL_A.DERRPRI is set whenever the
SPORT is required to transmit while the SPORT_TXPRI_A transmit buffer is empty
and is set whenever the SPORT is required to receive while the SPORT_RXPRI_A
receive buffer is full.
The SPORT clears the SPORT_CTL_A.DERRPRI bit if the SPORT_ERR_A.
DERRPSTAT bit is cleared.

0 No error

1 Error (Tx underflow or Rx overflow)

28:27
(R/NW)

DXSSEC Data Transfer Buffer Status (Secondary).
The SPORT_CTL_A.DXSSEC indicates the status of the half SPORT's secondary
channel data buffer.

0 Empty

1 Reserved

2 Partially full

3 Full

Table 23-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–49

26
(R/NW)

DERRSEC Data Error Status (Secondary).
The SPORT_CTL_A.DERRSEC reports the half SPORT's secondary channel
transmit underflow status or receive overflow status, depending on the SPORT
transfer direction.
If the SPORT_CTL_A.FSR bit =1, SPORT_CTL_A.DERRSEC indicates whether
the SPT_AFS signal (from an internal or external source) occurred while the
SPORT_TXSEC_A data buffer was empty (during transmit) or the SPORT_
RXSEC_A data buffer was full (during receive). The SPORT transmits or receives
data whenever it detects the SPT_AFS signal. It is important to note that, as a
receiver, the SPORT_CTL_A.DERRSEC indicates when the channel has received
new data while the SPORT_RXSEC_A receive buffer is full. This new data overwrites
existing data.
If the SPORT_CTL_A.FSR bit =0, SPORT_CTL_A.DERRSEC is set whenever the
SPORT is required to transmit while the SPORT_TXSEC_A transmit buffer is empty
and is set whenever the SPORT is required to receive while the SPORT_RXSEC_A
receive buffer is full.
The SPORT clears the SPORT_CTL_A.DERRSEC bit if the SPORT_ERR_A.
DERRSSTAT bit is cleared.

0 No error

1 Error (Tx underflow or Rx overflow)

25
(R/W)

SPTRAN Serial Port Transfer Direction.
The SPORT_CTL_A.SPTRAN bit selects the transfer direction (receive or transmit)
for the half SPORT's primary and secondary channels.
When the direction is receive, the half SPORT activates the receive buffers, and the
SPT_ACLK and SPT_AFS pins control the receive buffers. The transmit buffers are
inactive when the half SPORT's transfer direction is receive.
When the direction is transmit, the half SPORT activates the transmit buffers, and
the SPT_ACLK and SPT_AFS pins control the transmit shift registers. The receive
buffers are inactive when the half SPORT's transfer direction is transmit.

0 Receive

1 Transmit

24
(R/W)

SPENSEC Serial Port Enable (Secondary).
The SPORT_CTL_A.SPENSEC bit enables the half SPORT's secondary channel.
When this bit is cleared (changes from =1 to =0), the half SPORT automatically
flushes the channel's data buffers.

0 Disable

1 Enable

Table 23-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

21
(R/W)

GCLKEN Gated Clock Enable.
The SPORT_CTL_A.GCLKEN bit enables gated clock operation for the half SPORT
when in DSP serial mode or left-justified stereo modes (SPORT_CTL_A.OPMODE =
0 or 1). This bit is ignored when the half SPORT is in right-justified mode (SPORT_
CTL_A.RJUST =1) or multi-channel mode (SPORT_MCTL_A.MCE =1).
When SPORT_CTL_A.GCLKEN is enabled, the SPORT clock is active when the
SPORT is transferring data or when the frame sync changes (transitions to active
state).

0 Disable

1 Enable

20
(R/W)

TFIEN Transmit Finish Interrupt Enable.
The SPORT_CTL_A.TFIEN bit selects when the half SPORT issues its transmission
complete interrupt if a DMA complete interrupt is enabled by the DDE_CFG_INT
configuration. When enabled (SPORT_CTL_A.TFIEN =1), the DMA complete
peripheral interrupt is generated when the last bit of last word in the DMA is shifted
out. When disabled (SPORT_CTL_A.TFIEN =0), the DMA interrupt is generated
when the DMA counter expires (the last word goes to the transmit buffer).

0 Last word sent (DMA count done) interrupt

1 Last bit sent (Tx buffer done) interrupt

19
(R/W)

FSED Frame Sync Edge Detect.
The SPORT_CTL_A.FSED bit enables the half SPORT to start transmitting or
receiving after detecting an active edge of an external frame sync. The SPORT_CTL_
A.FSED may be enabled even during an active frame sync, and the half SPORT
starts the transfer on the next valid rising or falling edge of external frame sync. If
disabled (SPORT_CTL_A.FSED =0), the half SPORT operates in the standard level-
sensitive detection mode for external frame sync.

0 Level detect frame sync

1 Edge detect frame sync

18
(R/W)

RJUST Right-Justified Operation Mode.
The SPORT_CTL_A.RJUST bit enables the half SPORT (if SPORT_CTL_A.
OPMODE =1) to transfer data in right-justified operation mode. In this mode, the half
SPORT aligns data to the end of the frame sync, rather than the start of the frame
sync. When using right-justified mode, systems should program an appropriate delay
count to introduce a clock delay before the half SPORT state machine starts to
capture data. This value is set in the DCNT field (right-justified mode usage of the
SPORT_MCTL_A.WOFFSET field). For information about appropriate delay
selections, see the SPORT operating modes section.

0 Disable

1 Enable

Table 23-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–51

17
(R/W)

LAFS Late Frame Sync / OPMODE2.
When the half SPORT is in DSP standard mode (SPORT_CTL_A.OPMODE =0) or
in right-justified mode (SPORT_CTL_A.RJUST =1), the SPORT_CTL_A.LAFS
bit selects whether the half SPORT generates a late frame sync (SPT_AFS during
first data bit) or generates an early frame sync signal (SPT_AFS during serial clock
cycle before first data bit). When the half SPORT is in I2S / left-justified mode
(SPORT_CTL_A.OPMODE =1), the SPORT_CTL_A.LAFS bit acts as OPMODE2,
selecting whether the half SPORT is in left-justified mode or I2S mode. When the
half SPORT is in multi-channel mode (SPORT_MCTL_A.MCE =1), the SPORT_
CTL_A.LAFS bit is reserved.

0 Early frame sync
(or I2S mode)

1 Late frame sync
(or left-justified mode)

16
(R/W)

LFS Active-Low Frame Sync / L_FIRST / PLFS.
When the half SPORT is in DSP standard mode and multichannel mode (SPORT_
CTL_A.OPMODE =0), the SPORT_CTL_A.LFS bit selects whether the half SPORT
uses active low or active high frame sync. When the half SPORT is in I2S / packed /
left-justified mode (SPORT_CTL_A.OPMODE =1), the SPORT_CTL_A.LFS bit
acts as L_FIRST, selecting whether the half SPORT transfers data first for the left or
right channel.

0 Active high frame sync (DSP standard mode)
or rising edge frame sync (multi-channel mode)
or right channel first (I2S/packed mode)
or left channel first (left-justified mode)

1 Active low frame sync (DSP standard mode)
or falling edge frame sync (multi-channel mode)
or left channel first (I2S/packed mode)
or right channel first (left-justified mode)

15
(R/W)

DIFS Data-Independent Frame Sync.
The SPORT_CTL_A.DIFS bit selects whether the half SPORT uses a data-
independent or data-dependent frame sync. When using a data-independent frame
sync, the half SPORT generates the sync at the interval selected by SPORT_DIV_A.
FSDIV. When using a data-dependent frame sync, the half SPORT generates the
sync on the selected interval when the transmit buffer is not empty or when the
receive buffer is not full. Note that the SPORT_CTL_A.DIFS bit is automatically set
when the half SPORT is in packed or multichannel modes.

0 Data-dependent frame sync

1 Data-independent frame sync

Table 23-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–52 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

14
(R/W)

IFS Internal Frame Sync.
The SPORT_CTL_A.IFS bit selects whether the half SPORT uses an internal frame
sync or uses an external frame sync.
Note that the externally-generated frame sync does not need to be synchronous with
the processor's system clock.

0 External frame sync

1 Internal frame sync

13
(R/W)

FSR Frame Sync Required.
The SPORT_CTL_A.FSR selects whether or not the half SPORT requires frame
sync for data transfer. This bit is automatically set when the half SPORT is in I2S /
packed / left-justified mode (SPORT_CTL_A.OPMODE =1) or is in multi-channel
mode (SPORT_MCTL_A.MCE =1).

0 No frame sync required

1 Frame sync required

12
(R/W)

CKRE Clock Rising Edge.
The SPORT_CTL_A.CKRE selects the rising or falling edge of the SPT_ACLK clock
for the half SPORT to sample receive data and frame sync. Note that the half SPORT
changes the state of transmit data and frame sync signals on the non-selected edge of
the SPT_ACLK. Also note that the transmit and receive related SPORT halves (A and
B) should be programmed with the same value for SPORT_CTL_A.CKRE. This
programming drives the internally-generated signals on one edge of SPT_ACLK and
samples the received signals on the opposite edge.

0 Clock falling edge

1 Clock rising edge

11
(R/W)

OPMODE Operation mode.
The SPORT_CTL_A.OPMODE bit selects whether the half SPORT operates in DSP
standard / multi-channel mode or operates in I2S / packed / left-justified mode. The
mode selection affects the operation of the SPORT_CTL_A.LAFS and SPORT_
CTL_A.LFS bits. Also, the SPORT_CTL_A.OPMODE bit enables or disables
operation of the SPORT_CTL_A.GCLKEN, SPORT_CTL_A.FSED, SPORT_CTL_
A.RJUST, SPORT_CTL_A.DIFS, SPORT_CTL_A.FSR, and SPORT_CTL_A.
CKRE bits.

0 DSP standard/multi-channel mode

1 I2S/packed/left-justified mode

Table 23-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–53

10
(R/W)

ICLK Internal Clock.
When the half SPORT is in DSP standard mode (SPORT_CTL_A.OPMODE =0), the
SPORT_CTL_A.ICLK bit selects whether the half SPORT uses an internal or
external clock. For internal clock enabled, the half SPORT generates the SPT_ACLK
clock signal, and the SPT_ACLK is an output. The SPORT_DIV_A.CLKDIV serial
clock divisor value determines the clock frequency. For internal clock disabled, the
SPT_ACLK clock signal is an input, and the serial clock divisor is ignored. Note that
the externally-generated serial clock does not need to be synchronous with the
processor's system clock.

0 External clock

1 Internal clock

9
(R/W)

PACK Packing Enable.
The SPORT_CTL_A.PACK bit enables the half SPORT to perform 16- to 32-bit
packing on received data and to perform 32- to 16-bit unpacking on transmitted data.
The receive packing operation packs two successive received words into a single 32-
bit word. The transmit unpacking operation unpacks each 32-bit word and transmits
it as two 16-bit words. The first 16-bit (or smaller) word is right-justified in bits 15-0
of the packed word, and the second 16-bit (or smaller) word is right-justified in bits
31-16. This format applies to both receive (packing) and transmit (unpacking)
operations. Companding may be used with word packing or unpacking. The half
SPORT generates data transfer related interrupts when packing is enabled. The
transmit and receive interrupts are generated for the 32-bit packed words, not for
each 16-bit word.

0 Disable

1 Enable

8:4
(R/W)

SLEN Serial Word Length.
The SPORT_CTL_A.SLEN bits selects word length in bits for the half SPORT's data
transfers. Word may be from 4- to 32-bits in length. The formula for selecting the
word length in bits is:
SPORT_CTL_A.SLEN = (serial word length in bits) - 1
For DSP standard mode (SPORT_CTL_A.OPMODE =0), use SPORT_CTL_A.
SLEN of 3 to 31 bits.
For I2S / packed / left-justified mode (SPORT_CTL_A.OPMODE =1), use SPORT_
CTL_A.SLEN of 4 to 31 bits.

3
(R/W)

LSBF Least-Significant Bit First.
The SPORT_CTL_A.LSBF bit selects whether the half SPORT transmits or receives
data LSB first or MSB first.

0 MSB first sent/received (big endian)

1 LSB first sent/received (little endian)

Table 23-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–54 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'A' Divisor Register

The SPORT_DIV_A contains divisor values that determine frequencies of internally-generated clocks and
frame syncs for half SPORT 'A'.

2:1
(R/W)

DTYPE Data Type.
The SPORT_CTL_A.DTYPE bits selects the data type formatting for the half
SPORT's data transfers in DSP standard mode (SPORT_CTL_A.OPMODE =0).

0 Right-justify data, zero-fill unused MSBs

1 Right-justify data, sign-extend unused MSBs

2 μ-law compand data

3 A-law compand data

0
(R/W)

SPENPRI Serial Port Enable (Primary).
The SPORT_CTL_A.SPENPRI bit enables the half SPORT's primary channel.
When this bit is cleared (changes from =1 to =0), the half SPORT automatically
flushes the channel's data buffers.

0 Disable

1 Enable

Table 23-16: SPORT_CTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–55

Half SPORT 'A' Multi-channel Control Register

The SPORT_MCTL_A register controls the half SPORT's multi-channel operations. This register enables
multi-channel operation, enables multi-channel data packing, selects the multi-channel frame delay,
selects the number of multi-channel slots, and selects the multi-channel window offset size.

Table 23-17: SPORT_DIV_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

FSDIV Frame Sync Divisor.
The SPORT_DIV_A.FSDIV bits select the number of transmit or receive clock
cycles that the half SPORT counts before generating a frame sync pulse. The half
SPORT counts serial clock cycles whether these are from an internally- or an
externally-generated serial clock. The formula relating SPORT_DIV_A.FSDIV to
the number of cycles between frame sync pulses is:
SPORT_DIV_A.FSDIV = (number of serial clocks between frame syncs) - 1
Use the following equation to determine the value of SPORT_DIV_A.FSDIV, given
the serial clock frequency and desired frame sync frequency:
FSDIV = (SCLK ÷ FSCLK) - 1
Note that the frame sync is continuously active when SPORT_DIV_A.FSDIV = 0.
The value of SPORT_DIV_A.FSDIV should not be less than the serial word length
(SPORT_CTL_A.SLEN), as this may cause an external device to abort the current
operation or cause other unpredictable results.

15:0
(R/W)

CLKDIV Clock Divisor.
The SPORT_DIV_A.CLKDIV bits select the divisor that the half SPORT uses to
calculate the serial clock (SPT_ACLK) from the processor system clock (SCLK). The
divisor is a 16-bit value, allowing a wide range of serial clock rates. When configured
for internal clock (SPORT_CTL_A.ICLK =1), legal SPORT_DIV_A.CLKDIV
values are 0 to 65535. Given the processor system clock frequency and desired serial
clock frequency, use the following formula to calculate the value of SPORT_DIV_A.
CLKDIV:
CLKDIV = (SCLK ÷ SPT_ACLK) - 1
For the maximum serial clock frequency, see the processor data sheet.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–56 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 23-18: SPORT_MCTL_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

25:16
(R/W)

WOFFSET Window Offset.
The SPORT_MCTL_A.WOFFSET bits select the start location for the half SPORT's
active window of channels within the 1024-channel range. A value of 0 specifies no
offset and 896 is the largest value that permits using all 128 channels. When multi-
channel mode is disabled (SPORT_MCTL_A.MCE =0)and right-justified mode is
enabled (SPORT_CTL_A.RJUST =1), the least significant 6 bits of SPORT_MCTL_
A.WOFFSET serve as the delay count (DCNT) field. These bits introduce a clock
delay before the half SPORT state machine starts to capture data. For information
about appropriate delay selections, see the SPORT operating modes section.

14:8
(R/W)

WSIZE Window Size.
The SPORT_MCTL_A.WSIZE bits select the window size for the half SPORT's
active window of channels. Use the following formula to calculate the window size
value:
SPORT_MCTL_A.WSIZE = (number of channel slots) -1

7:4
(R/W)

MFD Multi-channel Frame Delay.
The SPORT_MCTL_A.MFD bits select the delay (in serial clock cycles) between the
half SPORT's multi-channel frame sync pulse and channel 0. The 4-bit field allows
selecting Multichannel Frame delay of 0-15 serial clocks.

2
(R/W)

MCPDE Multi-Channel Packing DMA Enable.
The SPORT_MCTL_A.MCPDE bit enables DMA data packing for transmit and
enables DMA data unpacking for the half SPORT's multi-channel data transfers.

0 Disable

1 Enable

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–57

Half SPORT 'A' Multi-channel 0-31 Select Register

The SPORT_CS0_A register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

0
(R/W)

MCE Multichannel enable.
The SPORT_MCTL_A.MCE bit enables multi-channel operations for the half
SPORT. The Half SPORT is configured in normal multichannel mode if SPORT_
CTL_A.OPMODE=0; while it is configured in Packed mode if SPORT_CTL_A.
OPMODE=1. When Configuring in these modes, the Multichannel Enable bit
(SPORT_MCTL_A.MCE) should be set before enabling SPORT data channel enable
bits (SPORT_CTL_A.SPENPRI and/or SPORT_CTL_A.SPENSEC). When these
channel bits transition from 1 to 0, note that the half SPORT's data transfer buffers
are cleared, and the SPORT_CTL_A.DERRPRI and SPORT_CTL_A.DERRSEC
bits are cleared.

0 Disable

1 Enable

Table 23-19: SPORT_CS0_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 0 Thru 31.

Table 23-18: SPORT_MCTL_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–58 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'A' Multi-channel 32-63 Select Register

The SPORT_CS1_A register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

Half SPORT 'A' Multi-channel 64-95 Select Register

The SPORT_CS2_A register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

Table 23-20: SPORT_CS1_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 32 Thru 63.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–59

Half SPORT 'A' Multi-channel 96-127 Select Register

The SPORT_CS3_A register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

Table 23-21: SPORT_CS2_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 64 Thru 95.

Table 23-22: SPORT_CS3_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 96 Thru 127.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–60 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'A' Error Register

The SPORT_ERR_A contains error status and error interrupt mask bits for SPORT half 'A', including error
handling bits for the half SPORT's primary and secondary channels and frame sync. Detected errors are
frame sync violations or buffer over/underflow conditions.

Table 23-23: SPORT_ERR_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6
(R/W)

FSERRSTAT Frame Sync Error Status.
The SPORT_ERR_A.FSERRSTAT bit indicates that the half SPORT has detected a
frame sync when the bit count (bits remaining in the frame) is non-zero. When a half
SPORT is receiving or transmitting, its bit count is set to a word length (for example,
SPORT_CTL_A.SLEN = 32). After each serial clock edge, the half SPORT
decrements the transfer's bit count. After the word is received or transmitted, the
transfer's bit count reaches zero, and the half SPORT resets it (for example, to 32) on
next frame sync. Normal SPORT data transfers always have a non-zero bit count
value when active transmission or reception is occurring. Normal SPORT frame
syncs occur during a zero bit count.

0 No error

1 Error (non-zero bit count at frame sync)

5
(R/W)

DERRSSTAT Data Error Secondary Status.
The SPORT_ERR_A.DERRSSTAT bit indicates the error status for the half
SPORT's secondary channel data buffers. During transmit (SPORT_CTL_A.
SPTRAN =1), SPORT_ERR_A.DERRSSTAT indicates transmit underflow status.
During receive (SPORT_CTL_A.SPTRAN =0), SPORT_ERR_A.DERRSSTAT
indicates receive overflow status. This bit is used to clear the latch of SPORT status
interrupt when triggered by secondary Data Error. This bit can also be used to clear
the read-only SPORT_CTL_A.DERRSEC status bit.

0 No error

1 Error (transmit underflow or receive overflow)

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–61

Half SPORT 'A' Multi-channel Status Register

The SPORT_MSTAT_A register indicates the current multi-channel being serviced among the half SPORT's
active channels in multi-channel mode. The half SPORT increments the value by one in this register as
each channel is serviced. The value in the SPORT_MSTAT_A register restarts at 0 at each frame sync.

4
(R/W)

DERRPSTAT Data Error Primary Status.
The SPORT_ERR_A.DERRPSTAT bit indicates the error status for the half
SPORT's primary channel data buffers. During transmit (SPORT_CTL_A.SPTRAN
=1), SPORT_ERR_A.DERRPSTAT indicates transmit underflow status. During
receive (SPORT_CTL_A.SPTRAN =0), SPORT_ERR_A.DERRPSTAT indicates
receive overflow status. This bit is used to clear the latch of SPORT status interrupt
when triggered by Primary Data Error. This bit can also be used to clear the read-
only SPORT_CTL_A.DERRPRI status bit.

0 No error

1 Error (transmit underflow or receive overflow)

2
(R/W)

FSERRMSK Frame Sync Error (Interrupt) Mask.
The SPORT_ERR_A.FSERRMSK unmasks (enables) the half SPORT to generate the
frame sync error interrupt.

0 Mask (disable)

1 Unmask (enable)

1
(R/W)

DERRSMSK Data Error Secondary (Interrupt) Mask.
The SPORT_ERR_A.DERRSMSK unmasks (enables) the half SPORT to generate the
data error interrupt for the secondary channel.

0 Mask (disable)

1 Unmask (enable)

0
(R/W)

DERRPMSK Data Error Primary (Interrupt) Mask.
The SPORT_ERR_A.DERRPMSK unmasks (enables) the half SPORT to generate the
data error interrupt for the primary channel.

0 Mask (disable)

1 Unmask (enable)

Table 23-23: SPORT_ERR_A Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–62 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'A' Control 2 Register

The SPORT_CTL2_A register controls multiplexing options for sharing serial clock and frame sync signals
across the related half SPORTs.

Table 23-24: SPORT_MSTAT_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:0
(R/NW)

CURCHAN Current Channel.
The SPORT_MSTAT_A.CURCHAN bits indicate the half SPORT's current channel
being serviced in multi-channel mode.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–63

Half SPORT 'A' Tx Buffer (Primary) Register

The SPORT_TXPRI_A register buffers the half SPORT's primary channel transmit data. This register must
be loaded with the data to be transmitted if the half SPORT is configured to transmit on the primary
channel. Either a program running on the processor core may load the data into the buffer (word-by-word
process) or the DMA controller may automatically load the data into the buffer (DMA process).

The SPORT_TXPRI_A register acts as a three location buffer if SPORT data packing is disabled (SPORT_CTL_
A.PACK =0); while it acts as two location buffer when packing is enabled (SPORT_CTL_A.PACK =1). So
depending on PACK bit setting, two 32-bit words or three 32-bit words may be stored in the transmit
queue at any time. When the transmit register is loaded and any previous word has been transmitted, the
SPORT_TXPRI_A register contents are automatically loaded into the output shifter. The half SPORT may
issue an interrupt (transmit buffer is not full) when it has loaded the output transmit shifter, signifying that
the transmit buffer is ready to accept the next word. This interrupt does not occur when the half SPORT
is executing a DMA-based transfer.

Table 23-25: SPORT_CTL2_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W)

CKMUXSEL Clock Multiplexer Select.
The SPORT_CTL2_A.CKMUXSEL bit enables multiplexing of the half SPORT'
serial clock. In this mode, the serial clock of the related half SPORT is used instead of
the half SPORT's own serial clock. For example, if SPORT_CTL2_A.CKMUXSEL is
enabled, half SPORT 'A' uses SPT_BCLK instead of SPT_ACLK.

0 Disable serial clock multiplexing

1 Enable serial clock multiplexing

0
(R/W)

FSMUXSEL Frame Sync Multiplexer Select.
The SPORT_CTL2_A.FSMUXSEL bit enables multiplexing of the half SPORT'
frame sync. In this mode, the frame sync of the related half SPORT is used instead of
the half SPORT's own frame sync. For example, if SPORT_CTL2_A.FSMUXSEL is
enabled, half SPORT 'A' uses SPT_BFS instead of SPT_AFS.

0 Disable frame sync multiplexing

1 Enable frame sync multiplexing

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–64 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'A' Rx Buffer (Primary) Register

The SPORT_RXPRI_A register buffers the half SPORT's primary channel receive data. This buffer becomes
active when the half SPORT is configured to receive data on the primary channel. After a complete word
has been received in receive shifter, it is placed into the SPORT_RXPRI_A register. This data can be read in
core mode (in interrupt-based or polling-based mechanism) or directly DMA'd into processor memory
using DMA controller. With a data buffer and input shift register, the SPORT_RXPRI_A register acts as a
two-location buffer. So, the SPORT can keep Two 32-bit received words at max in any one time (indepen-
dent of the SPORT_CTL_A.PACK bit setting).

Table 23-26: SPORT_TXPRI_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Transmit Buffer (Primary).
The SPORT_TXPRI_A.VALUE bits hold the half SPORT's primary channel
transmit data. Note that changes to the half SPORT operation mode (for example,
toggling the SPORT_MCTL_A.MCE) empty the contents of this data buffer. For
more information, see the SPORT_CTL_A and SPORT_MCTL_A register
descriptions.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–65

Half SPORT 'A' Tx Buffer (Secondary) Register

The SPORT_TXSEC_A register buffers the half SPORT's secondary channel transmit data. This register must
be loaded with the data to be transmitted if the half SPORT is configured to transmit on the secondary
channel. Either a program running on the processor core may load the data into the buffer (word-by-word
process) or the DMA controller may automatically load the data into the buffer (DMA process).

The SPORT_TXSEC_A register acts as a three location buffer if SPORT data packing is disabled (SPORT_CTL_
A.PACK =0); while it acts as two location buffer when packing is enabled (SPORT_CTL_A.PACK =1). So
depending on PACK bit setting, two 32-bit words or three 32-bit words may be stored in the transmit
queue at any time. When the transmit register is loaded and any previous word has been transmitted, the
SPORT_TXSEC_A register contents are automatically loaded into the output shifter. The half SPORT may
issue an interrupt (transmit buffer is not full) when it has loaded the output transmit shifter, signifying that
the transmit buffer is ready to accept the next word. This interrupt does not occur when the half SPORT
is executing a DMA-based transfer.

Table 23-27: SPORT_RXPRI_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Receive Buffer (Primary).
The SPORT_RXPRI_A.VALUE bits hold the half SPORT's primary channel receive
data. Note that changes to the half SPORT operation mode (for example, toggling the
SPORT_MCTL_A.MCE) empty the contents of this data buffer. For more
information, see the SPORT_CTL_A and SPORT_MCTL_A register descriptions.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–66 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'A' Rx Buffer (Secondary) Register

The SPORT_RXSEC_A register buffers the half SPORT's primary channel receive data. This buffer becomes
active when the half SPORT is configured to receive data on the primary channel. After a complete word
has been received in receive shifter, it is placed into the SPORT_RXSEC_A register. This data can be read in
core mode (in interrupt-based or polling-based mechanism) or directly DMA'd into processor memory
using DMA controller. With a data buffer and input shift register, the SPORT_RXSEC_A register acts as a
two-location buffer. So, the SPORT can keep Two 32-bit received words at max in any one time (indepen-
dent of the SPORT_CTL_A.PACK bit setting).

Table 23-28: SPORT_TXSEC_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Transmit Buffer (Secondary).
The SPORT_TXSEC_A.VALUE bits hold the half SPORT's secondary channel
transmit data. Note that changes to the half SPORT operation mode (for example,
toggling the SPORT_MCTL_A.MCE) empty the contents of this data buffer. For
more information, see the SPORT_CTL_A and SPORT_MCTL_A register
descriptions.

Table 23-29: SPORT_RXSEC_A Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Receive Buffer (Secondary).
The SPORT_RXSEC_A.VALUE bits hold the half SPORT's secondary channel
receive data. Note that changes to the half SPORT operation mode (for example,
toggling the SPORT_MCTL_A.MCE) empty the contents of this data buffer. For
more information, see the SPORT_CTL_A and SPORT_MCTL_A register
descriptions.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–67

Half SPORT 'B' Control Register

The SPORT_CTL_B contains transmit and receive control bits for SPORT half 'B', including serial port mode
selection for the half SPORT's primary and secondary channels. The function of some bits in SPORT_CTL_
B vary, depending on the SPORT's operating mode. For more information, see the SPORT operating
modes description. If reading reserved bits, the read value is the last written value to these bits or is the
reset value of these bits.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–68 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 23-30: SPORT_CTL_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:30
(R/NW)

DXSPRI Data Transfer Buffer Status (Primary).
The SPORT_CTL_B.DXSPRI indicates the status of the half SPORT's primary
channel data buffer.

0 Empty

1 Reserved

2 Partially full

3 Full

29
(R/NW)

DERRPRI Data Error Status (Primary).
The SPORT_CTL_B.DERRPRI reports the half SPORT's primary channel transmit
underflow status or receive overflow status, depending on the SPORT transfer
direction.
If the SPORT_CTL_B.FSR bit =1, SPORT_CTL_B.DERRPRI indicates whether
the SPT_BFS signal (from an internal or external source) occurred while the
SPORT_TXPRI_B data buffer was empty (during transmit) or the SPORT_
RXPRI_B data buffer was full (during receive). The SPORT transmits or receives
data whenever it detects the SPT_BFS signal. It is important to note that, as a
receiver, the SPORT_CTL_B.DERRPRI indicates when the channel has received
new data while the SPORT_RXPRI_B receive buffer is full. This new data overwrites
existing data.
If the SPORT_CTL_B.FSR bit =0, SPORT_CTL_B.DERRPRI is set whenever the
SPORT is required to transmit while the SPORT_TXPRI_B transmit buffer is empty
and is set whenever the SPORT is required to receive while the SPORT_RXPRI_B
receive buffer is full.
The SPORT clears the SPORT_CTL_B.DERRPRI bit if the SPORT_ERR_B.
DERRPSTAT bit is cleared.

0 No error

1 Error (Tx underflow or Rx overflow)

28:27
(R/NW)

DXSSEC Data Transfer Buffer Status (Secondary).
The SPORT_CTL_B.DXSSEC indicates the status of the half SPORT's secondary
channel data buffer.

0 Empty

1 Reserved

2 Partially full

3 Full

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–69

26
(R/NW)

DERRSEC Data Error Status (Secondary).
The SPORT_CTL_B.DERRSEC reports the half SPORT's secondary channel
transmit underflow status or receive overflow status, depending on the SPORT
transfer direction.
If the SPORT_CTL_B.FSR bit =1, SPORT_CTL_B.DERRSEC indicates whether
the SPT_BFS signal (from an internal or external source) occurred while the
SPORT_TXSEC_B data buffer was empty (during transmit) or the SPORT_
RXSEC_B data buffer was full (during receive). The SPORT transmits or receives
data whenever it detects the SPT_BFS signal. It is important to note that, as a
receiver, the SPORT_CTL_B.DERRSEC indicates when the channel has received
new data while the SPORT_RXSEC_B receive buffer is full. This new data overwrites
existing data.
If the SPORT_CTL_B.FSR bit =0, SPORT_CTL_B.DERRSEC is set whenever the
SPORT is required to transmit while the SPORT_TXSEC_B transmit buffer is empty
and is set whenever the SPORT is required to receive while the SPORT_RXSEC_B
receive buffer is full.
The SPORT clears the SPORT_CTL_B.DERRSEC bit if the SPORT_ERR_B.
DERRSSTAT bit is cleared.

0 No error

1 Error (Tx underflow or Rx overflow)

25
(R/W)

SPTRAN Serial Port Transfer Direction.
The SPORT_CTL_B.SPTRAN bit selects the transfer direction (receive or transmit)
for the half SPORT's primary and secondary channels.
When the direction is receive, the half SPORT activates the receive buffers, and the
SPT_BCLK and SPT_BFS pins control the receive buffers. The transmit buffers are
inactive when the half SPORT's transfer direction is receive.
When the direction is transmit, the half SPORT activates the transmit buffers, and
the SPT_BCLK and SPT_BFS pins control the transmit shift registers. The receive
buffers are inactive when the half SPORT's transfer direction is transmit.

0 Receive

1 Transmit

24
(R/W)

SPENSEC Serial Port Enable (Secondary).
The SPORT_CTL_B.SPENSEC bit enables the half SPORT's secondary channel.
When this bit is cleared (changes from =1 to =0), the half SPORT automatically
flushes the channel's data buffers.

0 Disable

1 Enable

Table 23-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–70 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

21
(R/W)

GCLKEN Gated Clock Enable.
The SPORT_CTL_B.GCLKEN bit enables gated clock operation for the half SPORT
when in DSP serial mode or left-justified stereo modes (SPORT_CTL_B.OPMODE =
0 or 1). This bit is ignored when the half SPORT is in right-justified mode (SPORT_
CTL_B.RJUST =1) or multi-channel mode (SPORT_MCTL_B.MCE =1).
When SPORT_CTL_B.GCLKEN is enabled, the SPORT clock is active when the
SPORT is transferring data or when the frame sync changes (transitions to active
state).

0 Disable

1 Enable

20
(R/W)

TFIEN Transmit Finish Interrupt Enable.
The SPORT_CTL_B.TFIEN bit selects when the half SPORT issues its transmission
complete interrupt if a DMA complete interrupt is enabled by the DDE_CFG_INT
configuration. When enabled (SPORT_CTL_B.TFIEN =1), the DMA complete
peripheral interrupt is generated when the last bit of last word in the DMA is shifted
out. When disabled (SPORT_CTL_B.TFIEN =0), the DMA interrupt is generated
when the DMA counter expires (the last word goes to the transmit buffer).

0 Last word sent (DMA count done) interrupt

1 Last bit sent (Tx buffer done) interrupt

19
(R/W)

FSED Frame Sync Edge Detect.
The SPORT_CTL_B.FSED bit enables the half SPORT to start transmitting or
receiving after detecting an active edge of an external frame sync. The SPORT_CTL_
B.FSED may be enabled even during an active frame sync, and the half SPORT
starts the transfer on the next valid rising or falling edge of external frame sync. If
disabled (SPORT_CTL_B.FSED =0), the half SPORT operates in the standard level-
sensitive detection mode for external frame sync.

0 Level detect frame sync

1 Edge detect frame sync

18
(R/W)

RJUST Right-Justified Operation Mode.
The SPORT_CTL_B.RJUST bit enables the half SPORT (if SPORT_CTL_B.
OPMODE =1) to transfer data in right-justified operation mode. In this mode, the half
SPORT aligns data to the end of the frame sync, rather than the start of the frame
sync. When using right-justified mode, systems should program an appropriate delay
count to introduce a clock delay before the half SPORT state machine starts to
capture data. This value is set in the DCNT field (right-justified mode usage of the
SPORT_MCTL_B.WOFFSET field). For information about appropriate delay
selections, see the SPORT operating modes section.

0 Disable

1 Enable

Table 23-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–71

17
(R/W)

LAFS Late Frame Sync / OPMODE2.
When the half SPORT is in DSP standard mode (SPORT_CTL_B.OPMODE =0) or
in right-justified mode (SPORT_CTL_B.RJUST =1), the SPORT_CTL_B.LAFS
bit selects whether the half SPORT generates a late frame sync (SPT_BFS during
first data bit) or generates an early frame sync signal (SPT_BFS during serial clock
cycle before first data bit).
When the half SPORT is in I2S / left-justified mode (SPORT_CTL_B.OPMODE =1),
the SPORT_CTL_B.LAFS bit acts as OPMODE2, selecting whether the half SPORT
is in left-justified mode or I2S mode.
When the half SPORT is in multi-channel mode (SPORT_MCTL_B.MCE =1), the
SPORT_CTL_B.LAFS bit is reserved.

0 Early frame sync
(or I2S mode)

1 Late frame sync
(or left-justified mode)

16
(R/W)

LFS Active-Low Frame Sync / L_FIRST / PLFS.
When the half SPORT is in DSP standard mode and multichannel mode (SPORT_
CTL_B.OPMODE =0), the SPORT_CTL_B.LFS bit selects whether the half SPORT
uses active low or active high frame sync.
When the half SPORT is in I2S / packed / left-justified mode (SPORT_CTL_B.
OPMODE =1), the SPORT_CTL_B.LFS bit acts as L_FIRST, selecting whether the
half SPORT transfers data first for the left or right channel.

0 Active high frame sync (DSP standard mode)
or rising edge frame sync (multi-channel mode)
or right channel first (I2S/packed mode)
or left channel first (left-justified mode)

1 Active low frame sync (DSP standard mode)
or falling edge frame sync (multi-channel mode)
or left channel first (I2S/packed mode)
or right channel first (left-justified mode)

15
(R/W)

DIFS Data-Independent Frame Sync.
The SPORT_CTL_B.DIFS bit selects whether the half SPORT uses a data-
independent or data-dependent frame sync. When using a data-independent frame
sync, the half SPORT generates the sync at the interval selected by SPORT_DIV_B.
FSDIV. When using a data-dependent frame sync, the half SPORT generates the
sync on the selected interval when the transmit buffer is not empty or when the
receive buffer is not full. Note that the SPORT_CTL_B.DIFS bit is automatically set
when the half SPORT is in packed or multichannel modes.

0 Data-dependent frame sync

1 Data-independent frame sync

Table 23-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–72 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

14
(R/W)

IFS Internal Frame Sync.
The SPORT_CTL_B.IFS bit selects whether the half SPORT uses an internal frame
sync or uses an external frame sync.
Note that the externally-generated frame sync does not need to be synchronous with
the processor's system clock.

0 External frame sync

1 Internal frame sync

13
(R/W)

FSR Frame Sync Required.
The SPORT_CTL_B.FSR selects whether or not the half SPORT requires frame
sync for data transfer. This bit is automatically set when the half SPORT is in I2S /
packed / left-justified mode (SPORT_CTL_B.OPMODE =1) or is in multi-channel
mode (SPORT_MCTL_B.MCE =1).

0 No frame sync required

1 Frame sync required

12
(R/W)

CKRE Clock Rising Edge.
The SPORT_CTL_B.CKRE selects the rising or falling edge of the SPT_BCLK clock
for the half SPORT to sample receive data and frame sync. Note that the half SPORT
changes the state of transmit data and frame sync signals on the non-selected edge of
the SPT_BCLK. Also note that the transmit and receive related SPORT halves (A and
B) should be programmed with the same value for SPORT_CTL_B.CKRE. This
programming drives the internally-generated signals on one edge of SPT_BCLK and
samples the received signals on the opposite edge.

0 Clock falling edge

1 Clock rising edge

11
(R/W)

OPMODE Operation mode.
The SPORT_CTL_B.OPMODE bit selects whether the half SPORT operates in DSP
standard / multi-channel mode or operates in I2S / packed / left-justified mode. The
mode selection affects the operation of the SPORT_CTL_B.LAFS and SPORT_
CTL_B.LFS bits. Also, the SPORT_CTL_B.OPMODE bit enables or disables
operation of the SPORT_CTL_B.GCLKEN, SPORT_CTL_B.FSED, SPORT_CTL_
B.RJUST, SPORT_CTL_B.DIFS, SPORT_CTL_B.FSR, and SPORT_CTL_B.
CKRE bits.

0 DSP standard/multi-channel mode

1 I2S/packed/left-justified mode

Table 23-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–73

10
(R/W)

ICLK Internal Clock.
When the half SPORT is in DSP standard mode (SPORT_CTL_B.OPMODE =0), the
SPORT_CTL_B.ICLK bit selects whether the half SPORT uses an internal or
external clock. For internal clock enabled, the half SPORT generates the SPT_BCLK
clock signal, and the SPT_BCLK is an output. The SPORT_DIV_B.CLKDIV serial
clock divisor value determines the clock frequency. For internal clock disabled, the
SPT_BCLK clock signal is an input, and the serial clock divisor is ignored. Note that
the externally-generated serial clock does not need to be synchronous with the
processor's system clock.

0 External clock

1 Internal clock

9
(R/W)

PACK Packing Enable.
The SPORT_CTL_B.PACK bit enables the half SPORT to perform 16- to 32-bit
packing on received data and to perform 32- to 16-bit unpacking on transmitted data.
The receive packing operation packs two successive received words into a single 32-
bit word. The transmit unpacking operation unpacks each 32-bit word and transmits
it as two 16-bit words. The first 16-bit (or smaller) word is right-justified in bits 15-0
of the packed word, and the second 16-bit (or smaller) word is right-justified in bits
31-16. This format applies to both receive (packing) and transmit (unpacking)
operations. Companding may be used with word packing or unpacking. The half
SPORT generates data transfer related interrupts when packing is enabled. The
transmit and receive interrupts are generated for the 32-bit packed words, not for
each 16-bit word.

0 Disable

1 Enable

8:4
(R/W)

SLEN Serial Word Length.
The SPORT_CTL_B.SLEN bits selects word length in bits for the half SPORT's data
transfers. Word may be from 4- to 32-bits in length. The formula for selecting the
word length in bits is:
SPORT_CTL_B.SLEN = (serial word length in bits) - 1
For DSP standard mode (SPORT_CTL_B.OPMODE =0), use SPORT_CTL_B.
SLEN of 3 to 31 bits.
For I2S / packed / left-justified mode (SPORT_CTL_B.OPMODE =1), use SPORT_
CTL_B.SLEN of 4 to 31 bits.

3
(R/W)

LSBF Least-Significant Bit First.
The SPORT_CTL_B.LSBF bit selects whether the half SPORT transmits or receives
data LSB first or MSB first.

0 MSB first sent/received (big endian)

1 LSB first sent/received (little endian)

Table 23-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–74 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'B' Divisor Register

The SPORT_DIV_B contains divisor values that determine frequencies of internally-generated clocks and
frame syncs for SPORT half 'B'.

2:1
(R/W)

DTYPE Data Type.
The SPORT_CTL_B.DTYPE bits selects the data type formatting for the half
SPORT's data transfers in DSP standard mode (SPORT_CTL_B.OPMODE =0).

0 Right-justify data, zero-fill unused MSBs

1 Right-justify data, sign-extend unused MSBs

2 μ-law compand data

3 A-law compand data

0
(R/W)

SPENPRI Serial Port Enable (Primary).
The SPORT_CTL_B.SPENPRI bit enables the half SPORT's primary channel.
When this bit is cleared (changes from =1 to =0), the half SPORT automatically
flushes the channel's data buffers.

0 Disable

1 Enable

Table 23-30: SPORT_CTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–75

Half SPORT 'B' Multi-channel Control Register

The SPORT_MCTL_B register controls the half SPORT's multi-channel operations. This register enables
multi-channel operation, enables multi-channel data packing, selects the multi-channel frame delay,
selects the number of multi-channel slots, and selects the multi-channel window offset size.

Table 23-31: SPORT_DIV_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

FSDIV Frame Sync Divisor.
The SPORT_DIV_B.FSDIV bits select the number of transmit or receive clock
cycles that the half SPORT counts before generating a frame sync pulse. The half
SPORT counts serial clock cycles whether these are from an internally- or an
externally-generated serial clock. The formula relating SPORT_DIV_B.FSDIV to
the number of cycles between frame sync pulses is:
SPORT_DIV_B.FSDIV = (number of serial clocks between frame syncs) - 1
Use the following equation to determine the value of SPORT_DIV_B.FSDIV, given
the serial clock frequency and desired frame sync frequency:
FSDIV = (SCLK ÷ FSCLK) - 1
Note that the frame sync is continuously active when SPORT_DIV_B.FSDIV = 0.
The value of SPORT_DIV_B.FSDIV should not be less than the serial word length
(SPORT_CTL_B.SLEN), as this may cause an external device to abort the current
operation or cause other unpredictable results.

15:0
(R/W)

CLKDIV Clock Divisor.
The SPORT_DIV_B.CLKDIV bits select the divisor that the half SPORT uses to
calculate the serial clock (SPT_BCLK) from the processor system clock (SCLK). The
divisor is a 16-bit value, allowing a wide range of serial clock rates. When configured
for internal clock (SPORT_CTL_B.ICLK =1), legal SPORT_DIV_B.CLKDIV
values are 0 to 65535. Given the processor system clock frequency and desired serial
clock frequency, use the following formula to calculate the value of SPORT_DIV_B.
CLKDIV:
CLKDIV = (SCLK ÷ SPT_BCLK) - 1
For the maximum serial clock frequency, see the processor data sheet.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–76 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 23-32: SPORT_MCTL_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

25:16
(R/W)

WOFFSET Window Offset.
The SPORT_MCTL_B.WOFFSET bits select the start location for the half SPORT's
active window of channels within the 1024-channel range. A value of 0 specifies no
offset and 896 is the largest value that permits using all 128 channels. When multi-
channel mode is disabled (SPORT_MCTL_B.MCE =0)and right-justified mode is
enabled (SPORT_CTL_B.RJUST =1), the least significant 6 bits of SPORT_MCTL_
B.WOFFSET serve as the delay count (DCNT) field. These bits introduce a clock
delay before the half SPORT state machine starts to capture data. For information
about appropriate delay selections, see the SPORT operating modes section.

14:8
(R/W)

WSIZE Window Size.
The SPORT_MCTL_B.WSIZE bits select the window size for the half SPORT's
active window of channels. Use the following formula to calculate the window size
value:
SPORT_MCTL_B.WSIZE = (number of channel slots) -1

7:4
(R/W)

MFD Multi-channel Frame Delay.
The SPORT_MCTL_B.MFD bits select the delay (in serial clock cycles) between the
half SPORT's multi-channel frame sync pulse and channel 0. The 4-bit field allows
selecting Multichannel Frame delay of 0-15 serial clocks.

2
(R/W)

MCPDE Multi-Channel Packing DMA Enable.
The SPORT_MCTL_B.MCPDE bit enables DMA data packing for transmit and
enables DMA data unpacking for the half SPORT's multi-channel data transfers.

0 Disable

1 Enable

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–77

Half SPORT 'B' Multi-channel 0-31 Select Register

The SPORT_CS0_B register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

0
(R/W)

MCE Multi-Channel Enable.
The SPORT_MCTL_B.MCE bit enables multi-channel operations for the half
SPORT. The Half SPORT is configured in normal multichannel mode if SPORT_
CTL_B.OPMODE=0; while it is configured in Packed mode if SPORT_CTL_B.
OPMODE=1. When Configuring in these modes, the Multichannel Enable bit
(SPORT_MCTL_B.MCE) should be set before enabling SPORT data channel enable
bits (SPORT_CTL_B.SPENPRI and/or SPORT_CTL_B.SPENSEC). When these
channel bits transition from 1 to 0, note that the half SPORT's data transfer buffers
are cleared, and the SPORT_CTL_B.DERRPRI and SPORT_CTL_B.DERRSEC
bits are cleared.

0 Disable

1 Enable

Table 23-33: SPORT_CS0_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 0 Thru 31.

Table 23-32: SPORT_MCTL_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–78 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'B' Multi-channel 32-63 Select Register

The SPORT_CS1_B register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

Half SPORT 'B' Multichannel 64-95 Select Register

The SPORT_CS2_B register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

Table 23-34: SPORT_CS1_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 32 Thru 63.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–79

Half SPORT 'B' Multichannel 96-127 Select Register

The SPORT_CS3_B register's bits (when set, =1) each corresponds to an active channel for the half SPORT
in multi-channel mode. When the register activates a channel (corresponding bit =1), the half SPORT
transmits or receives the word in that channel's position of the data stream. When the register de-activates
a channel (corresponding bit =0), the half SPORT either three-states its data transmit pin (during the
channel's transmit time slot) or ignores incoming data (during the channel's receive time slot).

Table 23-35: SPORT_CS2_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 64 Thru 95.

Table 23-36: SPORT_CS3_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Channel Enable 96 Thru 127.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–80 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'B' Error Register

The SPORT_ERR_B contains error status and error interrupt mask bits for SPORT half 'B', including error
handling bits for the half SPORT's primary and secondary channels and frame sync. Detected errors are
frame sync violations or buffer over/underflow conditions.

Table 23-37: SPORT_ERR_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6
(R/W)

FSERRSTAT Frame Sync Error Status.
The SPORT_ERR_B.FSERRSTAT bit indicates that the half SPORT has detected a
frame sync when the bit count (bits remaining in the frame) is non-zero. When a half
SPORT is receiving or transmitting, its bit count is set to a word length (for example,
SPORT_CTL_B.SLEN = 32). After each serial clock edge, the half SPORT
decrements the transfer's bit count. After the word is received or transmitted, the
transfer's bit count reaches zero, and the half SPORT resets it (for example, to 32) on
next frame sync. Normal SPORT data transfers always have a non-zero bit count
value when active transmission or reception is occurring. Normal SPORT frame
syncs occur during a zero bit count.

0 No error

1 Error (non-zero bit count at frame sync)

5
(R/W)

DERRSSTAT Data Error Secondary Status.
The SPORT_ERR_B.DERRSSTAT bit indicates the error status for the half
SPORT's secondary channel data buffers. During transmit (SPORT_CTL_B.
SPTRAN =1), SPORT_ERR_B.DERRSSTAT indicates transmit underflow status.
During receive (SPORT_CTL_B.SPTRAN =0), SPORT_ERR_B.DERRSSTAT
indicates receive overflow status. This bit is used to clear the latch of SPORT status
interrupt when triggered by secondary Data Error. This bit can also be used to clear
the read-only SPORT_CTL_B.DERRSEC status bit.

0 No error

1 Error (transmit underflow or receive overflow)

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–81

Half SPORT 'B' Multi-channel Status Register

The SPORT_MSTAT_B register indicates the current multi-channel being serviced among the half SPORT's
active channels in multi-channel mode. The half SPORT increments the value by one in this register as
each channel is serviced. The value in the SPORT_MSTAT_B register restarts at 0 at each frame sync.

4
(R/W)

DERRPSTAT Data Error Primary Status.
The SPORT_ERR_B.DERRPSTAT bit indicates the error status for the half
SPORT's primary channel data buffers. During transmit (SPORT_CTL_B.SPTRAN
=1), SPORT_ERR_B.DERRPSTAT indicates transmit underflow status. During
receive (SPORT_CTL_B.SPTRAN =0), SPORT_ERR_B.DERRPSTAT indicates
receive overflow status. This bit is used to clear the latch of SPORT status interrupt
when triggered by Primary Data Error. This bit can also be used to clear the read-
only SPORT_CTL_B.DERRPRI status bit.

0 No error

1 Error (transmit underflow or receive overflow)

2
(R/W)

FSERRMSK Frame Sync Error (Interrupt) Mask.
The SPORT_ERR_B.FSERRMSK unmasks (enables) the half SPORT to generate the
frame sync error interrupt.

0 Mask (disable)

1 Unmask (enable)

1
(R/W)

DERRSMSK Data Error Secondary (Interrupt) Mask.
The SPORT_ERR_B.DERRSMSK unmasks (enables) the half SPORT to generate the
data error interrupt for the secondary channel.

0 Mask (disable)

1 Unmask (enable)

0
(R/W)

DERRPMSK Data Error Primary (Interrupt) Mask.
The SPORT_ERR_B.DERRPMSK unmasks (enables) the half SPORT to generate the
data error interrupt for the primary channel.

0 Mask (disable)

1 Unmask (enable)

Table 23-37: SPORT_ERR_B Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–82 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'B' Control 2 Register

The SPORT_CTL2_B register controls multiplexing options for sharing serial clock and frame sync signals
across the related half SPORTs.

Table 23-38: SPORT_MSTAT_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

9:0
(R/NW)

CURCHAN Current Channel.
The SPORT_MSTAT_B.CURCHAN bits indicate the half SPORT's current channel
being serviced in multi-channel mode.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–83

Half SPORT 'B' Tx Buffer (Primary) Register

The SPORT_TXPRI_B register buffers the half SPORT's primary channel transmit data. This register must
be loaded with the data to be transmitted if the half SPORT is configured to transmit on the primary
channel. Either a program running on the processor core may load the data into the buffer (word-by-word
process) or the DMA controller may automatically load the data into the buffer (DMA process).

The SPORT_TXPRI_B register acts as a three location buffer if SPORT data packing is disabled (SPORT_CTL_
B.PACK =0); while it acts as two location buffer when packing is enabled (SPORT_CTL_B.PACK =1). So
depending on PACK bit setting, two 32-bit words or three 32-bit words may be stored in the transmit
queue at any time. When the transmit register is loaded and any previous word has been transmitted, the
SPORT_TXPRI_B register contents are automatically loaded into the output shifter. The half SPORT may
issue an interrupt (transmit buffer is not full) when it has loaded the output transmit shifter, signifying that
the transmit buffer is ready to accept the next word. This interrupt does not occur when the half SPORT
is executing a DMA-based transfer.

Table 23-39: SPORT_CTL2_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W)

CKMUXSEL Clock Multiplexer Select.
The SPORT_CTL2_B.CKMUXSEL bit enables multiplexing of the half SPORT'
serial clock. In this mode, the serial clock of the related half SPORT is used instead of
the half SPORT's own serial clock. For example, if SPORT_CTL2_B.CKMUXSEL is
enabled, half SPORT 'B' uses SPT_ACLK instead of SPT_BCLK.

0 Disable serial clock multiplexing

1 Enable serial clock multiplexing

0
(R/W)

FSMUXSEL Frame Sync Multiplexer Select.
The SPORT_CTL2_B.FSMUXSEL bit enables multiplexing of the half SPORT'
frame sync. In this mode, the frame sync of the related half SPORT is used instead of
the half SPORT's own frame sync. For example, if SPORT_CTL2_B.FSMUXSEL is
enabled, half SPORT 'B' uses SPT_AFS instead of SPT_BFS.

0 Disable frame sync multiplexing

1 Enable frame sync multiplexing

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–84 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'B' Rx Buffer (Primary) Register

The SPORT_RXPRI_B register buffers the half SPORT's primary channel receive data. This buffer becomes
active when the half SPORT is configured to receive data on the primary channel. After a complete word
has been received in receive shifter, it is placed into the SPORT_RXPRI_B register. This data can be read in
core mode (in interrupt-based or polling-based mechanism) or directly DMA'd into processor memory
using DMA controller. With a data buffer and input shift register, the SPORT_RXPRI_B register acts as a
two-location buffer. So, the SPORT can keep Two 32-bit received words at max in any one time (indepen-
dent of the SPORT_CTL_A.PACK bit setting).

Table 23-40: SPORT_TXPRI_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Transmit Buffer (Primary).
The SPORT_TXPRI_B.VALUE bits hold the half SPORT's primary channel
transmit data. Note that changes to the half SPORT operation mode (for example,
toggling the SPORT_MCTL_B.MCE) empty the contents of this data buffer. For
more information, see the SPORT_CTL_B and SPORT_MCTL_B register
descriptions.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 23–85

Half SPORT 'B' Tx Buffer (Secondary) Register

The SPORT_TXSEC_B register buffers the half SPORT's secondary channel transmit data. This register must
be loaded with the data to be transmitted if the half SPORT is configured to transmit on the secondary
channel. Either a program running on the processor core may load the data into the buffer (word-by-word
process) or the DMA controller may automatically load the data into the buffer (DMA process).

The SPORT_TXSEC_B register acts as a three location buffer if SPORT data packing is disabled (SPORT_CTL_
B.PACK =0); while it acts as two location buffer when packing is enabled (SPORT_CTL_B.PACK =1). So
depending on PACK bit setting, two 32-bit words or three 32-bit words may be stored in the transmit
queue at any time. When the transmit register is loaded and any previous word has been transmitted, the
SPORT_TXSEC_B register contents are automatically loaded into the output shifter. The half SPORT may
issue an interrupt (transmit buffer is not full) when it has loaded the output transmit shifter, signifying that
the transmit buffer is ready to accept the next word. This interrupt does not occur when the half SPORT
is executing a DMA-based transfer.

Table 23-41: SPORT_RXPRI_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Receive Buffer (Primary).
The SPORT_RXPRI_B.VALUE bits hold the half SPORT's primary channel receive
data. Note that changes to the half SPORT operation mode (for example, toggling the
SPORT_MCTL_B.MCE) empty the contents of this data buffer. For more
information, see the SPORT_CTL_B and SPORT_MCTL_B register descriptions.

SERIAL PORT (SPORT)
ADSP-CM40X SPORT REGISTER DESCRIPTIONS

23–86 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Half SPORT 'B' Rx Buffer (Secondary) Register

The SPORT_RXSEC_B register buffers the half SPORT's primary channel receive data. This buffer becomes
active when the half SPORT is configured to receive data on the primary channel. After a complete word
has been received in receive shifter, it is placed into the SPORT_RXSEC_B register. This data can be read in
core mode (in interrupt-based or polling-based mechanism) or directly DMA'd into processor memory
using DMA controller. With a data buffer and input shift register, the SPORT_RXSEC_B register acts as a
two-location buffer. So, the SPORT can keep Two 32-bit received words at max in any one time (indepen-
dent of the SPORT_CTL_A.PACK bit setting).

Table 23-42: SPORT_TXSEC_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Transmit Buffer (Secondary).
The SPORT_TXSEC_B.VALUE bits hold the half SPORT's secondary channel
transmit data. Note that changes to the half SPORT operation mode (for example,
toggling the SPORT_MCTL_B.MCE) empty the contents of this data buffer. For
more information, see the SPORT_CTL_B and SPORT_MCTL_B register
descriptions.

Table 23-43: SPORT_RXSEC_B Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Receive Buffer (Secondary).
The SPORT_RXSEC_B.VALUE bits hold the half SPORT's secondary channel
receive data. Note that changes to the half SPORT operation mode (for example,
toggling the SPORT_MCTL_B.MCE) empty the contents of this data buffer. For
more information, see the SPORT_CTL_B and SPORT_MCTL_B register
descriptions.

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–1

24 Analog-to-Digital Converter Controller (ADCC)

The analog front end (AFE) includes a powerful ADC controller (ADCC), which automates the ADC
sampling process and simplifies ADC accesses. The ADCC provides an interface that synchronizes the
controls between the processor and an analog-to-digital converter (ADC). The analog-to-digital conver-
sions are initiated by the processor or its peripheral infrastructure, based on either external or internal
events, by giving the triggers to ADCC module.

NOTE: The ADCC and DACC chapters describe the control and data interface to the AFE. For informa-
tion about the analog portion (I/O pins and electrical specifications) of the AFE, see the product
data sheet.

On processors that do not include a dedicated ADC controller, ADC sampling uses processor interrupts
(initiated by the events) and uses interrupt service routine programming of the appropriate peripheral
(usually a SPORT or an SPI) to initiate the ADC conversion process. This approach has some limiting
factors:

• ADC sampling instances are not precisely controlled due to interrupt latencies (which can vary) due to
variable instruction execution cycles or multiple interrupts running in system.

• Consumption of processor MIPS can be prohibitive, especially for high frequency of conversion related
events.

• If the ADC requires a sequence of frames for taking a sample from the ADC (for example, sending
control bits, then a conversion pulse and then reading converted data) with precise timing between the
frames, it may be difficult to implement the sequence with delay routines in the application.

The ADCC addresses some of these limitations by providing dedicated hardware, which (based on some
processor or its peripheral events) initiates the ADC sampling by providing sampling signals with required
timings in real-time. Using the ADCC permits flexible scheduling of sampling instants and provides
precise control execution of timing and analog sampling events on the ADCs. The ADCC saves both
processor MIPS and provides precise controllability for ADC sampling time.

The converted ADC data from the ADCs is directly available in ADCC registers, which can be read in core
mode to store data into processor memory or can be directly routed via a dedicated DMA.

On the ADSP-CM40x microcontroller, the ADCC is specifically designed to interface with the on-chip
internal ADCs, which require minimal core intervention.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FEATURES

24–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADCC Features

The ADCC provides many architecture-based features (basic to the design) and mode-selectable features
(usage is optional or configurable).

Architecture-based features of the ADCC include:

• Two ADC interfaces to control two 16-bit ADCs independently

• Automated ADC sampling with ADC control hardware for sending the control word, executing a
conversion cycles, and reading the converted data with programmable timing

• Up to six trigger inputs which permit the ADCC to initiate the ADC sampling events precisely

The trigger inputs are internally generated by either the processor core or its peripheral infrastructure.

• Up to 24 ADC sampling events per valid trigger received

Each event may be assigned to either of the ADCC timers and assigned to one of the ADCs (and its
channel). Each event is independently programmable to specify when to initiate ADC sampling with
respect to the trigger input.

• 24 event status registers (one per each event), which indicate the amount of delay before the start of
event handling after the event match occurs

• Two independent 32-bit ADCC timers may be used to control ADCC operation from two different
sources

Any of the 24 events may be assigned to any ADCC timer. The ADCC automatically stops these timers
after completion of associated events in order to save power. The trigger input to ADCC timer can be
enabled or masked on-the-fly to temporarily disable all the events related to a trigger source.

• Separate eight-deep pending FIFO for each ADC interface to queue the active events when the corre-
sponding ADC is busy

• Serial clock, chip select, control signals, and data signals to control the ADC operations during control,
conversion, and data read phases.

• Internally generated ADC clock from processor system clock

This clock is gated (for example, it is active only when controlling ADC) to provide excellent noise
immunity during conversion process. The clock polarity (for example, the first edge after chip select
signal assertion) is configurable.

• Automated ADC sampling process, placing the converted data from ADC in a directly available in
ADCC event data register

This data may be read in core mode to store the data in required memory space, or the data may be
directly DMA transferred.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–3

• A built-in DMA units

There is a DMA unit with a channel for each ADCC timer for DMA transferring the converted data of
the associated events. The DMA unit supports an optional circular buffering mechanism.

• Error detection capabilities, including support for detection of event miss, event collision, ADCC timer
trigger overrun, bandwidth monitor error when using DMA, and memory write response error condi-
tions

• Trigger master capability to provide two trigger signals to TRU unit on completion of each ADCC
timer frame

Mode-selectable features of the ADCC include:

• Simultaneous sampling of both ADCs

• Chip select signal with configurable width and polarity

The ADC chip select signal has a programmable width in terms of the ADC clocks. The polarity of this
signal is configurable as active high or active low signal. The ADC uses this signal to accept control
word, to start the conversion, and to output the converted data.

• Single-bit mode or dual-bit mode (with additional options) for data transfers to/from the ADCs

Two lines are available for sending the ADC control word, but the control word to ADC can be sent on
single line or on both lines. The control lines can be driven to idle state (for example, either high or low)
when a valid control word is not driven to ADC. The control word may be sent LSB-bit first or MSB-
bit first. When using two lines for sending the control word, the first bit may optionally start on either
line.

Two lines are available for reading data from ADC, but either a single line or both lines may be used
for reading ADC data. The data may be read LSB-bit first or MSB-bit first. When using two lines for
reading data, the first bit may optionally start on either line.

• Bandwidth monitoring option (when using DMA mode of data read operation), which identifies
whether the timer count has gone beyond an expected limit when receiving an ADC data frame

This option also provides a status bit to indicate whether DMA is pending for data received from ADC.

• Status indication (status bits) and optional interrupt generation (when using core mode of data read
operation) to core on completion of each event

• Interrupt may be optionally generation at the end of each ADCC timer frame completion and/or on
ADCC error detection

ADCC Functional Description

The ADCC controller provides a means to automate the ADC sampling sequence precisely, reducing the
core overhead required (compared to sampling methods where no dedicated ADC controller is present)

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

24–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

and simplifying the ADC accesses. Two independent ADC interfaces in the ADCC synchronize the
controls between the processor and the two on-chip ADCs. These features permit flexible scheduling of
sampling instants and provide precise control execution of timing and analog sampling events on the
ADCs.

NOTE: Please refer to the following sections for supplementary information about ADCC functionality:

• ADSP-CM40x ADCC Register List

• ADSP-CM40x ADCC Interrupt List

• ADSP-CM40x ADCC Trigger List

• ADCC Signal Descriptions

• ADCC Block Diagram

• ADCC Architectural Concepts

The ADC conversions can be initiated by the processor or its peripheral infrastructure (based on either
external or internal conditions) by providing trigger signals to the ADCC module. Up to six trigger inputs
from different sources may be accepted by the ADCC simultaneously (for example, from trigger masters
of the TRU of the processor).

Two 32-bit counters, known as ADCC timers, are central to ADCC operation. These timers each inde-
pendently accept one of the trigger inputs and start counting at the processor's system clock rate, when a
valid edge is detected on the selected trigger input.

NOTE: Because the two ADCC timers may each accept a different trigger input, the counts in the ADCC
timers may not be the same at all times.

The ADCC provides 24 events that may be independently programmed to occur at the specified time after
the trigger signal. This time is configured in the corresponding event time register's time bit field, ADCC_
EVTnn.TIME. The event may be assigned to either to ADCC TMR0 or ADCC TMR1, by configuring the
corresponding event control register's timer select bit field, ADCC_EVCTLnn.TMRSEL. As the ADCC timers
count at SCLK rate, the event comparator unit compares the event time of enabled events with the current
count of ADCC timer to which the event is assigned. If the count matches, the particular event is said to
be active.

The event control register of each event also specifies which ADC interface executes the event's sampling
sequence. The ADCC_EVCTLnn.ADCSEL bit field selects either ADC0 interface or ADC1 interface. Also, the
event control register stores a control word, which (when sent to an ADC) selects the analog input channel
that the ADC uses for conversion. When an event becomes active, the comparators signal the activity to
the timing and control unit of the corresponding ADC interface.

If the ADC interface is ready to initiate an ADC sampling sequence, the interface starts the sequence for
the current active event. When the ADC interface is busy (for example, if an event becomes active while
the ADC interface already executing another event's sampling sequence), the new active events is stored in
an 8-deep pending event FIFO. The interfaces executes events from the pending FIFO (in chronologically
order) when the ADC interface is free.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–5

The following example illustrates the trigger, event, sample, and data transfer (channel) process. The
ADCC Operation Example - Relating All Signals figure provides and overview of ADCC operations.

This example assumes an application wants to sample two analog inputs, one from each ADC interface, at
every PWM period; and another two samples from different analog inputs, one from each ADC interface,
whenever there is some activity on a GP input pin of the processor.

A total of four ADCC events are needed in the application. Two should be triggered every PWM period,
and the other two should be triggered whenever there is an edge on the general-purpose input pin. This
example also assumes that events 0 through 3 are selected for this purpose.

For simplicity, assume that event 0 (EVT-0) and event 1 (EVT-1) are triggered by the pulse width modu-
lator (PWM), with event 0 initiating ADC0 sampling for the ADC0_CHN0 channel, while event 1 initiates
ADC1 sampling for the ADC1_CHN1 channel. Also, event 2 (EVT-2) and event 3 (EVT-3) are triggered
by general-purpose pin input, with event 2 initiating ADC0 sampling for the ADC0_CHN2 channel, while
event 3 initiates ADC1 sampling for the ADC1_CHN3 channel.

Because there are two trigger sources in the application, both ADCC timers (TMR0 and TMR1) should be
enabled. One of the timers (in the example, TMR0) accepts trigger from the PWM master, while other
timer (in the example, TMR1) accepts trigger from general-purpose in input. The PWM_SYNC signal is
used to generate trigger signal in each cycle, and the PINT block is used to provide trigger signal from the
edges appearing on the general-purpose input pin. The TRU of the processor routes the trigger signals
from the trigger masters (in the example, PWM and PINT) to the trigger slave (in the example, TMR0 and
TMR1).

The activation of events after the trigger input is configurable in the event time register. The ADCC Oper-
ation Example - Event Information table provides a list of event information.

In this case, the ADCC signals may look as shown below.

Table 24-1: ADCC Operation Example - Event Information

ADC0_interface ADC channel ADCC Timer Triggered by Event Time

Event-0 0 ADC0_CHN0 0 PWM Sync EVT0 < EVT1

Event-1 1 ADC1_CHN1 0 PWM Sync EVT0 < EVT1

Event-2 0 ADC0_CHN2 1 GP Input EVT3 < EVT2

Event-3 1 ADC1_CHN3 1 GP Input EVT3 < EVT2

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

24–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 24-1: ADCC Operation Example - Relating All Signals

There are some key points that should be noted from the ADCC Operation Example - Relating All
Signals figure:

• The ADCC timers start counting at the SCLK rate when a valid edge on selected trigger is detected. The
event comparators compare the timer count with the event time register of associated events. The
comparators signal that the event is “Ready” on a count match.

• Each timer continues to run until all the events associated with it are completed. The exact time may
depend on usage of core mode or DMA mode of operation for reading the ADC data. After all the
events are completed, the ADCC timer count is reset to zero.

• Because the trigger inputs of both of the timers are asynchronous to each other, there is possibility that
events associated with them may get overlapped.

In the example, note that event 1 and event 3 have occurred at the same time (for example, event
comparators have signaled event 1 of TMR0 and event 3 of TMR1 as ready in the same SCLK cycle).

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–7

The priority in this case goes to the event associated with TMR0, and event 1 is serviced first. Event 3
is placed in the pending event FIFO, and the event collision error bit is set.

• For simplicity, the ADCC Operation Example - Relating All Signals figure shows the collided events
as separately serviced, one after the other. The ADC interface may decide during real-world operation
to pipeline the ADC sampling. This operation is described in the ADCC Operation Example - Event
Tightly Pipelined figure.

• The pulse on the ADC interface line shows ADC sampling sequence symbolically. This presentation
does not detail the exact sampling sequence and does not show the ADCC signals used to control
ADCs.

• There is no restriction as to which events should be assigned to ADCC timer 0 or timer 1. There is also
no restriction regarding whether to assign a particular event to the ADC0 interface or ADC1 interface.
All the events can be independently programmed.

When an event becomes active, the ADC sampling sequence related to it is started when the ADC interface
is ready to initiate the sampling process. The ADC sampling sequence is divided into phases:

• Control phase - the ADCC sends the control word to select the ADC channel for conversion. Typically
one ADC provides multiple input channels and one of them can be selected for conversion by speci-
fying channel-ID while sending control word. The control word for each event should be stored in the
ADCC_EVCTLnn.CTLWD field. For more information about the ADC control word, see ADCC Program-
ming Guidelines (ADSP-CM40x Specific).

• Conversion phase - the ADCC sends a conversion pulse to initiate the conversion for selected ADC
channel.

• Data phase - the ADCC reads the converted data from ADC. ADCC provides chip select/start of
conversion signal for each of these phases.

The ADCC also provides ADC clock in gated format, which is active only during these phases. Two control
lines and two data lines are provided through which each control word is sent and converted data is read.
A typical timing in this case, appears in the ADCC Operation Example - Event Spaced figure:

Figure 24-2: ADCC Operation Example - Event Spaced

This sampling process is automated by the ADCC hardware, and the converted data is directly available to
read in the data register of that event. When the ADCC starts to execute an event, the conversion data for
event is only available during the third frame being sent. If another event becomes active during this time,
service for the newly arrive frame is delayed. To reduce the latency of service for event in collision events

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

24–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

(an event is in collision if it becomes active while the ADCC is busy executing a previously received event),
the ADCC may decide to pipeline the ADC sampling sequence of different events.

As shown in the ADCC Operation Example - Event Overlapped figure, consider a case in which event 1
becomes active while the ADC interface is providing the conversion pulse for the event 0 ADC sampling
sequence. The ADCC starts the sampling sequence for event 1 in the next phase (for example, the ADCC
sends the control word for event 1 while receiving data for the event 0 sample).

Figure 24-3: ADCC Operation Example - Event Overlapped

The ADCC Operation Example - Event Tightly Pipelined figure shows another example in which the
ADC interface tightly packs the ADC sampling sequence. When the ADC interface sends the control word
for an event, the interface provides a conversion pulse to the previous event and reads the converted data
of the previous event. This example is the maximum ADC throughput” case, because the ADC is continu-
ously sampling its channels.

To achieve as close to maximum throughput as possible, the ADCC tries to pipeline operations whenever
feasible. A single chip select can accomplish these operations simultaneously:

• Data reception of the nth control word

• Act as the conversion chip select of the (nth + 1) control word

• Send out the (nth + 2) control word

Figure 24-4: ADCC Operation Example - Event Tightly Pipelined

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–9

ADSP-CM40x ADCC Register List

The ADC controller (ADCC) automates the ADC sampling process and simplifies ADC accesses. The
ADCC provides an interface that synchronizes the controls between the processor and an analog-to-digital
converter (ADC). A set of registers govern ADCC operations. For more information on ADCC function-
ality, see the ADCC register descriptions.

Table 24-2: ADSP-CM40x ADCC Register List

Name Description

ADCC_CTL Control Register

ADCC_ERRSTAT Error Status Register

ADCC_ERRMSK Error Mask Register

ADCC_ERRMSK_SET Error Mask Set Register

ADCC_ERRMSK_CLR Error Mask Clear Register

ADCC_EISTAT Event Interrupt Status Register

ADCC_EIMSK Event Interrupt Mask Register

ADCC_EIMSK_SET Event Interrupt Mask Set Register

ADCC_EIMSK_CLR Event Interrupt Mask Clear Register

ADCC_FISTAT Frame Interrupt Status Register

ADCC_FIMSK Frame Interrupt Mask Register

ADCC_FIMSK_SET Frame Interrupt Mask Set Register

ADCC_FIMSK_CLR Frame Interrupt Mask Clear Register

ADCC_EVTEN Event Enable Register

ADCC_EVTEN_SET Event Enable Set Register

ADCC_EVTEN_CLR Event Enable Clear Register

ADCC_ECOL Event Collision Status Register

ADCC_EMISS Event Miss Status Register

ADCC_BPTR0 Base Pointer 0 Register

ADCC_FRINC0 Frame Increment 0 Register

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

24–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADCC_CBSIZ0 Circular Buffer Size 0 Register

ADCC_TCA0 Timing Control A (ADC0) Register

ADCC_TCB0 Timing Control B (ADC0) Register

ADCC_BWMON0 Bandwidth Monitor 0 Register

ADCC_CFG ADC Configuration Register

ADCC_BPTR1 DMA Base Pointer 1 Register

ADCC_FRINC1 Frame Increment 1 Register

ADCC_CBSIZ1 Circular Buffer Size 1 Register

ADCC_TCA1 Timing Control A (ADC1) Register

ADCC_TCB1 Timing Control B (ADC1) Register

ADCC_BWMON1 Bandwidth Monitor 1 Register

ADCC_EVTnn Event n Time Register

ADCC_EVCTLnn Event n Control Register

ADCC_EPND Pending Events Status Register

ADCC_T0STAT Timer 0 Status Register

ADCC_TMR0 Timer 0 Current Count Register

ADCC_T1STAT Timer 1 Status Register

ADCC_TMR1 Timer 1 Current Count Register

ADCC_EVDATnn Event n Data Register

ADCC_EVSTATnn Event n Status Register

Table 24-2: ADSP-CM40x ADCC Register List (Continued)

Name Description

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–11

ADSP-CM40x ADCC Interrupt List

ADSP-CM40x ADCC Trigger List

ADCC Signal Descriptions

The ADCC controls the operation of internal ADCs, based on the settings for enabled events and trigger
input. Because the ADCs are internal, none of the ADCC signals are available as external package pins.

NOTE: There are two instances of the ADC interface on the ADSP-CM40x. Each offers separate clock, chip
select, control, and data signals for controlling two ADCs independently.

A number of signals connect the ADCC to the ADCs for providing ADC clock, chip select, and control.
Using these signals, the ADCC regulates the ADC sampling sequence and finally read the converted data.
These signals appear in the ADSP-CM40x ADCC-to-ADC0/1 Signal Descriptions table.

Table 24-3: ADSP-CM40x ADCC Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

44 ADCC0_ERR ADCC0 Error LEVEL

94 ADCC0_TMR0_EVT ADCC0 Timer 0 Event Complete LEVEL

95 ADCC0_TMR1_EVT ADCC0 Timer 1 Event Complete LEVEL

Table 24-4: ADSP-CM40x ADCC Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

22 ADCC0_TMR0_EVT ADCC0 Timer 0 Event Complete LEVEL

23 ADCC0_TMR1_EVT ADCC0 Timer 1 Event Complete LEVEL

Table 24-5: ADSP-CM40x ADCC Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

24 ADCC0_TRIG0 ADCC0 Trigger Slave 0

25 ADCC0_TRIG1 ADCC0 Trigger Slave 1

26 ADCC0_TRIG2 ADCC0 Trigger Slave 2

27 ADCC0_TRIG3 ADCC0 Trigger Slave 3

28 ADCC0_TRIG4 ADCC0 Trigger Slave 4

29 ADCC0_TRIG5 ADCC0 Trigger Slave 5

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

24–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The ADCC also has a number of signals to connect the ADCC to microcontroller core. Using these signals,
the ADCC sends trigger and error information to the TRU and SEC. These signals appear in the ADSP-
CM40x ADCC-to-Core Signal Descriptions table.

The following are more detailed descriptions of each ADCC signal type.

ADCC_ACLK, ADCC_BCLK
The ADCC clock provides the clock source for communicating with ADCs, which can be also used for the
conversion process by some of the ADCs. The ADCC provides this clock in gated format (for example, active
only when controlling the ADCs) to ensure excellent noise immunity during conversion process.

 The ADC clock is internally generated from system clock of processor. For example, the ADCC_TCA0.CKDIV
bit field specifies the divider to generate the ADC0 clock signal from SCLK. This divisor is a 16-bit field,
allowing a wide range of clock rates for ADC operation.

Use the following equation to calculate the ADC0 clock frequency:

ADCC_ACLK = (SCLK) / (ADCC_TCA0.CKDIV + 1)

Alternatively, the clock divisor required for the ADC0 clock frequency is calculated as:

Table 24-6: ADSP-CM40x ADCC-to-ADC0/1 Signal Descriptions

Name I/O Description

ADCC_ACS O ADCC ADC0 (A) chip select (or start-of-conversion) for the ADC

ADCC_ACLK O ADCC ADC0 (A) clock

ADCC_ACTL0 O ADCC ADC0 (A) control 0 for sending control word

ADCC_ACTL1 O ADCC ADC0 (A) control 1 for sending control word

ADCC_AD0 I ADCC ADC0 (A) data 0 for reading converted data from the ADC

ADCC_AD1 I ADCC ADC0 (A) data 1 for reading converted data from the ADC

ADCC_BCS O ADCC ADC1 (B) chip select (or start-of-conversion) for the ADC

ADCC_BCLK O ADCC ADC1 (B) clock

ADCC_BCTL0 O ADCC ADC1 (B) control 0 for sending control word

ADCC_BCTL1 O ADCC ADC1 (B) control 1 for sending control word

ADCC_BD0 I ADCC ADC1 (B) data 0 for reading converted data from the ADC

ADCC_BD1 I ADCC ADC1 (B) data 1 for reading converted data from the ADC

Table 24-7: ADSP-CM40x ADCC-to-Core Signal Descriptions

Signal Name I/O Signal Description

ADCC_TRIGn I ADCC Trigger Inputs [5:0] for starting a new ADCC frame.

ADCC_TRIG0_EVT O TMR0 Event Trigger for signaling the TRU when an ADC0 frame is completed

ADCC_TRIG1_EVT O TMR1 Event Trigger for signaling the TRU when an ADC0 frame is completed

ADCC_ERR O ADC Error Interrupt.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–13

ADCC_TCA0.CKDIV = (SCLK ÷ ADCC_ACLK) – 1

The minimum and default value of ADCC_TCA0.CKDIV field is 0. The divisor field must not be set to zero,
when SCLK is greater than maximum clock frequency supported by ADC.

Both the ADC and the ADCC use this clock to drive the output signals and sample the incoming signals. The
clock polarity (selection of reference edges or first edge after chip select signal assertion) is configurable (for
example, using the ADCC_CTL.CKPOL0 bit).

ADCC_ACS, ADCC_BCS
The ADCC provides a chip select signal to select the ADC for communication. The signal is asserted while
sending control word, during conversion period, or while reading converted data. These three phases form
the ADC sampling sequence, which starts based on a trigger input and the settings of one or more enabled
events.

The width and period of the chip select signal is configurable based on ADCC timing register settings. For
example on ADC0, the width of the chip select signal is configurable based on the ADCC_TCA0.NCK, ADCC_
TCB0.TCSCK, and ADCC_TCB0.TCKCS fields. The active duration of ADC0 clock select may be calculated as
(in terms of ADC0 clock cycles):

ADCC_ACS Active Duration = (ADCC_TCB0.TCSCK + ADCC_TCA0.NCK + ADCC_TCB0.TCKCS)

The period of the ADC0 chip select signal is controlled by the ADCC_TCB0.TCSCS field, as

Chip Select Period = ADCC_ACS Active Duration + ADCC_TCB0.TCSCS)

The ADCC Clock Signal and Chip Select Signal Description figure shows the timing relationships
provided through the timing register settings. The polarity of the chip select signal may be configured as
active-high or active-low (for example, using theADCC_CTL.CSPOL0 bit).

Figure 24-5: ADCC Clock Signal and Chip Select Signal Description

ADCC_ACTL0, ADCC_ACTL1, ADCC_BCTL0, ADCC_BCTL1
The ADCC provides two control signal lines for sending the control word to the ADC serially. But, based on
the ADC interface settings, the ADCC may send the control word on a single line or use both lines, based on
the control word size selection (ADCC_CTL.CSIZE bit).

When using two lines, the first bit of the control word may start on either of the control signal lines, based
on the data swap setting (for example, ADCC_CTL.DSWP0bit). The control word for each event should be
stored in the control word field of the corresponding event control register, ADCC_EVCTLnn.CTLWD. The
control word indicates the ADC channel to be used for next conversion process and selects whether the ADC
uses async mode or sync mode of conversion. The ADCC sends the control word at the start of the ADC

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

24–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

sampling sequence and transmit the bits of the word on active edges of the ADC clock (as selected with the
clock polarity selection).

When a valid control word is not being driven to ADC, the control lines may be driven to a high- or low-idle
state, based on the transmit idle setting (for example, ADCC_CTL.TIDLE0bit). The control word may be sent
in LSB-first format or MSB-first format, depending on the LSB-first mode setting (for example, ADCC_CTL.
LSBF0 bit).

ADCC_AD0, ADCC_AD1, ADCC_BD0, ADCC_BD1
The ADCC provides two lines for reading converted data from the ADC data serially. But, based on the ADC
interface setting, the ADCC may read ADC data from a single line or use both lines depending on the data
word size selection (ADCC_CTL.DSIZE bit).

When using two lines, the first bit of the data word may start on either of the data signal lines, based on the
data swap setting (for example, ADCC_CTL.DSWP0bit). The ADCC reads the converted data during the data
phase of ADC sampling and samples the data on active edges of the ADC clock (as selected with the clock
polarity selection). The data for each event is stored in the data register of the corresponding event register.
The data register may be read in core mode or may be directly DMA transferred to a selected memory loca-
tion.

The data may be read in LSB-first format or MSB-first format, depending on the LSB-first mode setting (for
example, ADCC_CTL.LSBF0 bit).

ADCC_TRIGn

The ADCC may accept up to six trigger inputs, which are routed internally by the processor's trigger routing
unit (TRU). Only two of these triggers may be accepted at a time. The ADCC trigger selection field (for
example, ADCC_CTL.TRGSEL0) assigns one trigger for each ADCC timer.

Two 32-bit internal timers (TMR0/TMR1) in the ADC may be independently configured for as the trigger
inputs. If both timers are enabled, The ADCC either accepts the two trigger inputs (if both have selected for
different triggers) or accepts a single trigger input (if both are selected for same trigger). Non-selected trigger
inputs are ignored.

When the ADCC detects a valid trigger, the corresponding ADCC timer starts counting at the rate of the
processor system clock (SCLK). The ADCC treats trigger inputs as edge-sensitive, and the selection of rising-
versus falling-active is selected with the trigger polarity selection (for example, using the ADCC_CTL.TRGPOL0
bit).

ADCC_TRIG0_EVT, ADCC_TRIG1_EVT
The ADCC may act as a trigger master, providing one of two trigger signals to the TRU on completion of
each of the ADCC timer frames. The triggers may be selectively enabled (for example, using the ADCC_CTL.
TRGOE0 bit).

ADCC_ERR

If the interrupt is enabled, the ADCC generates an error interrupt output when any error status is set in the
ADCC_ERRSTAT register and is unmasked (enabled) with the corresponding bit in the ADCC_ERRMSK register.
This interrupt is passed to the processor's SEC for handling.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–15

ADCC Block Diagram

The ADCC controller consists of a trigger input selection multiplexer, two independent 32-bit timers, 24
event register bank, 24 event comparators, a pending event FIFO, and a timing generation unit for two
ADC interfaces.

Also, the ADCC incorporates two in-built DMA units, one fore each ADCC timer, to directly store ADC
samples in required memory space.

Figure 24-6: ADCC Block Diagram

NOTE: For more information about each part of the ADCC, see ADCC Architectural Concepts.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

24–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADCC Architectural Concepts

The blocks appearing in the ADCC Block Diagram are describe in the following sections.

• Core and DMA Interfaces

• Trigger Inputs

• Timers

• Event Register Banks

• Event Comparators

• Pending Event FIFO

• Timing and Control Unit

Core and DMA Interfaces

The ADCC has a 32-bit core interface through which the core programs the ADCC control registers and
reads the ADCC status registers. This interface also may be used for reading the 16-bit converted ADC data
stored in event data registers in core mode.

To minimize the core overhead, the ADCC provides a 16-bit DMA interface for directly DMA transferring
converted ADC data from the event data registers to the required memory space. This interface consists of
two built-in DMA units, one for each ADCC timer.

Trigger Inputs

The ADCC can accept up to six trigger inputs, based on which ADCC timers start running at processor
system clock rate (SCLK). Also, the ADCC contains two 32-bit internal timers (TMR0 and TMR1). Each
timer may be independently configured to use one of the trigger inputs. The ADCC_CTL.TRGSEL0 bit field
selects the trigger input for TMR0, and the ADCC_CTL.TRGSEL1 bit field selects the trigger input for TMR1.
When both ADCC timers are enabled for different trigger inputs, the ADCC uses two trigger inputs. The
ADCC uses one trigger input if both ADCC timers are enabled for same trigger input or if only one ADCC
timer is enabled. The ADCC ignores non-selected trigger inputs.

The ADCC Trigger Sources for the ADSP-CM40x figure shows the detailed ADCC trigger generation
logic. All these triggers are provided by the trigger routing unit (TRU) of the processor. The TRU provides
system-level sequence control without core intervention. The ‘Slave Select’ (SSR) field of the selected
trigger input should be configured to the receive triggers from a specific trigger master. In this way, the
ADCC slave trigger can accept triggers asserted by that particular trigger master or asserted through soft-
ware by writing ID of that trigger master to one of the fields in the TRU_MTR register. The trigger out
response from selected master is internally routed to the ADCC trigger input. For more information about
the TRU and trigger slaves/masters, see the Trigger Routing Unit (TRU) chapter.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–17

For trigger input signals, the active edge of the trigger is programmable as either rising edge or falling edge
trigger, using the ADCC_CTL.TRGPOL0 or ADCC_CTL.TRGPOL1bit. For internal trigger inputs (provided by
TRU), the falling edge appears after one system clock from the corresponding rising edge.

If the trigger input appears before completion of ADCC frame, the trigger overrun status bit is set and
(optionally) generates an error interrupt. Because the ADCC frame can be initiated by each ADCC Timer,
two trigger overrun bits are provided, one for each timer.

ADCC provides an option in which the trigger input to ADCC Timer can enabled or disabled, using ADCC_
CTL.TRGOE0 or ADCC_CTL.TRGOE1 bits. When cleared, the trigger inputs are not considered valid to
initiate ADCC frames.

Figure 24-7: ADCC Trigger Sources for the ADSP-CM40x

Timers

The ADCC provides two independent 32-bit timers (TMR0 and TMR1). TMR0 is enabled by default when
the controller is enabled. TMR1 may enabled optionally using the ADCC_CTL.TMR1EN bit.

Any of the six trigger inputs may be assigned to each ADCC timer using the ADCC_CTL.TRGSEL0A and
ADCC_CTL.TRGSEL1 bit fields.

These timers start counting at system clock rate (SCLK) when a valid edge is detected on the selected
trigger input. The timer only stops counting under one of the following conditions:

• A timer rollover occurs.

• All the events associated with the trigger have completed.

It is important to note that the timer-rollover case can never happen unless the event time register of an
event is programmed at some point after the trigger occurs. This programming is a practice that is contrary

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

24–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

to the guidelines provided in the ADCC Programming Model.

In the all-events-completed case, the exact time at which the timer stops counting depends on the core
mode or DMA mode of the ADC data read operation. In DMA mode, the timer stops counting only when
all the ADC data related to ADCC frame are written into processor memory and when the memory write
response is returned successfully.

When an ADCC timer is disabled or the ADCC controller is disabled, the timer resets to zero.

Event Register Banks

A sample to be taken from an ADC is referred to as an event. The events can be programmed to occur at
specified times after a trigger input to the ADCC. The sample can be from any ADC channel, either in
async mode or sync mode. An event is completed when the data reception (for the event) is completed.

The ADCC may handle total 24 events which can be independently configured and enabled. Each event
may be assigned to an ADCC timer and may instruct the ADCC to start sampling sequence for one of the
ADC channel of either ADC0 or ADC1.

Each event consists of a four register bank, including an event control register (ADCC_EVCTLnn), an event
time register (ADCC_EVTnn), event status register (ADCC_EVSTATnn) and event data register (ADCC_
EVDATnn). The ADCC_EVTEN register contains event enable bits.

The event control register determines the following:

• Event assignment to TMR0 or TMR1

• Event execution on the ADC0 interface or the ADC1 interface

• ADC channel selection for sampling

• Requirement for simultaneous sampling with another ADC

• Memory offset for event data storage for reading ADC data in DMA mode

The event time register specifies the time offset from the corresponding ADCC timer trigger input to the
start of that particular event (for example, when the event has to occur w.r.t. trigger input). This time offset
should be specified in terms of system clock of the processor.

The event status register states the number of system clock cycles by which the event was delayed after the
event match occurred. This information may be useful for debugging purpose.

The result of ADC sampling (for example, converted data from the ADC) is directly stored into event data
registers, which may be accessed in core mode or can be directly DMA transferred into processor memory.

An ADCC timer frame is completed when all the events associated with that ADCC timer are completed
after detecting valid trigger. At least one event per ADCC timer should be enabled for the ADCC to execute
an ADC sampling sequence.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–19

Event Comparators

The event comparator block consists of 24 event time comparators, which determine when an enabled
event is ready for handling. After detecting a valid edge on a selected trigger input, the ADCC timer starts
running at system clock rate (SCLK). The comparators compare the ADCC timer count with the event
time specified in the ADCC_EVTnn.TIME bit field of the enabled event. If the time value matches, the
comparators signals the timing and control unit, indicating that an event has become active and is ready
to handle. In response, the timing and control unit starts the ADC sampling sequence (if the ADC interface
is free).

If more than one event (which is associated with an ADCC timer and which is assigned to the same ADC
interface) is active during the same SCLK cycle, only the highest priority event is processed, and all other
events are missed (even if there was space available in the pending event FIFO). When an event gets
missed, the corresponding event miss bit is set in the ADCC_EMISS register.

The priority of events is fixed, with the event with lowest event ID having higher priority as compared
other events. The priority of the ADCC_EVCTLnn registers from highest to lowest is ADCC_EVT0>ADCC_
EVT1>…..>ADCC_EVT22>ADCC_EVT23. The events assigned to TMR0 have higher priority than events
assigned to TMR1. If the events from both ADCC timers to same ADC interface become active in the same
SCLK cycles, the event triggered by TMR0 is given higher priority.

Pending Event FIFO

The ADCC provides a separate, 8-deep FIFO for each ADC interface. If an event becomes ready when
another event is ongoing on the same ADC interface, the occurred event is stored in the pending event
FIFO. The stored event is an event in collision, and the corresponding event collision bit is set in the ADCC_
ECOL register.

If the pending event FIFO is full when an event becomes active, the event is missed, and the corresponding
event miss bit is set in the ADCC_EMISS register.

After the ADC interface unit is free to start the new ADC sampling sequence, the event from the FIFO is
shifted to the timing and control unit.

On disabling the ADCC, all pending events in the pending event FIFO are flushed.

Timing and Control Unit

The timing and control unit of ADCC provides two ADC interfaces. Each interface may independently
control one ADC with required timing and interface protocol.

When an event becomes ready to handle, the ADC interface unit initiates the ADC sampling sequence,
according to the ADCC settings for that particular event. The ADC sampling sequence is divided into
phases:

• Control phase - the control word is sent to ADC

• Conversion phase - the conversion pulse is provided

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC OPERATING MODES

24–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Data phase - the converted data from ADC is read

The ADC interface provides an ADC clock, an ADC chip select, control lines for sending the control word,
and data lines for reading converted data.

The timing of the ADCC_ACLK, ADCC_ACS, ADCC_BCLK, and ADCC_BCS signals are determined by the ADCC
timing registers. The ADC clock signals are gated and are provided only while controlling ADC. The chip
select signal has programmable timing in terms of ADC clock. The timings and protocol of ADC control
lines and data lines is determined by bits of the ADCC_CTL register.

ADCC Operating Modes

The operating modes of the ADCC include:

• Data Transfer Modes

• Dual-Bit (Two Signal Line) Interface Mode

• Dual-Bit Interface Data Swap Mode

• Clock Modes

• Chip Select Modes

• Simultaneous Sampling Mode

Data Transfer Modes

The ADC interface of ADCC has a data acquisition capability in which the converted data from ADC is
directly stored into the data register of the corresponding event. The event setup instructs the ADCC
which ADC is used and which of its channel should sampled. When the ADC interface handles the events,
it initiates the ADC sampling sequence by providing control word and conversion pulse to ADC. Then,
the ADCC reads the converted ADC data and collects the data the into data register of that event, ADCC_
EVDATnn.

The newly received data in the ADCC_EVSTATnn register can be read either in core mode or in DMA mode,
which permits storing the data in the required memory space. The ADCC supports the following methods
for reading ADC samples:

• Core-driven single data reception for each ADC sample

• DMA-driven data read for multiple words transfers with minimal intervention of core.

 The ADCC_CTL.DMAEN enables the DMA-driven mode of ADCC operation. When disabled, the ADCC
uses core-driven mode. Core-driven transfers use ADCC data interrupts to signal the processor core to
perform single word read from the event data register, which is ready. DMA transfers may be set up to
transfer a configurable number of ADC samples to internal or external memory of processor without core-
intervention.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–21

For more information, see Core-Driven Data Read Mode and DMA-Driven Data Read Mode.

Core-Driven Data Read Mode

The ADCC provides 24 event data registers (one for each ADCC event) for storing sampled ADC data
associated with that event. These registers, ADCC_EVDATnn, are accessible in core mode. Typically, when an
ADC sampling sequence is completed, the newly available read data is stored in the data register of that
event, and the ADCC signals the data ready interrupt to core. In the interrupt service routine, the core
checks the ADCC event interrupt status register, ADCC_EISTAT, to determine which event is completed
and reads the ADC sample from its data register.

The ADCC event interrupt mask register, ADCC_EIMSK, provides bits to unmask (enable) or mask (disable)
the data read interrupt requests for individual events. If there are multiple events in an ADCC frame, to
reduce the interrupt requests for every event in that frame, the ADCC provides a frame completion inter-
rupt, which is triggered once in a frame after completion of all the events. The individual data requests
from events may be masked, then their data may be read based on the ADCC Timer frame completion
interrupt.

In core mode, the “end of the ADCC timer frame” is when all the event data related to that ADCC timer
have been received from the ADC. The ADCC timer stops at the end of frame and is reset to zero.

DMA-Driven Data Read Mode

The ADCC includes two built-in DMA units for reading the ADC samples received in event data registers.
The controller provides a 16-bit DMA interface to directly store these ADC samples in processor memory
without core intervention. One DMA unit handles data read requests for the events associated with TMR0,
and the other DMA unit handles data requests for the events associated with TMR1.

Each DMA unit provides a set of registers to configure the DMA work-unit:

• Base pointer register (for example, ADCC_BPTR0) - this register contains the base address of memory
space in which ADC samples should be stored.

• Frame increment register (for example, ADCC_FRINC0) - this register contains the address increment to
be applied to the DMA base pointer register between the ADCC timer frames.

• Circular buffer size register (for example,ADCC_CBSIZ0) - this register holds number of ADCC timer
frames to be received.

Apart from these registers, the DMA unit uses the event offset field of control register of the respective
event to store the ADC samples related to it. The ADCC_EVCTLnn.EVTOFS field specifies the memory offset
in the frame block defined by the base pointer and frame increment registers for each ADCC frame.

Each ADC timer frame may consist of many ADCC events. The ADCC_BPTR0 or ADCC_BPTR1 registers hold
the base-address used for placing the first frame’s event-data into memory. Each of the event data are
placed in a location calculated from the base pointer and the event offset (for example, ADCC_BPTR0 +
ADCC_EVCTLnn.EVTOFS). The second frame’s base address is calculated from the base pointer and the
frame increment (for example, ADCC_BPTR0 + ADCC_FRINC0). The third frame has its base address includes

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC OPERATING MODES

24–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

a multiple of the frame increment (for example, ADCC_BPTR0 + 2 *ADCC_FRINC0). This linear buffering
mode calculation pattern continues through the series of frames. To calculate the address for placing the
received data of an event in the nth frame, the calculation applies all of these factors. For example:

Location = ADCC_BPTR0 + (n-1) *ADCC_FRINC0 + ADCC_EVCTLnn.EVTOFS

When the circular buffer size register (for example, ADCC_CBSIZ0) is programmed to zero, the DMA oper-
ates (as just described) in linear buffering mode.

When the circular buffer size register is programmed to a non-zero value, the DMA operates in circular
buffering mode. In this mode, the DMA initially follows the same pattern as given for the linear buffering.
But, after a specified number of frames, the frame base pointer is reset to the base pointer address (for
example, ADCC_BPTR0) rather than calculating the value from the base pointer plus frame increment. The
number of frames after which circular buffer wrap around (resetting to the base pointer) occurs is set by
the circular buffer size register (for example, ADCC_CBSIZ0). After receiving the selected number of frames,
the circular buffer wrap around occurs, and the DMA begins overwriting the data from previous frames.

NOTE: Circular buffer wrap around is sometimes referred to as circular buffer loopback.

Considering operation in both DMA modes, the base pointer register holds the address for the following
frames:

• The first frame after the ADCC is enabled (both DMA modes)

• The first frame after base pointer register is written by the core (in linear buffering mode)

• The first frame after a circular buffer wrap around occurs (in circular buffering mode)

NOTE: There is no DMA burst feature, and each event data is written separately after completion of all the
events in that frame.

In DMA mode, the end of an ADCC timer frame occurs when all of the event data related to that ADCC
timer have been written into memory and responses have been received. The ADCC timer stops at the end
of frame and is reset to zero. When there are multiple pending events to be written into memory, the
priority of writing into memory is from the highest priority for event 0 to the lowest for event 23.

Because the ADC data is 16 bits wide, bit 0 of the base pointer register and of the frame increment register
is non-writable and reads as 0. This read-no-write access for bit 0 is to avoid address alignment error, by
ensuring 16-bit alignment. It is recommended not to access the event data registers directly while in DMA
mode.

If the ADCC is disabled while a DMA transfer is in progress, the DMA of ADCC completes (gracefully) by
writing all data receive (up to the point the ADCC was disabled) into memory. The DMA pending status
for the corresponding timer (for example, ADCC_T0STAT.DPND) remains high until all such transactions are
completed on the DMA bus, including the write response signaling.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–23

DMA Bandwidth Monitoring

In DMA mode, ADCC provides a DMA bandwidth monitoring feature, which permits identifying
whether the ADCC timer count has gone beyond an expected limit while completing a frame. The ADCC
provides a bandwidth monitor register (for example, ADCC_BWMON0) for each ADCC timer to use this
feature for their frames.

For example, if it is expected that each frame of an ADCC timer may complete much earlier than Q number
of SCLK cycles after receiving the trigger, the program can use the DMA bandwidth monitoring feature to
check whether or not all the events and their DMA transfers in each ADCC timer frame are completed
within that time. The register of the related ADCC timer should be programmed with a count of Q in this
case.

The ADCC raises the error interrupt if this count is crossed by the corresponding ADCC timer while
completing a frame. The ADCC timers count until the DMA transfer of all events are completed.

 If bandwidth monitoring feature is not required, the bandwidth monitor register should be programmed
to zero, disabling this feature.

Dual-Bit (Two Signal Line) Interface Mode

The ADCC offers dual-bit interface functionality by providing two lines (for example, ADCC_AD0 and
ADCC_AD1) for sending the control word serially to the ADC and two lines for reading serially the
converted data from the ADC. These two lines do not operate separately, but the bit stream is serially inter-
leaved on them.

Even though the ADCC provides two lines for sending the control word and receiving the data bits, the
ADC interface unit may be configured to use a single line (single-bit interface) or to use both lines (dual-
bit interface), based on the interfaced protocol supported by ADC. The number of control lines is selected
using the ADCC_CTL.CSIZE bit, and the number of data lines is selected using the ADCC_CTL.DSIZE bit.

Dual-Bit Interface Data Swap Mode

When using dual-bit interface mode (two signal lines), the first bit may start on either data signal line (for
example, ADCC_AD0 and ADCC_AD1) based on the setting of the data swap bit (for example, ADCC_CTL.
DSWP0). Also, the data may be sent/read in either LSB-first or MSB-first format depending on LSB first bit
(for example, ADCC_CTL.LSBF0). The tables (Dual Bit Swap Disable table and the Dual Bit Swap Enable
table) show how the ADCC reads the ADC data bits on two data signal lines for different combination of
the data swap bit and LSB first bit. The same bit pattern apply for the control signal lines (for example,
ADCC_ACTL0ADCC_AD0when sending control bits.

NOTE: The ADCC control register provides separate versions of these bits for both ADC interfaces. The
ADC interfaces may be independently configured for the protocol (data swap and/or choice of first
bit) supported by ADC connected to it.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC OPERATING MODES

24–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Clock Modes

The ADCC provides a clock signal to communicate with the interfaced ADC. This signal may also used for
the conversion process by some of the ADCs. The ADC clock is in gated format (for example, it is active
only during the phases of ADC sampling sequence) to ensure excellent noise immunity during conversion
process.

Table 24-8: Dual Bit Swap Disable

Clock Cycle

ADCC_CTLx.DSWP = 0

ADCC_CTLx.LSBF= 0 ADCC_CTLx.LSBF = 1

MSB First Format LSB First Format

Bits on AD1 Bits on AD0 Bits on AD1 Bits on AD0

1 Data 15 Data 14 Data 1 Data 0

2 Data 13 Data 12 Data 3 Data 2

3 Data 11 Data 10 Data 5 Data 4

4 Data 9 Data 8 Data 7 Data 6

5 Data 7 Data 6 Data 9 Data 8

6 Data 5 Data 4 Data 11 Data 10

7 Data 3 Data 2 Data 13 Data 12

8 Data 1 Data 0 Data 15 Data 14

Table 24-9: Dual Bit Swap Enable

Clock Cycle

ADCC_CTLx.DSWP = 1

ADCC_CTLx.LSBF= 0 ADCC_CTLx.LSBF = 1

MSB First Format LSB First Format

Bits on AD1 Bits on AD0 Bits on AD1 Bits on AD0

1 Data 14 Data 15 Data 0 Data 1

2 Data 12 Data 13 Data 2 Data 3

3 Data 10 Data 11 Data 4 Data 5

4 Data 8 Data 9 Data 6 Data 7

5 Data 6 Data 7 Data 8 Data 9

6 Data 4 Data 5 Data 10 Data 11

7 Data 2 Data 3 Data 12 Data 13

8 Data 0 Data 1 Data 14 Data 15

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–25

Clock Frequency programming
The ADC clock is internally generated from system clock of processor. The ADCC_TCA0.CKDIV bit field spec-
ifies the divider to generate ADC0 clock signal from SCLK.

ADCC_ACLK = (SCLK) / (ADCC_TCA0.CKDIV + 1)

Alternatively, the clock divisor value for the required ADC0 clock frequency is calculated as:

ADCC_TCA0.CKDIV = (SCLK ÷ ADCC_ACLK) – 1

Falling Edge Clock Edge Programming (for example, ADCC_CTL.CKPOL0 =0)
The control word bits are driven and the ADC data bits are sampled with respect to active edges of clock.
The active edge of the ADC clock edge is selected with the clock polarity bit.

In this case, the first ADC clock edge driven after chip select becomes active is a falling edge. The clock signal
is at the high level when the ADC interface is not busy.

The control word bits on the ADC control lines are driven on the rising edges of the ADC clock by the ADC
interface of ADCC. But, the first bit is driven prior to first falling edge given to ADC. Sampling is done by
the ADC on the falling edges of the ADC clock.

The ADC drives the bits of the converted data on the falling edge of the ADC clock. These data bits are
sampled by the ADC interface of ADCC on the next falling edge, allowing a full cycle of operation for high-
speed read operations. The first bit is driven by the ADC before the chip select becomes active.

The Clock Edge Programmed for CKPOL =0 figure shows how the ADC signal transitions occur for this
case.

Figure 24-8: Clock Edge Programmed for CKPOL =0

Rising Edge Clock Edge Programming (for example, ADCC_CTL.CKPOL0 =1)
The control word bits are driven and the ADC data bits are sampled with respect to active edges of clock.
The active edge of the ADC clock edge is selected with the clock polarity bit.

In this case, the first ADC clock edge driven after clock select becomes active is a rising edge. The clock signal
is at the low level when the ADC interface is not busy.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC OPERATING MODES

24–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The control word bits on the ADC control lines are driven on the falling edges of the ADC clock by the ADC
interface of the ADCC. But, the first bit is driven prior to the first rising edge given to ADC. Sampling is done
by the ADC on the rising edges of the ADC clock.

The ADC drives the bits of the converted data on the rising edge of the ADC clock. These data bits are
sampled by the ADC interface of the ADCC on the next rising edge, allowing a full cycle of operation for
high-speed read operations. The first bit is driven by the ADC before the chip select becomes active.

The Clock Edge Programmed for CKPOL =1 figure shows how the ADC signal transitions occur for this
case.

Figure 24-9: Clock Edge Programmed for CKPOL =1

Chip Select Modes

The ADCC provides a chip select signal (for example,) to select the ADC for communication and to signal
(optionally with its edges) the start of conversion for the ADC. The chip select is asserted during the phases
of the ADC sampling sequence (control, conversion, and data).

The chip select signal provided to ADC may be configured as an active-high signal or an active-low signal,
based on the protocol supported by interfaced ADC. This sensitivity is configurable using the chip select
polarity bit (for example, ADCC_CTL.CSPOL0).

During the conversion phase or data read phase of the ADC sampling sequence, when a valid control word
is not being driven to the ADC, the ADC control lines sometimes need to be driven to an inactive level
(either a high or a low level) to meet an ADC requirement.

The ADC interface of the ADCC provides the option to select the state to drive control lines while idle
based on the transmit idle bit (for example, ADCC_CTL.TIDLE0).

The Chip Select Idle Programming figure shows an example in which the chip select polarity is selected
as an active-low signal, and the transmit idle bit is cleared. This example shows the chip select as held low
when not transmitting a valid control word to the ADC.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–27

Figure 24-10: Chip Select Idle Programming

The width and period of the chip Select signal is configurable based on settings of timing control registers
(for example, ADCC_TCA0 and ADCC_TCB0). The width of the chip select signal is configurable based on the
number-of-clocks bit field, the time-CS-to-CK-setup bit field, and the time-CK-to-CS-hold bit field,
where:

• Time-CS-to-CK-setup (for example,ADCC_TCB0.TCSCK) is the minimum delay between the assertion
edge of the chip select and the first edge of the ADC clock

• Number-of-clocks (for example, ADCC_TCA0.NCK) is the number of ADC clock cycles to be given in
each chip select pulse.

• Time-CK-to-CS-hold (for example, ADCC_TCB0.TCKCS) is the minimum delay between last edge of the
ADC clock and the de-assertion edge of the chip select signal

• Time-CS-to-CS-delay (for example, ADCC_TCB0.TCSCS) is the minimum delay between the completion
of one phase and starting of another phase of the ADC sampling sequence (for example, the time
between the de-assertion edge of one chip select signal to the assertion edge of the next chip select
signal).

All of these parameters are specified in terms of ADC clock cycles. The Chip Select Signal Description
figure illustrates the timing relationships and parameters.

Figure 24-11: Chip Select Signal Description

From these parameters the active duration of the chip select signal may be calculated (for ADC0) as:

Active Duration CS = (ADCC_TCB0.TCSCK + ADCC_TCA0.NCK + ADCC_TCB0.TCKCS)

And, the period of the chip select signal may be calculated (for ADC0) as:

Period CS = (Active Duration CS + ADCC_TCB0.TCSCS)

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC OPERATING MODES

24–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Simultaneous Sampling Mode

The simultaneous sampling feature permits taking samples from two ADC channels, one from ADC0 and
another from ADC1, in a synchronous fashion.

This feature is useful in application where application needs to analyze the two different analog signals, in
which case both signals should be sampled at the same time. The events on an ADC interface are handled
sequentially. If the two signals are connected to two different channels of same ADC, it is not possible to
take simultaneously sample them. If these two signals are connected to different ADCs, the ADC interfaces
(which are independent) may not be synchronized while taking samples from the two signals. For example,
the two ADC interfaces may initiate the sampling sequence based on their own activities, independent of
each other.

To address this common requirement, the simultaneous sampling feature ensures that the samples on two
ADC channels (one from ADC0 and another from ADC1) are taken simultaneously, using a shared chip
select. The simultaneous sampling sequence on both ADCs is initiated only after all the pending events are
handled on the respective ADC interface. This ensures that the two ADC interfaces are synchronized.

To take simultaneous samples from the ADC0 channel and the ADC1 channel, two events should be
configured with following settings in their event control register:

• Set the simultaneous sampling Enable bit

(ADCC_EVCTLnn.SIMSAMP =1 for both).

• Set the The share chip select bit in the ADC control word

(ADCC_EVCTLnn.CTLWD bit 1 =1 for both)

For more information about the ADC control word, see ADCC Programming Guidelines (ADSP-
CM40x Specific).

• Assign both events to the same ADCC timer

(ADCC_EVCTLnn.TMRSEL bit is the same for both)

• Select the same event time for both events

(ADCC_EVTnn value is the same for both).

• Assign each event to a different ADC interface

(ADCC_EVCTLnn.ADCSEL bit must be different for each)

• Use identical settings in the timing control registers for both ADC interfaces

(ADCC_TCA0 == ADCC_TCA1, ADCC_TCB0 ==ADCC_TCB1)

Simultaneous events should be programmed in pairs. When there are pending events and a simultaneous
sampling pair is encountered, the pair is executed synchronously only after both ADCs become available
for accepting the new control word.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–29

The Simultaneous Sampling with Two Events figure shows a case of simultaneous sampling. Event 0 is
configured to initiates sampling of channel-m of ADC0, and event 1 is configured to initiate sampling of
channel-n of ADC1.

Figure 24-12: Simultaneous Sampling with Two Events

Note that event 0 and event 1 are triggered at the same time, because both events are assigned to same
ADCC timer and the event time registers of both events are same. As there are no pending events on both
ADC interfaces, the ADCC immediately chooses to start the ADC sampling sequence on both ADC inter-
faces synchronously.

If pending events are present on either of the ADCs, simultaneous sampling is performed only after both
ADCs are available. The Simultaneous Sample with Many Events figure shows a case in which events 0
and 1 sample on the ADC0 channels; while events 2, 3, 4, 5, and 10 sample on the ADC1 channels; such
that event 1 and event 10 are a simultaneous sampling event pair. Assume that the ADC0 interface has only
event 0 before simultaneous sampling; while the ADC1 interface has events 2, 3, 4, and 5 before simulta-
neous sampling. This case demonstrates the wait implemented by the ADC interface to manage pending
events until the simultaneous sampling pair is processed.

Figure 24-13: Simultaneous Sample with Many Events

From the figure, it is important to observe that---when the simultaneous sampling event pair becomes
active---the ADC0 interface is idle. But. it does not initiate the sampling sequence for event 1 associated
with it, because at that time ADC1 interface is busy in servicing pending events activated before the paired
event (event-10) becomes ready. The ADC0 interface waits until the ADC1 interface becomes available to
handle the paired event. Also, noted that the simultaneous sampling event pairs are treated as individual

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC EVENT CONTROL (SEC/TRU RELATED)

24–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

(non-paired/normal) events with regard to prioritization. There is no priority assigned to the paired events
over normal events. Due to the inherent nature of the ADC interface to handle the events in serial, the
events triggered first is handled first, and the events triggered after is handled only after handing all other
pending events triggered prior to it. If another event (for example, event 15) is triggered on ADC0 inter-
face, the event is stored in pending event FIFO, even if ADC0 interface is not handling any event. Event 15
is handled only after execution of the pending events triggered before it (for example, after executing event
1).

It is important to note from the Simultaneous Sampling with Two Events figure and the Simultaneous
Sample with Many Events figure that---while executing simultaneous sampling events---the conversion
pulse to ADC1 in the ADC sampling sequence is not given from ADC1 interface, but is shared from the
ADC0 interface.

ADCC Event Control (SEC/TRU Related)

For the ADCC, the term "event" typically refers to ADC related sampling and data conversion. The
processor considers "events" as interrupts (related to the SEC) and triggers (related to the TRU).

The ADCC is capable of signaling the core about it’s state and various error conditions occurred during
it’s operation, by providing status and error bits through different registers.

The ADCC provides one main error status register (ADCC_ERRSTAT) and provides two supplementary
error status registers (ADCC_ECOL and ADCC_EMISS). The supplementary registers provide more informa-
tion about the errors flagged in ADCC_ERRSTAT register. Optionally, an error interrupt may be generated
based on these conditions.

Also, the ADCC provides an event completion status register (ADCC_EISTAT), which should be used in
core mode to service the ADC data read requests. A frame interrupt status register (ADCC_FISTAT)
provides timer frame completion status, which indicates whether or not all the events related to a frame
have completed successfully. Optionally, the ADCC data interrupt may be generated based on these condi-
tions.

NOTE: The frame completion status bits must be acknowledged after completion of ADCC frame. Other-
wise, the incoming trigger is ignored, and a trigger overrun error is flagged.

A timer status register (for example, ADCC_T0STAT) is provided for each ADCC timer. This status register
indicates the current frame number being handled by the ADCC. Also, this register indicates whether or
not DMA is pending for data to be received from the ADC. An event pending register (ADCC_EPND) indi-
cates which events are yet to start after the trigger.

More information about ADCC features relating to processor events (SEC interrupts and TRU triggers) is
available in the following sections:

• Interrupt Status

• Error Status

• Pending, Frame, and Delay Status

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC EVENT CONTROL (SEC/TRU RELATED)

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–31

• Event Handling Latency

Interrupt Status

The ADCC provides a data interrupt channel for each ADCC timer. ADCC_TRIG0_EVT carries the TMR0
related interrupts, and ADCC_TRIG1_EVT carries the TMR1 related interrupts. The same interrupt channel
is used when the ADCC data reads operate in core mode or operate in DMA mode.

The frame completions status bits for each ADCC timer (ADCC_FISTAT.FINT0 and ADCC_FISTAT.FINT1)
are applicable when using either core or DMA mode. In core mode, this bit gets set when data corre-
sponding to all events (which were not missed) in a frame are received from the ADC. In DMA mode, this
bit gets set when the data corresponding to all the events of a frame are received, the data is DMA trans-
ferred into processor memory, and the memory write responses are successfully received from the SCB.

Note that the frame completion status bits must be acknowledged by clearing it before the next trigger
appears. Otherwise, the trigger is ignored, and the trigger overrun error condition is flagged. These are
sticky status bits and should be cleared with a W1C operation.

The ADCC data interrupt may be generated on completion of each frame. The frame interrupt mask
register (ADCC_FIMSK) unmasks (enables) or masks (disables) the frame completion interrupt from each
ADCC timer.

When operating in core mode, the same data interrupt may be used to service the data read requests from
each event. The event completion bit (ADCC_EISTAT.EVTnn) indicates that data for the corresponding
event is pending and is ready to read by the core. Based on the selection in the timers select bit (ADCC_
EVCTLnn.TMRSEL) of the event, the corresponding event interrupts are sent on either the ADCC_TRIG0_EVT
or on the ADCC_TRIG1_EVT channel. Optionally, this interrupt from each event may be individually
masked off from being signaled, using the bits in ADCC_EIMSK. The event data ready bits in ADCC_EISTAT
register are sticky and should be cleared with a W1C operation.

Error Status

The ADCC is capable of signaling error conditions during its operation. These conditions are reported in
an error status register (ADCC_ERRSTAT), which holds the error status for the following:

• Trigger overrun error

• Event miss in frame error

• Event collision in frame error

• DMA bandwidth monitoring error

• Memory write response error

The trigger overrun error, DMA bandwidth monitoring error, and memory write response errors for
ADCC timers are individually flagged through separate bits.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC EVENT CONTROL (SEC/TRU RELATED)

24–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The event miss bit is flagged when any one of the events are missed during the ADCC frame. The ADCC
provides a separate event miss register (ADCC_EMISS), which indicates which event was missed.

Similarly, the event collision bit is flagged when any one of the events collided with an active event. For
example, this occurs when an event becomes active when other event was already being handled by the
ADC interface. The collided event is placed in pending event FIFO, and its handling is delayed. The ADCC
provides a separate event collision register (ADCC_ECOL), which indicates which event was collided.

The ADCC provides an error interrupt channel (ADCC_ERR) to signal these error conditions to the core.
This interrupt carries error related interrupts for both ADCC timers and for both ADC interfaces. By
default, all the error conditions generate interrupts. But, the error conditions may be individually masked
from appearing on the ADCC_ERR signal by programming the error mask register (ADCC_ERRMSK).

The following sections provide additional information about the most common ADCC error conditions.

Trigger Overrun Error Status
Trigger overrun is a condition in which the ADCC timer detects a valid trigger edge on the selected trigger
input before the completion of a frame started by the previous trigger.

The ADCC timer starts counting when it detects a valid edge on its trigger input. Subsequently, the ADCC
handles the events associated with the trigger by initiating ADC sampling sequences at the required time
offsets. After all the events are completed, the frame is completed, and the ADCC sets the frame completion
status bit (for example, ADCC_FISTAT.FINT0). Note that in DMA mode, the frame completion status bit is
set when the data corresponding to all the events of a frame are received, then DMA is transferred into
processor memory, and the successful memory write responses is received from the SCB. The frame comple-
tion conditions must be acknowledged by clearing this bit in the software. After the bit is cleared, the ADCC
timer is ready to accept new trigger, initiating a new frame. If the new trigger pulse is received before this
time, it is treated as premature trigger, and the trigger overrun condition is be flagged.

When this condition occurs, the ADCC ignores this trigger, sets the respective trigger overrun status bit (for
example, ADCC_ERRSTAT.TRGOV0), generates the error interrupt (if enabled), and continues its operation
normally.

A trigger overrun condition also occurs when a new trigger is detected while ADC programming in progress
(indicated by the ADCC_CFG.PND bit). This case can be avoided if the timer trigger enable (for example, the
ADCC_CTL.TRGIE0 bit) is disabled before ADC programming then re-enabled at the end of ADC program-
ming.

Event Miss Error Status
An ADCC event is considered missed if the ADC sampling sequence corresponding to that event is not being
executed on the required ADC interface. When an event is missed, the ADCC_ERRSTAT.EMIS bit is flagged
and in the ADCC_EMISS.EVTnn bit corresponding to that event is set to provide more information to the
application.

In the following scenarios, a programmed event may be missed:

• FIFO overrun

An event is missed if the event pending FIFO is full when the event match occurs.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC EVENT CONTROL (SEC/TRU RELATED)

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–33

• Event time conflict

One or more events is missed if two or more events requiring sampling at the same ADC inter-
face are assigned to same ADCC timer and have identical event time values in their event time
registers. Only the higher priority event is forwarded, and the lower priority event(s) are missed.

• Non-paired simultaneous sampling

An event is missed if an event is enabled for simultaneous sampling (ADCC_EVCTLnn.SIMSAMP
bit) on one ADC interface, but there is no paired simultaneous sampling event programmed for
the other ADC interface.

• ADC interface conflict for simultaneous sampling pair

An event is missed if both events in a simultaneous sampling event pair are configured for same
the ADC interface. The event pair in this case is considered as two normal events (not a simul-
taneously sampled pair), and the lower priority event is missed.

• Missed half of simultaneous sampling pair

Both events are missed if one event in a simultaneous sampling pair is missed at one ADC inter-
face due to any event miss reasons previously mentioned.

The priority of event is based on its event number ID. For example, the event with lowest event ID has higher
priority compared other events, such that EVT0>EVT1>…..>EVT22>EVT23. The priority does not depend
on whether it is assigned to the ADC0 interface or is assigned to the ADC1 interface. The priority does
depend on whether the event is assigned to TMR0 or assigned to TMR1. The events assigned to TMR0 have
higher priority than events assigned to TMR1.

This priority is checked only at the event comparator block, when more than two events become active at
the same SCLK cycle. After the events are queued, the ADC interface does not check the priority, and events
are handled in sequence as they become active.

As mentioned previously in the description of event time conflict, low priority events are missed if two or
more events are assigned to same ADCC timer with identical event time register value (such that they going
to same ADC interface). Consider a case in which two events (EVT1 and EVT5) occur simultaneously.

• If both events are assigned to same ADCC timer and are going to same ADC interface (ADC0
or ADC1), the EVT5 event (being the lower priority event) is missed, and the EVT1 event is
forwarded to the ADC interface for handling. It is not recommended to assign same the same
event time for multiple normal events of same ADCC timer and to send them to the same ADC
interface. It is the programmer’s responsibility to ensure that the values in the event time regis-
ters do not lead to event misses.

• If one of the events is assigned to TMR0 and other event is assigned to TMR1 (but both going
to same ADC interface), the event assigned to TMR0 is forwarded first to the ADC interface,
then the event assigned to TMR1 is forwarded. Typically, the event is store in the event pending
FIFO if it is not full. This case may appear when TMR0 and TMR1 are triggered by sources that
are not synchronized. And, the event time register may not be same for both events. It is
important to consider the possibility of events occurring either simultaneously or being missed

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC EVENT CONTROL (SEC/TRU RELATED)

24–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

when enabling events on two asynchronously-triggered timers. The events should be spaced by
sufficient time, so the pending event FIFO is not be operated at its maximum capacity.

• If both events are assigned to same ADCC timer (but one is going to the ADC0 interface and
other is going to ADC1 interface), both of the events are forwarded to the respective ADC inter-
faces for handling, assuming there is no pending event. Note that a simultaneous event pair is
assigned to same ADCC timer with same event time but going to different ADC interfaces. If
one of the events is missed due to some reason (if the pending event FIFO on the particular ADC
interface is full or if another high priority event from same timer becomes active in the same
SCLK cycle), the paired event also is missed.

NOTE: To reduce the event miss condition resulting from pending event FIFO full conditions, the ADCC
provides an 8-deep event FIFO for each ADC interface. But, the programmer should ensure that the events
are sufficiently spaced apart from each other (event handling in pipelined manner can also be considered)
and should ensure that event miss conditions do not lead to FIFO overrun.

Event Collision Error Status
If event times are not sufficiently spaced apart, an event could occur while a previous event is underway. An
ADCC event is considered in collision if that event becomes active (the event comparator unit signaled it as
ready to handle) when the ADC interface is busy in handling a previous event or if there are already some
events in the pending event FIFO awaiting to be handled. In such cases, the newly active event cannot be
issued to the ADC at the earliest possible time because of some previous event(s) are yet to be completed.

The ADCC provides an 8-deep FIFO for queuing collided events. The ADCC_ERRSTAT.ECOL bit flags the
collision condition, and the ADCC_ECOL.EVTnn bit corresponding to that event is set to provide more infor-
mation to the application. The ADCC also provides a means for the application to know (by how many
SCLK cycles) the event was delayed. This time is indicated in the ADCC_EVSTATnn.DLYCNT field of that event,
which is updated only when the event’s control word is sent to the ADC.

If one event of a simultaneous sampling pair undergoes collision, the other event (in the simultaneous
sampling pair) also is indicated to undergo collision.

Due to inherent nature of ADCC to queue the ready events, the collided event may be handled before
completion of all the pending events. For example, this previous event (for instance, (n-1)th) is completed
only after the reception of its data. When a collision occurs, it indicates that the nth event is sent to the ADC
only after some delay, but it is not after the completion of (n-1)th event. In the case that a chip select pulse of
the conversion phase or data phase of (n-1)th word is to be sent to the ADC, the ADCC state-machine sends
the control word for nth event with the earliest chip select pulse.

NOTE: It is important to understand that the event collision is an error condition in which the expected
sampling time of the ADC for the collided event may be delayed, but the event is not missed.

DMA Bandwidth Monitoring Error Status
The ADCC may be configured to store the ADC samples related to enabled events directly in the processor
memory through the built-in DMA unit. When using this mode, the ADCC provides a DMA bandwidth
monitoring feature, which identifies whether the ADCC timer count has gone beyond an expected limit
while completing its frame. The bandwidth monitor register (for example, ADCC_BWMON0) specifies this
count.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC EVENT CONTROL (SEC/TRU RELATED)

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–35

When the ADCC timer count crosses the count specified in bandwidth monitor register while completing a
frame, the DMA bandwidth error for the respective DMA unit is flagged by the bandwidth error bit (for
example, ADCC_ERRSTAT.BWERR0). This bit is sticky error bit and should be cleared by a W1C operation.
Optionally, this error condition may be signaled to core through an error interrupt.

Memory Write Response Error Status
If a memory write error response has been detected corresponding to a data write issued for an event corre-
sponding to an ADCC timer, the condition is flagged by the memory response error bit (for example, ADCC_
ERRSTAT.MERR0). This bit is sticky and should be cleared by W1C operation. Optionally, this error condition
may be signaled to core through an error interrupt.

Pending, Frame, and Delay Status

In addition to data request status bit and error bits, the ADCC provides bits to provide information about
DMA pending status, event pending status, current frame number, and event delay status. These condi-
tions operate as follows:

DMA Pending Status
If the ADCC is disabled while a DMA is in process, the DMA finishes (gracefully) and does not shut down
until the data corresponding to all completed events have been sent to memory and responses received. The
DMA activity associated with an ADCC timer is indicated by the DMA pending bit (for example, ADCC_
T0STAT.DPND). This status bit is useful for cases in which the ADCC is later re-enabled. The application
should typically poll this bit before re-enabling the ADC controller.

Event Pending Status
The ADCC provides an event pending register (ADCC_EPND) to indicate the events within the current frames
that are pending to be executed. This register contains a dedicated bit corresponding to each ADCC event.
At the time of the trigger pulse when frame corresponding to an ADCC timer is initiated, all the bits corre-
sponding to enabled events in that frame are set. The bits are cleared on receiving the data from ADC for the
corresponding events. Because the bits in this register indicates whether or not the event is pending, if an
event get missed, respective bit also is cleared.

Current Frame Status (Number)
In DMA mode, the application may require knowledge of the number of frames handled by the ADCC. The
current frame count bit field (for example, ADCC_T0STAT.CURFR) of the associated ADCC timer provides
this information, which indicates the current frame number in the chronological order after the ADCC was
enabled (in linear buffer mode) or indicates the frame number after the last wraparound (in circular buffer
mode). This field wraps over after 0xFFFF frames.

Event Delay Status
When an event is in collision, the application may need knowledge of the amount of time the event was
delayed (in SCLK cycles). The information is indicated in the event's delay count bit field (ADCC_EVSTATnn.
DLYCNT), which is updated only when the event’s control word is sent to the ADC.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC PROGRAMMING MODEL

24–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Event Handling Latency

The ADC interface's event handling latency is the time between the event's internal occurrence and event's
start of the ADC sampling sequence. For example, the latency is the time between the event time value
matching the ADCC timer count value to the assertion of chip select for the control phase of the ADC
sampling sequence.

If an event becomes active when the ADC interface of ADCC is idle, the timing and control unit immedi-
ately starts handling that event (with a predictable latency of 4 to 5 SCLK cycles).

If the event becomes active when ADC Interface is busy in handling previous sampling event, the new
event is held in the pending event FIFO, and the latency increases by the duration that the new event is
held in the pending event FIFO. To reduce the latency in servicing this new event, the ADC interface may
decide to queue the sampling sequence for this event with the sampling sequence of an ongoing event. For
more information about this operation, see the ADCC Functional Description.

For a simultaneous sampling event pair, the latency may depend on the activities on other the ADC inter-
face, because this event pair is executed only when both ADC interfaces are ready.

Sometimes there may be few cycles of latency at the trigger routing unit (TRU) of processor when
providing trigger inputs to the ADCC from different trigger master sources. This situation is especially
prone to occur when an asynchronous external trigger input is selected as the trigger input of ADCC. The
time needed for synchronization to this external signal may lead to few SCLK cycles of delay.

The ADCC provides an event delay count status field (ADCC_EVSTATnn.DLYCNT) for each event to convey
the latency occurred in handling that event. This count indicates the number of system clock cycles by
which the event was delayed to be given out, after the event match occurred. This field gets updated in
every ADCC timer frame, when the ADC chip select signal goes active to transmit the control word to the
ADC corresponding related to that event.

ADCC Programming Model

The following steps provide and overview of the program flow for using the ADCC. The discussion in
following sections provides the detailed programming model of the ADCC.

1. Write configuration data (including event control data) to the ADCC memory mapped registers.

2. Enable the ADCC (ADCC_CTL.EN =1) with and start ADC configuration (ADCC_CTL.ADCFG =1)

Result: The ADCC configures the ADCs, setting the ADCC_CFG.PND bit while the configuration is in
process. The ADCC clears this bit when the configuration is completed.

3. The ADCC waits for trigger input.

4. A trigger input starts the ADCC timer at the time of an enabled event.

Result: The ADCC transfers control words the ADC and receives data from the ADC.

Info: When the data is ready, DMA transfers and the core may read data in parallel from the ADCC.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–37

5. The ADCC generates a frame complete interrupt (for example, ADCC_FISTAT.FINT0 =1) when the data
corresponding to all events in a frame are received.

Info: At this point, with the frame complete, the ADCC may be re-configuring; if required, changing
the base pointer (for example, ADCC_BPTR0).

6. Clear the frame complete interrupt (for example, ADCC_FISTAT.FINT0 =0).

• If more frames are to be received, the ADCC resumes waiting for trigger input.

• If no more frames are to be received, the ADCC may be disabled (ADCC_CTL.EN =0).

ADCC Programming Concepts

There are general programming concepts for using the ADCC when it is present on any processor.

NOTE: There may also be processor specific guidelines for programming the ADCC.

The ADCC should be fully configured including trigger setup, ADCC events, and DMA programming (if
required) before enabling the controller by setting ADCC_CTL.EN bit. The trigger input bits (for example,
ADCC_CTL.TRGIE0) should be set just before enabling the ADCC.

Two or more events assigned to the same timer and going to the same ADC interface should not be config-
ured with the same event time. If they are configured this way, other event miss error conditions may
occur.

If ADCC timers are triggered by different sources that are not synchronized, it is important to consider the
possibility of events occurring either simultaneously or being missed. The events should be spaced apart
by sufficient time, so the pending event FIFO is not be operated at (or beyond) its maximum capacity.

The frame completion status bit must be acknowledged for every frame. If they are not acknowledged,
trigger overrun conditions may occur.

There is no restriction on dividing the events among ADCC timers and among ADC interfaces.

When configuring simultaneous sampling event pair, apply the following:

• The simultaneous sampling enable bit (ADCC_EVCTLnn.SIMSAMP) and the share chip select bit (SHARE_
CS in the control word) should be set (=1).

• Both events should be assigned to same the ADCC timer (for example, the ADCC_EVCTLnn.TMRSEL
selection should be the same), but they should be assigned to different ADC interfaces (for example,
the ADCC_EVCTLnn.ADCSEL selection should be different).

• The event time value (ADCC_EVTnn.TIME) should be identical.

The event registers may be modified after the ADC controller is enabled; these registers include the event
time (ADCC_EVTnn), event control (ADCC_EVCTLnn), and event enable (ADCC_EVTEN). These registers
should not be modified when frame is in progress. If required, these registers must be modified only after
completion of the frame associated with the ADCC timer to which the event is assigned, but should be

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC PROGRAMMING MODEL

24–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

modified before clearing the frame completion interrupt bit. These registers should be stable when the
trigger arrives.

The next trigger would be accepted only after clearing the frame completion interrupt bit (for example,
ADCC_FISTAT.FINT0).

In linear DMA mode, the base pointer register (for example, ADCC_BPTR0) and frame increment register
(for example,ADCC_FRINC0) may be modified after enabling the ADC controller. The base pointer register
should not be modified in circular buffer DMA mode. The changes in DMA registers are considered only
in the next frame.

The ADC controller should not be disabled while a frame is in progress (for example, the ADCC should
be disabled only after the frame interrupt). This protocol prevents unfinished transfers on ADC interface.
Before re-enabling the ADCC, the DMA pending bit (for example, ADCC_T0STAT.DPND) should be polled
to confirm that there is no DMA activity. Before reconfiguring the ADCC_CTL register, the ADCC should
be disabled. The only write allowed into an enabled ADCC control register is to disable it.

The ADCC status registers and counter values are retained on disabling ADCC (for debug purposes) and
are cleared on re-enabling the controller (a 0-to-1 transition on the ADCC_CTL.EN bit). Error status bits are
not cleared with this transition. Errors have to be cleared with a W1C operation.

ADCC Programming Guidelines (ADSP-CM40x Specific)

There are general programming concepts for using the ADCC when it is present on any processor. For the
ADSP-CM40x, there are also processor specific guidelines for programming the ADCC.

The ADSP-CM40x processor includes two 16-bit on-chip internal ADCs. To control these, the ADCC
provides two ADC interfaces, which may be independently configured for the ADC sampling sequence
timing.

The ADC expects an 8-bit control word on a single control line (for example,), while the controller drives
the converted 16-bit data on two data lines (for example, and).

The ADC timing may appear as shown in the ADCC Timing Guide for Programming figure.

• The width of the ADC control interface should be programmed to a 1-bit (single bit) interface (for
example,ADCC_CTL.CSIZE =0).

• The width of ADC data interface should be programmed to 2-bit (dual bit) interface (for example,
ADCC_CTL.DSIZE =1).

• With these settings, the number of ADC clocks cycles required in a chip select pulse is eight (for
example, ADCC_TCA0.NCK =8).

• The chip select polarity is active low (for example, ADCC_CTL.CSPOL0 =0).

• The communication is in MSB bit first format (for example, ADCC_CTL.LSBF0 =0).

• The control and data bits are in normal (not data swapped) format (for example, ADCC_CTL.DSWP0 =0).

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADCC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–39

Figure 24-14: ADCC Timing Guide for Programming

In the ADCC Clock Edge Programming (Clock on Falling Edge) figure, the ADC expects the first edge
as falling edge after assertion of the chip select signal. The control word bits on the ADC control lines are
driven on the rising edges of the ADC clock by the ADC interface of ADCC. The ADC drives the bits of
converted data on the falling edge of the ADC clock (for example, ADCC_CTL.CKPOL0 =0).

Figure 24-15: ADCC Clock Edge Programming (Clock on Falling Edge)

In the ADCC Chip Select Idle Programming figure, the ADC expects the control lines to be held low
when not transmitting a valid control word during any of the phases of the ADC sampling sequence (for
example, ADCC_CTL.TIDLE0 =0).

Figure 24-16: ADCC Chip Select Idle Programming

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The ADC 8-Bit Control Word Format table describes the fields in the 8-bit ADC control word. The
control register of each event provides a 16-bit control word field (ADCC_EVCTLnn.CTLWD) for storing an
event specific control word. Only the lower 8-bits should be used. Note that, only the channel ID is sent
though the control word. The ADC interface is selected through the ADCC_EVCTLnn.ADCSEL field.

ADSP-CM40x ADCC Register Descriptions

ADC Controller (ADCC) contains the following registers.

Table 24-10: ADC 8-Bit Control Word Format

Bit Position Field Program as ...

[7:4] ADC_CHAN
{Each ADC interface has 12 channels.}

ADC Channel number.

3 Reserved. To be programmed as 1.

2 Reserved. To be programmed as 1.

1 SHARE_CS To be programmed "1" if simultaneous sampling is
required.

0 Reserved. To be programmed as 1.

Table 24-11: ADSP-CM40x ADCC Register List

Name Description

ADCC_CTL Control Register

ADCC_ERRSTAT Error Status Register

ADCC_ERRMSK Error Mask Register

ADCC_ERRMSK_SET Error Mask Set Register

ADCC_ERRMSK_CLR Error Mask Clear Register

ADCC_EISTAT Event Interrupt Status Register

ADCC_EIMSK Event Interrupt Mask Register

ADCC_EIMSK_SET Event Interrupt Mask Set Register

ADCC_EIMSK_CLR Event Interrupt Mask Clear Register

ADCC_FISTAT Frame Interrupt Status Register

ADCC_FIMSK Frame Interrupt Mask Register

ADCC_FIMSK_SET Frame Interrupt Mask Set Register

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–41

ADCC_FIMSK_CLR Frame Interrupt Mask Clear Register

ADCC_EVTEN Event Enable Register

ADCC_EVTEN_SET Event Enable Set Register

ADCC_EVTEN_CLR Event Enable Clear Register

ADCC_ECOL Event Collision Status Register

ADCC_EMISS Event Miss Status Register

ADCC_BPTR0 Base Pointer 0 Register

ADCC_FRINC0 Frame Increment 0 Register

ADCC_CBSIZ0 Circular Buffer Size 0 Register

ADCC_TCA0 Timing Control A (ADC0) Register

ADCC_TCB0 Timing Control B (ADC0) Register

ADCC_BWMON0 Bandwidth Monitor 0 Register

ADCC_CFG ADC Configuration Register

ADCC_BPTR1 DMA Base Pointer 1 Register

ADCC_FRINC1 Frame Increment 1 Register

ADCC_CBSIZ1 Circular Buffer Size 1 Register

ADCC_TCA1 Timing Control A (ADC1) Register

ADCC_TCB1 Timing Control B (ADC1) Register

ADCC_BWMON1 Bandwidth Monitor 1 Register

ADCC_EVTnn Event n Time Register

ADCC_EVCTLnn Event n Control Register

ADCC_EPND Pending Events Status Register

ADCC_T0STAT Timer 0 Status Register

ADCC_TMR0 Timer 0 Current Count Register

Table 24-11: ADSP-CM40x ADCC Register List (Continued)

Name Description

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Control Register

The ADCC_CTL register enables ADCC operation and configures a number of ADC0 and ADC1 interface
features.

ADCC_T1STAT Timer 1 Status Register

ADCC_TMR1 Timer 1 Current Count Register

ADCC_EVDATnn Event n Data Register

ADCC_EVSTATnn Event n Status Register

Table 24-11: ADSP-CM40x ADCC Register List (Continued)

Name Description

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–43

Figure 24-17: ADCC_CTL Register Diagram

Table 24-12: ADCC_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

29
(R/W)

TRGIE1 Trigger Input Enable 1.
The ADCC_CTL.TRGIE1 bit enables recognition of trigger input as valid to initiate
Timer 1 frames.

0 Disable Recognition of Trigger Input

1 Enable Recognition of Trigger Input

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

28
(R/W)

TRGIE0 Trigger Input Enable 0.
The ADCC_CTL.TRGIE0 bit enables recognition of trigger input as valid to initiate
Timer 0 frames.

0 Disable Recognition of Trigger Input

1 Enable Recognition of Trigger Input

26
(R/W)

ADCFG ADC Interface Configuration (Start).
The ADCC_CTL.ADCFG bit initiates configuring the ADC interface according to the
selections in the ADCC_CFG register. The ADCC auto clears this bit after completing
ADC configuration.

0 No Action

1 Start ADC Configuration Operation

25
(R/W)

LSBF1 LSB First 1.
The ADCC_CTL.LSBF1 bit selects LSB or MSB first mode for ADC1 interface
operations. For more information about LSB/MSB first mode operations, see the
ADCC functional description.

0 MSB First Mode

1 LSB First Mode

24
(R/W)

LSBF0 LSB First 0.
The ADCC_CTL.LSBF0 bit selects LSB or MSB first mode for ADC0 interface
operations. For more information about LSB/MSB first mode operations, see the
ADCC functional description.

0 MSB First Mode

1 LSB First Mode

23
(R/W)

DSWP1 Data Swap 1.
The ADCC_CTL.DSWP1 bit enables data swap operations on ADC1 for dual-bit (2-
bit wide) control and data. For more information about data swap operations, see the
ADCC functional description.

0 Disable Data Swap

1 Enable Data Swap

22
(R/W)

DSWP0 Data Swap 0.
The ADCC_CTL.DSWP0 bit enables data swap operations on ADC0 for dual-bit (2-
bit wide) control and data. For more information about data swap operations, see the
ADCC functional description.

0 Disable Data Swap

1 Enable Data Swap

Table 24-12: ADCC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–45

21
(R/W)

TIDLE1 Transmit Idle 0.
The ADCC_CTL.TIDLE1 bit selects the value to hold on the ADCC_BCTL0 pin for
ADC1 when idle (not transmitting a valid control register). The first chip select after
enabling the ADCC is a control chip select. The ADCC_CTL.TIDLE1 value is held
on the control pins after this chip select, unless a valid control transmission takes
place.

0 Hold Idle Control Pin Low

1 Hold Idle Control Pin High

20
(R/W)

TIDLE0 Transmit Idle 0.
The ADCC_CTL.TIDLE0 bit selects the value to hold on the ADCC_ACTL0 pin for
ADC0 when idle (not transmitting a valid control register). The first chip select after
enabling the ADCC is a control chip select. The ADCC_CTL.TIDLE0 value is held
on the control pins after this chip select, unless a valid control transmission takes
place.

0 Hold Idle Control Pin Low

1 Hold Idle Control Pin High

19
(R/W)

CSPOL1 Chip Select Polarity 1.
The ADCC_CTL.CSPOL1 bit selects the polarity (active high or low) for ADCC_
BCS pin (ADC1 interface).

0 Active Low CS

1 Active High CS

18
(R/W)

CSPOL0 Chip Select Polarity 0.
The ADCC_CTL.CSPOL0 bit selects the polarity (active high or low) for ADCC_
ACS pin (ADC0 interface).

0 Active Low CS

1 Active High CS

17
(R/W)

CKPOL1 Clock Polarity 1.
The ADCC_CTL.CKPOL1 bit selects the clock polarity for the ADC1 interface. This
selection chooses the clock edge (rising or falling) driven after the ADCC_BCS pin is
asserted for sampling the first bit of control and data.

0 Sample on Falling Edge

1 Sample on Rising Edge

16
(R/W)

CKPOL0 Clock Polarity 0.
The ADCC_CTL.CKPOL0 bit selects the clock polarity for the ADC0 interface. This
selection chooses the clock edge (rising or falling) driven after the ADCC_ACS pin is
asserted for sampling the first bit of control and data.

0 Sample on Falling Edge

1 Sample on Rising Edge

Table 24-12: ADCC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

15
(R/W)

TRGPOL1 Trigger Polarity 1.
The ADCC_CTL.TRGPOL1 bit select the polarity for trigger associated with Timer
1.

0 Trigger on Falling Edge

1 Trigger on Rising Edge

14:12
(R/W)

TRGSEL1 Trigger Select 1.
The ADCC_CTL.TRGSEL1 bits selects the Timer 1 initiate trigger from among the
ADCC_TRIGn triggers from =0 for trigger 0 to =n for trigger n.

11
(R/W)

TRGPOL0 Trigger Polarity 0.
The ADCC_CTL.TRGPOL0 bit select the polarity for trigger associated with Timer
0.

0 Trigger on Falling Edge

1 Trigger on Rising Edge

10:8
(R/W)

TRGSEL0 Trigger Select 0.
The ADCC_CTL.TRGSEL0 bits selects the Timer 0 initiate trigger from among the
ADCC_TRIGn triggers from =0 for trigger 0 to =n for trigger n.

7
(R/W)

TRGOE1 Trigger Output Enable 1.
The ADCC_CTL.TRGOE1 bit enables the trigger output generation for Timer 1
events.

0 Disable

1 Enable

6
(R/W)

TRGOE0 Trigger Output Enable 0.
The ADCC_CTL.TRGOE0 bit enables the trigger output generation for Timer 0
events.

0 Disable

1 Enable

5
(R/W)

DSIZE Data Size.
The ADCC_CTL.DSIZE bit selects the interface width (single- or dual-bit) for
receiving sample data from the ADC.

0 1-Bit Wide Interface

1 2-Bit Wide Interface

4
(R/W)

CSIZE Control Data Size.
The ADCC_CTL.CSIZE bit selects the interface width (single- or dual-bit) for
transmitting control data to the ADC.

0 1-Bit Wide Interface

1 2-Bit Wide Interface

Table 24-12: ADCC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–47

Error Status Register

The ADCC_ERRSTAT register indicates status for errors relating to trigger overruns, bandwidth monitoring,
memory responses, and events.

Figure 24-18: ADCC_ERRSTAT Register Diagram

2
(R/W)

DMAEN DMA Enable.
The ADCC_CTL.DMAEN bit enables ADCC DMA operation, selecting the mode for
sampled data transfer from the ADC to memory. If DMA is disabled (=0), the core
should read data from the ADCC_EVDATnn registers. If DMA is enabled, the ADCC
transfers data using DMA, and th linear or circular buffer mode is chosen by the
ADCC_CBSIZ0 or ADCC_CBSIZ1 register.

0 Disable

1 Enable

1
(R/W)

TMR1EN Timer 1 Enable.
The ADCC_CTL.TMR1EN bit enables Timer 1. Note that Timer 0 is always enabled
when the ADCC is enabled.

0 Disable

1 Enable

0
(R/W)

EN Enable ADCC Operation.
The ADCC_CTL.EN bit enables ADCC operation (global enable for module).

0 Disable

1 Enable

Table 24-12: ADCC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 24-13: ADCC_ERRSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/NW)

EMIS Event Miss Error Status.
The ADCC_ERRSTAT.EMIS bit indicates whether an event was missed. To identify
which the events were missed, read the value from the ADCC_EMISS register. For
more information about missed events, see the ADCC functional description. To
clear this error, clear the cause from the ADCC_EMISS register.

0 No Status

1 Event Miss Error

6
(R/NW)

ECOL Event Collision Error Status.
The ADCC_ERRSTAT.ECOL bit indicates whether a collision has occurred for any
event. To identify which events underwent collision, read the value from the ADCC_
ECOL register. For more information about event collisions, see the ADCC
functional description. To clear this error, clear the cause from the ADCC_ECOL
register.

0 No Status

1 Event Collision Error

5
(R/W1C)

MERR1 Memory Response Error 1 Status.
The ADCC_ERRSTAT.MERR1 bit indicates whether a memory write error response
on data write issued for an event corresponding to Timer 1 has occurred.

0 No Status

1 Memory Response Error

4
(R/W1C)

MERR0 Memory Response Error 0 Status.
The ADCC_ERRSTAT.MERR0 bit indicates whether a memory write error response
on data write issued for an event corresponding to Timer 0 has occurred.

0 No Status

1 Memory Response Error

3
(R/W1C)

BWERR1 Bandwidth Monitor Error 1 Status.
The ADCC_ERRSTAT.BWERR1 bit indicates whether a bandwidth monitor error
(while monitoring is enabled, the timer count crossed the value written in ADCC_
BWMON1) for Timer 1 has occurred.

0 No Status

1 Bandwidth Monitor Error

2
(R/W1C)

BWERR0 Bandwidth Monitor Error 0 Status.
The ADCC_ERRSTAT.BWERR0 bit indicates whether a bandwidth monitor error
(while monitoring is enabled, the timer count crossed the value written in ADCC_
BWMON0) for Timer 0 has occurred.

0 No Status

1 Bandwidth Monitor Error

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–49

Error Mask Register

The ADCC_ERRMSK register masks (disables) or unmasks (enables) reporting of ADC related errors.

Figure 24-19: ADCC_ERRMSK Register Diagram

1
(R/W1C)

TRGOV1 Trigger Overrun 1 Status.
The ADCC_ERRSTAT.TRGOV1 bit indicates whether a trigger overrun (a trigger
input detected while a frame or ADC programming is in progress) for Timer 1 has
occurred. The trigger input is ignored.

0 No Status

1 Trigger Overrun

0
(R/W1C)

TRGOV0 Trigger Overrun 0 Status.
The ADCC_ERRSTAT.TRGOV0 bit indicates whether a trigger overrun (a trigger
input detected while a frame or ADC programming is in progress) for Timer 0 has
occurred. The trigger input is ignored.

0 No Status

1 Trigger Overrun

Table 24-13: ADCC_ERRSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 24-14: ADCC_ERRMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

EMIS Event Miss Error Mask.
The ADCC_ERRMSK.EMIS bit masks (disables) generating an error interrupt on an
event miss error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

6
(R/W)

ECOL Event Collision Error Mask.
The ADCC_ERRMSK.ECOL bit masks (disables) generating an error interrupt on an
event collision error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

5
(R/W)

MERR1 Memory Response Error 1 Mask.
The ADCC_ERRMSK.MERR1 bit masks (disables) generating an error interrupt on a
memory response error related to Timer 1.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

4
(R/W)

MERR0 Memory Response Error 0 Mask.
The ADCC_ERRMSK.MERR0 bit masks (disables) generating an error interrupt on a
memory response error related to Timer 0.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

3
(R/W)

BWERR1 Bandwidth Monitor Error 1 Mask.
The ADCC_ERRMSK.BWERR1 bit masks (disables) generating an error interrupt on
a bandwidth monitor error related to Timer 1.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

2
(R/W)

BWERR0 Bandwidth Monitor Error 0 Mask.
The ADCC_ERRMSK.BWERR0 bit masks (disables) generating an error interrupt on
a bandwidth monitor error related to Timer 0.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

1
(R/W)

TRGOV1 Trigger Overrun 1 Error Mask.
The ADCC_ERRMSK.TRGOV1 bit masks (disables) generating an error interrupt on
a trigger overrun for the trigger associated with Timer 1.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–51

Error Mask Set Register

The ADCC_ERRMSK_SET register can be used to selectively set bits in the ADCC_ERRMSK register without
affecting other bits in the register. Writing a 1 to any bit position in ADCC_ERRMSK_SET sets the corre-
sponding bit in ADCC_ERRMSK. Reading the ADCC_ERRMSK_SET register returns the data present in the
ADCC_ERRMSK register.

Figure 24-20: ADCC_ERRMSK_SET Register Diagram

0
(R/W)

TRGOV0 Trigger Overrun 0 Error Mask.
The ADCC_ERRMSK.TRGOV0 bit masks (disables) generating an error interrupt on
a trigger overrun for the trigger associated with Timer 0.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

Table 24-15: ADCC_ERRMSK_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W1S)

EMIS Event Miss Error Mask Set.
Write 1 to ADCC_ERRMSK_SET.EMIS to set the corresponding bit in ADCC_
ERRMSK.

6
(R/W1S)

ECOL Event Collision Error Mask Set.
Write 1 to ADCC_ERRMSK_SET.ECOL to set the corresponding bit in ADCC_
ERRMSK.

Table 24-14: ADCC_ERRMSK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–52 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Error Mask Clear Register

The ADCC_ERRMSK_CLR register can be used to selectively clear bits in the ADCC_ERRMSK register without
affecting other bits in the register. Writing a 1 to any bit position in ADCC_ERRMSK_CLR clears the corre-
sponding bit in ADCC_ERRMSK. Reading the ADCC_ERRMSK_CLR register returns the data present in the
ADCC_ERRMSK register.

5
(R/W1S)

MERR1 Memory Response Error 1 Mask Set.
Write 1 to ADCC_ERRMSK_SET.MERR1 to set the corresponding bit in ADCC_
ERRMSK.

4
(R/W1S)

MERR0 Memory Response Error 0 Mask Set.
Write 1 to ADCC_ERRMSK_SET.MERR0 to set the corresponding bit in ADCC_
ERRMSK.

3
(R/W1S)

BWERR1 Bandwidth Monitor Error 1 Mask Set.
Write 1 to ADCC_ERRMSK_SET.BWERR1 to set the corresponding bit in ADCC_
ERRMSK.

2
(R/W1S)

BWERR0 Bandwidth Monitor Error 0 Mask Set.
Write 1 to ADCC_ERRMSK_SET.BWERR0 to set the corresponding bit in ADCC_
ERRMSK.

1
(R/W1S)

TRGOV1 Trigger Overrun 1 Mask Set.
Write 1 to ADCC_ERRMSK_SET.TRGOV1 to set the corresponding bit in ADCC_
ERRMSK.

0
(R/W1S)

TRGOV0 Trigger Overrun 0 Mask Set.
Write 1 to ADCC_ERRMSK_SET.TRGOV0 to set the corresponding bit in ADCC_
ERRMSK.

Table 24-15: ADCC_ERRMSK_SET Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–53

Figure 24-21: ADCC_ERRMSK_CLR Register Diagram

Table 24-16: ADCC_ERRMSK_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W1C)

EMIS Event Miss Error Mask Clear.
Write 1 to ADCC_ERRMSK_CLR.EMIS to clear the corresponding bit in ADCC_
ERRMSK.

6
(R/W1C)

ECOL Event Collision Error Mask Clear.
Write 1 to ADCC_ERRMSK_CLR.ECOL to clear the corresponding bit in ADCC_
ERRMSK.

5
(R/W1C)

MERR1 Memory Response Error 1 Mask Clear.
Write 1 to ADCC_ERRMSK_CLR.MERR1 to clear the corresponding bit in ADCC_
ERRMSK.

4
(R/W1C)

MERR0 Memory Response Error 0 Mask Clear.
Write 1 to ADCC_ERRMSK_CLR.MERR0 to clear the corresponding bit in ADCC_
ERRMSK.

3
(R/W1C)

BWERR1 Bandwidth Monitor Error 1 Mask Clear.
Write 1 to ADCC_ERRMSK_CLR.BWERR1 to clear the corresponding bit in ADCC_
ERRMSK.

2
(R/W1C)

BWERR0 Bandwidth Monitor Error 0 Mask Clear.
Write 1 to ADCC_ERRMSK_CLR.BWERR0 to clear the corresponding bit in ADCC_
ERRMSK.

1
(R/W1C)

TRGOV1 Trigger Overrun 1 Mask Clear.
Write 1 to ADCC_ERRMSK_CLR.TRGOV1 to clear the corresponding bit in ADCC_
ERRMSK.

0
(R/W1C)

TRGOV0 Trigger Overrun 0 Mask Clear.
Write 1 to ADCC_ERRMSK_CLR.TRGOV0 to clear the corresponding bit in ADCC_
ERRMSK.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–54 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Event Interrupt Status Register

The ADCC_EISTAT register indicates the interrupt status bits for ADCC events. Based on the ADCC_
EVCTLnn.TMRSEL bit selection, the ADCC generates the corresponding ADCC_TRIG0_EVT or ADCC_TRIG1_
EVT event interrupts. Each of these interrupts can be optionally masked (disable interrupt output) using
the bits in ADCC_EIMSK register.

Figure 24-22: ADCC_EISTAT Register Diagram

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–55

Event Interrupt Mask Register

The ADCC_EIMSK register masks (disables) generation of ADCC_TRIG0_EVT or ADCC_TRIG1_EVT event
interrupts based on status in the ADCC_EISTAT register.

Table 24-17: ADCC_EISTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/W1C)

EVTnn Event n Interrupt.
The ADCC_EISTAT.EVTnn bits each correspond to data interrupts from ADCC
events (n from 23 to 0). The function of each bit is shown in the enumerations below.
Note that data interrupt from events are applicable only in non-DMA mode.

0 No Data Pending for Core Read

1 Event Data Pending for Core Read

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–56 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 24-23: ADCC_EIMSK Register Diagram

Table 24-18: ADCC_EIMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/W)

EVTnn Event n Interrupt Mask.
The ADCC_EIMSK.EVTnn bits mask (disable) each correspond to data interrupts
from ADCC events (n from 23 to 0). The function of each bit is shown in the
enumerations below.

0 Unmask (Enable) Event Interrupt

1 Mask (Disable) Event Interrupt

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–57

Event Interrupt Mask Set Register

The ADCC_EIMSK_SET register can be used to selectively set bits in the ADCC_EIMSK register without
affecting other bits in the register. Writing a 1 to any bit position in ADCC_EIMSK_SET sets the corre-
sponding bit in ADCC_EIMSK. Reading the ADCC_EIMSK_SET register returns the data present in the ADCC_
EIMSK register.

Figure 24-24: ADCC_EIMSK_SET Register Diagram

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–58 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Event Interrupt Mask Clear Register

The ADCC_EIMSK_CLR register can be used to selectively clear bits in the ADCC_EIMSK register without
affecting other bits in the register. Writing a 1 to any bit position in ADCC_EIMSK_CLR clears the corre-
sponding bit in ADCC_EIMSK. Reading the ADCC_EIMSK_CLR register returns the data present in the ADCC_
EIMSK register.

Table 24-19: ADCC_EIMSK_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/W1S)

EVTnn Event n Interrupt Mask Set.
The ADCC_EIMSK_SET.EVTnn bits permit setting individual bits in the ADCC_
EIMSK register without affecting other bits in the register. Write 1 to individual
ADCC_EIMSK_SET.EVTnn bits to set the corresponding bit in ADCC_EIMSK.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–59

Figure 24-25: ADCC_EIMSK_CLR Register Diagram

Table 24-20: ADCC_EIMSK_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/W1C)

EVTnn Event n Interrupt Mask Clear.
The ADCC_EIMSK_CLR.EVTnn bits permit clearing individual bits in the ADCC_
EIMSK register without affecting other bits in the register. Write 1 to individual
ADCC_EIMSK_CLR.EVTnn bits to clear the corresponding bit in ADCC_EIMSK.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–60 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Frame Interrupt Status Register

The ADCC_FISTAT register indicates frame interrupt status. The ADCC generates interrupts corre-
sponding to Timer 0 on the ADCC_TRIG0_EVT output and generates the interrupts corresponding to Timer
1 on the ADCC_TRIG1_EVT output.

Figure 24-26: ADCC_FISTAT Register Diagram

Frame Interrupt Mask Register

The ADCC_FIMSK register masks (disables) generation of ADCC_TRIG0_EVT or ADCC_TRIG1_EVT event
interrupts based on status in the ADCC_FISTAT register.

Table 24-21: ADCC_FISTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W1C)

FINT1 Frame Interrupt 1.
The ADCC_FISTAT.FINT1 bit indicates core/DMA interrupt status for a Timer 1
frame. In non-DMA mode, this bit is set when the data corresponding to all events
(which were not missed) in a frame are received by the ADCC (from the ADC). In
DMA mode, this bit is set when all data corresponding to events of a frame are
successfully DMA transferred by the ADCC (and responses received).

0 No Status

1 Frame Complete

0
(R/W1C)

FINT0 Frame Interrupt 0.
The ADCC_FISTAT.FINT0 bit indicates core/DMA interrupt status for a Timer 0
frame. In non-DMA mode, this bit is set when the data corresponding to all events
(which were not missed) in a frame are received by the ADCC (from the ADC). In
DMA mode, this bit is set when all data corresponding to events of a frame are
successfully DMA transferred by the ADCC (and responses received).

0 No Status

1 Frame Complete

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–61

Figure 24-27: ADCC_FIMSK Register Diagram

Frame Interrupt Mask Set Register

The ADCC_FIMSK_SET register can be used to selectively set bits in the ADCC_FIMSK register without
affecting other bits in the register. Writing a 1 to any bit position in ADCC_FIMSK_SET sets the corre-
sponding bit in ADCC_FIMSK. Reading the ADCC_FIMSK_SET register returns the data present in the ADCC_
FIMSK register.

Table 24-22: ADCC_FIMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W)

FINT1 Frame Interrupt 1 Mask.
The ADCC_FIMSK.FINT1 bits mask (disable) the ADCC_FISTAT.FINT1 frame
complete interrupts for data transfer related to Timer 1.

0 Unmask (Enable) Frame Interrupt

1 Mask (Disable) Frame Interrupt

0
(R/W)

FINT0 Frame Interrupt 0 Mask.
The ADCC_FIMSK.FINT0 bits mask (disable) the ADCC_FISTAT.FINT0 frame
complete interrupts for data transfer related to Timer 0.

0 Unmask (Enable) Frame Interrupt

1 Mask (Disable) Frame Interrupt

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–62 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 24-28: ADCC_FIMSK_SET Register Diagram

Frame Interrupt Mask Clear Register

The ADCC_FIMSK_CLR register can be used to selectively clear bits in the ADCC_FIMSK register without
affecting other bits in the register. Writing a 1 to any bit position in ADCC_FIMSK_CLR clears the corre-
sponding bit in ADCC_FIMSK. Reading the ADCC_FIMSK_CLR register returns the data present in the ADCC_
FIMSK register.

Figure 24-29: ADCC_FIMSK_CLR Register Diagram

Table 24-23: ADCC_FIMSK_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W1S)

FINT1 Frame Interrupt 1 Mask Set.
The ADCC_FIMSK_SET.FINT1 bits permit setting the ADCC_FIMSK.FINT1 bit
without affecting other bits in the register. Write 1 to the ADCC_FIMSK_SET.
FINT1 bit to set the ADCC_FIMSK.FINT1 bit.

0
(R/W1S)

FINT0 Frame Interrupt 0 Mask Set.
The ADCC_FIMSK_SET.FINT0 bits permit setting the ADCC_FIMSK.FINT0 bit
without affecting other bits in the register. Write 1 to the ADCC_FIMSK_SET.
FINT0 bit to set the ADCC_FIMSK.FINT0 bit.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–63

Event Enable Register

The ADCC_EVTEN register enables detection of individual ADCC events. Based on the ADCC_EVCTLnn.
TMRSEL bit selection, the ADCC generates the corresponding ADCC_TRIG0_EVT or ADCC_TRIG0_EVT event
interrupts. Note that the events corresponding to a frame must be enabled before the trigger corre-
sponding to the frame arrives.

Table 24-24: ADCC_FIMSK_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W1C)

FINT1 Frame Interrupt 1 Mask Clear.
The ADCC_FIMSK_CLR.FINT1 bits permit clearing the ADCC_FIMSK.FINT1
bit without affecting other bits in the register. Write 1 to the ADCC_FIMSK_CLR.
FINT1 bit to clear the ADCC_FIMSK.FINT1 bit.

0
(R/W1C)

FINT0 Frame Interrupt 0 Mask Clear.
The ADCC_FIMSK_CLR.FINT0 bits permit clearing the ADCC_FIMSK.FINT0
bit without affecting other bits in the register. Write 1 to the ADCC_FIMSK_CLR.
FINT0 bit to clear the ADCC_FIMSK.FINT0 bit.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–64 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 24-30: ADCC_EVTEN Register Diagram

Table 24-25: ADCC_EVTEN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/W)

EVTnn Event n Enable.
The ADCC_EVTEN.EVTnn bits each correspond to an ADCC event (n from 23 to
0). The function of each bit is shown in the enumerations below.

0 Disable Event Detection

1 Enable Event Detection

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–65

Event Enable Set Register

The ADCC_EVTEN_SET register can be used to selectively set bits in the ADCC_EVTEN register without
affecting other bits in the register. Writing a 1 to any bit position in ADCC_EVTEN_SET sets the corre-
sponding bit in ADCC_EVTEN. Reading the ADCC_EVTEN_SET register returns the data present in the ADCC_
EVTEN register.

Figure 24-31: ADCC_EVTEN_SET Register Diagram

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–66 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Event Enable Clear Register

The ADCC_EVTEN_CLR register can be used to selectively clear bits in the ADCC_EVTEN register without
affecting other bits in the register. Writing a 1 to any bit position in ADCC_EVTEN_CLR clears the corre-
sponding bit in ADCC_EVTEN. Reading the ADCC_EVTEN_CLR register returns the data present in the ADCC_
EVTEN register.

Table 24-26: ADCC_EVTEN_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/W1S)

EVTnn Event n Enable Set.
The ADCC_EVTEN_SET.EVTnn bits permit setting individual bits in the ADCC_
EVTEN register without affecting other bits in the register. Write 1 to individual
ADCC_EVTEN_SET.EVTnn bits to set the corresponding bit in ADCC_EVTEN.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–67

Figure 24-32: ADCC_EVTEN_CLR Register Diagram

Table 24-27: ADCC_EVTEN_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/W1C)

EVTnn Event n Enable Clear.
The ADCC_EVTEN_CLR.EVTnn bits permit clearing individual bits in the ADCC_
EVTEN register without affecting other bits in the register. Write 1 to individual
ADCC_EVTEN_CLR.EVTnn bits to clear the corresponding bit in ADCC_EVTEN.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–68 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Event Collision Status Register

The ADCC_ECOL register indicates the collision status for ADCC events. When any bit in this register is set,
the ADCC_ERRSTAT.ECOL bit is set, which may optionally cause the ADCC to generate output on the ADCC_
ERR pin.

Figure 24-33: ADCC_ECOL Register Diagram

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–69

Event Miss Status Register

The ADCC_EMISS register indicates the miss status for ADCC events. When any bit in this register is set,
the ADCC_ERRSTAT.EMIS bit is set, which may optionally cause the ADCC to generate output on the ADCC_
ERR pin.

Table 24-28: ADCC_ECOL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/W1C)

EVTnn Event n Collision Status.
The ADCC_ECOL.EVTnn bits each correspond to an ADCC event (n from 23 to 0)
that underwent collision. When any bit in this register is set, the ADCC_ERRSTAT.
ECOL bit is set, which may optionally cause the ADCC to generate output on the
ADCC_ERR pin. The function of each bit is shown in the enumerations below.

0 No Status

1 Event Collision Occurred

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–70 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 24-34: ADCC_EMISS Register Diagram

Table 24-29: ADCC_EMISS Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/W1C)

EVTnn Event n Miss Status.
The ADCC_EMISS.EVTnn bits each correspond to an ADCC event (n from 23 to 0)
that were missed. When any bit in this register is set, the ADCC_ERRSTAT.EMIS bit
is set, which may optionally cause the ADCC to generate output on the ADCC_ERR
pin.The function of each bit is shown in the enumerations below.

0 No Status

1 Event Miss Occurred

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–71

Base Pointer 0 Register

The ADCC_BPTR0 register provides the base pointer (address) used for placing the first Timer 0 frame's
event-data into memory through DMA. The value of base address (pointer) in the ADCC_BPTR0 register at
the time of the trigger pulse (start of frame) corresponds to one of the following Timer 0 related frames:

• The first frame after ADCC is enabled

• The first frame after the ADCC_BPTR0 register is written by core (in linear DMA mode)

• The first frame after a loop back occurs in circular buffering mode

The data from the first frame's events is placed in memory, starting at the address indicated with the value
of the frame base address. Each of the event data are placed in a location (ADCC_BPTR0 + ADCC_EVCTLnn.
EVTOFS), where ADCC_EVCTLnn.EVTOFS is a programmable offset for each event.

The second frame's base address (pointer) is calculated as (ADCC_BPTR0 + ADCC_FRINC0).

The third frame's base address (pointer) is calculated as (ADCC_BPTR0 + (2 x ADCC_FRINC0)).

Figure 24-35: ADCC_BPTR0 Register Diagram

Frame Increment 0 Register

The ADCC_FRINC0 register contains the address increment applied between the base-address of consecu-
tive Timer 0 frames of DMA data (unless a fresh write of the ADCC_BPTR0 register occurred in between).
The value is a signed, two's complement byte address increment.

Table 24-30: ADCC_BPTR0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Base Pointer 0 Value.
The ADCC_BPTR0.VALUE bits hold the base pointer (address) for the first frame of
the DMA. Note that bit 0 must be written as 0 to ensure correct address alignment.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–72 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 24-36: ADCC_FRINC0 Register Diagram

Circular Buffer Size 0 Register

The ADCC_CBSIZ0 register holds the circular buffer size to be used for the Timer 0 frames of DMA. If the
ADCC_CBSIZ0.VALUE bit field is programmed as 0, the ADCC performs only linear buffering is for the
Timer 0 frames. For more information about ADCC linear and circular buffering, see the ADCC func-
tional description.

Figure 24-37: ADCC_CBSIZ0 Register Diagram

Table 24-31: ADCC_FRINC0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Frame Increment 0 Value.
The ADCC_FRINC0.VALUE bits hold memory offset increment applied to the
base-address of consecutive Timer 0 frames of DMA data. Note that bit 0 must be
written as 0 to ensure correct address alignment.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–73

Timing Control A (ADC0) Register

The ADCC_TCA0 register controls timing related to the ADC0 interface clock and chip select signals.

Figure 24-38: ADCC_TCA0 Register Diagram

Table 24-32: ADCC_CBSIZ0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Circular Buffer Size 0 Value.
The ADCC_CBSIZ0.VALUE bits select the number of Timer 0 frames in a DMA
circular buffer (number of frames after which to wrap back); if =0, linear mode is
used instead of circular DMA mode.

Table 24-33: ADCC_TCA0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19:16
(R/W)

NCK Number of Clocks.
The ADCC_TCA0.NCK bits select the number of ADCC_ACLK ADC clock cycles for
each ADCC_ACS chip select pulse. A value of 0 implies 16 clock cycles.
The ADCC_TCA0.NCK programming should ensure that total number of data/
control bits is less than or equal to 16 bits. If either data or control are on dual bit lines
(ADCC_CTL.DSIZE =1), the maximum number of clock permitted is 8, and
NCK=0 is not permitted.

15:0
(R/W)

CKDIV Clock Divisor.
The ADCC_TCA0.CKDIV bits select the clock divisor ratio (SCLK:ACK) for clocks
to be sent to ADC calculated as:

ACK frequency = (SCLK frequency) / (CKDIV+1)

Yielding, ADCC_TCA0.CKDIV =0 represents a ratio of 1:1, =1 represents a ratio of
1:2, ADCC_TCA0.CKDIV =2 represents a ratio of 1:3, and so on.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–74 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Timing Control B (ADC0) Register

The ADCC_TCB0 register controls parameter values for timing relationships between the ADCC_ACS and
ADCC_ACLK pin signals in the ADC0 interface. For a timing diagram illustrating these timing relationships,
see the ADCC functional description.

Figure 24-39: ADCC_TCB0 Register Diagram

Bandwidth Monitor 0 Register

The ADCC_BWMON0 register monitors the Timer 0 count and can be used to signal an error if the count
exceeds the ADCC_BWMON0.CNT value in DMA mode. This checks whether the DMA transfer of all events
in the frame are completed before a certain count of the timer. To monitor for completion of all events and
their DMA before n SCLK cycles after the trigger, program the value n in the ADCC_BWMON0.CNT field.
When the timer count exceeds n, the ADCC issues an error interrupt and indicates the status with the

Table 24-34: ADCC_TCB0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:16
(R/W)

TCSCS Timing CS to CS Delay.
The ADCC_TCB0.TCSCS value selects minimum delay time (in ADCC_ACLK
cycles) required between on ADCC_ACS de-asserted edge and the next ADCC_ACS
asserted edge. A value of 0 implies 256 cycles delay.

15:8
(R/W)

TCKCS Time CK to CS Hold.
The ADCC_TCB0.TCKCS value selects the minimum hold time (in ADCC_ACLK
cycles) after (ADCC_TCB0.TCSCK + ADCC_TCA0.NCK) clock cycles have elapsed
during ADCC_ACS asserted for which the chip select should be held asserted. A
value of 0 implies 0 clock cycle delay.

7:0
(R/W)

TCSCK Time CS to CK Setup.
The ADCC_TCB0.TCSCK value selects the minimum setup time (in ADCC_ACLK
cycles) required from the ADCC_ACS asserted to the first edge of the ADCC_ACLK
clock. A value of 0 implies 256 clock cycles.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–75

ADCC_ERRSTAT.BWERR0 bit. The Timer stops only when all DMA transfers are complete and responses
received, in DMA mode.

Figure 24-40: ADCC_BWMON0 Register Diagram

ADC Configuration Register

The ADCC_CFG register configures ADC specific features and indicates status of pending ADC configura-
tion operations.

Figure 24-41: ADCC_CFG Register Diagram

Table 24-35: ADCC_BWMON0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

CNT Bandwidth Monitor Count.
The ADCC_BWMON0.CNT bits hold the maximum expected Timer 0 count for a
frame. If programmed as 0, bandwidth monitoring capability is disabled.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–76 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA Base Pointer 1 Register

The ADCC_BPTR1 register provides the base pointer (address) used for placing the first Timer 1 frame's
event-data into memory through DMA. The value of base address (pointer) in the ADCC_BPTR1 register at
the time of the trigger pulse (start of frame) corresponds to one of the following Timer 1 related frames:

• The first frame after ADCC is enabled

• The first frame after the ADCC_BPTR1 register is written by core (in linear DMA mode)

• The first frame after a loop back occurs in circular buffering mode

The data from the first frame's events is placed in memory, starting at the address indicated with the value
of the frame base address. Each of the event data are placed in a location (ADCC_BPTR1 + ADCC_EVCTLnn.
EVTOFS), where ADCC_EVCTLnn.EVTOFS is a programmable offset for each event.

The second frame's base address (pointer) is calculated as (ADCC_BPTR1 + ADCC_FRINC0).

The third frame's base address (pointer) is calculated as (ADCC_BPTR1 + (2 x ADCC_FRINC0)).

Table 24-36: ADCC_CFG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

22
(R/W)

REFSEL Reference Selection.
The ADCC_CFG.REFSEL bit selects whether the ADC uses and internal or external
voltage reference.

0 Internal Reference

1 External Reference

0
(R/NW)

PND Pending Configuration Status.
The ADCC_CFG.PND bit indicates the pending status of ADC configuration. While
configuration is pending completion, the ADCC ignores triggers.

0 No Pending Configure (Honors Triggers)

1 Pending Configure (Ignores Triggers)

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–77

Figure 24-42: ADCC_BPTR1 Register Diagram

Frame Increment 1 Register

The ADCC_FRINC1 register contains the address increment applied between the base-address of consecu-
tive Timer 1 frames of DMA data (unless a fresh write of the ADCC_BPTR0 register occurred in between).
The value is a signed, two's complement byte address increment.

Figure 24-43: ADCC_FRINC1 Register Diagram

Table 24-37: ADCC_BPTR1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Base Pointer 1 Value.
The ADCC_BPTR1.VALUE bits hold the base pointer (address) for the first frame of
the DMA. Note that bit 0 must be written as 0 to ensure correct address alignment.
The ADCC_BPTR1.VALUE bits hold the base pointer (address) for the first frame of
the DMA. Note that bit 0 must be written as 0 to ensure correct address alignment.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–78 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Circular Buffer Size 1 Register

The ADCC_CBSIZ1 register holds the circular buffer size to be used for the Timer 1 frames of DMA. If the
ADCC_CBSIZ1.VALUE bit field is programmed as 0, the ADCC performs only linear buffering is for the
Timer 1 frames. For more information about ADCC linear and circular buffering, see the ADCC func-
tional description.

Figure 24-44: ADCC_CBSIZ1 Register Diagram

Timing Control A (ADC1) Register

The ADCC_TCA1 register controls timing related to the ADC1 interface clock and chip select signals.

Table 24-38: ADCC_FRINC1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Frame Increment 1 Value.
The ADCC_FRINC1.VALUE bits hold memory offset increment applied to the
base-address of consecutive Timer 1 frames of DMA data. Note that bit 0 must be
written as 0 to ensure correct address alignment.

Table 24-39: ADCC_CBSIZ1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Circular Buffer Size 1 Value.
The ADCC_CBSIZ1.VALUE bits select the number of Timer 1 frames in a DMA
circular buffer (number of frames after which to wrap back); if =0, linear mode is
used instead of circular DMA mode.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–79

Figure 24-45: ADCC_TCA1 Register Diagram

Timing Control B (ADC1) Register

The ADCC_TCB1 register controls parameter values for timing relationships between the ADCC_BCS and
ADCC_BCLK pin signals in the BDC0 interface. For a timing diagram illustrating these timing relationships,
see the ADCC functional description.

Table 24-40: ADCC_TCA1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19:16
(R/W)

NCK Number of Clocks.
The ADCC_TCA1.NCK bits select the number of ADCC_ACLK ADC clock cycles for
each ADCC_ACS chip select pulse. A value of 0 implies 16 clock cycles.
The ADCC_TCA1.NCK programming should ensure that total number of data/
control bits is less than or equal to 16 bits. If either data or control are on dual bit lines
(ADCC_CTL.DSIZE =1), the maximum number of clock permitted is 8, and
NCK=0 is not permitted.

15:0
(R/W)

CKDIV Clock Divisor.
The ADCC_TCA1.CKDIV bits select the clock divisor ratio (SCLK:ACK) for clocks
to be sent to ADC calculated as:

ACK frequency = (SCLK frequency) / (CKDIV+1)

Yielding, ADCC_TCA1.CKDIV =0 represents a ratio of 1:1, =1 represents a ratio of
1:2, ADCC_TCA1.CKDIV =2 represents a ratio of 1:3, and so on.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–80 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 24-46: ADCC_TCB1 Register Diagram

Bandwidth Monitor 1 Register

The ADCC_BWMON1 register monitors the Timer 1 count and can be used to signal an error if the count
exceeds the ADCC_BWMON1.CNT value in DMA mode. This checks whether the DMA transfer of all events
in the frame are completed before a certain count of the timer. To monitor for completion of all events and
their DMA before n SCLK cycles after the trigger, program the value n in the ADCC_BWMON1.CNT field.
When the timer count exceeds n, the ADCC issues an error interrupt and indicates the status with the
ADCC_ERRSTAT.BWERR1 bit. The Timer stops only when all DMA transfers are complete and responses
received, in DMA mode.

Table 24-41: ADCC_TCB1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:16
(R/W)

TCSCS Timing CS to CS Delay.
The ADCC_TCB1.TCSCS value selects minimum delay time (in ADCC_BCLK
cycles) required between on ADCC_BCS de-asserted edge and the next ADCC_BCS
asserted edge. A value of 0 implies 256 cycles delay.

15:8
(R/W)

TCKCS Time CK to CS Hold.
The ADCC_TCB1.TCKCS value selects the minimum hold time (in ADCC_BCLK
cycles) after (ADCC_TCB1.TCSCK + ADCC_TCA1.NCK) clock cycles have elapsed
during ADCC_BCS asserted for which the chip select should be held asserted. A
value of 0 implies 0 clock cycle delay.

7:0
(R/W)

TCSCK Time CS to CK Setup.
The ADCC_TCB1.TCSCK value selects the minimum setup time (in ADCC_BCLK
cycles) required from the ADCC_BCS asserted to the first edge of the ADCC_BCLK
clock. A value of 0 implies 256 clock cycles.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–81

Figure 24-47: ADCC_BWMON1 Register Diagram

Event n Time Register

The ADCC_EVTnn register holds the time (in terms SCLK cycles) at which to sample (the event) from ADC.

Figure 24-48: ADCC_EVTnn Register Diagram

Table 24-42: ADCC_BWMON1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

CNT Bandwidth Monitor Count.
The ADCC_BWMON1.CNT bits hold the maximum expected Timer 1 count for a
frame. If programmed as 0, bandwidth monitoring capability is disabled.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–82 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Event n Control Register

The ADCC_EVCTLnn register controls programmable features of the corresponding event.

Figure 24-49: ADCC_EVCTLnn Register Diagram

Table 24-43: ADCC_EVTnn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

TIME Time Value.
The ADCC_EVTnn.TIME bits holds the time value (in terms SCLK cycles) at which
to sample (the event) from ADC.

Table 24-44: ADCC_EVCTLnn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:24
(R/W)

EVTOFS Event Offset.
The ADCC_EVCTLnn.EVTOFS bits hold the memory address offset at which the
event's data is stored. This offset is added to the frame's base pointer to produce the
final memory address. Bit 24 must =0 for correct address alignment.

20
(R/W)

TMRSEL Timer Select.
The ADCC_EVCTLnn.TMRSEL bit selects whether the event corresponds to Timer
0 or 1.

0 Event on Timer 0

1 Event on Timer 1

17
(R/W)

SIMSAMP Simultaneous Sampling Enable.
The ADCC_EVCTLnn.SIMSAMP bit enables simultaneous sampling operation.

0 Disable

1 Enable

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–83

Pending Events Status Register

The ADCC_EPND register indicates which events within the current frames are pending (waiting for data
transfer). Each of the ADCC_EPND.EVTnn bits from 0 to 23 corresponds to an events from 0 to 23. When the
trigger pulse initiating a frame (corresponding to a Timer) is detected, all the status pending bits corre-
sponding to enabled events in that frame are set. The ADCC clears each status bit on receiving the data
from ADC for the corresponding event. If a pending event is missed, the ADCC clears the corresponding
status bit.

16
(R/W)

ADCSEL ADC Select.
The ADCC_EVCTLnn.ADCSEL bit select whether the event executes on the ADC0
interface or the ADC1 interface.

0 Event on ADC0

1 Event on ADC1

15:0
(R/W)

CTLWD Control Word for ADC.
The ADCC_EVCTLnn.CTLWD bits hold the control word to be sent to ADC. These
same 16 bits (or lesser, depending on the corresponding value of ADCC_TCA0.NCK
or ADCC_TCA1.NCK) are sent to ADC. Program the control word LSB aligned in
this field. For more information about control word content, see the ADCC
programming guidelines.

Table 24-44: ADCC_EVCTLnn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–84 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 24-50: ADCC_EPND Register Diagram

Table 24-45: ADCC_EPND Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/NW)

EVTnn Event n Pending Status.
The ADCC_EPND.EVTnn bits each correspond to an ADCC event (n from 23 to 0)
that are pending (waiting for data transfer). The function of each bit is shown in the
enumerations below.

0 No Status

1 Event Pending

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–85

Timer 0 Status Register

The ADCC_T0STAT register indicates Timer 0 related status for the ADCC operation.

Figure 24-51: ADCC_T0STAT Register Diagram

Timer 0 Current Count Register

The ADCC_TMR0 register holds the current count of the Timer 0 while a frame is in progress. This register
may be used to determine the current timer count, which indicates approximately how much of the frame
has been completed. The timer is initiated by the trigger and counts up starting from 0. The timer incre-
ments every SCLK cycle until the frame completion. In DMA mode, the frame completion happens when
event all data have been placed in memory and responses are received. In non-DMA mode, the frame
completion happens when all events' data have been received from the ADC. If a frame is not in progress,
the ADCC_TMR0.CNT field is reset.

Table 24-46: ADCC_T0STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/NW)

DPND DMA Pending Status.
The ADCC_T0STAT.DPND bit indicates pending status for data received from the
ADC. When there are pending transfers, even if the ADCC is disabled while they are
pending, the DMA finishes these pending data transfers.

0 No Status

1 DMA Pending

15:0
(R/NW)

CURFR Current Frame Count.
The ADCC_T0STAT.CURFR bits hold the current frame number in the
chronological order after ADCC enable occurred (linear buffer mode) or hold the
frame number after the last wrap around (circular buffer mode). This field wraps
over after 0xFFFF frames.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–86 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 24-52: ADCC_TMR0 Register Diagram

Timer 1 Status Register

The ADCC_T1STAT register indicates Timer 1 related status for the ADCC operation.

Figure 24-53: ADCC_T1STAT Register Diagram

Table 24-47: ADCC_TMR0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Current Count of Timer 0.
The ADCC_TMR0.CNT bits hold the current count of Timer 0.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–87

Timer 1 Current Count Register

The ADCC_TMR1 register holds the current count of the Timer 1 while a frame is in progress. This register
may be used to determine the current timer count, which indicates approximately how much of the frame
has been completed. The timer is initiated by the trigger and counts up starting from 0. The timer incre-
ments every SCLK cycle until the frame completion. In DMA mode, the frame completion happens when
event all data have been placed in memory and responses are received. In non-DMA mode, the frame
completion happens when all events' data have been received from the ADC. If a frame is not in progress,
the ADCC_TMR1.CNT field is reset.

Figure 24-54: ADCC_TMR1 Register Diagram

Table 24-48: ADCC_T1STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

16
(R/NW)

DPND DMA Pending Status.
The ADCC_T1STAT.DPND bit indicates pending status for data received from the
ADC. When there are pending transfers, even if the ADCC is disabled while they are
pending, the DMA finishes these pending data transfers.

0 No Status

1 DMA Pending

15:0
(R/NW)

CURFR Current Frame Count.
The ADCC_T1STAT.CURFR bits hold the current frame number in the
chronological order after ADCC enable occurred (linear buffer mode) or hold the
frame number after the last wrap around (circular buffer mode). This field wraps
over after 0xFFFF frames.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–88 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Event n Data Register

The ADCC_EVDATnn register holds the data sampled from the ADC channel. The data from this register can
be read by the core or transferred through DMA. If the data sample received is less than 16 bits wide
(depends on value of corresponding ADCC_TCA0.NCK or ADCC_TCA1.NCK), the data is MSB aligned in the
ADCC_EVDATnn.VALUE field, and the lower bits are zero filled.

Figure 24-55: ADCC_EVDATnn Register Diagram

Event n Status Register

The ADCC_EVSTATnn register indicates event status for event n.

Table 24-49: ADCC_TMR1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

CNT Current Count of Timer 1.
The ADCC_TMR1.CNT bits hold the current count of Timer 1.

Table 24-50: ADCC_EVDATnn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/NW)

VALUE Event Data Sampled from ADC.
The ADCC_EVDATnn.VALUE bits hold the data of the event sampled from the
ADC.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 24–89

Figure 24-56: ADCC_EVSTATnn Register Diagram

Table 24-51: ADCC_EVSTATnn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/NW)

DLYCNT Delay Count.
The ADCC_EVSTATnn.DLYCNT bits indicate the number of SCLK cycles by which
the event was delayed after the event match occurred. The ADCC updates this field
when the corresponding ADCC_ACS or ADCC_BCS is asserted to transmit the
control word corresponding to the event to the ADC.

ANALOG-TO-DIGITAL CONVERTER CONTROLLER (ADCC)
ADSP-CM40X ADCC REGISTER DESCRIPTIONS

24–90 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–1

25 Digital-to-Analog Converter Controller (DACC)

The analog front end (AFE) includes a powerful DAC controller (DACC), which automates DAC data
conversion and simplifies DAC accesses. The DACC provides an interface that synchronizes the controls
between the processor and an digital-to-analog converter (DAC).

NOTE: The DACC and ADCC chapters describe the control and data interface to the AFE. For informa-
tion about the analog portion (I/O pins and electrical specifications) of the AFE, see the product
data sheet.

On processors that do not include an dedicated DAC controller, DAC conversion uses processor inter-
rupts (initiated by the events) and uses interrupt service routine programming of the appropriate periph-
eral (usually a general-purpose timer) to initiate the DAC conversion process. This approach has some
limiting factors:

• DAC conversion processing is not precisely controlled due to interrupt latencies (which can vary) due
to variable instruction execution cycles or multiple interrupts running in system.

• Consumption of processor MIPS can be prohibitive, especially for high frequency of conversion related
events.

The DACC addresses some of these limitations by providing dedicated hardware, which initiates the DAC
output by providing control signals with required timings in real-time. Using the DACC permits flexible
scheduling of data transfer and provides precise control execution of timing and analog output on the
DACs. The DACC saves both processor MIPS and provides precise controllability for DAC conversion/
output time.

On the ADSP-CM40x microcontroller, the DACC is specifically designed to interface with the on-chip
internal DACs, which require minimal core intervention.

DACC Features

The DACC provides many architecture-based features (basic to the design) and mode-selectable features
(usage is optional or configurable).

Architecture-based features of the DACC include:

• Two DAC interfaces to control two 12-bit ADCs independently

• Automated DAC conversion with programmable timing

• Both core mode and DMA mode are supported for updating the DAC buffer. The DMA interface width
may be programmable as a 16- or 32-bit interface.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC FEATURES

25–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Separate four-deep FIFO for each DAC interface to queue the data for conversion, reducing data
request rate to the core or DMA

• Serial clock, frame sync select, and data signal to control the DAC operations

• Internally generated DAC clock from processor system clock

This clock may be is gated (for example, it is active only when controlling the DAC) to provide excellent
noise immunity during conversion process. The clock polarity (for example, the first edge after frame
sync signal assertion) is configurable.

• Two built-in DMA units

There is one DMA unit for each DAC for DMA transferring the data for conversion. The DMA units
support an optional circular buffering mechanism.

• Error detection capabilities, including support for detection of memory access error, DAC data under-
flow, and address alignment error conditions

The DACC does not perform a data transmission in case of underflow. An underflow interrupt may be
signaled to the processor core.

Mode-selectable features of the DACC include:

• Gated Clock signal with configurable polarity

The DAC clock given to a DAC may be continuous clock or can be gated when the DAC data is not
driven. The clock edge polarity (i.e. driving edge of sync and data) may be configured to the rising edge
or the falling edge.

• Frame sync signal with configurable width and polarity

The DAC frame sync signal has a programmable width in terms of the DAC clocks. The polarity of this
signal is configurable as active high or active low signal. The DAC uses this signal to start the conver-
sion, and to output the converted data.

• Timing for the DAC update frequency is configurable

• Data length for the DAC interface is programmable for up to 16-bit data lengths

• Data may be transmitted to the DAC in LSB-first or MSB-bit first format

• Circular buffering for DMA data

When using DMA mode to update the DAC FIFO, the buffer submitted to DMA may be configured
for circular buffering to continuously transmit the data without core intervention. Optionally, an inter-
rupt may be enabled to signal core at the end of each circular buffer.

• Status indication (status bits) and optional interrupt generation to core on DAC data underflow

• Interrupt may be optionally generation on completion of each DMA work unit, DMA circular buffer
wrap around, and/or on DACC error detection

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–3

DACC Functional Description

The following sections describe DACC functionality:

• ADSP-CM40z DACC Register List

• ADSP-CM40z DACC Interrupt List

• DACC Block Diagram

• DACC Signal Descriptions

• DACC Architectural Concepts

NOTE:
The ADCC must be enabled before the DACC is enabled after power-on reset. If continued
operation of the ADCC is not needed, it may be disabled while continuing operation of the
DACC.

ADSP-CM40x DACC Register List

The DAC controller (DACC) automates the DAC data conversion process and simplifies DAC manage-
ment. The DACC provides an interface that synchronizes the controls between the processor and a digital-
to-analog converter (DAC). A set of registers govern DACC operations. For more information on DACC
functionality, see the DACC register descriptions.

Table 25-1: ADSP-CM40x DACC Register List

Name Description

DACC_CTL0 Control 0 Register

DACC_CTL1 Control 1 Register

DACC_ERRSTAT Error Status Register

DACC_ERRMSK Error Mask Register

DACC_ERRMSK_SET Error Mask Set Register

DACC_ERRMSK_CLR Error Mask Clear Register

DACC_ISTAT Interrupt Status Register

DACC_IMSK Interrupt Mask Register

DACC_IMSK_SET Interrupt Mask Set Register

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC FUNCTIONAL DESCRIPTION

25–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x DACC Interrupt List

DACC Block Diagram

The DACC Block Diagram figure shows the functional blocks within the DACC.

DACC_IMSK_CLR Interrupt Mask Clear Register

DACC_TC0 Timing Control 0 Register

DACC_BPTR0 Base Pointer 0 Register

DACC_MOD0 Modify 0 Register

DACC_CNT0 Count 0 Register

DACC_DAT0 Data FIFO 0 Register

DACC_TC1 Timing Control 1 Register

DACC_BPTR1 Base Pointer 1 Register

DACC_MOD1 Modify 1 Register

DACC_CNT1 Count 1 Register

DACC_DAT1 Data FIFO 1 Register

DACC_BCST_CTL Broadcast (Write) Control Register

DACC_CNTCUR0 Current Count 0 Register

DACC_CNTCUR1 Current Count 1 Register

DACC_STAT Status Register

Table 25-2: ADSP-CM40x DACC Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

45 DACC0_ERR DACC0 DAC Error LEVEL

96 DACC0_DAC0 DACC0 DAC Interrupt 0 Generated LEVEL

97 DACC0_DAC1 DACC0 DAC Interrupt 1 Generated LEVEL

Table 25-1: ADSP-CM40x DACC Register List (Continued)

Name Description

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–5

Figure 25-1: DACC Block Diagram

For more information about the DACC signals, see DACC Signal Descriptions.

For more information about the blocks in the diagram, see DACC Architectural Concepts.

DACC Signal Descriptions

The DACC controls the operation of internal DACs, based on its timing register settings. Because the
DACs are internal, none of the DACC signals are available as external package pins.

NOTE: There are two instances of the DAC interface on the ADSP-CM40x. Each offers separate clock,
frame sync, and data signals for controlling two DACs independently.

A number of signals connect the DACC to the DACs for DAC clock, frame sync, and data. Using these
signals, the DACC regulates the DAC data transfer and data conversion. These signals appear in the
ADSP-CM40x DACC-to-DAC0/1 Signal Descriptions table.

Table 25-3: ADSP-CM40x DACC-to-DAC0/1 Signal Descriptions

Name I/O Description

DACC_ACLK O DACC DAC0 (A) clock

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC FUNCTIONAL DESCRIPTION

25–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The DACC also has a number of signals to send the status and error information to the processor. These
signals appear in the ADSP-CM40x DACC-to-Core Signal Descriptions table.

The following are more detailed descriptions of each DACC signal type.

DAC Clock (DACC_ACLK, DACC_BCLK)
This is the clock signal given to DAC, based on which the other two DAC signals, frame sync and data, are
driven. The clock edge polarity (i.e. driving edge of CS/SYNC and data) can be configured to rising edge or
falling edge using DACC clock polarity bit setting.

The DAC clock signal is internally generated from processor SCLK and is configurable as follow:

DAC_CLK frequency = SCLK / (DACC_TC.DCKDIV + 1)

The DAC clock can be given continuous free running or it can be gated i.e. given out only when data is being
driven. This can be configured using DACC gated clock enable bit setting.

DAC Frame Sync (DACC_AFS, DACC_BFS)
The DAC frame sync signal is active when valid data is being driven out to DAC. The active period of the
DAC frame sync is decided by the DACC data length field (for example, DACC_CTL0.DLEN).

The frequency of this signal determines the DAC update rate, which can be programmed using DACC frame
sync idle field (for example, DACC_TC0.FSIDLE). The DACC frame sync idle field decides the idle period
between two DAC sync active pulses. This field is programmed in terms number of DAC clocks. It is a 16-
bit field and a value of zero implies 1 DAC clock cycle.

Therefore, the periodicity of DACC_FS = (DACC_TC.DFSIDLE+1) + DACC_CTL.DLEN.

If the DACC data length is zero, periodicity of DAC_FS = (DACC_TC.DFSIDLE+1) +16.

The polarity of the DAC sync signal can be configured to active high or active low, using the DACC sync
polarity bit setting (for example,DACC_CTL0.SYNCPOL).

DACC_AFS O DACC DAC0 (A) frame sync

DACC_AD0 O DACC DAC0 (A) data 0 for writing conversion data to the DAC

DACC_BCLK O DACC DAC1 (B) clock

DACC_BFS O DACC DAC1 (B) frame sync

DACC_BD0 O DACC DAC1 (B) data 0 for writing conversion data to the DAC

Table 25-4: ADSP-CM40x DACC-to-Core Signal Descriptions

Signal Name I/O Signal Description

DACC_DAC0 O DAC0 Event when a DAC0 frame is completed

DACC_DAC1 O DAC1 Event when a DAC1 frame is completed

DACC_ERR O DAC Error Interrupt

Table 25-3: ADSP-CM40x DACC-to-DAC0/1 Signal Descriptions (Continued)

Name I/O Description

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–7

DAC Data (DACC_AD0, DACC_BD0)
The data to the DAC is serially driven out on DACC data pin (for example, DACC_AD0).

The DACC data length field (for example, DACC_CTL0.DLEN) determines the DAC interface length. It is a
four-bit field, allowing DAC interface length to be from 1 to 16 (value of 4’h0 implies a data length of 16 bits).

The DAC data can be transmitted in LSB first format or MSB bit first format, by configuring the DACC LSB
first bit (for example, DACC_CTL0.LSBF).

On the ADSP-CM40x processor, the DACC controls the 12-bit DACs, which supports MSB first format. So,
the DACC data length should be configured to 0xC, and the DACC LSB first bit configured to 0.

There can be situations where an incomplete or larger DAC frame is been sent to the DAC when the data
length field is set incorrectly. In these scenarios, the DAC on the ADSP-CM40x processor ignores frames of
lower than 11 bits size and discards extra bits if the frame sizes are more than 12 bits.

Figure 25-2: DACC Signals

DACC Architectural Concepts

The DACC Functional Block Diagram shows the top-level architecture of DAC interface. The interface
consists of:

• A DMA and core interface - This interface permits the core to read and write DACC registers for
configuration, control, and word-by-word data transfer. The DACC's independent DMA engine
provides data transfer without core overhead. For more information about this interface, see Core and
DMA Interfaces and Data Transfer Modes.

• DAC pending data FIFOs - Each DAC has a four-deep FIFO for pending data transfer. These FIFOs
help prevent data underrun. For more information, see Pending Data FIFO.

• DAC clock generation - Each DAC has an independent clock signal that the DACC generates from the
system clock (SCLK) according to the configuration in DACC registers. Optionally, this clock may be
gated (only active while data is driven). For more information, see Clock Modes.

• Frame sync generation - Each DAC has an independent frame sync signal that controls the data transfer
rate. Data and the gated clock are only driven while the frame sync is asserted. For more information,
see Frame Sync Modes.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC FUNCTIONAL DESCRIPTION

25–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Data output (shift registers) - The last stage of each DAC's FIFO is a serial shift register, which is used
to transfer data from the FIFO to the DAC.

• Status and error interrupts - The DACC has and error interrupt output, and the DACs each have a
status interrupt output. These outputs go to the processor's SEC for handling. For more information,
see DACC Event Control.

Core and DMA Interfaces

The DACC has a 32-bit core interface through which the core programs the DACC control registers and
reads the DACC status registers. This interface also may be used to update the DAC FIFOs in core mode.
The DAC FIFO may be updated (with data for digital-to-analog conversion) by writing data to the DAC's
data register (for example, DACC_DAT0).

To minimize the core overhead, the DACC provides a 32-bit DMA interface for updating the DAC FIFOs.
The DMA data interface width may be programmed to 16- or 32-bit width (for example, using the DACC_
CTL0.DMAWbit).

The DMA interface supports an optional circular buffering mode for updating the DAC FIFOs. When
circular buffered is enabled (for example, using the DACC_CTL0.CBUFEN bit), the DMA continuously trans-
mits the data without core intervention. An interrupt may be enabled (for example, using the DACC_CTL0.
CINTEN bit) to signal the core at the end of each circular buffer.

Pending Data FIFO

The DACC provides a separate, 4-deep FIFO for each DAC interface. The FIFOs may be updated in core
mode or DMA mode, according to the mode settings in the DACC control register (for example, DACC_
CTL0).

The pending data FIFO helps reduce the data request rate to core or DMA and reduces possibility of
underflow.

The DAC shift register (at the last FIFO stage) reads the data from the DACC FIFO and serially shifts out
the data, based on active edges of the DAC clock (for example, DACC_ACLK) when the DAC sync pulse (for
example, DACC_AFS) is active.

An underflow at the DAC interface occurs when the DAC frame sync is about to go active, but the DAC's
FIFO has no new data to be transmitted. When this occurs, the DACC does not generate the frame sync
pulse. Optionally, the DACC may signal this condition to the core with an error interrupt.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–9

DACC Operating Modes

The operating modes of the DACC include its configurable options for data length, FIFO update rate, DAC
clock divider and polarity, frame sync idle time and polarity, and broadcast controls. For more information
about these options see the following sections:

• Data Transfer Modes

• Data Length and Update Options

• Clock Modes

• Frame Sync Modes

• Broadcast Control Option

Data Transfer Modes

The DACC transfers data to the DACs through each DAC's FIFO. To update these FIFOs with data to be
transmitted to the corresponding DAC, the DACC supports:

• Core-driven single word transfers

• DMA-driven multiple words transfers

DMA transfers may be set up to transfer a configurable number of words from internal or external
memory of processor to the DACC FIFOs automatically, without core-intervention. Core-driven transfers
may use DACC interrupts to signal the processor core to perform single word transfers to the DACC
FIFOs.

Core-Driven Data Write Mode

The DACC provides a DAC data register (for example, DACC_DAT0), for accessing the top entry of the 4-
deep FIFO in core mode. The DMA enable bit (for example, DACC_CTL0.DMAEN) selects the data transfer
mode of DACC operation as either DMA mode or core mode. Typically, the core checks the FIFO status
bits (for example, DACC_STAT.FSTAT0) or relies on related interrupt status before writing into DAC data
register. This register should be written only when there is space available in the DAC FIFO. If the core
attempts a write into the data register when the DAC FIFO is full, the DACC ignores the core write trans-
action.

To ease status checking for core write operations, the core-write complete status bit (for example,DACC_
ISTAT.CINT0) indicates whether or not the DAC FIFO has space available to accommodate new data
writes by core. Optionally, an interrupt for the data request condition may be unmasked (enabled) in the
DACC_IMSK register, and the core writes to the DAC FIFO may be managed with an interrupt service
routine.

NOTE: Only the lower 16 bits of DAC data FIFO register are considered as DAC data. The upper 16 bits
are ignored. Reads of this register returns the top entry of the FIFO.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC OPERATING MODES

25–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA-Driven Data Write Mode

The DACC provides a 32-bit in-built DMA interface to minimize the core overhead for updating the DAC
data FIFOs. The DMA enable bit (for example, DACC_CTL0.DMAEN) selects the data transfer mode of
DACC operation as either DMA mode or core mode. The DMA data interface width bit (for example,
DACC_CTL0.DMAW) selects whether the interface is 16 or 32 bits wide.

NOTE: When the DAC is in DMA mode, core writes to DAC data register do not result in the data being
written into the DACC FIFO, and these writes are ignored.

The DMA unit supports programming of DMA work-units using following registers.

• DAC DMA base pointer register (for example, DACC_BPTR0) - This register contains the memory
address of the base pointer for starting a DMA read transfer.

• DAC DMA modify register (for example, DACC_MOD0) - This register contains the address increment
applied between each DMA read from memory, starting from base pointer.

• DAC DMA count register (for example, DACC_CNTR0) - This register holds the DMA count in a DMA
work-unit.

NOTE: On ADCM40x processor, the DACC controls two independent DACs. A separate DMA unit (with
a pointer, modifier, and count register) is provided for each DAC interface.

The DMA unit supports linear buffering or circular buffering modes of operation. The circular buffer
enable bit (for example, DACC_CTL0.CBUFEN) selects between these modes of operation.

Linear Buffering
In linear buffering, the data transfer starts from the memory location pointed to by the base pointer register.
With each data fetch (16 or 32 bits), the address is incremented by the number of bytes specified in modifier
register to calculate the next fetch address. As many fetches as programmed in the count register are done
by the DMA and are transmitted to the DAC. After all the data is transmitted, an interrupt status (optionally)
is set.

Circular Buffering
In circular buffering, the data transfer starts from the memory location pointed to by the base pointer
register. With each data fetch (16 or 32 bits), the address is incremented by the number of bytes specified in
modifier register to calculate the next fetch address. A provision of looping back to the base pointer address
is provided. After the number of data fetches pointed by the count register, the next fetch is performed from
base pointer location, instead of incrementing the fetch address by the modifier.

In case interrupts are disabled in circular buffer mode (for example, using theDACC_CTL0.CINTEN bit), the
data fetches of next circular buffer is initiated even if the previous circular buffer has data reads pending to
be returned from memory. If interrupts are enabled, the next circular buffer data requests is made only after
the reads of previous circular buffer have been returned. The interrupt is signaled after the reads of a circular
buffer have been returned from memory.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–11

Data Length and Update Options

The data length of DAC interface may be configured, allowing the DACC to interface with serial DACs
with 1- to 16-bit data length. The DACC may send data to the DAC in either LSB-first format or MSB-first
format, based on the DACC LSB-first bit setting.

The DAC data length bit field (for example, DACC_CTL0.DLEN) chooses up to a 16-bit data length for the
DAC interface. This value affects the number of DAC clock cycles for each data word and affects the rate
for DAC FIFO update.

The period of DAC FIFO update also is affected through the DAC frame sync signal (for example, DACC_
AFS) configuration for frame sync minimum idle time (for example, DACC_TC0.FSIDLE) and is affected
through the DAC clock divisor ratio (for example, DACC_TC0.CKDIV.

The combination of these factors may be expressed in the following calculation for the DAC FIFO update
period (example DAC0 sync period) in DAC clock cycles:

DAC0 sync period = (DACC_TC0.FSIDLE + 1) + (DACC_CTL0.DLEN)

Applying this formula to calculate the required frame sync idle, assume:

• DAC data length is 12 bits

• System clock (SCLK) frequency is 100 MHz

• DAC0 clock frequency is 50 MHz

• DAC update frequency is 50 KSPS (kilo-samples-per-second)

First, calculate the DAC clock divisor (for DAC0) as:

DACC_TC0.CKDIV= (SCLK frequency / DAC0 clock frequency) – 1

= (100 MHz / 50 MHz) - 1 = 1

Then, calculate the needed DAC frame sync idle time (for DAC0) as:

DACC_TC0.FSIDLE = (DAC clock frequency / DAC update frequency) - DACC_CTL0.DLEN - 1

 = (50 MHz / 50 KSPS) - 12 - 1 = (1000 - 12 - 1) = 987 = 0x3DB

Clock Modes

The DACC provides a clock signal to communicate with the interfaced DAC. The DAC clock also is avail-
able in gated format (for example, it is active only during the when data is driven to the DAC) to ensure
excellent noise immunity during the conversion process.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC OPERATING MODES

25–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Clock Frequency Programming
The DAC clock is internally generated from system clock of processor. The DACC_TC0.CKDIV bit field spec-
ifies the divider to generate DAC0 clock signal from SCLK.

DACC_ACLK = (SCLK) / (DACC_TC0.CKDIV + 1)

Alternatively, the clock divisor value for the required DAC0 clock frequency is calculated as:

DACC_TC0.CKDIV = (SCLK ÷ DACC_ACLK) – 1

Clock Polarity and Gated Clock Programming
 The active DAC clock edge (polarity) can be selected as rising edge or falling edge. The DACC sync and data
signals (for example,DACC_AFS and DACC_AD0) are driven on the active edges of DAC clock. The clock
polarity bit (for example, DACC_CTL0.CKPOL) should be configured depending on at which clock edge the
DAC samples the DAC sync and data signals. If the DAC clock is active low (for example, DACC_CTL0.CKPOL
=0), the DAC sync and data signals are driven from the falling edge of the DAC clock (for example, DACC_
ACLK).

Consider an example in which the DAC sync signal is active low (for example, DACC_CTL0.SYNCPOL =0) and
in which the DAC clock signal driving edge polarity is selected as rising edge (for example, DACC_CTL0.
CKPOL =1). In this example (shown in the DAC Clock Programming (DACC_CTLx.GCKEN =0) figure),
the value of DAC data length is 12 (for example, DACC_CTL0.DLEN =12), and the value of DAC sync idle is 4
(for example, DACC_TC0.FSIDLE =4).

Figure 25-3: DAC Clock Programming (DACC_CTLx.GCKEN =0)

The DACC also provides the DAC clock in gated format, which is active only while the frame sync signal is
asserted and valid DAC data is being driven. This operation is enabled with the gated clock enable bit (for
example, DACC_CTL0.GCKEN). The DAC Clock Programming (DACC_CTLx.GCKEN =1) figure shows the
DAC serial timing for gated clock mode.

Figure 25-4: DAC Clock Programming (DACC_CTLx.GCKEN =1)

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC EVENT CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–13

Frame Sync Modes

The DACC provides a frame select signal (for example, DACC_AFS) to select the DAC for communication
and to signal (optionally with its edges) the start of data transmission to the DAC (and data conversion).
The frame select is asserted while data is driven to the DAC.

The frame sync signal provided to the DAC may be configured as an active-high signal or an active-low
signal, based on the protocol supported by interfaced ADC. This sensitivity is configurable using the chip
select polarity bit (for example, DACC_CTL0.SYNCPOL).

Between data write sequence to the DAC, when a valid data word is not being driven to the DAC, the DAC
sync lines needs to be driven to an inactive level (either a high or a low level) to meet a DAC requirement
for the frame period. This value is selected with the frame sync idle bit field (for example, DACC_TC0.
FSIDLE).

For more information about frame sync idle programming, see Data Length and Update Options.

Broadcast Control Option

The DACC controls multiple DACs. To support synchronized enable time of the DACs (if required), the
DACC includes a broadcast control register (DACC_BCST_CTL), which provides broadcast write access to
the DACs' control registers. A memory mapped register write to DACC_BCST_CTL writes the value to the
DACs control registers. Reading the DACC_BCST_CTL register returns 0x0000,0000.

On the ADSP-CM40x, the DACC controls two DACs. Writes to the broadcast control register (DACC_BCST_
CTL) go to both DACs control registers (DACC_CTL0 and DACC_CTL1).

DACC Event Control

The DACC is capable of signaling the core about its state and various error conditions that occur during
its operation, by providing status and error bits through different registers. These conditions include:

• Interrupt status related to data FIFO operations in core mode and DMA mode

• Error status related to DACC operations

• Pending data status (which do not generate interrupts) related to data FIFO operations in core mode
and DMA mode

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC EVENT CONTROL

25–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Interrupt Status

The DACC may generate interrupts to signal operation status for individual DACs or error status for the
DACC to the system event controller (SEC).

The DACC provides a data interrupt channel for each DAC FIFO (for example, DACC_DAC0). In core mode,
this interrupt indicates the request to fill the DACC FIFO. In DMA mode, this interrupt indicates the
completion of a DMA work unit. The conditions flagged in the interrupt status register (DACC_ISTAT) are
used to generate these interrupts.

The DACC error interrupt signal (DACC_ERR) indicates error conditions related to DAC controller. The
conditions flagged in the error status register (DACC_ERRSTAT) are used to generate these interrupts.

DAC DMA Mode Interrupt
In DMA mode, this interrupt indicates the status of DMA work-unit. When in linear DMA mode, this inter-
rupt may be generated if a DMA work unit programmed for a DAC interface is completed, and all data has
been transmitted to DAC. When in circular buffer DMA mode (with the circular buffer interrupt enabled),
this interrupt may be generated if all read data in a buffer is returned from memory. The status bit related to
this interrupt is sticky and must be cleared by W1C operation.

DAC Core Mode Interrupt
This interrupt indicates the status of DAC FIFO update in core mode, when the DAC Data FIFO has space
to accommodate new data writes by core. The status bit related to this interrupt is a read-only status bit and
is cleared when the FIFO gets full.

Error Status

The DACC signals error conditions through the error status register (DACC_ERRSTAT) for data underflow
errors and memory access errors. These conditions may be used to generate an error interrupt (DACC_ERR)
if they are unmasked (enabled) in the error mask register (DACC_ERRMSK).

All of these error status bits are sticky bits, which must be cleared with a W1C (write-1-to-clear) operation.
Even if an error is reported by the DACC, normal operation of the DACC is continued. In case of address
alignment error, the lower (violating) bits of the base pointer address or modifier registers are ignored, and
the data at the aligned address is written into the DAC FIFO. In case of underflow error case, transmission
of the DAC data is delayed until the DACC FIFO receives any data from selected core or DMA interface.

Data Underflow Error
When an underflow occurs in a DAC FIFOs, the condition is indicated by the related underflow error bit
(for example, DACC_ERRSTAT.DUVF0). For more information about underflow, see Pending Data FIFO.

Memory Access Error
When an address alignment error condition occurs while DACC DMA is enabled, the conditions is indi-
cated by the related address alignment error bit (for example, DACC_ERRMSK_SET.AER0). An address align-
ment error occurs when:

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–15

• The LSB bit of the base pointer address register or modifier register is non-zero in 16-bit DMA
mode.

• The lower two bits of the base pointer address register or modifier register are non-zero in 32
bit DMA mode.

When a read response error is returned from memory for transfers to a DAC, the condition is indicated by
related memory access error bit (for example, DACC_ERRSTAT.MER0). A read response error occurs when a
DAC DMA attempts to access the reserved memory space of processor.

Pending Status

In addition to interrupt status and error status, the DACC provides bits to provide information about DAC
FIFO pending data status

DMA Data Pending Status
The DMA pending status bit (for example, DACC_STAT.DPND0) indicates that a DMA read address requests
have been made and the related read data is pending to be received by the DAC interface. Before re-enabling
the DMA of a DAC interface, the corresponding pending status bit should be checked (for no data still
pending).

DAC Data FIFO Status
The FIFO status bit (for example, DACC_STAT.FSTAT0) indicates the number of 16-bit data in the DAC data
FIFO that are yet to be transmitted to the DAC. The status increments when DMA mode transfers or core
mode writes fill the DAC FIFO. The status decrements when a data transmission starts on the DAC interface.

DACC Programming Model

The programming model for the DACC includes operation flow for core mode transfers and DMA mode
transfers. The following steps are used in these flows.

Core Mode Operation Flow

1. Setup the DACC, writing to its memory mapped registers in core mode (for example, DACC_CTL0.
DMAEN =0 and DACC_CTL0.EN =0).

2. Enable DACC operation, writing the DACC_CTL.EN bit (=1) in core mode.

Result: The DACC clock starts and sync counters begin. The DACC sends sync pulses only if new data
is present. With each sync pulse, the DACC updates the DAC with new data.

3. Write DAC data to the DACC FIFO, using register writes in core mode.

4. When DAC updates are completed, disable DACC operation (if desired), writing to the DACC_CTL.
EN bit (=0) in core mode.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
DACC PROGRAMMING MODEL

25–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

DMA Mode Operation Flow

1. Setup the DACC, writing to its memory mapped registers in core mode (DACC_CTL.DMAEN =1 and
DACC_CTL.En =0)

Result: DAC DMA starts reading data from memory.

2. Poll the FIFO status in DAC_STAT for FIFO >0 in core mode.

3. Enable DACC operation, writing the DACC_CTL.EN bit (=1) and DACC_CTL.DMAEN (=1) in core
mode.

Result: The DACC clock starts and sync counters begin. The DACC sends sync pulses only if new data
is present. With each sync pulse, the DACC updates the DAC with new data for the duration of the
selected DMA word count.

4. When DAC updates are completed, disable DACC operation (if desired), writing to the DACC_CTL.
EN and DACC_CTL.DMAEN bits (both =0) in core mode.

DACC Programming Concepts

There are general programming concepts for using the DACC when it is present on any processor.

NOTE: There may also be processor specific guidelines for programming the DACC.

Care is needed when disabling or enabling the DACC in DMA modes. When disabling the DAC controller
(for example, DACC_CTL0.EN =0), ensure that pending DMA transfers are finished before re-enabling the
DACC or re-enabling DMA (for example, DACC_CTL0.DMAEN =1). This status may observed from the
related DAC's DMA pending bit (for example, DACC_STAT.DPND0). When disabling the DACC and/or
DMA in the control register, the programming of all other DMA related controls (for example, DACC_
CTL0.CBUFEN) should be retained. All DMA related programming in DACC registers should be changed
only after the corresponding DMA pending status bit is cleared (DMA completed).

The memory mapped register status and counter values are retained on disabling the DACC (helpful for
debug). These registers (such as counters and other status) are cleared on a 0-to-1 transition of the enable
bit. Error status is not cleared with this 0-to-1 transition. Errors must be cleared through a W1C operation.

If the DAC controller is disabled while a transaction on the DAC interface is in progress, the transaction
may be dropped midway. It is best to disable the DACC after a DMA work unit is done in DMA mode or
to disable the DACC when all data updates are done in non-DMA mode.

After a DMA work unit is finished (interrupt given), a new work unit may be initiated by the following
procedure

• Disable both the DACC enable and DMA enable bits (for example, DACC_CTL0.EN =0 and DACC_CTL0.
DMAEN =0).

• Configure the DMA count and DMA modifier (for example, DACC_CNT0 and DACC_MOD0), then enable
DMA operation (for example, DACC_CTL0.DMAEN =1).

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–17

• After the FIFO gets data from the DMA (for example, DACC_STAT.DPND0 =1), enable the DACC (for
example, DACC_CTL0.EN =1).

DACC Programming Guidelines (ADSP-CM40x Specific)

There are general programming concepts for using the DACC when it is present on any processor. For the
ADSP-CM40x, there are also processor specific guidelines for programming the DACC.

The ADSP-CM40x processor includes two 12-bit on-chip internal DACs. To control these, the DACC
provides two DAC interfaces, which may be independently configured for the DAC conversion
processing.

The settings required for best performance of the DACs are:

• Select clock polarity as active high (for example, DACC_CTL0.CKPOL =1)

• Select frame sync polarity as active low (for example, DACC_CTL0.SYNCPOL =0)

• Select 12-bit data length (for example, DACC_CTL0.DLEN =0xC)

• Select MSB-first format (for example, DACC_CTL0.LSBF =0)

• Enable gated clock operation (for example, DACC_CTL0.GCKEN =1)

ADSP-CM40x DACC Register Descriptions

DAC Controller (DACC) contains the following registers.

Table 25-5: ADSP-CM40x DACC Register List

Name Description

DACC_CTL0 Control 0 Register

DACC_CTL1 Control 1 Register

DACC_ERRSTAT Error Status Register

DACC_ERRMSK Error Mask Register

DACC_ERRMSK_SET Error Mask Set Register

DACC_ERRMSK_CLR Error Mask Clear Register

DACC_ISTAT Interrupt Status Register

DACC_IMSK Interrupt Mask Register

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Control 0 Register

The DACC_CTL0 register controls the DAC0 interface.

DACC_IMSK_SET Interrupt Mask Set Register

DACC_IMSK_CLR Interrupt Mask Clear Register

DACC_TC0 Timing Control 0 Register

DACC_BPTR0 Base Pointer 0 Register

DACC_MOD0 Modify 0 Register

DACC_CNT0 Count 0 Register

DACC_DAT0 Data FIFO 0 Register

DACC_TC1 Timing Control 1 Register

DACC_BPTR1 Base Pointer 1 Register

DACC_MOD1 Modify 1 Register

DACC_CNT1 Count 1 Register

DACC_DAT1 Data FIFO 1 Register

DACC_BCST_CTL Broadcast (Write) Control Register

DACC_CNTCUR0 Current Count 0 Register

DACC_CNTCUR1 Current Count 1 Register

DACC_STAT Status Register

Table 25-5: ADSP-CM40x DACC Register List (Continued)

Name Description

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–19

Figure 25-5: DACC_CTL0 Register Diagram

Table 25-6: DACC_CTL0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

18
(R/W)

CKPOL Clock Polarity.
The DACC_CTL0.CKPOL bit selects the polarity of the DAC0 interface clock signal
(DACC_ACLK pin) on which to drive the DAC0 output (DACC_AD0 pin).

0 Drive on Clock Falling Edge

1 Drive on Clock Rising Edge

16
(R/W)

SYNCPOL SYNC Polarity.
The DACC_CTL0.SYNCPOL bit selects the polarity for the DAC0 interface sync
signal (DACC_AFS pin).

0 Active Low

1 Active High

11:8
(R/W)

DLEN Data Length.
The DACC_CTL0.DLEN bits choose the data length (in bits) for the DAC0 interface.
A value =0 for this field implies a data length of 16 bits. For data lengths less that 16
bits, use LSB-aligned data and zero fill unused bits.

7
(R/W)

CINTEN Circular Buffer Interrupt Enable.
The DACC_CTL0.CINTEN bit enables generation of the DACC_DAC0 interrupt at
the end of each circular buffer. This bit is only valid if the DACC_CTL0.DMAEN bit
=1 and the DACC_CTL0.CBUFEN bit =1.

0 Disable

1 Enable

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Control 1 Register

The DACC_CTL1 register controls the DAC1 interface.

6
(R/W)

CBUFEN Circular Buffer Enable.
The DACC_CTL0.CBUFEN bit enables circular buffer DMA mode for the DAC0
interface. This bit is only valid if the DACC_CTL0.DMAEN bit =1.

0 Disable

1 Enable

5
(R/W)

GCKEN Gated Clock Enable.
The DACC_CTL0.GCKEN bit enables gated clock mode for the DAC0 interface
clock (DACC_ACLK pin). When enabled, the clock toggles only when valid data is
driven on the DACC_AD0 pin. When disabled, the clock is free running.

0 Disable Gated Clock Mode

1 Enable Gated Clock Mode

4
(R/W)

LSBF LSB-First Mode.
The DACC_CTL0.LSBF bit selects between LSB-first mode or MSB-first mode
transfers for the DAC0 interface.

0 MSB-First Mode

1 LSB-First Mode

3
(R/W)

DMAW DMA Data Width.
The DACC_CTL0.DMAW bit selects the DMA data width for the DAC0 interface.
This bit is only valid if the DACC_CTL0.DMAEN bit =1.

0 16-Bit DMA Data

1 32-Bit DMA Data

2
(R/W)

DMAEN DMA Enable.
The DACC_CTL0.DMAEN bit enables DMA transfers for the DAC0 interface.

0 Disable

1 Enable

0
(R/W)

EN Enable.
The DACC_CTL0.EN bit enables operations for the DAC0 interface.

0 Disable

1 Enable

Table 25-6: DACC_CTL0 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–21

Figure 25-6: DACC_CTL1 Register Diagram

Table 25-7: DACC_CTL1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

18
(R/W)

CKPOL Clock Polarity.
The DACC_CTL1.CKPOL bit selects the polarity of the DAC1 interface clock signal
(DACC_BCLK pin) on which to drive the DAC1 output (DACC_BD0 pin).

0 Drive on Clock Falling Edge

1 Drive on Clock Rising Edge

16
(R/W)

SYNCPOL SYNC Polarity.
The DACC_CTL1.SYNCPOL bit selects the polarity for the DAC1 interface sync
signal (DACC_BFS pin).

0 Active Low

1 Active High

11:8
(R/W)

DLEN Data Length.
The DACC_CTL1.DLEN bits choose the data length (in bits) for the DAC1 interface.
A value =0 for this field implies a data length of 16 bits. For data lengths less that 16
bits, use LSB-aligned data and zero fill unused bits.

7
(R/W)

CINTEN Circular Buffer Interrupt Enable.
The DACC_CTL1.CINTEN bit enables generation of the DACC_DAC1 interrupt at
the end of each circular buffer. This bit is only valid if the DACC_CTL1.DMAEN bit
=1 and the DACC_CTL1.CBUFEN bit =1.

0 Disable

1 Enable

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Error Status Register

The DACC_ERRSTAT register indicates error status for DACC operations. When any bit in this register is
set, the DACC generates the DACC_DAC_ERR interrupt.

6
(R/W)

CBUFEN Circular Buffer Enable.
The DACC_CTL1.CBUFEN bit enables circular buffer DMA mode for the DAC1
interface. This bit is only valid if the DACC_CTL1.DMAEN bit =1.

0 Disable

1 Enable

5
(R/W)

GCKEN Gated Clock Enable.
The DACC_CTL1.GCKEN bit enables gated clock mode for the DAC1 interface
clock (DACC_BCLK pin). When enabled, the clock toggles only when valid data is
driven on the DACC_BD0 pin. When disabled, the clock is free running.

0 Disable Gated Clock Mode

1 Enable Gated Clock Mode

4
(R/W)

LSBF LSB-First Mode.
The DACC_CTL1.LSBF bit selects between LSB-first mode or MSB-first mode
transfers for the DAC1 interface.

0 MSB-First Mode

1 LSB-First Mode

3
(R/W)

DMAW DMA Data Width.
The DACC_CTL1.DMAW bit selects the DMA data width for the DAC1 interface.
This bit is only valid if the DACC_CTL1.DMAEN bit =1.

0 16-Bit DMA Data

1 32-Bit DMA Data

2
(R/W)

DMAEN DMA Enable.
The DACC_CTL1.DMAEN bit enables DMA transfers for the DAC1 interface.

0 Disable

1 Enable

0
(R/W)

EN Enable.
The DACC_CTL1.EN bit enables operations for the DAC1 interface.

0 Disable

1 Enable

Table 25-7: DACC_CTL1 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–23

Figure 25-7: DACC_ERRSTAT Register Diagram

Table 25-8: DACC_ERRSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5
(R/W1C)

MER1 Memory Error 1.
The DACC_ERRSTAT.MER1 bit indicates whether a memory error has occurred
(erroneous read response received) during a DMA transfer for the DAC1 interface.

0 No Status

1 Memory Error Occurred

4
(R/W1C)

MER0 Memory Error 0.
The DACC_ERRSTAT.MER0 bit indicates whether a memory error has occurred
(erroneous read response received) during a DMA transfer for the DAC0 interface.

0 No Status

1 Memory Error Occurred

3
(R/W1C)

AER1 Address Alignment Error 1.
The DACC_ERRSTAT.AER1 bit indicates whether an address alignment error has
occurred during a DMA transfer for the DAC1 interface. Recommended practice is
to clear this bit (W1C) when enabling DMA with the DACC_CTL1.DMAEN bit.

0 No Status

1 Alignment Error Occurred

2
(R/W1C)

AER0 Address Alignment Error 0.
The DACC_ERRSTAT.AER0 bit indicates whether an address alignment error has
occurred during a DMA transfer for the DAC0 interface. Recommended practice is
to clear this bit (W1C) when enabling DMA with the DACC_CTL0.DMAEN bit.

0 No Status

1 Alignment Error Occurred

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Error Mask Register

The DACC_ERRMSK register masks (disables) or unmasks (enables) reporting of DAC related errors.

Figure 25-8: DACC_ERRMSK Register Diagram

1
(R/W1C)

DUVF1 DAC Underflow 1.
The DACC_ERRSTAT.DUVF1 bit indicates whether a data underflow has occurred
in the FIFO for the DAC1 interface (for example, no data was present in the FIFO
when the DACC_BFS pin is about to be asserted).

0 No Status

1 Underflow Occurred

0
(R/W1C)

DUVF0 DAC0 Underflow.
The DACC_ERRSTAT.DUVF0 bit indicates whether a data underflow has occurred
in the FIFO for the DAC0 interface (for example, no data was present in the FIFO
when the DACC_AFS pin is about to be asserted).

0 No Status

1 Underflow Occurred

Table 25-8: DACC_ERRSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–25

Error Mask Set Register

The DACC_ERRMSK_SET register can be used to selectively set bits in the DACC_ERRMSK register without
affecting other bits in the register. Writing a 1 to any bit position in DACC_ERRMSK_SET sets the corre-
sponding bit in DACC_ERRMSK. Reading the DACC_ERRMSK_SET register returns the data present in the
DACC_ERRMSK register.

Table 25-9: DACC_ERRMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5
(R/W)

MER1 Memory Error 1 Mask.
The DACC_ERRMSK.MER1 bit masks (disables) generating an error interrupt on a
DAC1 memory error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

4
(R/W)

MER0 Memory Error 0 Mask.
The DACC_ERRMSK.MER0 bit masks (disables) generating an error interrupt on a
DAC0 memory error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

3
(R/W)

AER1 Address Alignment Error 1 Mask.
The DACC_ERRMSK.AER1 bit masks (disables) generating an error interrupt on a
DAC1 address alignment error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

2
(R/W)

AER0 Address Alignment Error 0 Mask.
The DACC_ERRMSK.AER0 bit masks (disables) generating an error interrupt on a
DAC0 address alignment error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

1
(R/W)

DUVF1 DAC Underflow 1 Mask.
The DACC_ERRMSK.DUVF1 bit masks (disables) generating an error interrupt on a
DAC1 underflow error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

0
(R/W)

DUVF0 DAC Underflow 0 Mask.
The DACC_ERRMSK.DUVF0 bit masks (disables) generating an error interrupt on a
DAC0 underflow error.

0 Unmask (Enable Reporting)

1 Mask (Disable Reporting)

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 25-9: DACC_ERRMSK_SET Register Diagram

Error Mask Clear Register

The DACC_ERRMSK_CLR register can be used to selectively clear bits in the DACC_ERRMSK register without
affecting other bits in the register. Writing a 1 to any bit position in DACC_ERRMSK_CLR clears the corre-
sponding bit in DACC_ERRMSK. Reading the DACC_ERRMSK_CLR register returns the data present in the
DACC_ERRMSK register.

Table 25-10: DACC_ERRMSK_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5
(R/W1S)

MER1 Memory Error 1 Mask Set.
Write 1 to DACC_ERRMSK_SET.MER1 to set the corresponding bit in DACC_
ERRMSK.

4
(R/W1S)

MER0 Memory Error 0 Mask Set.
Write 1 to DACC_ERRMSK_SET.MER0 to set the corresponding bit in DACC_
ERRMSK.

3
(R/W1S)

AER1 Address Alignment Error 1 Mask Set.
Write 1 to DACC_ERRMSK_SET.AER1 to set the corresponding bit in DACC_
ERRMSK.

2
(R/W1S)

AER0 Address Alignment Error 0 Mask Set.
Write 1 to DACC_ERRMSK_SET.AER0 to set the corresponding bit in DACC_
ERRMSK.

1
(R/W1S)

DUVF1 DAC Underflow 1 Mask Set.
Write 1 to DACC_ERRMSK_SET.DUVF1 to set the corresponding bit in DACC_
ERRMSK.

0
(R/W1S)

DUVF0 DAC Underflow 0 Mask Set.
Write 1 to DACC_ERRMSK_SET.DUVF0 to set the corresponding bit in DACC_
ERRMSK.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–27

Figure 25-10: DACC_ERRMSK_CLR Register Diagram

Interrupt Status Register

The DACC_ISTAT register indicates DAC0 and DAC1 interrupt status. The DACC generates interrupts
corresponding to DAC 0 on the DACC_DAC0 output and generates the interrupts corresponding to DAC1
on the DACC_DAC1 output.

Table 25-11: DACC_ERRMSK_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5
(R/W1C)

MER1 Memory Error 1 Mask Clear.
Write 1 to DACC_ERRMSK_CLR.MER1 to clear the corresponding bit in DACC_
ERRMSK.

4
(R/W1C)

MER0 Memory Error 0 Mask Clear.
Write 1 to DACC_ERRMSK_CLR.MER0 to clear the corresponding bit in DACC_
ERRMSK.

3
(R/W1C)

AER1 Address Alignment Error 0 Mask Clear.
Write 1 to DACC_ERRMSK_CLR.AER1 to clear the corresponding bit in DACC_
ERRMSK.

2
(R/W1C)

AER0 Address Alignment Error 0 Mask Clear.
Write 1 to DACC_ERRMSK_CLR.AER0 to clear the corresponding bit in DACC_
ERRMSK.

1
(R/W1C)

DUVF1 DAC Underflow 1 Mask Clear.
Write 1 to DACC_ERRMSK_CLR.DUVF1 to clear the corresponding bit in DACC_
ERRMSK.

0
(R/W1C)

DUVF0 DAC Underflow 0 Mask Clear.
Write 1 to DACC_ERRMSK_CLR.DUVF0 to clear the corresponding bit in DACC_
ERRMSK.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 25-11: DACC_ISTAT Register Diagram

Table 25-12: DACC_ISTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/NW)

CINT1 Core Complete (Non-DMA) Interrupt.
The DACC_ISTAT.CINT1 bit indicates completion of a core write to the DAC1
interface, implying the DAC data FIFO again has space to accommodate new data
writes by core. When cleared, this bit indicates the DAC FIFO is full.

0 No Status

1 Core Complete (Non-DMA)

2
(R/NW)

CINT0 Core Complete (Non-DMA) Interrupt 0.
The DACC_ISTAT.CINT0 bit indicates completion of a core write to the DAC0
interface, implying the DAC data FIFO again has space to accommodate new data
writes by core. When cleared, this bit indicates the DAC FIFO is full.

0 No Status

1 Core Complete (Non-DMA)

1
(R/W1C)

DINT1 DMA Complete Interrupt 1.
The DACC_ISTAT.DINT1 bit indicates completion of the DMA work unit
programmed for the DAC1 interface. When set in linear DMA mode, the DACC has
transmitted all data to the DAC. When set in circular buffer mode, all read data in a
buffer has returned from memory.

0 No Status

1 DMA Complete

0
(R/W1C)

DINT0 DMA Complete Interrupt 0.
The DACC_ISTAT.DINT0 bit indicates completion of the DMA work unit
programmed for the DAC0 interface. When set in linear DMA mode, the DACC has
transmitted all data to the DAC. When set in circular buffer mode, all read data in a
buffer has returned from memory.

0 No Status

1 DMA Complete

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–29

Interrupt Mask Register

The DACC_IMSK register masks (disables) generation of DACC_DAC0 or DACC_DAC1 interrupts based on
status in the DACC_ISTAT register.

Figure 25-12: DACC_IMSK Register Diagram

Table 25-13: DACC_IMSK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W)

CINT1 Core Complete (Non-DMA) Interrupt 1Mask.
The DACC_IMSK.CINT1 bits mask (disable) the DACC_ISTAT.CINT1 DMA
complete interrupts for data transfer related to DAC1.

0 Unmask (Enable) DAC Interrupt

1 Mask (Disable) DAC Interrupt

2
(R/W)

CINT0 Core Complete (Non-DMA) Interrupt 0 Mask.
The DACC_IMSK.CINT0 bits mask (disable) the DACC_ISTAT.CINT0 DMA
complete interrupts for data transfer related to DAC0.

0 Unmask (Enable) DAC Interrupt

1 Mask (Disable) DAC Interrupt

1
(R/W)

DINT1 DMA Complete Interrupt 1 Mask.
The DACC_IMSK.DINT1 bits mask (disable) the DACC_ISTAT.DINT1 DMA
complete interrupts for data transfer related to DAC1.

0 Unmask (Enable) DAC Interrupt

1 Mask (Disable) DAC Interrupt

0
(R/W)

DINT0 DMA Complete Interrupt 0 Mask.
The DACC_IMSK.DINT0 bits mask (disable) the DACC_ISTAT.DINT0 DMA
complete interrupts for data transfer related to DAC0.

0 Unmask (Enable) DAC Interrupt

1 Mask (Disable) DAC Interrupt

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Interrupt Mask Set Register

The DACC_IMSK_SET register can be used to selectively set bits in the DACC_IMSK register without affecting
other bits in the register. Writing a 1 to any bit position in DACC_IMSK_SET sets the corresponding bit in
DACC_IMSK. Reading the DACC_IMSK_SET register returns the data present in the DACC_IMSK register.

Figure 25-13: DACC_IMSK_SET Register Diagram

Interrupt Mask Clear Register

The DACC_IMSK_CLR register can be used to selectively clear bits in the DACC_IMSK register without
affecting other bits in the register. Writing a 1 to any bit position in DACC_IMSK_CLR clears the corre-

Table 25-14: DACC_IMSK_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W1S)

CINT1 Core Complete (Non-DMA) Interrupt 1 Mask Set.
The DACC_IMSK_SET.CINT1 bits permit setting the DACC_IMSK.CINT1 bit
without affecting other bits in the register. Write 1 to the DACC_IMSK_SET.CINT1
bit to set the DACC_IMSK.CINT1 bit.

2
(R/W1S)

CINT0 Core Complete (Non-DMA) Interrupt 0 Mask Set.
The DACC_IMSK_SET.CINT0 bits permit setting the DACC_IMSK.CINT0 bit
without affecting other bits in the register. Write 1 to the DACC_IMSK_SET.CINT0
bit to set the DACC_IMSK.CINT0 bit.

1
(R/W1S)

DINT1 DMA Complete Interrupt 1 Mask Set.
The DACC_IMSK_SET.DINT1 bits permit setting the DACC_IMSK.DINT1 bit
without affecting other bits in the register. Write 1 to the DACC_IMSK_SET.DINT1
bit to set the DACC_IMSK.DINT1 bit.

0
(R/W1S)

DINT0 DMA Complete Interrupt 0 Mask Set.
The DACC_IMSK_SET.DINT0 bits permit setting the DACC_IMSK.DINT0 bit
without affecting other bits in the register. Write 1 to the DACC_IMSK_SET.DINT0
bit to set the DACC_IMSK.DINT0 bit.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–31

sponding bit in DACC_IMSK. Reading the DACC_IMSK_CLR register returns the data present in the DACC_
IMSK register.

Figure 25-14: DACC_IMSK_CLR Register Diagram

Timing Control 0 Register

The DACC_TC0 register controls timing related to the DAC0 interface clock and sync signals.

Table 25-15: DACC_IMSK_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

3
(R/W1C)

CINT1 Core Complete (Non-DMA) Interrupt 1 Mask Clear.
The DACC_IMSK_CLR.CINT1 bits permit clearing the DACC_IMSK.CINT1 bit
without affecting other bits in the register. Write 1 to the DACC_IMSK_CLR.CINT1
bit to clear the DACC_IMSK.CINT1 bit.

2
(R/W1C)

CINT0 Core Complete (Non-DMA) Interrupt 0 Mask Clear.
The DACC_IMSK_CLR.CINT0 bits permit clearing the DACC_IMSK.CINT0 bit
without affecting other bits in the register. Write 1 to the DACC_IMSK_CLR.CINT0
bit to clear the DACC_IMSK.CINT0 bit.

1
(R/W1C)

DINT1 DMA Complete Interrupt 1 Mask Clear.
The DACC_IMSK_CLR.DINT1 bits permit clearing the DACC_IMSK.DINT1 bit
without affecting other bits in the register. Write 1 to the DACC_IMSK_CLR.DINT1
bit to clear the DACC_IMSK.DINT1 bit.

0
(R/W1C)

DINT0 DMA Complete Interrupt 0 Mask Clear.
The DACC_IMSK_CLR.DINT0 bits permit clearing the DACC_IMSK.DINT0 bit
without affecting other bits in the register. Write 1 to the DACC_IMSK_CLR.DINT0
bit to clear the DACC_IMSK.DINT0 bit.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 25-15: DACC_TC0 Register Diagram

Base Pointer 0 Register

The DACC_BPTR0 register provides the base pointer (address) used by DMA read operations for the DAC0
interface. The value of base address (pointer) in the DACC_BPTR0 register at the start of the DMA work unit
(start of frame) corresponds to one of the following transfers:

• The first transfer after DACC is enabled in DMA mode

• The first transfer after a wrap around occurs in circular buffering mode

Table 25-16: DACC_TC0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

FSIDLE Frame Sync Idle.
The DACC_TC0.FSIDLE value selects minimum idle time (in DACC_ACLK cycles)
required between on DACC_AFS asserted edge and the next DACC_AFS asserted
edge. A value of 0 implies 1 cycles idle.
 For DACC_CTL0.DLEN not =0, the DACC_AFS asserted period can be calculated
from the DACC_TC0.FSIDLE and DACC_CTL0.DLEN values as:

DACC_AFS period = (DACC_TC0.FSIDLE+1) + DACC_CTL0.DLEN

For DACC_CTL0.DLEN =0, the DACC_AFS asserted period can be calculated as:

DACC_AFS period = (DACC_TC0.FSIDLE+1) + 16

15:0
(R/W)

CKDIV Clock Divisor.
The DACC_TC0.CKDIV bits select the clock divisor ratio (SCLK:ACK) for clocks to
be sent to ADC calculated as:

ACK frequency = (SCLK frequency) / (CKDIV+1)

Yielding, DACC_TC0.CKDIV =0 represents a ratio of 1:1, =1 represents a ratio of
1:2, DACC_TC0.CKDIV =2 represents a ratio of 1:3, and so on.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–33

The data for the first transfer is read from memory, starting at the address indicated with the value of the
base address. Further DMA data is read from memory at addresses incremented by DACC_MOD0 bytes.

Figure 25-16: DACC_BPTR0 Register Diagram

Modify 0 Register

The DACC_MOD0 register contains the address increment applied between each DMA read from memory,
starting at the base-address (DACC_BPTR0). The value is a signed, two's complement byte address incre-
ment.

Figure 25-17: DACC_MOD0 Register Diagram

Table 25-17: DACC_BPTR0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Base Pointer 0 Value.
The DACC_BPTR0.VALUE bits hold the base pointer (address) for the first DMA
transfer.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Count 0 Register

In linear DMA mode, the DACC_CNT0 register holds the transfer count of a DMA work-unit for DAC0. The
DMA fetches the indicated number of read data and generates an interrupt after transmitting all data to
the DAC. After the data corresponding to the count is transmitted (in linear DMA mode), the DACC does
not send further syncs to the DAC.

In circular buffer mode, this register holds the count of DMA after which wrap around to the base pointer
address ((DACC_BPTR0)) occurs. The DMA fetches the indicated number of read data and (optionally)
generates an interrupt after receiving all data corresponding to one set of DACC_CNT0 counts (one circular
buffer) from memory.

Figure 25-18: DACC_CNT0 Register Diagram

Table 25-18: DACC_MOD0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Modify 0 Value.
The DACC_MOD0.VALUE bits hold memory offset increment applied between each
DMA read from memory, starting at the base address.

Table 25-19: DACC_CNT0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Count 0 Value.
The DACC_CNT0.VALUE bits select the transfer count of a DMA work-unit for
DAC0.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–35

Data FIFO 0 Register

The DACC_DAT0 register provides a memory mapped register location for the DAC0 data FIFO. This loca-
tion is used in non-DMA mode, permitting the core writes to transmit data to the DAC. Only the lower 16
bits are considered as DAC data; the upper 16 bits are ignored.

The core should only write this register when no DAC DMA is in progress (DACC_ISTAT.DINT0 =1). If the
core attempts a write into this register during an active DAC DMA (DACC_ISTAT.DINT0 =0), the DACC
ignores the write transaction. Reads of DACC_DAT0 return the value of the top entry of the DAC0 FIFO.

Figure 25-19: DACC_DAT0 Register Diagram

Timing Control 1 Register

The DACC_TC1 register controls timing related to the DAC1 interface clock and sync signals.

Table 25-20: DACC_DAT0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Data FIFO 0 Value.
The DACC_DAT0.VALUE bits provides a memory mapped location for the DAC0
data FIFO. Core writes to these bits (when no DMA is active) are transmitted to the
DAC. Reads of these bits return the value of the top entry of the DAC0 FIFO.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 25-20: DACC_TC1 Register Diagram

Base Pointer 1 Register

The DACC_BPTR1 register provides the base pointer (address) used by DMA read operations for the DAC1
interface. The value of base address (pointer) in the DACC_BPTR1 register at the start of the DMA work unit
(start of frame) corresponds to one of the following transfers:

• The first transfer after DACC is enabled in DMA mode

• The first transfer after a wrap around occurs in circular buffering mode

Table 25-21: DACC_TC1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

FSIDLE Frame Sync Idle.
The DACC_TC1.FSIDLE value selects minimum idle time (in DACC_BCLK cycles)
required between on DACC_BFS asserted edge and the next DACC_BFS asserted
edge. A value of 0 implies 1 cycles idle.
 For DACC_CTL1.DLEN not =0, the DACC_BFS asserted period can be calculated
from the DACC_TC1.FSIDLE and DACC_CTL1.DLEN values as:

DACC_BFS period = (DACC_TC1.FSIDLE+1) + DACC_CTL1.DLEN

For DACC_CTL1.DLEN =0, the DACC_BFS asserted period can be calculated as:

DACC_BFS period = (DACC_TC1.FSIDLE+1) + 16

15:0
(R/W)

CKDIV Clock Divisor.
The DACC_TC1.CKDIV bits select the clock divisor ratio (SCLK:ACK) for clocks to
be sent to ADC calculated as:

ACK frequency = (SCLK frequency) / (CKDIV+1)

Yielding, DACC_TC1.CKDIV =0 represents a ratio of 1:1, =1 represents a ratio of
1:2, DACC_TC1.CKDIV =2 represents a ratio of 1:3, and so on.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–37

The data for the first transfer is read from memory, starting at the address indicated with the value of the
base address. Further DMA data is read from memory at addresses incremented by DACC_MOD1 bytes.

Figure 25-21: DACC_BPTR1 Register Diagram

Modify 1 Register

The DACC_MOD1 register contains the address increment applied between each DMA read from memory,
starting at the base-address (DACC_BPTR1). The value is a signed, two's complement byte address incre-
ment.

Figure 25-22: DACC_MOD1 Register Diagram

Table 25-22: DACC_BPTR1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Base Pointer 1 Value.
The DACC_BPTR1.VALUE bits hold the base pointer (address) for the first DMA
transfer.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Count 1 Register

In linear DMA mode, the DACC_CNT1 register holds the transfer count of a DMA work-unit for DAC1. The
DMA fetches the indicated number of read data and generates an interrupt after transmitting all data to
the DAC. After the data corresponding to the count is transmitted (in linear DMA mode), the DACC does
not send further syncs to the DAC.

In circular buffer mode, this register holds the count of DMA after which wrap around to the base pointer
address ((DACC_BPTR1)) occurs. The DMA fetches the indicated number of read data and (optionally)
generates an interrupt after receiving all data corresponding to one set of DACC_CNT1 counts (one circular
buffer) from memory.

Figure 25-23: DACC_CNT1 Register Diagram

Table 25-23: DACC_MOD1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Modify 1 Value.
The DACC_MOD1.VALUE bits hold memory offset increment applied between each
DMA read from memory, starting at the base address.

Table 25-24: DACC_CNT1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Count 1 Value.
The DACC_CNT1.VALUE bits select the transfer count of a DMA work-unit for
DAC1.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–39

Data FIFO 1 Register

The DACC_DAT1 register provides a memory mapped register location for the DAC1 data FIFO. This loca-
tion is used in non-DMA mode, permitting the core writes to transmit data to the DAC. Only the lower 16
bits are considered as DAC data; the upper 16 bits are ignored.

The core should only write this register when no DAC DMA is in progress (DACC_ISTAT.DINT1 =1). If the
core attempts a write into this register during an active DAC DMA (DACC_ISTAT.DINT1 =0), the DACC
ignores the write transaction. Reads of DACC_DAT1 return the value of the top entry of the DAC1 FIFO.

Figure 25-24: DACC_DAT1 Register Diagram

Broadcast (Write) Control Register

The DACC_BCST_CTL register provides a broadcast write access to the DACC_CTL0 and DACC_CTL1 registers.
A memory mapped register write to DACC_BCST_CTL writes the data to both control register. A memory
mapped register read of the DACC_BCST_CTL register returns 0x0000.

Table 25-25: DACC_DAT1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

VALUE Data FIFO 1 Value.
The DACC_DAT1.VALUE bits provides a memory mapped location for the DAC1
data FIFO. Core writes to these bits (when no DMA is active) are transmitted to the
DAC. Reads of these bits return the value of the top entry of the DAC1 FIFO.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 25-25: DACC_BCST_CTL Register Diagram

Table 25-26: DACC_BCST_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

18
(R0/W)

CKPOL Clock Polarity.
The DACC_BCST_CTL.CKPOL broadcast bit selects the polarity of the DAC0 and
DAC1 interface clock signals (DACC_ACLK and DACC_BCLK pins) on which to
drive the DAC0 output (DACC_AD0 pin) and/or DAC1 output (DACC_BD0 pin).

16
(R0/W)

SYNCPOL SYNC Polarity.
The DACC_BCST_CTL.SYNCPOL broadcast bit selects the polarity for the DAC0
and DAC1 interfaces' sync signals (DACC_AFS and DACC_BFS pins).

11:8
(R0/W)

DLEN Data Length.
The DACC_BCST_CTL.DLEN broadcast bits choose the data length (in bits) for the
DAC0 and DAC1 interfaces. A value =0 for this field implies a data length of 16 bits.
For data lengths less that 16 bits, use LSB-aligned data and zero fill unused bits.

7
(R0/W)

CINTEN Circular Buffer Interrupt Enable.
The DACC_BCST_CTL.CINTEN broadcast bit enables generation of the DACC_
DAC0 and/or DACC_DAC1 interrupts at the end of each related circular buffer. This
bit is only valid if the DACC_BCST_CTL.DMAEN bit =1 and the DACC_BCST_
CTL.CBUFEN bit =1.

6
(R0/W)

CBUFEN Circular Buffer Enable.
The DACC_BCST_CTL.CBUFEN broadcast bit enables circular buffer DMA mode
for the DAC0 and DAC1 interfaces. This bit is only valid if the DACC_BCST_CTL.
DMAEN bit =1.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–41

Current Count 0 Register

The DACC_CNTCUR0 register holds the current count of the DMA work-unit of the DAC0 interface. This
register is loaded from the DACC_CNT0 register when either of the following occur:

• The DACC is enabled in DMA mode

• A wrap around occurs in circular buffering mode

The count decrements with each DMA read from memory.

Figure 25-26: DACC_CNTCUR0 Register Diagram

5
(R0/W)

GCKEN Gated Clock Enable.
The DACC_BCST_CTL.GCKEN broadcast bit enables gated clock mode for the
DAC0 and DAC1 interface clocks (DACC_ACLK and DACC_BCLK pins). When
enabled, the related clock toggles only when valid data is driven on the DACC_AD0
pin and/or the DACC_BD0 pin. When disabled, the clocks are free running.

4
(R0/W)

LSBF LSB-First Mode.
The DACC_BCST_CTL.LSBF broadcast bit selects between LSB-first mode or
MSB-first mode transfers for the DAC0 and DAC1 interfaces.

3
(R0/W)

DMAW DMA Data Width.
The DACC_BCST_CTL.DMAW broadcast bit selects the DMA data width for the
DAC0 and DAC1 interfaces. This bit is only valid if the DACC_BCST_CTL.DMAEN
bit =1.

2
(R0/W)

DMAEN DMA Enable.
The DACC_BCST_CTL.DMAEN broadcast bit enables DMA transfers for the DAC0
and DAC1 interfaces.

0
(R0/W)

EN Enable.
The DACC_BCST_CTL.EN broadcast bit enables operations for the DAC0 and
DAC1 interfaces.

Table 25-26: DACC_BCST_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Current Count 1 Register

The DACC_CNTCUR1 register holds the current count of the DMA work-unit of the DAC1 interface. This
register is loaded from the DACC_CNT1 register when either of the following occur:

• The DACC is enabled in DMA mode

• A wrap around occurs in circular buffering mode

The count decrements with each DMA read from memory.

Figure 25-27: DACC_CNTCUR1 Register Diagram

Status Register

The DACC_STAT register indicates status for DACC operations.

Table 25-27: DACC_CNTCUR0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Current Count Value.
The DACC_CNTCUR0.VALUE bits hold the current transfer count of a DMA work-
unit for DAC0.

Table 25-28: DACC_CNTCUR1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

VALUE Current Count Value.
The DACC_CNTCUR1.VALUE bits hold the current transfer count of a DMA work-
unit for DAC1.

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 25–43

Figure 25-28: DACC_STAT Register Diagram

Table 25-29: DACC_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:12
(R/NW)

FSTAT1 FIFO Status 1.
The DACC_STAT.FSTAT1 bits indicates the number of 16-bit data in DAC1 FIFO
remaining to be transmitted to DAC. The status increments when DMA or core fills
the DAC FIFO. The status decrements when a data transmission starts on the DAC
interface. These bits are cleared when the DACC_CTL1.DMAEN bit has a 0-1
transition.

11:8
(R/NW)

FSTAT0 FIFO Status 0.
The DACC_STAT.FSTAT0 bits indicates the number of 16-bit data in DAC0 FIFO
remaining to be transmitted to DAC. The status increments when DMA or core fills
the DAC FIFO. The status decrements when a data transmission starts on the DAC
interface. These bits are cleared when the DACC_CTL0.DMAEN bit has a 0-1
transition.

4
(R/NW)

DPND1 Data Pending 1.
The DACC_STAT.DPND1 bit indicates whether the DAC1 interface has made a
DMA read access request and is pending (waiting) to receive the data. If DMA for the
DAC1 interface is disabled (DACC_CTL1.DMAEN =0), wait until DACC_STAT.
DPND1 =0 before enabling DMA for the DAC. This bit is cleared when DACC_
CTL1.DMAEN has a 0-1 transition.

0 No Status

1 Pending Read Data

0
(R/NW)

DPND0 Data Pending 0.
The DACC_STAT.DPND0 bit indicates whether the DAC0 interface has made a
DMA read access request and is pending (waiting) to receive the data. If DMA for the
DAC0 interface is disabled (DACC_CTL0.DMAEN =0), wait until DACC_STAT.
DPND0 =0 before enabling DMA for the DAC. This bit is cleared when DACC_
CTL0.DMAEN has a 0-1 transition.

0 No Status

1 Pending Read Data

DIGITAL-TO-ANALOG CONVERTER CONTROLLER (DACC)
ADSP-CM40X DACC REGISTER DESCRIPTIONS

25–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–1

26 Harmonic Analysis Engine (HAE)

The harmonic analysis engine (HAE) analyzes harmonic frequencies present on the voltage and current
input samples. The HAE receives input samples from two source channels whose frequencies are between
45 Hz and 65 Hz. The HAE then processes the input samples and produces output results. The output
results consist of power quality measurements of the fundamental and up to twelve additional harmonics.

HAE Features

The HAE features include:

• Processing of two 24-bit signed input channels, consisting of one voltage and one current. The input
full scale is limited to ~ +/-6,000,000

• Processing of fundamental frequencies between 45-65 Hz

• Processing of input samples at a nominal 8 Hz rate

• Processing of the fundamental plus twelve harmonic frequencies

• Active, reactive, apparent, IRMS, VRMS, and power factor on the fundamental frequency

• Active, reactive, apparent, IRMS, VRMS, power factor, IHD+n, and VHD+n on the twelve harmonic
frequencies

• The accuracy of the measurements, relative to a full scale of +/-6,000,000:

– Fundamental active/reactive powers 0.1% down to 1/1000 of full scale

– Fundamental apparent power 0.2% down to 1/1000 of full scale

– Fundamental IRMS/VRMS 0.1% down to 1/1000 of full scale

– Fundamental power factor 0.3% based on active and apparent accuracy

– Harmonic active/reactive powers 1% down to 1/1000 of full scale

– Harmonic apparent power 2% down to 1/1000 of full scale

– Harmonic IRMS/VRMS 1% down to 1/1000 of full scale

– Harmonic power factor 3% based on active and apparent accuracy

– Harmonic IHD+n 2% down to 1/1000 FS based on the fundamental and harmonic IRMS

– Harmonic VHD+n 2% down to 1/1000 FS based on the fundamental and harmonic VRMS

HARMONIC ANALYSIS ENGINE (HAE)
HAE FUNCTIONAL DESCRIPTION

26–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

• Twelve 6-bit fields for selecting harmonics to analyze, limited by bandwidth of the input signal. The
fundamental component always is provided.

HAE Functional Description

The following sections provide a functional description of the HAE.

• ADSP-CM40z HAE Register List

• ADSP-CM40z HAE Interrupt List

• ADSP-CM40z HAE Trigger List

• HAE Block Diagram

• HAE Architectural Concepts

ADSP-CM40z HAE Register List

The harmonic analysis engine (HAE) analyzes harmonics present on the voltage and current input
samples. The HAE receives input samples from two source channels, processes the samples, and produces
output results. The output results consist of power quality measurements of the fundamental and up to
twelve additional harmonic components. A set of registers govern HAE operations. For more information
on HAE functionality, see the HAE register descriptions.

Table 26-1: ADSP-CM40z HAE Register List

Name Description

HAE_RUN Run Register

HAE_COEF_RAM Coefficient RAM Register

HAE_CFG0 Configuration 0 Register

HAE_CFG1 Configuration 1 Register

HAE_CFG2 Configuration 2 Register

HAE_CFG3 Configuration 3 Register

HAE_STAT Status Register

HAE_ISAMPLE I (Current) Sample Register

HAE_VSAMPLE V (Voltage) Sample Register

HAE_IWAVEFORM I (Current) Waveform Register

HARMONIC ANALYSIS ENGINE (HAE)
HAE FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–3

ADSP-CM40z HAE Interrupt List

ADSP-CM40z HAE Trigger List

HAE_VWAVEFORM V (Voltage) Waveform Register

HAE_RESULTS_RAM Results RAM Register

HAE_DATA_RAM Data (Configuration) RAM Register

HAE_CFG4 Configuration 4 Register

HAE_DIDT_GAIN DIDT Gain Register

HAE_DIDT_COEF DIDT Coefficient Register

HAE_VLEVEL Voltage Level Register

HAE_Hnn_INDX Harmonic n Index Register

Table 26-2: ADSP-CM40z HAE Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

90 HAE0_STAT HAE0 Status LEVEL

91 HAE0_RXDMA_CH0 HAE0 RX DMA Channel 0 Transfer
Complete

LEVEL 14

92 HAE0_RXDMA_CH1 HAE0 RX DMA Channel 1 Transfer
Complete

LEVEL 15

93 HAE0_TXDMA HAE0 TX DMA Channel 0 Transfer
Complete

LEVEL 16

Table 26-3: ADSP-CM40z HAE Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

33 HAE0_RXDMA_CH0 HAE0 RX DMA Channel 0 Transfer Complete PULSE/EDGE

34 HAE0_RXDMA_CH1 HAE0 RX DMA Channel 1 Transfer Complete PULSE/EDGE

35 HAE0_TXDMA HAE0 TX DMA Channel 0 Transfer Complete PULSE/EDGE

Table 26-1: ADSP-CM40z HAE Register List (Continued)

Name Description

HARMONIC ANALYSIS ENGINE (HAE)
HAE FUNCTIONAL DESCRIPTION

26–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

HAE Block Diagram

The following figure shows the functional blocks within the HAE.

Figure 26-1: HAE Block Diagram

The following sections describe the primary HAE blocks:

• Harmonic Engine

• Harmonic Analyzer

• Data Transfer Module

• Results Memory

Table 26-4: ADSP-CM40z HAE Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

30 HAE0_RXDMA_CH0 HAE0 RX DMA Channel 0 Transfer Start

31 HAE0_RXDMA_CH1 HAE0 RX DMA Channel 1 Transfer Start

32 HAE0_TXDMA HAE0 TX DMA Channel 0 Transfer Start

HARMONIC ANALYSIS ENGINE (HAE)
HAE FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–5

HAE Architectural Concepts

Using the HAE features and event control to their greatest potential requires an understanding of these
architectural concepts.

• Harmonic Engine

• Harmonic Analyzer

• Data Transfer Module

• Results Memory

Harmonic Engine

The following figure presents a synthesized diagram of the harmonic engine, its settings, and its output
registers.

Figure 26-2: HAE Engine Block Diagram

HARMONIC ANALYSIS ENGINE (HAE)
HAE FUNCTIONAL DESCRIPTION

26–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The harmonic engine hardware block works in conjunction with other HAE blocks to co-process full and
partial results (see Harmonic Calculations). At the start of a new sampling period (described in Initializa-
tion), the harmonic engine cycles through predefined locations in data RAM, which contain the analyzer
processing results. See Harmonic Analyzer for more information.

As the harmonic engine produces results in their final formats (described in HAE Result Ranges and
Formats), the results are stored in the results memory (see Results Memory).

The HAE engine computes harmonic information in a no-attenuation pass band of 2.8 kHz (corre-
sponding to a -3 dB bandwidth of 3.3 kHz) for line frequencies between 45 Hz and 66 Hz. Neutral current
can also be analyzed simultaneously with the sum of phase currents. See Theory of Operation for more
information.

Harmonic Analyzer

The harmonic analyzer block works in conjunction with the Harmonic Engine to co-process full and
partial results.

To perform harmonic analysis, the HAE contains a pair of voltage and current inputs and a set of twelve
indexes to indicate which harmonic components to extract. See Theory of Operation and Harmonic
Calculations for more information.

High-Pass Filters (HPFs)

The voltage and current have the option of being high-pass filtered in order to remove DC offsets. The
following figure shoes the frequency response of the high-pass filters (the -3 dB point is around 1.1 Hz).
The HPFs are enabled by default.

Figure 26-3: Frequency Response for High-Pass Filters

Digital Integrators

HARMONIC ANALYSIS ENGINE (HAE)
HAE FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–7

For cases when the current is sensed with a di/dt sensor, such as a Rogowski coil, the HAE offers an internal
digital integrator for compensation. Ideally, it should cause a perfect 90 degrees of phase shift at all the
frequencies; at 50 Hz it is close to that value (see the following figure). The integrator is necessary to restore
the signal to its original form before using the signal in HAE calculations. The digital integrator is disabled
by default.

Figure 26-4: Digital Integrator

Phase-Locked Loop and Clock Control (PLL)

The fundamental frequency of the system is extracted from the voltage signal using the phase-locked loop
and clock control (PLL) techniques. PLL techniques are optimized for signals with frequencies used in
standard power grids around the world (50 Hz or 60 Hz). Possible deviations of up to 5 Hz are taken into
account, so the final guaranteed operating range is from 45 Hz to 65 Hz.

The initial detection time of the frequency depends on its value and can take up to several seconds. This
only happens at the start-up of the HAE block. Once the value of the fundamental frequency is detected,
the PLL tracks it continuously.

Settling Times

The block that extracts all of the of harmonic RMS and power values is replicated twelve times in parallel
for all of the harmonic indexes plus once for the fundamental. Once an index for a certain harmonic
changes in value, there is settling time of about 700 mSec (~700 / .125 = 5600 8K samples) to achieve less
than 0.1% error needed for all the internal RMS and powers computations (see the following plots).

HARMONIC ANALYSIS ENGINE (HAE)
HAE FUNCTIONAL DESCRIPTION

26–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 26-5: Fundamental and Harmonic Values - Settling Times

Data Transfer Module

The data transfer module transfers three channels of data to and from the HAE module.

RX I (Receive Current Sample) Channel

The RX I channel transfers HAE current (I) input samples from system memory via direct memory access
(DMA). The RX I request occurs at a nominal 8 kHz rate, depending on the HAE_CFG1.STARTDIV bit field.
The RX I samples typically come from a SINC filter via a memory buffer. For accurate harmonic results,
derive the input samples at exactly the same rate as the HAE sample loop. Therefore, program the SINC
and HAE modules to be timing-matched. The HAE sample loop is determined by SCLK/(HAE_CFG1.
STARTDIV + 1), which must be programmed to be nominally 8 kHz in frequency. There is one DWORD
transfer each HAE sample loop.

There is also an RX I memory-mapped location (HAE_ISAMPLE register) in peripheral space (MMR), which
enables the MCU to provide the I channel samples, timed with the HAE_STAT.RXIRQ bit, if desired.

RX V (Receive Voltage Sample) Channel

The RX V channel transfers HAE voltage (V) input samples from system memory via DMA. The RX V
request occurs at a nominal 8 kHz rate, depending on the HAE_CFG1.STARTDIV bit field. The RX V samples
typically come from a SINC filter via a memory buffer. For accurate harmonic results, derive the input
samples at exactly the same rate as the HAE sample loop. Therefore, program the SINC and HAE modules
to be timing-matched. The HAE sample loop is determined by SCLK/(HAE_CFG1.STARTDIV + 1), which
must be programmed to be nominally 8 kHz in frequency. There is one DWORD transfer each HAE sample
loop.

There is also an RX V memory-mapped location (HAE_VSAMPLE register) in peripheral space (MMR),
which enables the MCU to provide the V channel samples, timed with the HAE_STAT.RXIRQ bit, if desired.

HARMONIC ANALYSIS ENGINE (HAE)
HAE FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–9

Example:

• The HAE_STAT.RXIRQ bit toggles prior to RX transfers:

The RX interrupt is used internally in hardware to request I and V samples. The interrupt also can be
used by the MCU if the MCU supplies the input samples, rather than the DMA interface.

• RX transfers indicate that the RX channel is ready:

The HAE RX channels request one RX sample at an 8 kHz rate, depending on the HAE_CFG1.STARTDIV
bit field. The holding register stores the RX data, replacing the previous data. The holding register
contents are moved up to an output register and driven to the Harmonic Analyzer module for
processing. This amounts to a two-deep FIFO, allowing a full sample time of latency on the input
sample arrival, nominally 125 uSec (8 kHz).

If the MCU supplies the input samples, rather than the DMA RX interfaces, there are two memory-
mapped locations (HAE_ISAMPLE and HAE_VSAMPLE), where the next samples are written. As previously
mentioned, the HAE_STAT.RXIRQ bit can be used to time the sample delivery.

TX (Transmit Results) Channel

The TX channel transfers HAE results from results memory to system memory via DMA. The results for
the fundamental and twelve harmonics are stored in 13 8-location fields in the results memory. Therefore,
the maximum number of DWORDs to transfer is 13 x 8 = 104. Use the HAE_CFG3.CHANEN bits to select the
channels to transfer.

The HAE can request a result transfer each 8 kHz sample period, meaning that up to 104 DWORDs can be
transferred each 125 uSec. Use the HAE_CFG2.UPDATE bit field to set the request rate to longer intervals.
The results also are memory-mapped to peripheral address space, which enables the MCU to read the
results, timed with the HAE_STAT.TXIRQ bit, if desired.

Example:

• The HAE_CFG3.CHANEN bit field is set to 0x009 to transfer the fundamental and harmonic contained in
the HAE_H3_INDX register (programmed to 5th).

• The HAE_STAT.TXIRQ bit toggles prior to TX transfers:

The TX interrupt is used internally in hardware to start the transfer. The interrupt also can be used by
the MCU if the HAE results are read by the MCU, rather than transferred by the DMA interface.

• TX transfers indicate that the HAE results data is ready:

The HAE TX channel can transfer one DWORD every other clock. The internal hardware parses through
the HAE_CFG3.CHANEN bit field, eventually traversing all 13 bits. If consecutive channels are enabled,
two additional IDLE clocks are inserted between the adjacent channels for a total of three IDLE clocks.
When channels are skipped, one additional IDLE clock is inserted for each unselected channel. There-
fore, there are 3 (inter-channel IDLE) + 2 (skipped channels) = 5 IDLE clocks between the fundamental
and HAE_H3_INDX transfers.

HARMONIC ANALYSIS ENGINE (HAE)
HAE FUNCTIONAL DESCRIPTION

26–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Results Memory

The results memory is organized by the fundamental and twelve harmonic indexes. Each of the 13 poten-
tially analyzed frequencies has eight locations dedicated to store various power quality measurements.
Each frequency is offset from the next by eight locations.

The following figure shows the results memory contents.

Figure 26-6: HAE Results Memory

HAE Results Upper Byte ID

The HAE results are stored in a 24-bit wide memory, as shown in Results Memory.

When the system bus moves the results into memory, the HAE hardware appends a unique
CHANNEL:INDEX identifier to the upper byte of each results location. The intent of the ID byte is to assist
in data parsing of HAE results.

 The 32-bit appended result is as follows:

HARMONIC ANALYSIS ENGINE (HAE)
HAE FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–11

The CHANNEL in the upper byte corresponds to nn in Hnn_INDX of that particular results location. The INDX
in the upper byte corresponds to the INDX within the Hnn_INDX grouping.

For example, location H7_PF has 0x75 in the upper byte of the system bus transfer of that HAE results
memory location.

HAE Result Ranges and Formats

The HAE results, stored in the results memory, have formats appropriate for the given measurement.
Measurements accuracy is relative to the full scale value of the input samples, and the assumed full scale is
+/~6,000,000. If the full scale is above this value, overflow can occur and the results are undefined. A
significantly lower full scale limits the dynamic range accuracy of the measurements. For example, a full
scale, which is 50% lower than the assumed 6,000,000 full scale, has the dynamic range reduced by 50%.
Potentially, this can be better or worse, determined by the ADC noise floor supplying the input samples.

The HAE results are as linear as the input samples, within the accuracy ranges specified earlier, assuming
a full scale input sample of ~=/-6,000,000 and sufficiently low ADC noise floor. It is advised that the users
evaluate their systems, using their specific ADC and full scale specifications to predict the HAE range of
accuracy and expected results.

The HAE result formats are listed below.

• IRMS and VRMS: both fundamental and harmonic IRMS and VRMS are unsigned magnitudes with full
scale of ~4,200,000

• Active and reactive power: both active and reactive powers are signed numbers with full scale of ~+/-
4,200,000

• Apparent power: apparent power is an unsigned magnitude with full scale of ~4,200,000

• Power factor: each LSB of the fundamental and harmonic power factors equates to a weight of 2-23;
hence, the maximum register value of 0x7FFFF is equating to a power factor value of 1. The minimum
register value of 0x80000 corresponds to a power factor of -1. If because of offset and gain calibrations,
the power factor is outside of the -1 to +1 range, the result is set at -1 or +1, depending on the sign of
the fundamental reactive power.

• IHD+n/VHD+n: the harmonic distortion plus noise ratios are computed using the RMS of the funda-
mental and the RMS of the harmonic under analysis. In other words, the ratio only covers the particular
harmonic under analysis versus the fundamental. The ratios are stored as 24-bit values in 3.21 signed
format. This means that the ratios are limited to +3.9999, and all greater results are clamped to it. The
HD+n ratios cannot be negative.

CHANNEL[3:0] INDEX[3:0] RESULTS[23:0]

HARMONIC ANALYSIS ENGINE (HAE)
HAE OPERATING MODES

26–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

HAE Operating Modes

 The HAE module has only one operating mode. The HAE uses the DMA interface to transfer data to/from
system memory. The HAE configuration registers enable the module and calibrate its frequency (clock)
divide and other parameters, as described in HAE Programming Model. The HAE triggers and status
signals indicate system events and errors.

HAE Data Transfer Modes

The HAE uses the RX DMA interface to transfer data from system memory. Samples for the current (I)
and voltage (V) channels of the AFE or SINC filter compose the data: two WORDS are transferred each 8 kHz
sample period into the HAE (I and V).

The HAE uses the TX DMA interface to transfer data to system memory. The fundamental and selected
harmonic results compose the data: up to 13 (fundamental + 12 harmonics) x 8 = 104 DWORDs are trans-
ferred each 8K sample period.

See Data Transfer Module for more information.

HAE Event Control

The HAE module uses DMA to transfer samples to and data from system memory. The HAE also can use
TX and RX events to time the arrival of input samples and extract the results by the MCU:

• The MCU uses the RX event (HAE_STAT.RXIRQ) as an IRQ to time when to write the I and V samples
into the HAE.

• The MCU uses the TX event (HAE_STAT.TXIRQ) as an IRQ to time when to read the HAE results.

HAE Interrupt Signals

The interrupt signals to the HAE module include:

• The RX interrupt to time the delivery of waveform samples as inputs to the HAE.

• The TX interrupt to time when the HAE results memory is ready with new values for the current
sample.

The HAE generates the RX and TX interrupt signals at a nominal 8 kHz rate. Refer to Data Transfer
Module for more information.

HARMONIC ANALYSIS ENGINE (HAE)
HAE PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–13

HAE Status and Error Signals

The trigger and status signals to the HAE module include:

• HAE_STAT.RDY (HAE ready status). When the bit is set, the HAE is fully accessible.

• HAE_STAT.RXIRQ (RX IRQ status). The bit mirrors the RX interrupt.

• HAE_STAT.TXIRQ (TX IRQ status). The bit mirrors the TX interrupt.

The status bit requires a 1 to clear and re-enable the corresponding interrupt for the next sample period.
Refer to Data Transfer Module for more information.

HAE Programming Model

The following sections provide basic procedures for configuring various HAE operations.

The recommended approach to managing the HAE calculations is as follows:

• Initialize the HAE configuration registers.

• Choose the harmonic channels to be monitored.

• Initialize the HAE_VLEVEL register to match the nominal voltage phase input magnitude.

• Set the HAE_RUN register.

• At each transmit IRQ (HAE_STAT.TXIRQ = 1), read HAE results from the results memory.

• Read the results to match the HAE configuration setup. For example, if HAE_Hnn_INDX registers are
configured to analyze harmonics 3, 5, and 7, read the results RAM as explained in the following
sections.

HAE Programming Concepts

Using the HAE features to their greatest potential requires an understanding of some HAE related
concepts.

• Theory of Operation

• Initialization

• Harmonic Calculations

• Configuring Harmonic Calculations Update Rate

Theory of Operation

The HAE theory of operation is as follows.

HARMONIC ANALYSIS ENGINE (HAE)
HAE PROGRAMMING MODEL

26–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Consider an nonsinusoidal AC system supplied by a voltage, v(t), that consumes the current, i(t). Then,

where:

• Vk, Ik are the RMS voltage and current, respectively, of each harmonic.

• Φk, γk are the phase delays of each harmonic.

• ω is the angular velocity at the fundamental (line) frequency f.

The HAE harmonic calculations are specified for line frequencies between 45 Hz and 66 Hz. The voltage
channel is used as time base and must have an amplitude greater than 20% of full scale.

The number of harmonics, which can be analyzed within the 2.8 kHz pass band, is the whole number of
2800/LINE_FREQUENCY. The absolute maximum number of harmonics accepted by the HAE is 63. At 50
Hz, up to 56 harmonics (2800/50) can be analyzed.

When the HAE analyzes I and V samples, the following metering quantities are computed:

• Fundamental current RMS: I1

• Fundamental voltage RMS: V1

• RMS of up to twelve harmonics of the current channel: In, n = 2, 3,…, 12

• RMS of up to twelve harmonics of the voltage channel: Vn, n = 2, 3,…, 12

• Fundamental active power: P1 = V1I1cos(φ1 − γ1)

• Fundamental reactive power: Q1 = V1I1sin(φ1 − γ1)

• Fundamental apparent power: S1 = V1I1

• Power factor of the fundamental:

Active power of up to twelve harmonics:

Pn = VnIncos(φn – γn), n = 2, 3,…, 12

• Reactive power of up to twelve harmonics:

Qn = VnInsin(φn – γn), n = 2, 3,…, 12

HARMONIC ANALYSIS ENGINE (HAE)
HAE PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–15

• Apparent power of up to twelve harmonics:

Sn = VnIn, n = 2, 3, …, 12

• Power factor of up to twelve harmonics:

• Total harmonic distortion of the current channel:

• Total harmonic distortion of the voltage channel:

• Harmonic distortion of up to twelve harmonics on the current channel:

• Harmonic distortion of up to twelve harmonics on the voltage channel:

Initialization

The HAE typically is initialized with parameters and settings for a given usage scenario, then is interrupt
driven when new results are available.

The HAE programming depends on whether the line frequency is 50 Hz or 60 Hz. If the external sensor is
a di/dt type, there are also some differences. The initialization sequence is shown in the following flow-
chart.

HARMONIC ANALYSIS ENGINE (HAE)
HAE PROGRAMMING MODEL

26–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 26-7: HAE Initialization

HARMONIC ANALYSIS ENGINE (HAE)
HAE PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–17

Harmonic Calculations

When the harmonic engine runs, it computes information about the fundamental and up to twelve
harmonics. The HAE simultaneously monitors the indexes of the additional twelve harmonics, provided
by the 8-bit registers HAE_Hnn_INDX. Simply write the index of the harmonic into the register for that
harmonic to be monitored. If the second harmonic is monitored, write 2. If harmonic 51 is desired, write
51. The HAE always monitors the fundamental component, independent of the values written into HAE_
Hnn_INDX. Therefore, if one of these registers is made equal to 1, the HAE monitors the fundamental
components multiple times. The maximum index allowed in the HAE_Hnn_INDX registers is 63. The no
attenuation pass band is 2.8 kHz, corresponding to a -3 dB bandwidth of 3.3 kHz, thus all harmonics of
frequency lower than 2800 Hz are supported without attenuation.

As a reference, the following table presents the harmonic engine outputs and registers in which the outputs
are stored.

Table 26-5: Harmonic Engine Outputs and Registers where Values are Stored

Quantity Definition HAE Registers

 RMS of the Fundamental Component V1, I1 F_VRMS, F_IRMS

RMS of a Harmonic Component Vn, In, n = 2, 3,…, 12 Hnn_VRMS, Hnn_XIRMS

Active Power of the Fundamental
Component

P1 = V1I1cos(φ1 − γ1) F_ACT

Active Power of a Harmonic
Component

 Pn = VnIncos(φn – γn), n = 2, 3,…, 12 Fnn_ACT

Reactive Power of the Fundamental
Component

Q1 = V1I1sin(φ1 − γ1) F_REACT

Reactive Power of a Harmonic
Component

Qn = VnInsin(φ1 − γ1), n = 2, 3,…, 12 Hnn_REACT

Apparent Power of the Fundamental
Component

S1 = V1I1 F_APP

Apparent Power of a Harmonic
Component

 Sn = VnIn, n = 2, 3, …, 12 Hnn_APP

Power Factor of the Fundamental
Component

F_PF

Power Factor of a Harmonic
Component

Hnn_PF

Harmonic Distortion of a Harmonic
Component

Hnn_VHDN, Hnn_IHDN

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

26–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Configuring Harmonic Calculations Update Rate

The harmonic engine functions at 8 kHz rate. From the moment the HAE_CFG2 register is initialized, and
the harmonic indexes are set in the HAE_Hnn_INDX index registers, the HAE calculations take typically 750
mSec to settle within the specification parameters.

The update rate of the harmonic engine's output registers is managed by the HAE_CFG2.UPDATE bits and
independent of the engine’s calculations rate of 8 kHz. The default value of 000 means that the registers
are updated every 125 uSec (8 kHz rate). Other update periods are: 250 uSec (001), 1 mSec (010), 16 mSec
(011), 128 mSec (100), 512 mSec (101), 1.024 mSec (110). If the HAE_CFG2.UPDATE bits are 111, the
harmonic calculations are disabled.

The HAE provides two ways to manage the harmonic computations. The first approach is enabled when
bit HAE_CFG2.MODE is cleared to its default value of 0, which sets status bit HAE_STAT.TXIRQ to 1 after a
certain period of time and then every time the harmonic calculations are updated at HAE_CFG2.UPDATE
frequency. This allows an external microcontroller to access the harmonic calculations only after they have
settled. The time period is determined by the state of bits HAE_CFG2.SETTLE. The default value of 01 sets
the time to 750 mSec, the settling time of the harmonic calculations. Other possible values are 500 mSec
(00), 1 mSec (10), and 1250 mSec (11).

The second approach is enabled when bit HAE_CFG2.MODE is set to 1, which sets status bit HAE_STAT.TXIRQ
to 1 every time the harmonic calculations are updated at the update frequency determined by the HAE_
CFG2.UPDATE bits, without waiting for the harmonic calculations to settle. This allows an external micro-
controller to access the harmonic calculations immediately after they have been started. The status bit is
cleared by writing to the HAE_STAT register, with the corresponding bit (HAE_STAT.TXIRQ) being set to 1.

ADSP-CM40z HAE Register Descriptions

Harmonic Analysis Engine (HAE) contains the following registers.

Table 26-6: ADSP-CM40z HAE Register List

Name Description

HAE_RUN Run Register

HAE_COEF_RAM Coefficient RAM Register

HAE_CFG0 Configuration 0 Register

HAE_CFG1 Configuration 1 Register

HAE_CFG2 Configuration 2 Register

HAE_CFG3 Configuration 3 Register

HAE_STAT Status Register

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–19

Run Register

The HAE_RUN register starts/idles HAE harmonic calculations.

Figure 26-8: HAE_RUN Register Diagram

HAE_ISAMPLE I (Current) Sample Register

HAE_VSAMPLE V (Voltage) Sample Register

HAE_IWAVEFORM I (Current) Waveform Register

HAE_VWAVEFORM V (Voltage) Waveform Register

HAE_RESULTS_RAM Results RAM Register

HAE_DATA_RAM Data (Configuration) RAM Register

HAE_CFG4 Configuration 4 Register

HAE_DIDT_GAIN DIDT Gain Register

HAE_DIDT_COEF DIDT Coefficient Register

HAE_VLEVEL Voltage Level Register

HAE_Hnn_INDX Harmonic n Index Register

Table 26-6: ADSP-CM40z HAE Register List (Continued)

Name Description

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

26–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Coefficient RAM Register

The HAE_COEF_RAM register provides coefficients for HAE calculations.

Figure 26-9: HAE_COEF_RAM Register Diagram

Configuration 0 Register

The HAE_CFG0 register configures high-level interrupts and specifies the line frequency for HAE opera-
tions.

Table 26-7: HAE_RUN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

0
(R/W)

RUN Run/Stop.
The HAE_RUN.RUN bit starts the HAE harmonic calculations.

0 Stop

1 Run

Table 26-8: HAE_COEF_RAM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27:0
(R/W)

VALUE Coefficient RAM Address.
The HAE_COEF_RAM.VALUE bits hold the base pointer (address) of the HAE
coefficient memory. The address range is 0x100 - 0x1FF. The size is 64 x 2 8 bits.

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–21

Figure 26-10: HAE_CFG0 Register Diagram

Configuration 1 Register

The HAE_CFG1 register configures the HAE frequency (clock) divider.

Table 26-9: HAE_CFG0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

7
(R/W)

RXIRQEN Receive IRQ Enable.
The HAE_CFG0.RXIRQEN bit enables an interrupt, which the HAE triggers on
each request for a new input sample on both the I and V channels.

0 Disable

1 Enable

6
(R/W)

TXIRQEN Transmit IRQ Enable.
The HAE_CFG0.TXIRQEN bit enables an interrupt, which the HAE triggers on
each result as the result is calculated and ready to transmit.

0 Disable

1 Enable

1
(R/W)

LFREQ Line Frequency Select.
The HAE_CFG0.LFREQ bit specifies the line frequency for the HAE. Set the bit to
match the line frequency being analyzed.

0 50 Hz

1 60 Hz

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

26–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 26-11: HAE_CFG1 Register Diagram

Configuration 2 Register

The HAE_CFG2 register enables and configures HAE operations as related to output results.

Figure 26-12: HAE_CFG2 Register Diagram

Table 26-10: HAE_CFG1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

14:0
(R/W)

STARTDIV Start (Clock) Divider.
The HAE_CFG1.STARTDIV bits provide the sample clock divider. Write the value
to divide the main clock down to 8 kHz. The HAE sample loop is determined by
SCLK / (HAE_CFG1.STARTDIV + 1).

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–23

Configuration 3 Register

The HAE_CFG3 register configures HAE data transfer operations by selecting the fundamental and poten-
tial of twelve additional harmonic channels. The selected harmonics have their data (results) transferred
to memory over the P2P bus: first, the fundamental; followed by the selected channel n, in the order from
the lowest to the highest numbered channel. Each selected channel has its eight result words transferred.

Table 26-11: HAE_CFG2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

6
(R/W)

EN Enable Clock.
The HAE_CFG2.EN bit enables the HAE the main clock, enabling HAE operation.

0 Disable

1 Enable

5:3
(R/W)

UPDATE Update Rate Select.
The HAE_CFG2.UPDATE bits determine the rate (in microseconds or milliseconds)
at which the HAE updates the output results. The HAE_CFG2.UPDATE bits can also
disable harmonic calculations.

0 125 uSec

1 250 uSec

2 1 mSec

3 16 mSec

4 128 mSec

5 512 mSec

6 1024 mSec

7 Disable

2:1
(R/W)

SETTLE Settle Period Select.
The HAE_CFG2.SETTLE bits determine the time (in milliseconds) that the HAE
waits before producing results. The time is based on an 8K sample count.

0 512 mSec

1 768 mSec

2 1024 mSec

3 1280 mSec

0
(R/W)

MODE (Results) Mode Select.
The HAE_CFG2.MODE bit determines whether the HAE produces results
immediately or waits per the HAE_CFG2.SETTLE bit field.

0 Results after Settle

1 Results First

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

26–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 26-13: HAE_CFG3 Register Diagram

Status Register

The HAE_STAT register indicates status for the HAE module and its interrupts.

Figure 26-14: HAE_STAT Register Diagram

Table 26-12: HAE_CFG3 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

12:0
(R/W)

CHANEN Channel n Enable.
Each HAE_CFG3.CHANEN bit enables the fundamental and potential of twelve
additional harmonic data channels. The following enumerations apply to each bit. Bit
0 denotes the fundamental channel (enabled by default). Bits 1-12 denote the
harmonic channels 1-12, accordingly.

0 Disable

1 Enable

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–25

I (Current) Sample Register

The HAE_ISAMPLE register provides current (I) input samples for HAE calculations.

Figure 26-15: HAE_ISAMPLE Register Diagram

Table 26-13: HAE_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

2
(R/NW)

RDY Ready Status.
The HAE_STAT.RDY bit indicates status for the HAE. When the bit is set (=1), the
HAE is fully accessible, following the setting of the HAE_CFG2.EN bit.

0 No Status

1 Ready

1
(R/W1C)

RXIRQ Receive IRQ Status.
The HAE_STAT.RXIRQ bit indicates status for an HAE RX interrupt. The bit
mirrors the HAE_CFG0.RXIRQEN bit status.

0 No Status

1 Interrupt Detected

0
(R/W1C)

TXIRQ Transmit IRQ Status.
The HAE_STAT.TXIRQ bit indicates status for an HAE TX interrupt. The bit
mirrors the HAE_CFG0.TXIRQEN bit status.

0 No Status

1 Interrupt Detected

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

26–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

V (Voltage) Sample Register

The HAE_VSAMPLE register provides voltage (V) input samples for HAE calculations.

Figure 26-16: HAE_VSAMPLE Register Diagram

I (Current) Waveform Register

The HAE_IWAVEFORM register holds current waveforms produced by the HAE. After some amplitude and
phase delay, the waveform follows a sample input.

Table 26-14: HAE_ISAMPLE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/W)

VALUE Current Input Sample.
The HAE_ISAMPLE.VALUE bits hold the current sample if provided by the MCU.
The sample can be timed with the HAE_STAT.RXIRQ bit.

Table 26-15: HAE_VSAMPLE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/W)

VALUE Voltage Input Sample.
The HAE_VSAMPLE.VALUE bits hold the voltage sample if provided by the MCU.
The sample can be timed with the HAE_STAT.RXIRQ bit.

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–27

Figure 26-17: HAE_IWAVEFORM Register Diagram

V (Voltage) Waveform Register

The HAE_VWAVEFORM register contains voltage waveforms produced by the HAE. After some amplitude
and phase delay, the waveform follows a sample input.

Figure 26-18: HAE_VWAVEFORM Register Diagram

Table 26-16: HAE_IWAVEFORM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/NW)

VALUE Current Waveform.
The HAE_IWAVEFORM.VALUE bits hold the processed current input sample.

Table 26-17: HAE_VWAVEFORM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/NW)

VALUE Voltage Waveform.
The HAE_VWAVEFORM.VALUE bits hold the processed voltage input sample.

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

26–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Results RAM Register

The HAE_RESULTS_RAM register points to a memory block holding HAE results.

Figure 26-19: HAE_RESULTS_RAM Register Diagram

Data (Configuration) RAM Register

The HAE_DATA_RAM register points to a memory block holding HAE data.

Figure 26-20: HAE_DATA_RAM Register Diagram

Table 26-18: HAE_RESULTS_RAM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

23:0
(R/NW)

ENTRY Results Memory Address.
The HAE_RESULTS_RAM.ENTRY bits hold the base pointer (address) for the HAE
results RAM. The address range is x0c00 - 0x0dff. The size is 128 x 24 bits.

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–29

Configuration 4 Register

The HAE_CFG4 register configures the internal digital integrator and high-pass filters (HPS) for HAE oper-
ations. The digital integrator is disabled and the filters are enabled by default.

Figure 26-21: HAE_CFG4 Register Diagram

DIDT Gain Register

The HAE_DIDT_GAIN register provides the di/dt sensor's gain.

Table 26-19: HAE_DATA_RAM Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27:0
(R/W)

VALUE Data Configuration RAM Address.
The HAE_DATA_RAM.VALUE bits hold the base pointer (address) of the HAE data
RAM. The address range is 0x1000 - 0x1FFF. The size is 1024 x 28 bits.

Table 26-20: HAE_CFG4 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R/W)

DIDTEN di/dt (Sensor) Enable.
The HAE_CFG4.DIDTEN bit enables the internal digital integrator for a di/dt
sensor. Set the bit (=1) if the sensor is a di/dt type sensor.

0 Disable

1 Enable

0
(R/W)

HPFEN High-Pass Filter Enable.
The HAE_CFG4.HPFEN bit enables the high-pass filters. Set the bit (=1) unless
measuring DC levels [M13], [M14], and [M15].

0 Disable

1 Enable

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

26–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 26-22: HAE_DIDT_GAIN Register Diagram

DIDT Coefficient Register

The HAE_DIDT_COEF register sets the di/dt sensor's coefficient.

Figure 26-23: HAE_DIDT_COEF Register Diagram

Table 26-21: HAE_DIDT_GAIN Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27:0
(R/W)

VALUE di/dt Sensor Gain.
The HAE_DIDT_GAIN.VALUE bits provide the gain for a di/dt type sensor. If the
HAE_CFG4.DIDTEN bit is set (=1), set this bit field to 0.

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 26–31

Voltage Level Register

The HAE_VLEVEL register is used to scale the fixed fundamental voltage level internally. This assists the
HAE in locking onto the fundamental voltage channel.

Figure 26-24: HAE_VLEVEL Register Diagram

Harmonic n Index Register

The HAE_Hnn_INDX registers select harmonics for HAE operations. The fundamental always is provided.
The harmonic results appear in the results RAM (HAE_RESULTS_RAM register) based on the index.

Table 26-22: HAE_DIDT_COEF Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27:0
(R/W)

VALUE di/dt Coefficient.
The HAE_DIDT_COEF.VALUE bits provide the coefficient for a di/dt type sensor. If
the HAE_CFG4.DIDTEN bit is set (=1), set this bit field to 28'FFFF000.

Table 26-23: HAE_VLEVEL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

27:0
(R/W)

VALUE Voltage Input Level.
The HAE_VLEVEL.VALUE bits hold a value to scale the fixed fundamental voltage
level. Use this formula: VLEVEL = 0.64 / VIN * 5033168, where VIN is the
fundamental voltage input level.

HARMONIC ANALYSIS ENGINE (HAE)
ADSP-CM40Z HAE REGISTER DESCRIPTIONS

26–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 26-25: HAE_Hnn_INDX Register Diagram

Table 26-24: HAE_Hnn_INDX Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

5:0
(R/W)

VALUE Harmonic n Index.
The HAE_Hnn_INDX.VALUE bits select the harmonic channel n to analyze. Write
the index of the harmonic into the HAE_Hnn_INDX register for that harmonic to be
selected.

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–1

27 SINC Filter

The sinus cardinalis (SINC) filter module processes four independent sigma-delta bit streams by applying
a pair of SINC filters to each stream. A SINC filter converts the bit stream from a sigma-delta front-end
modulator into a digital word representing the signal level presented to the modulator.

The filter consists of a set of integration and decimation stages implemented directly in logic for efficient
execution. The SINC filter supports capture of current or voltage feedback signals from an isolating
analog-to-digital converter (ADC). Each modulator bit stream connects to two SINC filters: a primary
filter for controlling feedback; a secondary filter for overcurrent detection. The SINC module includes four
filter channels and two modulator clock generators.

SINC Filter Features

The SINC features include:

• Four bit stream filter channels for current or voltage feedback signal processing

• Each channel includes two SINC filter pairs:

– A primary filter for feedback signal processing

– A secondary filter for overload detection

• Two modulator clock sources with phase control options

• Configuration of SINC filter channels according to a modulator clock selection

• Programmable order and decimation rates

• Primary filters:

– Programmable bias and gain with output saturation

– Dedicated direct memory access (DMA) channels with data interleaving and programmable data
ready output triggers

• Secondary filters:

– Detecting a fault when signals exceed amplitude and duration values

– Registers preserving the eight most recent samples before a fault event

• Multiple interrupt trigger sources for overload fault and data overflow events

SINC FILTER
SINC FUNCTIONAL DESCRIPTION

27–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SINC Functional Description

The following sections provide more details on SINC filter functionality:

• ADSP-CM40z SINC Register List

• ADSP-CM40z SINC Interrupt List

• ADSP-CM40z SINC Trigger List

• SINC Definitions

• SINC Block Diagram

• SINC Architectural Concepts

ADSP-CM40x SINC Register List

The SINC filter module processes four independent sigma-delta bit streams by applying a pair of SINC
filters to each stream. A SINC filter converts the bit stream from a sigma-delta front-end modulator into
a digital word representing the signal level presented to the modulator. Each modulator bit stream
connects to two SINC filters: a primary filter for controlling feedback; and a secondary filter for overcur-
rent detection. The SINC module includes four filter channels and two modulator clock generators.

Table 27-1: ADSP-CM40x SINC Register List

Name Description

SINC_CTL Control Register

SINC_STAT Status Register

SINC_CLK Clock Control Register

SINC_RATE0 Rate Control for Group 0 Register

SINC_RATE1 Rate Control for Group 1 Register

SINC_LEVEL0 Level Control for Group 0 Register

SINC_LEVEL1 Level Control for Group 1 Register

SINC_LIMIT0 (Amplitude) Limits for Secondary Filter 0 Register

SINC_LIMIT1 (Amplitude) Limits for Secondary Filter 1 Register

SINC_LIMIT2 (Amplitude) Limits for Secondary Filter 2 Register

SINC_LIMIT3 (Amplitude) Limits for Secondary Filter 3 Register

SINC FILTER
SINC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–3

ADSP-CM40x SINC Interrupt List

ADSP-CM40x SINC Trigger List

SINC_BIAS0 Bias for Group 0 Register

SINC_BIAS1 Bias for Group 1 Register

SINC_PPTR0 Primary (Filters) Pointer for Group 0 Register

SINC_PPTR1 Primary (Filters) Pointer for Group 1 Register

SINC_PHEAD0 Primary (Filters) Head for Group 0 Register

SINC_PHEAD1 Primary (Filters) Head for Group 1 Register

SINC_PTAIL0 Primary (Filters) Tail for Group 0 Register

SINC_PTAIL1 Primary (Filters) Tail for Group 1 Register

SINC_HIS_STAT History Status Register

SINC_P0SEC_HISTn Pair 0 Secondary (Filter) History n Register

SINC_P1SEC_HISTn Pair 1 Secondary (Filter) History n Register

SINC_P2SEC_HISTn Pair 2 Secondary (Filter) History n Register

SINC_P3SEC_HISTn Pair 3 Secondary (Filter) History n Register

Table 27-2: ADSP-CM40x SINC Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

70 SINC0_STAT SINC0 Status LEVEL

Table 27-3: ADSP-CM40x SINC Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

36 SINC0_P0_OVLD SINC0 Pair 0 Overload Indicator PULSE/EDGE

37 SINC0_P1_OVLD SINC0 Pair 1 Overload Indicator PULSE/EDGE

38 SINC0_P2_OVLD SINC0 Pair 2 Overload Indicator PULSE/EDGE

Table 27-1: ADSP-CM40x SINC Register List (Continued)

Name Description

SINC FILTER
SINC FUNCTIONAL DESCRIPTION

27–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SINC Definitions

To make the best use of the SINC, it is useful to understand the following terms.

Decimation

Decimation is the process of discarding samples from a data stream.

Decimation Rate

The decimation rate is the ratio of the filter input data rate to the filter output data rate.

Filter Order

The SINC filter order is the number of integration and decimation stages in the filter.

Modulator Order

The modulator order is the number of comparator and integrator stages in a sigma-delta modulator.

Sigma-Delta Modulator

The sigma-delta modulator is an oversampling analog to digital conversion circuit that generates a digital
bit stream whose pulse density is proportional to the analog voltage presented to the input.

SINC Block Diagram

The following figure shows the functional blocks within the SINC.

39 SINC0_P3_OVLD SINC0 Pair 3 Overload Indicator PULSE/EDGE

40 SINC0_DATA0 SINC0 Data Move 0 Complete PULSE/EDGE

41 SINC0_DATA1 SINC0 Data Move 1 Complete PULSE/EDGE

Table 27-4: ADSP-CM40x SINC Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

57 SINC0_SYNC0 SINC0 Synchronization Input 0

58 SINC0_SYNC1 SINC0 Synchronization Input 1

Table 27-3: ADSP-CM40x SINC Trigger List Trigger Masters (Continued)

Trigger ID Name Description Sensitivity

SINC FILTER
SINC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–5

Figure 27-1: SINC Block Diagram

The block diagram shows four SINC filter pairs (SINC0-3), two modulator clock sources, and two banks
of control registers (units). The module accepts four sigma-delta bit streams from the GPIO input pins and

SINC FILTER
SINC FUNCTIONAL DESCRIPTION

27–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

directs two modulator clock sources to the GPIO output pins. A pulse-width modulation (PWM) signal
synchronizes the modulator clocks to optimize system performance. Each SINC filter pair includes the
primary filter, secondary filter, DMA interface, and overload limit detection functions.

The primary SINC filter transmits its data to memory using DMA. The secondary SINC filter generates
overload signals, which can be routed via the trigger routing unit (TRU) to trip a PWM modulator and
generate an interrupt.

The SINC filter pairs can be assigned to either set of control units, where multiple channels of current or
voltage feedback share common filter parameters. The primary filters generate high-resolution signals
needed to close the feedback control loop. The secondary filters are for rapid overload fault detection,
require lower resolution, but a faster response. The primary and secondary filters have programmable
order and decimation rates. The primary filters also have the programmable output gain stage, while the
secondary filters have the programmable overload limit thresholds.

To use the primary and secondary filters, set up the filter parameters once, prior to using the filters, and
the feedback control algorithm reads the primary filter's data directly from memory. A PWM interrupt
signal can generate the algorithm timing signal, or the SINC module generates a data trigger. The
secondary filter's data history is saved in buffer registers once an overload fault signal is detected to support
fault diagnostics.

SINC Architectural Concepts

The architecture of the SINC includes the following:

• Digital Filter

• DC Gain and Data Resolution

• Frequency Response

• Output Scaling

Digital Filter

The SINC filter has a transfer function that lends itself to an implementation in digital logic, using a series
of summation and decimation functions. The filter purpose is to remove the modulator sample clock and
recover a digital value of the sampled signal. The filter design matches a bipolar SD modulator, producing
a 50% pulse density for a 0V input, over 50% for positive inputs and less than 50% for negative inputs

SINC FILTER
SINC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–7

Figure 27-2: SINC Digital Filter

The digital filter is a set of accumulators driven by the modulator clock (M_CLK), followed by a set of differ-
entiators driven by the decimation clock (D_CLK). The input accumulators convert the input bit stream
into a multibyte word, while the output differentiators derive the average 1’s density of the bit stream. The
number of accumulator and differentiator stages can be three or four, depending on the order of the filter.
The DC gain and bandwidth of the filter are functions of the filter order (O) and the decimation rate (D),
which is the ratio of the modulator to the decimation clock.

The transfer function of the SINC filter is generated by the product of the transfer functions for the accu-
mulators and differentiators, and in the z domain is given by:

DC Gain and Data Resolution

The DC gain of the digital filter is a function of the order and decimation rate. At 100% ones density input,
each accumulator stage counts D pulses, and the gain of the filter is given by:

The higher the decimation rate, the higher the resolution of the output data. The number of usable data
bits is a function of the SNR; the following table shows ENOB versus the decimation rate.

Decimation 4 5 6 7 8 16 32 64 128 256

 O = 3 SNR (dB) 6.42 11.47 16.41 20.57 23.55 35.02 48.59 62.26 76.46 89.59

 ENOB 0.8 1.6 2.4 3.1 3.6 5.5 7.8 10.0 12.4 14.6

SINC FILTER
SINC FUNCTIONAL DESCRIPTION

27–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Notes: ENOB versus order and decimation rate.

Test conditions are for a 1.22 kHz tone and a 10 MHz modulator.

Frequency Response

The frequency response of the filter depends on the order, decimation rate, and modulator clock
frequency, fM. The equation is obtained by substituting ej x Ts for z in the transfer function, where Ts is the
period of the modulator clock:

The filter has a linear phase response with a constant group delay given by:

The following frequency response plots show zeros at multiples the decimation frequency, where the sin
term in the numerator goes to zero. This makes it possible to remove some PWM ripple components from
the motor current waveform by matching the decimation frequency to the PWM switching frequency.
There are some limitations at lower PWM frequencies based on available decimation rates. High decima-
tion rates limit the bandwidth of the control loop because of the phase delay, which is 3π radians at the
decimation frequency.

 O = 4 SNR (dB) 9.08 14.77 19.78 23.41 25.9 38.05 51.29 64.67 79.15

 ENOB 1.2 2.1 3.1 3.6 4.0 6.0 8.2 10.4 12.8

Decimation 4 5 6 7 8 16 32 64 128 256

SINC FILTER
SINC FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–9

Figure 27-3: Frequency Response

Output Scaling

The output scaling and post processing functions embedded in the SINC filter blocks differ, depending on
the function. The primary filter used for feedback signal processing includes the output bias and scaling
blocks to present a 16-bit signed integer to the control code. The scaling is required at decimation rates
higher than 32 to keep the lower 16 bits of the output word.

The secondary filter supports overload detection functions. The secondary filter can detect signals crossing
maximum and minimum thresholds and has a glitch filter that only accepts faults with a minimum
number of counts (c) within a certain count window (w). The secondary filter has no output scaling, so the
minimum and maximum values in the overload registers must be calculated from the DC gain of the
secondary filter. The response time to a step input is approximately 2 x O decimation clock cycles.

SINC FILTER
SINC OPERATING MODES

27–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 27-4: Output Scaling

SINC Operating Modes

The SINC filter module has only one operating mode. The module generates the clock source for a sigma-
delta modulator analog front end and filters the modulator output data stream. The primary SINC filter
transfers its data to memory via DMA, while the secondary SINC filter output generates an overload
trigger signal that can be used as a PWM trip signal. The SINC control registers enable the module and set
up the modulator clock sources, filter parameters, DMA transfers, and interrupts masks, as described in
SINC Programming Model.

SINC Data Transfer Modes

The only mode of data transfer between the primary SINC filter and memory is via DMA (see Primary
DMA Configuration and Data Interrupts). The only way to transfer data between the secondary SINC
filter and memory is by reading the secondary filter history registers (see Overload Detection).

SINC Signal Modes

The SINC filter has an interrupt signal and a number of triggers and status signals to indicate system events
and errors.

• Primary data transfer trigger:

The SINC filter can generate a trigger after a user-specified number of primary output sets is trans-
ferred to memory. There is one trigger source for each filter group. See Primary DMA Configuration
and Data Interrupts for more information.

SINC FILTER
SINC OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–11

• Secondary data overload trigger

The SINC filter can generate a trigger when an overload is detected by one of the secondary filters.
There is one trigger source for each secondary filter. See Overload Detection for more information.

• SINC status bits:

The SINC status bits indicate secondary filter overload errors, primary filter saturation errors, primary
filter transfer count exceeded, and primary filter data buffer errors.

– Secondary filter overload errors:

A number of status bits indicate the type of error and the filter channel when an overload is
detected. The status bits SINC_STAT.GLIM0 and SINC_STAT.GLIM1 indicate the control group
of the secondary filter that detected the overload. The status bits SINC_STAT.MAX0 through
SINC_STAT.MAX3 indicate if the error is caused by passing a maximum limit on one of the
secondary filter channels. The status bits SINC_STAT.MIN0 through SINC_STAT.MIN3 indicate
if the error is caused by passing a minimum limit on one of the secondary filter channels.

– Primary filter data saturation errors:

A number of status bits indicate the group and filter channel when data saturation is detected.
The status bits SINC_STAT.GSAT0 and SINC_STAT.GSAT1 indicate the filter control group when
data saturation is detected. The status bits SINC_STAT.PSAT0 through SINC_STAT.PSAT3 indi-
cate a primary filter channel that detects data saturation.

– Primary filter transfer count exceeded:

The status bits SINC_STAT.PCNT0 and SINC_STAT.PCNT1 are set each time a specified number
of primary filter data sets for that filter group is transferred to memory. The primary filter data
set for a group is the data for all the channels in the group. The specified number of data sets is
the value in the SINC_LEVEL0.PCNT-SINC_LEVEL1.PCNT bits. The bits must be cleared by
writing 1 before the next data transfer to generate a trigger.

– Primary filter data buffer errors:

A number of status bits indicate data buffer errors. The status bits SINC_STAT.FOVF0 and SINC_
STAT.FOVF1 indicate the filter control group when there is a SINC data buffer overflow. This
occurs when a third sample is presented to the buffer before the first sample is transferred to
memory. The status bits SINC_STAT.PFAB0 and SINC_STAT.PFAB1 indicate the filter group if
an error occurs while writing the data to memory.

– SINC status interrupt:

There is a single SINC filter interrupt that can indicate secondary filter overload errors, primary
filter data saturation, or primary filter data buffer overrun. There is one interrupt mask bit for
each of these conditions per filter group. See Interrupt Masking for more information.

SINC FILTER
SINC EVENT CONTROL

27–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SINC Event Control

The SINC is capable of signaling the core about its state and various error conditions that occur during its
operation, by providing status and error bits through different registers. These conditions include:

• Interrupt status related to data overload, data saturation, data FIFO fault conditions

• Error status related to SINC operations

• History status (which do not generate interrupts) related to data FIFO operations

SINC Interrupt Signals

The interrupt and trigger signals to the SINC filter module include:

• One interrupt signal, SINC_STAT, triggered by fault events, such as detected overload limits and data
transfer errors. Manage interrupt generation with the masking bits in the SINC_CTL register:

– Bits SINC_CTL.ELIM0-SINC_CTL.ELIM1 can enable (unmask) interrupt generation on overload
faults when the SINC_STAT.GLIM0-SINC_STAT.GLIM1 bit is set, respectively.

– Bits SINC_CTL.ESAT0-SINC_CTL.ESAT1 can mask interrupt generation on data saturation faults
when the SINC_STAT.GSAT0-SINC_STAT.GSAT1 bit is set, respectively.

– Bits SINC_CTL.EFOVF0-SINC_CTL.EFOVF1 can mask interrupt generation on data buffer overruns
when the SINC_STAT.FOVF0-SINC_STAT.FOVF1 bit is set, respectively.

Note that the fault bits in the SINC_STAT register must be cleared to clear the interrupt.

• Two data count triggers, one trigger per each control group. The data count triggers can be used to
trigger an event or generate a software interrupt on a regular basis. First, the data count trigger must be
enabled by setting SINC_CTL.EPCNT0 or SINC_CTL.EPCNT1 masking bit, then the data count master
(SINC0_DATA0-1) must be assigned to an interrupt input by the TRU.

• Four overload triggers, one trigger per each channel. The overload triggers can be used to trip the
appropriate PWM block in the case of a fault. The overload trigger is always enabled, and the masters
(SINC0_P0_OVLD trough SINC0_P4_OVLD) must be assigned to the appropriate PWM trip input slave
(PWMn_TRIP_TRIGn) by the TRU.

SINC Status and Error Signals

The status and error signals related to SINC operations are as follows.

• SINC_STAT signals:

– The amplitude and duration limit error signals for secondary SINC filters: SINC_STAT.MAX0 trough
SINC_STAT.MAX3, SINC_STAT.MIN0 through SINC_STAT.MIN3, and SINC_STAT.GLIM0-SINC_
STAT.GLIM1.

SINC FILTER
SINC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–13

– The output saturation error signals for primary SINC filters: SINC_STAT.MAX0 trough SINC_STAT.
MAX3, SINC_STAT.MIN0 through SINC_STAT.MIN3, and SINC_STAT.GLIM0-SINC_STAT.GLIM1.

– The output FIFO overflow error signals for primary SINC filters: SINC_STAT.FOVF0 and SINC_
STAT.FOVF1.

– The output count error signals for primary SINC filters: SINC_STAT.PCNT0 and SINC_STAT.PCNT1.

– The SCB fabric related error signals for primary SINC filters: SINC_STAT.PFAB0-SINC_STAT.
PFAB1.

• SINC_CLK signals:

– The phase shift signals for SINC modulator clocks: SINC_CLK.MREQ0-SINC_CLK.MREQ1.

• SINC_HIS_STAT signals:

– The history saved signals for secondary SINC filters: SINC_HIS_STAT.P0HISPTR through SINC_
HIS_STAT.P3HISPTR, which indicate that the filters' data history is saved in buffer registers due to
a detected overload error signal.

SINC Programming Model

The pin multiplexer enables the device input and output pins and connects the signals to the SINC module.
The filter grouping must be decided in advance because the filter parameters are defined according to the
control register group.

Follow these steps to configure the filters:

1. Define the primary and secondary filter parameters by setting the appropriate bits in the control
register for each filter channel group.

2. Set the upper and lower overload limits to maximum for each channel to avoid overload trips due to
the filter startup transient.

3. Define the modulator clock frequency and startup mode.

4. Enable the SINC channels and assign them to the selected group of control registers.

Set the running overload limits after the filter settles, which is (order * decimation) modulator clock cycles
after startup. When the filters are running, the module transfers its data to data RAM on the dedicated
DMA channels. Once configured, the control registers do not need to be accessed, but the status and some
data buffer registers typically are read after fault events. In general, adjusting filter parameters during oper-
ation leads to unpredictable results. However, you can write to the trigger and interrupt masks, as well as
to the secondary threshold levels, during operation.

The DC gain of the converter subsystem depends on the gain of the input modulator (GM), filter order (O),
and decimation rate (D). The primary filter has an output binary scalar (s) to fit data into a 16-bit range:

SINC FILTER
SINC PROGRAMMING MODEL

27–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SINC Programming Concepts

Using the features and event control for the SINC to their greatest potential requires an understanding of
some SINC related concepts:

Channel Configuration

Trigger Masking

Interrupt Masking

Modulator Clock

Filter Configuration

Primary Filter Parameters

Primary DMA Configuration and Data Interrupts

Secondary Filter Parameters

Overload Detection

Channel Configuration

The control bits, SINC_CTL.EN0 through SINC_CTL.EN3, configure SINC module channels. These control
bits enable or disable the selected SINC filter channel and assign the channel to one of the two control
register groups. The selected control register group also determines the filter clock source.

Trigger Masking

The SINC module has two data count triggers, one trigger per each group. The data count triggers can be
used to trigger an event or generate a software interrupt on a regular basis. First, the data count trigger
must be enabled by setting SINC_CTL.EPCNT0 and SINC_CTL.EPCNT1 masking bit, and then the data count
master (SINC_DATn) must be assigned to an interrupt input by the TRU.

There are also four overload triggers, one trigger per each channel. The overload triggers can be used to
trip the appropriate PWM block in case of a fault. The overload trigger is always enabled, and the masters
(SINC0_Pn_OVLD) must be assigned to the appropriate PWM trip input slave (PWMn_TRIP_TRIGn) by the
TRU.

SINC FILTER
SINC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–15

Interrupt Masking

The SINC filter can generate a SINC_STAT interrupt signal when triggered by fault events, such as detected
overload limits or data transfer errors.

Enable (unmask) interrupt generation with the SINC_CTL register bits:

• Bits SINC_CTL.ELIM0-SINC_CTL.ELIM1 can enable interrupt generation on overload faults when the
SINC_STAT.GLIM0-SINC_STAT.GLIM1 bit is set, respectively.

• Bits SINC_CTL.ESAT0-SINC_CTL.ESAT1 can enable interrupt generation on data saturation faults
when the SINC_STAT.GSAT0-SINC_STAT.GSAT1 bit is set, respectively.

• Bits SINC_CTL.EFOVF0-SINC_CTL.EFOVF1 can enable interrupt generation on data buffer overruns
when the SINC_STAT.FOVF0-SINC_STAT.FOVF1 bit is set, respectively.

Note that the fault bits in the SINC_STAT register must be cleared to clear the interrupt.

Modulator Clock

The SINC filter has two modulator clock sources. Each clock source can be set with an output frequency
in the range of 1-20 MHz. The modulator clock output, frequency, and phase are controlled by bits in the
SINC_CLK register. Assign the modulator clocks to the SINC filter channels according to their control
group assignments. The modulator clocks are enabled by the SINC_CLK.MCEN0-SINC_CLK.MCEN1 bit
fields, which also control the clocks' startup behavior. Start the clock immediately or enable the clock on
the first rising edge of an external trigger connected to the SINC0_SYNCn input of the module. This
provides for the modulator clock synchronization with a PWM waveform source by routing a PWMn_SYNC
master to a SINC0_SYNC0 or SINC0_SYNC1 slave using the TRU.

The target frequency is in the range and derived from SYSCLK using an integer divisor in the SINC_CLK.
MDIV0 or SINC_CLK.MDIV1 bits. Adjust the phase of the clock by writing to the SINC_CLK.MREQ0 or SINC_
CLK.MREQ1 bit. This lengthens the next clock period by the number of SCLK periods stored in the respective
SINC_CLK.MADJ0 or SINC_CLK.MADJ1 bit field. The SINC_CLK.MREQ0 or SINC_CLK.MREQ1 bit is cleared
automatically once the adjustment is complete.

Filter Configuration

Configure the primary and secondary filter parameters, according to the group number, by setting the
appropriate bits in the SINC_RATE0-SINC_RATE1, SINC_LEVEL0-SINC_LEVEL1, and SINC_BIAS0-SINC_
BIAS1 control registers. Configure the DMA transfers by setting the appropriate bits in the SINC_PHEAD0-
SINC_PHEAD1 and SINC_PTAIL0-SINC_PTAIL1 registers. Set the maximum and minimum overload detec-
tion levels in the four limit registers, SINC_LIMIT0-SINC_LIMIT3. Set the overload filtering parameters in
the SINC_LEVEL0-SINC_LEVEL1 registers.

SINC FILTER
SINC PROGRAMMING MODEL

27–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Primary Filter Parameters

Set the primary filter to the 3rd or 4th order by the SINC_LEVEL0.PORD or SINC_LEVEL1.PORD bit assigned
to the channel. Set the primary filter decimation rate by the SINC_RATE0.PDEC or SINC_RATE1.PDEC bits
assigned to the channel. Valid decimation rates are in the range 4 to 256. Set the phase of the primary filter
output relative to the number of modulator clocks after the filter is enabled by the SINC_RATE0.PADJ or
SINC_RATE1.PADJ bits assigned to the channel. Valid PADJ values are in the range 0 to PDEC - 1.

The raw filter output is a 32-bit wide integer, has an offset added, and is scaled to a 16-bit number before
being transferred to memory. Store the 32-bit two’s compliment offset value in the channel 's SINC_BIAS0
or SINC_BIAS1 register. Set the binary scale factor by a mantissa in the range 4 to 32 stored in the SINC_
LEVEL0.PSCALE or SINC_LEVEL1.PSCALE bits. The output is a valid 16-bit signed number. If the number
is outside of the valid range, the output is saturated to 0x8000 or 0x7FFF, while the SINC_STAT.PSAT0 or
SINC_STAT.GSAT1 fault bit (according to the channel group) is set.

Primary DMA Configuration and Data Interrupts

Transfer the primary SINC filter outputs to a circular buffer in data memory using DMA. There are sepa-
rate DMA steams for each filter channel group. The output from the primary filter are interleaved with
outputs from other primary filters in the same group. The interleaving order is from the lowest to the
highest numbered filter.

The circular buffer head address is stored in the channel's SINC_PHEAD0 or SINC_PHEAD1 register. The tail
address is stored in the channel's SINC_PTAIL0 or SINC_PTAIL1 register. The data address wraps around
to the head address after the tail address is reached. The head and tail addresses must be 16-bit aligned and
can be set to the same address. The channel's SINC_PPTR0 or SINC_PPTR1 register is a read-only register
that contains the address of the most recent primary SINC filter data. If there is an overflow in the SINC
filter output data FIFO, due to a delay DMA transfer, the SINC_STAT.FOVF0 or SINC_STAT.FOVF1 fault bit
(according to the channel group) is set.

A SINC data trigger can be generated after a user-specified number of primary filter outputs (data trans-
fers) is complete. Specify the data count value by the SINC_LEVEL0.PCNT or SINC_LEVEL1.PCNT bits
assigned to the channel, and the trigger is generated every PCNT + 1 data transfers.

The following figure shows the SINC data buffer organization, where SINC_OUT_X_M[n] is the data for the
nth most recent sample in the Mth channel in the filter group X, and n = 0 is the most recent data.

SINC FILTER
SINC PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–17

Figure 27-5: SINC Data Buffer Organization

Secondary Filter Parameters

Set the secondary filter to the 3rd or 4th order by the SINC_LEVEL0.SORD or SINC_LEVEL1.SORD bit
assigned to the channel. Set the secondary filter decimation rate by the SINC_RATE0.SDEC or SINC_RATE1.
SDEC bits assigned to the channel. The secondary filter outputs are limited to 16-bit values. Limit the deci-
mation rate according to the filter order:

• Valid decimation rates are in the range 4 - 40 for the 3rd order filters

• Valid decimation rates are in the range of 4 - 16 for the 4th order filters

Set the phase of the primary filter output relative to the number of modulator clocks after the filter is
enabled by the SINC_RATE0.PADJ or SINC_RATE1.SADJ bits. Valid PADJ values are in the range 0 to SDEC
- 1.

Overload Detection

The function of the secondary SINC filter is to detect AC current overload conditions and set up the upper
and lower limit detection thresholds. There are event count filters on the overload detector outputs to
reject short term transients, if desired. Define the overload thresholds in four 32-bit registers SINC_
LIMIT0-SINC_LIMIT3, according to the channel number. Each register contains the 16-bit LMAX and LMIN
overload threshold values. An overload is detected if the secondary filter output exceeds the threshold for
a minimum number of counts (LCNT) within the detection window (LWIN). Set the LCNT and LWIN count
values in the SINC_LEVEL0 or SINC_LEVEL1 register assigned to the channel. When an overload is
detected, the appropriate SINC0_Px_OVLD trigger is generated, and the SINC_STAT.GLIM0 or SINC_STAT.
GLIM1 fault bit is set.

The eight most secondary filter data samples are saved in a local circular buffer to support diagnostics after
a fault is triggered. Since 16-bit data is saved, only four buffer registers are required per channel. For
example, SINC_P1SEC_HIST0-3 store the eight most recent 16-bit secondary filter outputs from channel

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

1. The SINC_HIS_STAT register contains four pointers (SINC_HIS_STAT.P0HISPTR through SINC_HIS_
STAT.P3HISPTR) to the buffer location of the most recent secondary current samples, per channel.

ADSP-CM40x SINC Register Descriptions

SINC (SINC) contains the following registers.

Table 27-5: ADSP-CM40x SINC Register List

Name Description

SINC_CTL Control Register

SINC_STAT Status Register

SINC_CLK Clock Control Register

SINC_RATE0 Rate Control for Group 0 Register

SINC_RATE1 Rate Control for Group 1 Register

SINC_LEVEL0 Level Control for Group 0 Register

SINC_LEVEL1 Level Control for Group 1 Register

SINC_LIMIT0 (Amplitude) Limits for Secondary Filter 0 Register

SINC_LIMIT1 (Amplitude) Limits for Secondary Filter 1 Register

SINC_LIMIT2 (Amplitude) Limits for Secondary Filter 2 Register

SINC_LIMIT3 (Amplitude) Limits for Secondary Filter 3 Register

SINC_BIAS0 Bias for Group 0 Register

SINC_BIAS1 Bias for Group 1 Register

SINC_PPTR0 Primary (Filters) Pointer for Group 0 Register

SINC_PPTR1 Primary (Filters) Pointer for Group 1 Register

SINC_PHEAD0 Primary (Filters) Head for Group 0 Register

SINC_PHEAD1 Primary (Filters) Head for Group 1 Register

SINC_PTAIL0 Primary (Filters) Tail for Group 0 Register

SINC_PTAIL1 Primary (Filters) Tail for Group 1 Register

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–19

Control Register

The SINC_CTL register masks (disables) and unmasks (enables) SINC high-level interrupt signals triggered
by fault events. The register also enables and assigns SINC filter pairs to one of two control groups.

Figure 27-6: SINC_CTL Register Diagram

SINC_HIS_STAT History Status Register

SINC_P0SEC_HISTn Pair 0 Secondary (Filter) History n Register

SINC_P1SEC_HISTn Pair 1 Secondary (Filter) History n Register

SINC_P2SEC_HISTn Pair 2 Secondary (Filter) History n Register

SINC_P3SEC_HISTn Pair 3 Secondary (Filter) History n Register

Table 27-5: ADSP-CM40x SINC Register List (Continued)

Name Description

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 27-6: SINC_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

ELIM1 Enable Limit for Group 1.
The SINC_CTL.ELIM1 bit enables (unmasks) the SINC_STAT interrupt on
overload conditions if this bit and status bit SINC_STAT.GLIM1 are set (=1).

0 Disable

1 Enable

30
(R/W)

ESAT1 Enable Saturation for Group 1.
The SINC_CTL.ESAT1 bit enables (unmasks) the SINC_STAT interrupt on output
saturation conditions if this bit and bit SINC_STAT.GSAT1 are set (=1).

0 Disable

1 Enable

29
(R/W)

EPCNT1 Enable Primary Count for Group 1.
The SINC_CTL.EPCNT1 bit enables a trigger event on each SINC_DATA1 request
if this bit and status bit SINC_STAT.PCNT1 are set (=1).

0 Disable

1 Enable

28
(R/W)

EFOVF1 Enable FIFO Overflow for Group 1.
The SINC_CTL.EFOVF1 bit enables (unmasks) the SINC_STAT interrupt on data
FIFO overflow conditions if this bit and status bit SINC_STAT.FOVF1 are set (=1).
The SINC_STAT.FOVF1 bit is set (=1) when the group 1 output data FIFO
overflows due to delayed SCB fabric ready response.

0 Disable

1 Enable

15
(R/W)

ELIM0 Enable Limit for Group 0.
The SINC_CTL.ELIM0 bit enables (unmasks) the SINC_STAT interrupt on
overload conditions if this bit and status bit SINC_STAT.GLIM0 are set (=1).

0 Disable

1 Enable

14
(R/W)

ESAT0 Enable Saturation for Group 0.
The SINC_CTL.ESAT0 bit enables (unmasks) the SINC_STAT interrupt on output
saturation conditions if this bit and status bit SINC_STAT.GSAT0 are set (=1).

0 Disable

1 Enable

13
(R/W)

EPCNT0 Enable Primary Count for Group 0.
The SINC_CTL.EPCNT0 bit enables a trigger event on each SINC_DATA0 request
if this bit and status bit SINC_STAT.PCNT0 are set (=1).

0 Disable

1 Enable

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–21

12
(R/W)

EFOVF0 Enable FIFO Overflow for Group 0.
The SINC_CTL.EFOVF0 bit enables (unmasks) the SINC_STAT interrupt on data
FIFO overflow conditions if this bit and status bit SINC_STAT.FOVF0 are set (=1).
The SINC_STAT.FOVF0 bit is set (=1) when the group 0 output data FIFO
overflows due to delayed SCB fabric ready response.

0 Disable

1 Enable

7:6
(R/W)

EN3 Enable Filter Pair 3.
The SINC_CTL.EN3 bits enable/disable and assign SINC filter pair 3 to the control
group.

0 Disable

1 Reserved

2 Enable and Assign to Group 0

3 Enable and Assign to Group 1

5:4
(R/W)

EN2 Enable Filter Pair 2.
The SINC_CTL.EN2 bits enable/disable and assign SINC filter pair 2 to the control
group.

0 Disable

1 Reserved

2 Enable and Assign to Group 0

3 Enable and Assign to Group 1

3:2
(R/W)

EN1 Enable Filter Pair 1.
The SINC_CTL.EN1 bits enable/disable and assign SINC filter pair 1 to the control
group.

0 Disable

1 Reserved

2 Enable and Assign to Group 0

3 Enable and Assign to Group 1

1:0
(R/W)

EN0 Enable Filter Pair 0.
The SINC_CTL.EN0 bits enable/disable and assign SINC filter pair 0 to the control
group.

0 Disable

1 Reserved

2 Enable and Assign to Group 0

3 Enable and Assign to Group 1

Table 27-6: SINC_CTL Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Status Register

The SINC_STAT register indicates status for SINC output saturation, amplitude and duration limits, over-
load conditions, and data transfer errors.

Figure 27-7: SINC_STAT Register Diagram

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–23

Table 27-7: SINC_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/NW)

GLIM1 Group 1 Limit Status.
The SINC_STAT.GLIM1 indicates status for an amplitude and duration limit of
secondary SINC filters assigned to group 1. This bit is set (=1) if any limit specified
by registers SINC_LIMIT3, SINC_LIMIT2, SINC_LIMIT1, or SINC_LIMIT0,
within the duration count and window specified by bits SINC_LEVEL0.LCNT and
SINC_LEVEL0.LWIN are exceeded.
 To identify the offending secondary SINC filter, examine the filter's status bits
SINC_STAT.MAX3, SINC_STAT.MAX2, SINC_STAT.MAX1, SINC_STAT.
MAX0, SINC_STAT.MIN3, SINC_STAT.MIN2, SINC_STAT.MIN1 and SINC_
STAT.MAX0 according to the group 1 assignments in the SINC_CTL register.

0 Not Exceeded

1 Exceeded

30
(R/NW)

GSAT1 Group 1 Saturation Status.
The SINC_STAT.GSAT1 indicates status for the output saturation bit of primary
SINC filters assigned to group 1. The bit is set (=1) if any filter of group 1 has its
saturation status bit set (=1).
 To identify the offending SINC primary filter, examine bits SINC_STAT.PSAT3,
SINC_STAT.PSAT2, SINC_STAT.PSAT1, and SINC_STAT.PSAT0 according
to the group 1 assignments specified by the SINC_CTL.EN3, SINC_CTL.EN2,
SINC_CTL.EN1, and SINC_CTL.EN0 bits.

0 Not Set

1 Set

29
(R/W1C)

PCNT1 Primary (Filter) Count for Group 1 Status.
The SINC_STAT.PCNT1 indicates status for the output count of primary SINC
filters assigned to group 1. The bit is set (=1) each time the modulo number of
outputs (specified by the SINC_LEVEL1.PCNT bits) has been transferred for each
primary SINC filter assigned to group 1. Each count in SINC_LEVEL1.PCNT
corresponds to one complete set or vector of samples from all SINC filter pairs
assigned to group 1.
For example, if group 1 is assigned three SINC filters pairs 0, 1, and 3, and SINC_
LEVEL1.PCNT is set to 5, then this status bit is set after the transfer of every 5th
complete sample vector, comprising 3 x 5= 15 data samples. This bit asserts when the
memory transfer on the system SCB fabric is complete, and a valid SCB write data
response is received by the SINC filter unit.
If this status bit and bit SINC_CTL.EPCNT1 are set (=1), the SINC_DATA1 trigger
is asserted. Write 1 to clear.

0 Not Reached

1 Reached

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

28
(R/W1C)

FOVF1 FIFO Overflow for Group 1 Status.
The SINC_STAT.FOVF1 indicates status for the data output FIFO bit of primary
SINC filters assigned to group 1. This bit is set (= 1) if the output FIFO for any filter
in group 1 overflows due to slow SCB fabric response. The FIFO for each primary
SINC filter contains two data sample locations. An overflow occurs if a third data
sample is generated before the first sample's data is transferred into the SCB fabric
write data channel.
After any overflow signaled by this bit occurs, all further SCB transmissions
generated by group 1 are UNSPECIFIED until all SINC filters of the group are shut
down and restarted. Clearing this status bit (=0) alone is not sufficient to re-sync the
DMA stream. Write 1 to clear.
If this status bit and bit SINC_CTL.EFOVF1 are set (=1), the SINC_STAT interrupt
is asserted.

0 No Overflow

1 Overflow

27
(R/W1C)

PFAB1 Primary (Filter) Fabric Error for Group 1 Status.
The SINC_STAT.PFAB1 indicates error status for the output of any primary SINC
filter assigned to group 1. The bit is set (=1) if the SCB fabric provides a write error
response for a filter output transfer associated with group 1, or if an overrun occurs
for a filter in group 1. An interrupt is requested whenever this bit =1 (not maskable).

0 Disabled

1 Enabled

23
(R/W1C)

PSAT3 Primary (Filter) 3 Saturation Status.
The SINC_STAT.PSAT3 bit indicates whether the primary SINC filter 3 requires
saturation.

0 Not Saturated

1 Saturated

22
(R/W1C)

PSAT2 Primary (Filter) 2 Saturation Status.
The SINC_STAT.PSAT2 bit indicates whether the primary SINC filter 2 requires
saturation.

0 Not Saturated

1 Saturated

21
(R/W1C)

PSAT1 Primary (Filter) 1 Saturation Status.
The SINC_STAT.PSAT1 bit indicates whether the primary SINC filter 1 requires
saturation.

0 Not Saturated

1 Saturated

Table 27-7: SINC_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–25

20
(R/W1C)

PSAT0 Primary (Filter) 0 Saturation Status.
The SINC_STAT.PSAT0 bit indicates whether the primary SINC filter 0 requires
saturation.

0 Not Saturated

1 Saturated

19
(R/W1C)

MAX3 Maximum for Secondary Filter 3 Status.
The SINC_STAT.MAX3 bit indicates whether the output of the secondary SINC
filter 3 exceeded its maximum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.
The amplitude limit is specified by the SINC_LIMIT3.LMAX bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN3 bits.
For group 0, the duration limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.
For group 1, the duration limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

18
(R/W1C)

MAX2 Maximum for Secondary Filter 2 Status.
The SINC_STAT.MAX2 bit indicates whether the output of the secondary SINC
filter 2 exceeded its maximum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.
The amplitude limit is specified by the SINC_LIMIT2.LMAX bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN2 bits.
For group 0, the duration limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.
For group 1, the duration limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

17
(R/W1C)

MAX1 Maximum for Secondary Filter 1 Status.
The SINC_STAT.MAX1 bit indicates whether the output of the secondary SINC
filter 0 exceeded its maximum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.
The amplitude limit is specified by the SINC_LIMIT1.LMAX bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN1 bits.
For group 0, the duration limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.
For group 1, the duration limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

Table 27-7: SINC_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

16
(R/W1C)

MAX0 Maximum for Secondary Filter 0 Status.
The SINC_STAT.MAX0 bit indicates whether the output of the secondary SINC
filter 0 exceeded its maximum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.
The amplitude limit is specified by the SINC_LIMIT0.LMAX bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN0 bits.
For group 0, the duration limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.
For group 1, the duration limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

15
(R/NW)

GLIM0 Group 0 Limit Status.
The SINC_STAT.GLIM0 indicates status for an amplitude and duration limit of
secondary SINC filters assigned to group 0. This bit is set (=1) if any limit specified
by registers SINC_LIMIT3, SINC_LIMIT2, SINC_LIMIT1, or SINC_LIMIT0,
within the duration count and window specified by bits SINC_LEVEL1.LCNT and
SINC_LEVEL1.LWIN are exceeded.
To identify the offending secondary SINC filter, examine the filter's status bits
SINC_STAT.MAX3, SINC_STAT.MAX2, SINC_STAT.MAX1, SINC_STAT.
MAX0, SINC_STAT.MIN3, SINC_STAT.MIN2, SINC_STAT.MIN1 and SINC_
STAT.MAX0 according to the group 0 assignments in the SINC_CTL register.

0 Not Exceeded

1 Exceeded

14
(R/NW)

GSAT0 Group 0 Saturation Status.
The SINC_STAT.GSAT0 indicates status for the output saturation bit of primary
SINC filters assigned to group 0. The bit is set (=1) if any filter of group 0 has its
saturation status bit set (=1).
 To identify the offending SINC primary filter, examine bits SINC_STAT.PSAT3,
SINC_STAT.PSAT2, SINC_STAT.PSAT1, and SINC_STAT.PSAT0 according
to the group 0 assignments specified by the SINC_CTL.EN3, SINC_CTL.EN2,
SINC_CTL.EN1, and SINC_CTL.EN0 bits.

0 Not Set

1 Set

Table 27-7: SINC_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–27

13
(R/W1C)

PCNT0 Primary (Filter) Count for Group 0 Status.
The SINC_STAT.PCNT0 indicates status for the output count of primary SINC
filters assigned to group 0. The bit is set (=1) each time the modulo number of
outputs (specified by the SINC_LEVEL0.PCNT bits) has been transferred for each
primary SINC filter assigned to group 0. Each count in SINC_LEVEL0.PCNT
corresponds to one complete set or vector of samples from all SINC filter pairs
assigned to group 1.
For example, if group 0 is assigned three SINC filters pairs 0, 1, and 3, and SINC_
LEVEL0.PCNT is set to 5, then this status bit is set after the transfer of every 5th
complete sample vector, comprising 3 x 5= 15 data samples. This bit asserts when the
memory transfer on the system SCB fabric is complete, and a valid SCB write data
response is received by the SINC filter unit.
If this status bit and bit SINC_CTL.EPCNT0 are set (=1), the SINC_DATA0 trigger
is asserted. Write 1 to clear.

0 Not Reached

1 Reached

12
(R/W1C)

FOVF0 FIFO Overflow for Group 0 Status.
The SINC_STAT.FOVF0 indicates status for the data output FIFO bit of primary
SINC filters assigned to group 0. This bit is set (= 1) if the output FIFO for any filter
in group 0 overflows due to slow SCB fabric response. The FIFO for each primary
SINC filter contains two data sample locations. An overflow occurs if a third data
sample is generated before the first sample's data is transferred into the SCB fabric
write data channel.
After any overflow signaled by this bit occurs, all further SCB transmissions
generated by group 1 are UNSPECIFIED until all SINC filters of the group are shut
down and restarted. Clearing this status bit (=0) alone is not sufficient to re-sync the
DMA stream. Write 1 to clear.
If this status bit and bit SINC_CTL.EFOVF0 are set (=1), the SINC_STAT interrupt
is asserted.

0 No Overflow

1 Overflow

11
(R/W1C)

PFAB0 Primary (Filter) Fabric Error for Group 0 Status.
The SINC_STAT.PFAB0 indicates error status for the output of any primary SINC
filter assigned to group 0. The bit is set (=1) if the SCB fabric provides a write error
response for a filter output transfer associated with group 0, or if an overrun occurs
for a filter in group 0. An interrupt is requested whenever this bit is =1 (not
maskable).

0 Disabled

1 Enabled

Table 27-7: SINC_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

3
(R/W1C)

MIN3 Minimum for Secondary Filter 3 Status.
The SINC_STAT.MIN3 bit indicates whether the output of the secondary SINC
filter 3 exceeded its minimum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.
The amplitude limit is specified by the SINC_LIMIT3.LMIN bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN3 bits.
For group 0, the duration limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.
For group 1, the duration limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

2
(R/W1C)

MIN2 Minimum for Secondary Filter 2 Status.
The SINC_STAT.MIN2 bit indicates whether the output of the secondary SINC
filter 2 exceeded its minimum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.
The amplitude limit is specified by the SINC_LIMIT2.LMIN bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN2 bits.
For group 0, the duration limit is SINC_LEVEL0.LCNT counts within a window of
SINC_LEVEL0.LWIN samples.
For group 1, the duration limit is SINC_LEVEL1.LCNT counts within a window of
SINC_LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

1
(R/W1C)

MIN1 Minimum for Secondary Filter 1 Status.
The SINC_STAT.MIN1 bit indicates whether the output of the secondary SINC
filter 1 exceeded its minimum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.
The amplitude limit is specified by the SINC_LIMIT1.LMIN bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN1 bits.
For group 0, the limit is SINC_LEVEL0.LCNT counts within a window of SINC_
LEVEL0.LWIN samples.
For group 1, the limit is SINC_LEVEL1.LCNT counts within a window of SINC_
LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

Table 27-7: SINC_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–29

Clock Control Register

The SINC_CLK register generates and enables two SINC modulator clocks. The register also controls each
clock's output, frequency, phase, and start-up behavior.

Figure 27-8: SINC_CLK Register Diagram

0
(R/W1C)

MIN0 Minimum for Secondary Filter 0 Status.
The SINC_STAT.MIN0 bit indicates whether the output of the secondary SINC
filter 0 exceeded its minimum amplitude and duration level. This bit is set (=1) if the
limit is exceeded.
The amplitude limit is specified by the SINC_LIMIT0.LMIN bits. The duration
limit is specified in terms of an excursion count and window for the filter group to
which the filter is assigned by the SINC_CTL.EN0 bits.
For group 0, the limit is SINC_LEVEL0.LCNT counts within a window of SINC_
LEVEL0.LWIN samples.
For group 1, the limit is SINC_LEVEL1.LCNT counts within a window of SINC_
LEVEL1.LWIN samples.

0 Not Exceeded

1 Exceeded

Table 27-7: SINC_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 27-8: SINC_CLK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:26
(R/W)

MDIV1 Modulator (Clock) Divider for Group 1.
The SINC_CLK.MDIV1 bits provide the SCLK divider to generate the modulator
clock for group 1. The valid value is between 1 and 63.

24
(R/W1S)

MREQ1 Modulator (Clock) Request for Group 1 Status.
The SINC_CLK.MREQ1 bit indicates status for a phase shift request of the
modulator clock for group 1.
If the bit's state is changed from clear (=0) to set (=1), the following modulator clock
1 period is lengthened by the number of SCLK periods specified by the SINC_CLK.
MADJ1 bits. Any writes to this bit while the bit is set are ignored. The bit is cleared by
hardware (and only by hardware) once a requested modulator clock adjustment is
complete.

0 Inactive

1 Active

23:18
(R/W)

MADJ1 Modulator (Clock) Adjustment for Group 1.
The SINC_CLK.MADJ1 bits provide the adjustment value for the modulator clock
of group 1. The valid value is between 1 and 63 when SINC_CLK.MREQ1 is set (=1).
A write to this bit field effects only an active modulator clock adjustment. See the
SINC_CLK.MREQ1 bit filed description.

17:16
(R/W)

MCEN1 Modulator (Clock) Enable for Group 1.
The SINC_CLK.MCEN1 bits enable/disable the modulator clock for group 1 and
control the clock's start-up behavior. Commence the clock immediately upon making
it enabled, or enable and commence upon the next rising edge of PWMSYNC (PWM
synchronizing output clock).

0 Disable

1 Reserved

2 Enable and Commence

3 Enable and Commence on Next Rising Edge

15:10
(R/W)

MDIV0 Modulator (Clock) Divider for Group 0.
The SINC_CLK.MDIV0 bits provide the SCLK divider to generate the modulator
clock for group 0. The valid value is between 1 and 63.

8
(R/W1S)

MREQ0 Modulator (Clock) Request for Group 0 Status.
The SINC_CLK.MREQ0 bit indicates status for a phase shift request of the
modulator clock for group 0.
If the bit's state is changed from clear (=0) to set (=1), the following modulator clock
0 period is lengthened by the number of SCLK periods specified by the SINC_CLK.
MADJ0 bits. Any writes to this bit while the bit is set are ignored. The bit is cleared by
hardware (and only by hardware) once a requested modulator clock adjustment is
complete.

0 Inactive

1 Active

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–31

Rate Control for Group 0 Register

The SINC_RATE0 register controls phase adjustments and decimation rates for primary and secondary
SINC filters assigned to group 0.

Figure 27-9: SINC_RATE0 Register Diagram

7:2
(R/W)

MADJ0 Modulator (Clock) Adjustment for Group 0.
The SINC_CLK.MADJ0 bits provide the adjustment value for the modulator clock
of group 0. The valid value is between 1 and 63 when SINC_CLK.MREQ1 is set (=1).
A write to this bit field effects only an active modulator clock adjustment. See the
SINC_CLK.MREQ1 bit filed description.

1:0
(R/W)

MCEN0 Modulator (Clock) Enable for Group 0.
The SINC_CLK.MCEN0 bits enable/disable the modulator clock for group 0 and
control the clock's start-up behavior. Commence the clock immediately upon making
it enabled, or enable and commence upon the next rising edge of PWMSYNC (PWM
synchronizing output clock).

0 Disable

1 Reserved

2 Enable and Commence

3 Enable and Commence on Next Rising Edge

Table 27-8: SINC_CLK Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Rate Control for Group 1 Register

The SINC_RATE1 register controls phase adjustments and decimation rates for primary and secondary
SINC filters assigned to group 1.

Table 27-9: SINC_RATE0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30:25
(R/W)

SADJ Secondary (Filter) Adjustment.
The SINC_RATE0.SADJ bits provide the phase adjustment for the decimated
output of group 0 secondary filters. The valid adjustment is between 0 and (SINC_
RATE0.SDEC - 1), in modulator clock cycles, relative to the time the filter is enabled
in the SINC_CTL register.
The secondary SINC filter calculates an output in modulator clock cycle equivalent to
((SINC_RATE0.SDEC * n) - SINC_RATE0.SADJ), where n is an integer > 1.
This bit field can be changed while the filter is running and takes effect after the next
decimation sample is generated. The effect of the change requires time to ripple
through the filter: a number of output sample periods is equal to the filter order.

24:16
(R/W)

PADJ Primary (Filter) Adjustment.
The SINC_RATE0.PADJ bits provide the phase adjustment for the decimated
output of group 0 primary filters. The valid adjustment is between 0 and (SINC_
RATE0.PDEC - 1), in modulator clock cycles, relative to the time the filter is enabled
in the SINC_CTL register.
The primary SINC filter calculates an output in modulator clock cycle equivalent to (
(SINC_RATE0.PDEC * n) - SINC_RATE0.PADJ), where n is an integer > 1. This
bit field can be changed while the filter is running and takes effect after the next
decimation sample is generated. The effect of the change requires time to ripple
through the filter: a number of output sample periods is equal to the filter order.

14:9
(R/W)

SDEC Secondary (Filter) Decimation Rate.
The SINC_RATE0.SDEC bits provide the decimation rate for group 0 secondary
filters. The valid range depends on the SINC order selected.
If the third order (SINC_LEVEL0.SORD = 0), the valid range is 4 to 40.
If the forth order (SINC_LEVEL0.SORD = 1), the valid rate is 4 to 16.

8:0
(R/W)

PDEC Primary (Filter) Decimation Rate.
The SINC_RATE0.PDEC bits provide the decimation rate for group 0 primary
filters. The valid rate is 256 to 4.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–33

Figure 27-10: SINC_RATE1 Register Diagram

Table 27-10: SINC_RATE1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30:25
(R/W)

SADJ Secondary (Filter) Adjustment.
The SINC_RATE1.SADJ bits provide the phase adjustment for the decimated
output of group 1 secondary filters. The valid adjustment is between 0 and (SINC_
RATE1.SDEC - 1), in modulator clock cycles, relative to the time the filter is enabled
in the SINC_CTL register.
The secondary SINC filter calculates an output in modulator clock cycle equivalent to
((SINC_RATE1.SDEC * n) - SINC_RATE1.SADJ), where n is an integer > 1.
This bit field can be changed while the filter is running and takes effect after the next
decimation sample is generated. The effect of the change requires time to ripple
through the filter: a number of output sample periods is equal to the filter order.

24:16
(R/W)

PADJ Primary (Filter) Adjustment.
The SINC_RATE1.PADJ bits provide the phase adjustment for the decimated
output of group 1 primary filters. The valid adjustment is between 0 and (SINC_
RATE1.PDEC - 1), in modulator clock cycles, relative to the time the filter is enabled
in the SINC_CTL register.
The primary SINC filter calculates an output in modulator clock cycle equivalent to (
(SINC_RATE1.PDEC * n) - SINC_RATE1.PADJ), where n is an integer > 1. This
bit field can be changed while the filter is running and takes effect after the next
decimation sample is generated. The effect of the change requires time to ripple
through the filter: a number of output sample periods is equal to the filter order.

14:9
(R/W)

SDEC Secondary (Filter) Decimation Rate.
The SINC_RATE1.SDEC bits provide the decimation rate for group 1 secondary
filters. The valid range depends on the SINC order selected.
If the third order (SINC_LEVEL1.SORD = 0), the valid range is 4 to 40.
If the forth order (SINC_LEVEL1.SORD = 1), the valid rate is 4 to 16.

8:0
(R/W)

PDEC Primary (Filter) Decimation Rate.
The SINC_RATE1.PDEC bits provide the decimation rate for group 1 primary
filters. The valid rate is 256 to 4.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Level Control for Group 0 Register

The SINC_LEVEL0 register controls output scaling and count, excursion limit and window, as well as
orders for primary and secondary SINC filters assigned to group 0.

Figure 27-11: SINC_LEVEL0 Register Diagram

Table 27-11: SINC_LEVEL0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30
(R/W)

PORD Primary (Filter) Order.
The SINC_LEVEL0.PORD bit determines the order for group 1 primary filters.

0 Third Order

1 Fourth Order

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–35

29:24
(R/W)

PSCALE Primary (Filter) Scaling.
The SINC_LEVEL0.PSCALE bits specify the scaling applied to the output of group
0 primary filters, prior to DMA transfer to memory. The valid value is between 4 to
32.
The SINC integrator, decimator, and bias adjustment produce an integer value up to
32 bits wide. The range of a full-scale signal of a bit stream filtered by a primary SINC
filter is approximately (BIAS +- ((0.625 * SINC_RATE0.PDEC) ^ order)). The value
requires about (ln2(SINC_RATE0.PDEC) * order) bits of precision (where 'order'
is 3 or 4, as specified by the SINC_LEVEL0.PORD bit.
This bit field specifies the bit position of the intermediate value, which is transferred
on the MSB of 16-bit DMA sample. Thus, the intermediate value is right-shifted by
(SINC_LEVEL0.PSCALE - 16) bits if SINC_LEVEL0.PSCALE>= 16, or left-
shifted by (16 - SINC_LEVEL0.PSCALE) bits if SINC_LEVEL0.PSCALE< 16. If
SINC_LEVEL0.PSCALE>= 16, thus selecting a right shift, the shifted value is
rounded up (as if 0.5 * LSB is added) before truncation. Rounding is not necessary for
a left shift. If the scaled and rounded value exceeds the range of a signed 16-bit
number, the sample is saturated (to 0x8000 or 0x7FFF), and the corresponding
saturation status bit (SINC_STAT.PSAT3, SINC_STAT.PSAT2, SINC_STAT.
PSAT1, or SINC_STAT.PSAT0 is set.

23:16
(R/W)

PCNT Primary (Filter) Count.
The SINC_LEVEL0.PCNT bits specify the modulo number of outputs for group 0
primary filters. The number must be one less than a desired modulo. Each time the
number of outputs specified by this bit filed is transferred, the SINC_STAT.PCNT0
status bit is set (=1). When the SINC_STAT.PCNT0 bit is set (unless masked), it
causes a TRU trigger. For example:
8'h00 written to the SINC_LEVEL0.PCNT bit field sets bit SINC_STAT.PCNT0
to 1 after every primary SINC filter output is transferred.
8'hFF written to the SINC_LEVEL0.PCNT bit field sets bit SINC_STAT.PCNT0
to 1 after every 256 primary SINC filter outputs transferred.

14
(R/W)

SORD Secondary (Filter) Order Select.
The SINC_LEVEL0.SORD bit determines the order for group 0 secondary filters.

0 Third Order

1 Fourth Order

13:11
(R/W)

LCNT (Excursion) Limit Count.
The SINC_LEVEL0.LCNT bits specify the number (count) of output excursions
beyond the amplitude specified for group 0 secondary filters. The number of
excursions greater than specified by registers SINC_LIMIT3, SINC_LIMIT2,
SINC_LIMIT2, and SINC_LIMIT0 is perceived as an overload and sets (=1) a
corresponding MAX or MIN bit in the SINC_STAT register. The valid count is
between 1 to 8. If the count is greater than SINC_LEVEL0.LWIN, the bit field's
behavior is as it is equal to SINC_LEVEL0.LWIN. See SINC_LEVEL0.LWIN for
details. The valid count must be one less than a desired count:
=000 require one excursion above the amplitude limit;
=111 require eight excursions above the amplitude limit.

Table 27-11: SINC_LEVEL0 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Level Control for Group 1 Register

The SINC_LEVEL1 register controls output scaling and count, excursion limit and window, as well as
orders for primary and secondary SINC filters assigned to group 1.

Figure 27-12: SINC_LEVEL1 Register Diagram

10:8
(R/W)

LWIN (Excursion) Limit Window.
The SINC_LEVEL0.LWIN bits specify the window size for excursion checking for
group 0 secondary filters. The window size is the number of the most recent outputs
to be included in a measurement specified by the SINC_LEVEL0.LCNT bits. The
valid value must be one less than a desired count (1 to 8), meaning the valid value is 0
to 7.

Table 27-12: SINC_LEVEL1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30
(R/W)

PORD Primary (Filter) Order.
The SINC_LEVEL1.PORD bits determines the order for group 1 primary filters.

0 Third Order

1 Fourth Order

Table 27-11: SINC_LEVEL0 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–37

29:24
(R/W)

PSCALE Primary (Filter) Scaling.
The SINC_LEVEL1.PSCALE bits specify the scaling applied to the output of group
1 primary filters, prior to DMA transfer to memory. The valid value is between 4 to
32.
The SINC integrator, decimator, and bias adjustment produce an integer value up to
32 bits wide. The range of a full-scale signal of a bit stream filtered by a primary SINC
filter is approximately (BIAS +- ((0.625 * SINC_RATE1.PDEC) ^ order)). The value
requires about (ln2(SINC_RATE1.PDEC) * order) bits of precision (where 'order'
is 3 or 4, as specified by the SINC_LEVEL1.PORD bit.
This bit field specifies the bit position of the intermediate value, which is transferred
on the MSB of 16-bit DMA sample. Thus, the intermediate value is right-shifted by
(SINC_LEVEL1.PSCALE - 16) bits if SINC_LEVEL1.PSCALE>= 16, or left-
shifted by (16 - SINC_LEVEL1.PSCALE) bits if SINC_LEVEL1.PSCALE< 16. If
SINC_LEVEL1.PSCALE>= 16, thus selecting a right shift, the shifted value is
rounded up (as if 0.5 * LSB is added) before truncation. Rounding is not necessary for
a left shift. If the scaled and rounded value exceeds the range of a signed 16-bit
number, the sample is saturated (to 0x8000 or 0x7FFF), and the corresponding
saturation status bit (SINC_STAT.PSAT3, SINC_STAT.PSAT2, SINC_STAT.
PSAT1, or SINC_STAT.PSAT0 is set.

23:16
(R/W)

PCNT Primary (Filter) Count.
The SINC_LEVEL1.PCNT bits specify the modulo number of outputs for group 1
primary filters. The number must be one less than a desired modulo. Each time the
number of outputs specified by this bit filed is transferred, the SINC_STAT.PCNT1
status bit is set (=1). When the SINC_STAT.PCNT1 bit is set (unless masked), it
causes a TRU trigger. For example:
8'h00 written to the SINC_LEVEL1.PCNT bit field sets bit SINC_STAT.PCNT1
to 1 after every primary SINC filter output is transferred.
8'hFF written to the SINC_LEVEL1.PCNT bit field sets bit SINC_STAT.PCNT1
to 1 after every 256 primary SINC filter outputs transferred.

14
(R/W)

SORD Secondary (Filter) Order.
The SINC_LEVEL1.SORD bit determines the order for group 1 secondary filters.
The SINC_LEVEL1.SORD bit determines the order for group 1 secondary filters.

0 Third Order

1 Fourth Order

13:11
(R/W)

LCNT (Excursion) Limit Count.
The SINC_LEVEL1.LCNT bits specify the number (count) of output excursions
beyond the amplitude specified for group 1 secondary filters. The number of
excursions greater than specified by registers SINC_LIMIT3, SINC_LIMIT2,
SINC_LIMIT2, and SINC_LIMIT0 is perceived as an overload and sets (=1) a
corresponding MAX or MIN bit in the SINC_STAT register. The valid count is
between 1 to 8. If the count is greater than SINC_LEVEL1.LWIN, the bit field's
behavior is as it is equal to SINC_LEVEL1.LWIN. See SINC_LEVEL1.LWIN for
details. The valid count must be one less than a desired count:
=000 require one excursion above the amplitude limit;
=111 require eight excursions above the amplitude limit.

Table 27-12: SINC_LEVEL1 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

(Amplitude) Limits for Secondary Filter 0 Register

The SINC_LIMIT0 register controls amplitude limits for a secondary filter of SINC pair 0.

Figure 27-13: SINC_LIMIT0 Register Diagram

10:8
(R/W)

LWIN (Excursion) Limit Window.
The SINC_LEVEL1.LWIN bits specify the window size for excursion checking for
group 1 secondary filters. The window size is the number of the most recent outputs
to be included in a measurement specified by the SINC_LEVEL1.LCNT bits. The
valid value must be one less than a desired count (1 to 8), meaning the valid value is 0
to 7.

Table 27-13: SINC_LIMIT0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

LMAX Limit Maximum for Secondary Filter 0.
The SINC_LIMIT0.LMAX bits specify the output signal conditions for the
secondary SINC filter 0. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an
associated maximum limit warning bit in register SINC_STAT.

15:0
(R/W)

LMIN Limit Minimum for Secondary Filter 0.
The SINC_LIMIT0.LMIN bits specify the output signal conditions for the
secondary SINC filter 0. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an
associated minimum limit warning bit in register SINC_STAT.

Table 27-12: SINC_LEVEL1 Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–39

(Amplitude) Limits for Secondary Filter 1 Register

The SINC_LIMIT1 register controls amplitude limits for a secondary filter of SINC pair 1.

Figure 27-14: SINC_LIMIT1 Register Diagram

(Amplitude) Limits for Secondary Filter 2 Register

The SINC_LIMIT2 register controls amplitude limits for a secondary filter of SINC pair 2.

Table 27-14: SINC_LIMIT1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

LMAX Limit Maximum for Secondary Filter 1.
The SINC_LIMIT1.LMAX bits specify the output signal conditions for the
secondary SINC filter 1. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an
associated maximum limit warning bit in register SINC_STAT.

15:0
(R/W)

LMIN Limit Minimum for Secondary Filter 1.
The SINC_LIMIT1.LMIN bits specify the output signal conditions for the
secondary SINC filter 1. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an
associated minimum limit warning bit in register SINC_STAT.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 27-15: SINC_LIMIT2 Register Diagram

(Amplitude) Limits for Secondary Filter 3 Register

The SINC_LIMIT3 register controls amplitude limits for a secondary filter of SINC pair 3.

Figure 27-16: SINC_LIMIT3 Register Diagram

Table 27-15: SINC_LIMIT2 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

LMAX Limit Maximum for Secondary Filter 2.
The SINC_LIMIT2.LMAX bits specify the output signal conditions for the
secondary SINC filter 2. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an
associated maximum limit warning bit in register SINC_STAT.

15:0
(R/W)

LMIN Limit Minimum for Secondary Filter 2.
The SINC_LIMIT2.LMIN bits specify the output signal conditions for the
secondary SINC filter 2. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an
associated minimum limit warning bit in register SINC_STAT.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–41

Bias for Group 0 Register

The SINC_BIAS0 register controls an output bias added to primary SINC filters of group 0.

Figure 27-17: SINC_BIAS0 Register Diagram

Table 27-16: SINC_LIMIT3 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

LMAX Limit Maximum for Secondary Filter 3.
The SINC_LIMIT3.LMAX bits specify the output signal conditions for the
secondary SINC filter 3. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an
associated maximum limit warning bit in register SINC_STAT.

15:0
(R/W)

LMIN Limit Minimum for Secondary Filter 3.
The SINC_LIMIT3.LMIN bits specify the output signal conditions for the
secondary SINC filter 3. In conjunction with bits LCNT and LWIN in register
SINC_LEVEL1 or SINC_LEVEL0, this bit field specifies conditions for an
associated minimum limit warning bit in register SINC_STAT.

Table 27-17: SINC_BIAS0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

BIAS Bias for Group 0 Primary Filters.
The SINC_BIAS0.BIAS bits specify a bias for the primary SINC filters output.
The bias is added to the output prior to saturation and DMA memory transfer. The
valid value is represented in two's complement format; thus, must be programmed to
be equal to -(d ^ o) / 2, where d = SINC_RATE0.PDEC and o = SINC_LEVEL0.
PORD.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Bias for Group 1 Register

The SINC_BIAS1 register controls an output bias added to primary SINC filters of group 1.

Figure 27-18: SINC_BIAS1 Register Diagram

Primary (Filters) Pointer for Group 0 Register

The SINC_PPTR0 read-only register points to a circular buffer holding the most recent results of primary
SINC filters, according to control group 0 assignments.

Figure 27-19: SINC_PPTR0 Register Diagram

Table 27-18: SINC_BIAS1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

BIAS Bias for Group1 Primary Filters.
The SINC_BIAS1.BIAS bits specify a bias for the primary SINC filters output.
The bias is added to the output prior to saturation and DMA memory transfer. The
valid value is represented in two's complement format; thus, must be programmed to
be equal to -(d ^ o) / 2, where where d = SINC_RATE1.PDEC and o = SINC_
LEVEL1.PORD.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–43

Primary (Filters) Pointer for Group 1 Register

The SINC_PPTR1 read-only register points to a circular buffer holding the most recent results of primary
SINC filters, according to control group 1 assignments.

Figure 27-20: SINC_PPTR1 Register Diagram

Table 27-19: SINC_PPTR0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

PPTR Primary (Filter) Pointer.
The SINC_PPTR0.PPTR bits hold the address for the last memory location of the
most recent set of primary SINC filter results (group 0).
The address is incremented once all of the primary SINC filter data (assigned to
group 0 and associated to a particular time stamp) is successfully presented to the
system fabric.
Memory locations beyond the location reported by this register may be partially
updated, so the entire circular buffer is not considered valid. Note that in real-time
operation, due to fabric latency, write data may be in flight on the system fabric after
the point when this bit field is updated. Thus, the write data may not be observed in
memory until it has transited the fabric.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Primary (Filters) Head for Group 0 Register

The SINC_PHEAD0 register stores the head address for a circular buffer in data memory to which to transfer
the primary SINC filter outputs (according to control group 0 assignments).

Figure 27-21: SINC_PHEAD0 Register Diagram

Table 27-20: SINC_PPTR1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

PPTR Primary (Filter) Pointer.
The SINC_PPTR1.PPTR bits hold the address for the last memory location of the
most recent set of primary SINC filter results (group 1).
The address is incremented once all of the primary SINC filter data (assigned to
group 1 and associated to a particular time stamp) is successfully presented to the
system fabric.
Memory locations beyond the location reported by this register may be partially
updated, so the entire circular buffer is not considered valid. Note that in real-time
operation, due to fabric latency, write data may be in flight on the system fabric after
the point when this bit field is updated. Thus, the write data may not be observed in
memory until it has transited the fabric.

Table 27-21: SINC_PHEAD0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:1
(R/W)

PHEAD Primary (Filter) Head Pointer.
The SINC_PHEAD0.PHEAD bits hold the pointer (address) for DMA transfer to
memory. Commencing at and wrapping back to SINC_PHEAD0.PHEAD after
SINC_PTAIL0.PTAIL is reached, it forms a circular buffer, to which to transfer
the primary SINC filter outputs (group 0). The valid address is 16-bit aligned.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–45

Primary (Filters) Head for Group 1 Register

The SINC_PHEAD1 register stores the head address for a circular buffer in data memory to which to transfer
the primary SINC filter outputs (according to control group 1 assignments).

Figure 27-22: SINC_PHEAD1 Register Diagram

Primary (Filters) Tail for Group 0 Register

The SINC_PTAIL0 register stores the tail address for a circular buffer in data memory to which to transfer
the primary SINC filter outputs (according to control group 1 assignments).

Figure 27-23: SINC_PTAIL0 Register Diagram

Table 27-22: SINC_PHEAD1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:1
(R/W)

PHEAD Primary (Filter) Head Pointer.
The SINC_PHEAD1.PHEAD bits hold the pointer (address) for DMA transfer to
memory. Commencing at and wrapping back to SINC_PHEAD1.PHEAD after
SINC_PTAIL1.PTAIL is reached, it forms a circular buffer, to which to transfer
the primary SINC filter outputs (group 1). The valid address is 16-bit aligned.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Primary (Filters) Tail for Group 1 Register

The SINC_PTAIL1 register stores the tail address for a circular buffer in data memory to which to transfer
the primary SINC filter outputs (according to control group 1 assignments).

Figure 27-24: SINC_PTAIL1 Register Diagram

History Status Register

The SINC_HIS_STAT provides status for data histories of secondary SINC filters, in the corresponding
history buffer registers. The SINC history buffer registers save the most recent filter samples once an over-
load fault signal is detected.

Table 27-23: SINC_PTAIL0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:1
(R/W)

PTAIL Primary (Filter) Tail Pointer.
The SINC_PTAIL0.PTAIL bits hold the pointer (address) for DMA transfer to
memory. Commencing at and wrapping back to SINC_PHEAD0.PHEAD after
SINC_PTAIL0.PTAIL is reached, it forms a circular buffer, to which to transfer
the primary SINC filter outputs (group 1). The valid address is 16-bit aligned.

Table 27-24: SINC_PTAIL1 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:1
(R/W)

PTAIL Primary (Filter) Tail Pointer.
The SINC_PTAIL1.PTAIL bits hold the pointer (address) for DMA transfer to
memory. Commencing at and wrapping back to SINC_PHEAD1.PHEAD after
SINC_PTAIL1.PTAIL is reached, it forms a circular buffer, to which to transfer
the primary SINC filter outputs (group 1). The valid address is 16-bit aligned.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–47

Figure 27-25: SINC_HIS_STAT Register Diagram

Table 27-25: SINC_HIS_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

14:12
(R/NW)

P3HISPTR Pair 3 History Pointer.
The SINC_HIS_STAT.P3HISPTR bits indicate the position for the most recent
data sample of secondary SINC filter 3 in the corresponding SINC_P3SEC_HISTn
register block.

0 History Register 3, MS

1 History Register 0, LS

2 History Register 0, MS

3 History Register 1, LS

4 History Register 1, MS

5 History Register 2, LS

6 History Register 2, MS

7 History Register 3, LS

10:8
(R/NW)

P2HISPTR Pair 2 History Pointer.
The SINC_HIS_STAT.P2HISPTR bits indicate the position for the most recent
data sample of secondary SINC filter 2 in the corresponding SINC_P2SEC_HISTn
register block.

0 History Register 3, MS

1 History Register 0, LS

2 History Register 0, MS

3 History Register 1, LS

4 History Register 1, MS

5 History Register 2, LS

6 History Register 2, MS

7 History Register 3, LS

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Pair 0 Secondary (Filter) History n Register

The SINC_P0SEC_HISTn read-only register provides the eight most recent samples produced by secondary
SINC filter 0. The 16-bit samples are stored in the 32-bit register in circular manner, starting with the low-
order field of the first SINC_P0SEC_HISTn register. The stored values, one compared to the limit, count,
and window settings, set the SINC_STAT.MAX0 and SINC_STAT.MIN0 bits.

6:4
(R/NW)

P1HISPTR Pair 1 History Pointer.
The SINC_HIS_STAT.P1HISPTR bits indicate the position for the most recent
data sample of secondary SINC filter 1 in the corresponding SINC_P1SEC_HISTn
register block.

0 History Register 3, MS

1 History Register, LS

2 History Register 0, MS

3 History Register 1, LS

4 History Register 1, MS

5 History Register 2, LS

6 History Register 2, MS

7 History Register 3, LS

2:0
(R/NW)

P0HISPTR Pair 0 History Pointer.
The SINC_HIS_STAT.P0HISPTR bits indicate the position for the most recent
data sample of secondary SINC filter 0 in the corresponding SINC_P0SEC_HISTn
register block.

0 History Register 3, MS

1 History Register 0, LS

2 History Register 0, MS

3 History Register 1, LS

4 History Register 1, MS

5 History Register 2, LS

6 History Register 2, MS

7 History Register 3, LS

Table 27-25: SINC_HIS_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–49

Figure 27-26: SINC_P0SEC_HISTn Register Diagram

Pair 1 Secondary (Filter) History n Register

The SINC_P1SEC_HISTn read-only register provides the eight most recent samples produced by secondary
SINC filter 1. The 16-bit samples are stored in the 32-bit register in circular manner, starting with the low-
order field of the first SINC_P1SEC_HISTn register. The stored values, compared to the limit, count, and
window settings, set the SINC_STAT.MAX1 and SINC_STAT.MIN1 bits.

Figure 27-27: SINC_P1SEC_HISTn Register Diagram

Table 27-26: SINC_P0SEC_HISTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/NW)

HI High Data Word.
The SINC_P0SEC_HISTn.HI bits provide the 16-bit sample in the most
significant half of the 32- bit register.

15:0
(R/NW)

LO Low Data Word.
The SINC_P0SEC_HISTn.LO bits provide the 16-bit sample in the least
significant half of the 32- bit register.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Pair 2 Secondary (Filter) History n Register

The SINC_P2SEC_HISTn read-only register provides the eight most recent samples produced by secondary
SINC filter 2. The 16-bit samples are stored in the 32-bit register in circular manner, starting with the low-
order field of the first SINC_P2SEC_HISTn register. The stored values, compared to the limit, count, and
window settings, set the SINC_STAT.MAX2 and SINC_STAT.MIN2 bits.

Figure 27-28: SINC_P2SEC_HISTn Register Diagram

Table 27-27: SINC_P1SEC_HISTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/NW)

HI High Data Word.
The SINC_P1SEC_HISTn.HI bits provide the 16-bit sample in the most
significant half of the 32- bit register.

15:0
(R/NW)

LO Low Data Word.
The SINC_P1SEC_HISTn.LO bits provide the 16-bit sample in the least
significant half of the 32- bit register.

Table 27-28: SINC_P2SEC_HISTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/NW)

HI High Data Word.
The SINC_P2SEC_HISTn.HI bits provide the 16-bit sample in the most
significant half of the 32- bit register.

15:0
(R/NW)

LO Low Data Word.
The SINC_P2SEC_HISTn.LO bits provide the 16-bit sample in the least
significant half of the 32- bit register.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 27–51

Pair 3 Secondary (Filter) History n Register

The SINC_P3SEC_HISTn read-only register provides the eight most recent samples produced by secondary
SINC filter 3. The 16-bit samples are stored in the 32-bit register in circular manner, starting with the low-
order field of the first SINC_P3SEC_HISTn register. The stored values, compared to the limit, count, and
window settings, set the SINC_STAT.MAX3 and SINC_STAT.MIN3 bits.

Figure 27-29: SINC_P3SEC_HISTn Register Diagram

Table 27-29: SINC_P3SEC_HISTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/NW)

HI High Data Word.
The SINC_P3SEC_HISTn.HI bits provide the 16-bit sample in the most
significant half of the 32- bit register.

15:0
(R/NW)

LO Low Data Word.
The SINC_P3SEC_HISTn.LO bits provide the 16-bit sample in the least
significant half of the 32- bit register.

SINC FILTER
ADSP-CM40X SINC REGISTER DESCRIPTIONS

27–52 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 28–1

28 Reset Control Unit (RCU)

Reset is the initial state of the whole processor (or one of the cores) and is the result of a hardware or soft-
ware triggered event. In this state, all control registers are set to their default values and functional units
are idle. Exiting a full system reset starts with Core-0 only being ready to boot. Exiting a Core n only reset
starts with this Core n being ready to boot.

The reset control unit (RCU) controls how all the functional units enter and exit reset. Differences in func-
tional requirements and clocking constraints define how reset signals are generated. Programs must guar-
antee that none of the reset functions puts the system into an undefined state or causes resources to stall.
This is particularly important when only one of the cores is reset (programs must ensure that there is no
pending system activity involving the core that is being reset).

RCU Features

RCU module supports the following features:

• Hardware reset through the SYS_HWRST pin

• Software system reset through RCU registers

• Software system reset by the ARM core

• Hardware system reset through:

– TRU module

– SEC module

– CGU module’s oscillator watchdog

RCU Functional Description

The RCU provides reset operation control and status features. Use the following sections to provide func-
tional descriptions of the RCU:

• ADSP-CM40x RCU Register List

• ADSP-CM40x RCU Trigger List

• RCU Definitions

• RCU Architectural Concepts

RESET CONTROL UNIT (RCU)
RCU FUNCTIONAL DESCRIPTION

28–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x RCU Register List

The reset control unit (RCU) controls how all the functional units in the processor enter and exit Reset.
Differences in functional requirements and clocking constraints (units in different clock domains have to
enter reset asynchronously, but units exit reset in a deterministic way) define how reset signals are gener-
ated. Reset signals propagate through all the functional units asynchronously. For more information on
RCU functionality, see the RCU register descriptions.

ADSP-CM40x RCU Trigger List

Table 28-1: ADSP-CM40x RCU Register List

Name Description

RCU_CTL Control Register

RCU_STAT Status Register

RCU_SVECT_LCK SVECT Lock Register

RCU_BCODE Boot Code Register

RCU_SVECT0 Software Vector Register 0

RCU_MSG Message Register

RCU_MSG_SET Message Set Bits Register

RCU_MSG_CLR Message Clear Bits Register

Table 28-2: ADSP-CM40x RCU Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

None

Table 28-3: ADSP-CM40x RCU Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

0 RCU0_SYSRST0 RCU0 System Reset Assert (Slave 0)

1 RCU0_SYSRST1 RCU0 System Reset Assert (Slave 1)

RESET CONTROL UNIT (RCU)
RCU FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 28–3

RCU Definitions

To make the best use of the RCU, it is useful to understand the terms in this section.

The following are types of resets that are defined by their target or source.

Hardware Reset (by target)

 All functional units except the debug interface are set to their default states. History is lost.

System Reset (by target)

All functional units except the RCU are set to their default states.

Hardware Reset (by source)

The SYS_HWRST input signal is asserted active (pulled low).

System Reset (by source)

May be triggered by software (writing to the RCU_CONTROL) register or by another functional unit such as
the TRU or any of the generic reset inputs.

RCU Architectural Concepts

To understand the architecture of the RCU, one must consider the reset sources and how differing resets
affect the functional units of the processor.

The RCU provides the hardware that controls how all the functional units enter and exit reset. Differences
in functional requirements and clocking constraints define how reset signals are generated. For example,
units in different clock domains have to enter reset asynchronously but exit reset in a deterministic way.

It is the program's responsibility to guarantee that none of the reset functions put the system in an unde-
fined state or cause resources to stall. This is particularly important when only one of the cores is reset
because the program needs to guarantee that there is no pending system activity involving Core n before
it is reset. For example, there should be no pending transactions to core n when the core is reset.

The following table defines how reset sources affect the different functional units.

Reset Source Reset Type Affected Functional Units

SYS_HWRST pin assertion Hardware Reset All functional units, except RTC (if present)

SYSCLK clock domain reset System Reset All functional units, except:

• RTC (if present),
• RCU_STAT,
• RCU_BCODE, and
• the units on the VDDEXT power domain

RESET CONTROL UNIT (RCU)
RCU STATUS AND ERROR SIGNALS

28–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

RCU Status and Error Signals

The RCU_STAT register reflects status and error information. There are three kinds of errors that can occur
in the RCU. The Reset Out error is triggered if RSTOUT is both asserted and deasserted at the same time.
The Lock Write error occurs if an attempt is made to write a lock RCU register. The Address Error occurs
if a read only register is written to or if an attempt is made to a reserved address within the RCU MMR
address range.

ADSP-CM40x Specific Information

The following RCU related information is specific to ADSP-CM40x processors. When applying RCU
feature to ADSP-CM40x systems, be aware that:

• The ADSP-CM40x processor is a single core processor.

• The ADSP-CM40x processor does not have an RTC (real-time clock).

• The SCLK domain sources for system reset come from the TRU and SEC (same as SYSCLK sources).

• The SYSCLK domain sources for system reset come from the TRU and SEC.

• The RCU on the ADSP-CM40x processor supports oscillator watchdog reset.

• Core reset through the RCU on the ADSP-CM40x processor is not supported.

NOTE: L1 memory and cache contents are not preserved though a soft reset transition unless either (a) the
chip is in bypass or (b) the CGU CCLK buffer is disabled.

ADSP-CM40x RCU Register Descriptions

Reset Control Unit (RCU) contains the following registers.

RCU_CTL.SYSRST bit set
(software triggered reset)

System Reset All functional units, except:

• RTC (if present),
• RCU_STAT,
• RCU_BCODE, and
• the units on the VDDEXT power domain

Reset Source Reset Type Affected Functional Units

RESET CONTROL UNIT (RCU)
ADSP-CM40X RCU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 28–5

Control Register

The RCU control register (RCU_CTL) provides a register lock, controls for the system reset pin, and a
control for system reset.

Figure 28-1: RCU_CTL Register Diagram

Table 28-4: ADSP-CM40x RCU Register List

Name Description

RCU_CTL Control Register

RCU_STAT Status Register

RCU_SVECT_LCK SVECT Lock Register

RCU_BCODE Boot Code Register

RCU_SVECT0 Software Vector Register 0

RCU_MSG Message Register

RCU_MSG_SET Message Set Bits Register

RCU_MSG_CLR Message Clear Bits Register

RESET CONTROL UNIT (RCU)
ADSP-CM40X RCU REGISTER DESCRIPTIONS

28–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Status Register

The RCU status register (RCU_STAT) contains status bits for all RCU reset sources, reset status, and boot
mode inputs. Status bits for reset sources are sticky and can cleared by software. Error status bits are
cleared by any reset event.

Table 28-5: RCU_CTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the RCU_CTL.LOCK bit is
set, the RCU_CTL register is read only (locked).

0 Unlock

1 Lock

2
(R0/W1A)

RSTOUTDSRT Reset Out De-assert.
The RCU_CTL.RSTOUTDSRT bit controls de-assertion of the system reset pin.

0 No Action

1 De-assert RSTOUT

1
(R0/W1A)

RSTOUTASRT Reset Out Assert.
The RCU_CTL.RSTOUTASRT bit controls assertion of the system reset pin.

0 No Action

1 Assert RSTOUT

0
(R0/W1A)

SYSRST System Reset.
The RCU_CTL.SYSRST bit provides reset for all system units.

0 No Action

1 System Reset

RESET CONTROL UNIT (RCU)
ADSP-CM40X RCU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 28–7

Figure 28-2: RCU_STAT Register Diagram

Table 28-6: RCU_STAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

18
(R/W1C)

RSTOUTERR Reset Out Error.
The RCU_STAT.RSTOUTERR bit indicates (if set) that a write attempted to set the
RCU_CTL.RSTOUTASRT and RCU_CTL.RSTOUTDSRT simultaneously. This
condition triggers a bus error.

0 No Error

1 Error Occurred

17
(R/W1C)

LWERR Lock Write Error.
The RCU_STAT.LWERR bit indicates (when set) there was an attempted write to an
RCU register while the RCU_CTL.LOCK bit was set and the global lock bit is
enabled (SPU_CTL_GLCK bit =1). This status bit is sticky; write-1-to-clear

0 No Error

1 Error Occurred

16
(R/W1C)

ADDRERR Address Error.
The RCU_STAT.ADDRERR bit indicates that the RCU generated an address error.
This status bit is sticky; write-1-to-clear it.

0 No Error

1 Error Occurred

11:8
(R/NW)

BMODE Boot Mode.
The RCU_STAT.BMODE bits indicate the input on the boot mode pins.

RESET CONTROL UNIT (RCU)
ADSP-CM40X RCU REGISTER DESCRIPTIONS

28–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

SVECT Lock Register

The RCU software vector lock register (RCU_SVECT_LCK) provides a register lock and software vector n
enable bits for each processor core on the product.

Figure 28-3: RCU_SVECT_LCK Register Diagram

5
(R/NW)

RSTOUT Reset Out Status.
The RCU_STAT.RSTOUT bit indicates the assertion status of the system reset pin.

0 RSTOUT Deasserted

1 RSTOUT Asserted

3
(R/W1C)

SWRST Software Reset.
The RCU_STAT.SWRST bit indicates that a system reset (which was triggered by
software) has occurred since the last time a hardware reset occurred or since the
RCU_STAT.SWRST bit was cleared by software.

0 Inactive

1 Reset Occurred

2
(R/W1C)

SSRST System Source Reset.
The RCU_STAT.SSRST bit indicates that a system reset triggered by hardware in
the system clock domain, clock A domain, or clock B domain has occurred since the
last time a hardware reset occurred or since the RCU_STAT.SSRST bit was cleared
by software.

0 Inactive

1 Reset Occurred

0
(R/W1C)

HWRST Hardware Reset.
The RCU_STAT.HWRST bit indicates that a hardware reset has occurred.

0 Inactive

1 Reset Occurred

Table 28-6: RCU_STAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

RESET CONTROL UNIT (RCU)
ADSP-CM40X RCU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 28–9

Boot Code Register

The RCU software vector lock register (RCU_BCODE) provides a register lock and software vector n enable
bits for each processor core on the product. For a processor-specific definition of the RCU_BCODE register,
see the Booting Register Reference in the Boot ROM chapter.

Figure 28-4: RCU_BCODE Register Diagram

Table 28-7: RCU_SVECT_LCK Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the RCU_SVECT_LCK.
LOCK bit is set, the RCU_SVECT_LCK register is read only (locked).

0 Unlock

1 Lock

0
(R/W)

SVECTn Software Vector Register n.
The RCU_SVECT_LCK.SVECTn bits enable a software vector (reset vector) for
each core n.

0 Disable

1 Enable Software Vector for Core n

Table 28-8: RCU_BCODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

LOCK Lock.
If the global lock bit is set (SPU_CTL_GLCK bit =1) and the RCU_BCODE.LOCK bit
is set, the RCU_BCODE register is read only (locked).

0 Unlock

1 Lock

RESET CONTROL UNIT (RCU)
ADSP-CM40X RCU REGISTER DESCRIPTIONS

28–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Software Vector Register 0

The RCU_SVECT0 register contains the default location of the first instruction to execute after a reset.

Figure 28-5: RCU_SVECT0 Register Diagram

Message Register

The RCU_MSG register provides information on processor status.

30:0
(R/W)

VALUE Boot Code.
The RCU_BCODE.VALUE bits contain a boot code for the processor. For more
information, see the RCU functional description.

Table 28-9: RCU_SVECT0 Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

VALUE Reset Vector.

Table 28-8: RCU_BCODE Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

RESET CONTROL UNIT (RCU)
ADSP-CM40X RCU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 28–11

Figure 28-6: RCU_MSG Register Diagram

Table 28-10: RCU_MSG Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31
(R/W)

CALLERR Call Error.
The RCU_MSG.CALLERR bit indicates that a flag has been set by the boot code
prior to an error call.

30
(R/W)

CALLBACK Call Back Call.
The RCU_MSG.CALLBACK bit indicates that a flag has been set by the boot code
prior to a callback call.

29
(R/W)

CALLINIT Call Initcode.
The RCU_MSG.CALLINIT bit indicates that a flag has been set by the boot code
prior to an initcode call.

28
(R/W)

CALLAPP Call Application.
The RCU_MSG.CALLAPP bit indicates that a flag has been set by the boot code
prior to an application call.

27
(R/W)

HALTONERR Halt on Error.
The RCU_MSG.HALTONERR bit generates an emulation exception prior to an error
call.

26
(R/W)

HALTONCALL Halt on Call.
The RCU_MSG.HALTONCALL bit generates an emulation exception prior to a
callback call.

25
(R/W)

HALTONINIT Hal on Initcode Call.
The RCU_MSG.HALTONINIT bit generates an emulation exception prior to an
initcode call.

RESET CONTROL UNIT (RCU)
ADSP-CM40X RCU REGISTER DESCRIPTIONS

28–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Message Set Bits Register

The RCU_MSG_SET register is used to set bits in RCU_MSG register. Reading this register returns 0x00000000.

24
(R/W)

HALTONAPP Halt on Application Call.
The RCU_MSG.HALTONAPP bit generates an emulation exception prior to an
application call.

23
(R/W)

L3INIT L3 is Initialized.
The RCU_MSG.L3INIT bit indicates that the L3 resource is initialized.

22
(R/W)

L2INIT L2 is Initialized.
The RCU_MSG.L2INIT bit indicates that the L2 resource is initialized.

17
(R/W)

C1L1INIT Core 1 L1 is Initialized.
The RCU_MSG.C1L1INIT bit indicates that the core 1 L1 resource is initialized.

16
(R/W)

C0L1INIT Core 0 L1 is Initialized.
The RCU_MSG.C0L1INIT bit indicates that the core 0 L1 resource is initialized.

Table 28-10: RCU_MSG Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

RESET CONTROL UNIT (RCU)
ADSP-CM40X RCU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 28–13

Figure 28-7: RCU_MSG_SET Register Diagram

RESET CONTROL UNIT (RCU)
ADSP-CM40X RCU REGISTER DESCRIPTIONS

28–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Message Clear Bits Register

The RCU_MSG_CLR register is used to clear bits in RCU_MSG register. Reading this register returns
0x00000000.

Table 28-11: RCU_MSG_SET Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W1S)

SETn Set Message Bits.
The RCU_MSG_SET.SETn bit sets MSG bit n.

0 Inactive

RESET CONTROL UNIT (RCU)
ADSP-CM40X RCU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 28–15

Figure 28-8: RCU_MSG_CLR Register Diagram

RESET CONTROL UNIT (RCU)
ADSP-CM40X RCU REGISTER DESCRIPTIONS

28–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Table 28-12: RCU_MSG_CLR Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W1C)

CLRn Clear MSG Register Bits.
The RCU_MSG_CLR.CLRn bit resets MSG bit n.

0 Inactive

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–1

29 Boot ROM and Booting the Processor

When the processor is powered on or enters a hardware reset a particular series of event occur. This section
gives an in depth description of these events and how to integrate an application effectively.

NOTE: This documentation contains material that is subject to change without notice. The content of the
boot ROM as well as hardware behavior may change across silicon revisions. See the anomaly list
for differences between silicon revisions.

On reset the processor begins fetching instruction from an internal ROM. The boot code contained within
the ROM is designed to facilitate loading an application. The boot code can automatically initialize certain
peripherals for communication based on a chosen boot mode, and subsequently load an application. For
more information on what boot modes are available see the Boot Modes section. The boot code can effi-
ciently load an entire application, code and data, into appropriate locations after the application has been
repackaged into a boot stream.

A boot stream is an application and/or data that has been split into blocks, and a 16 byte header is added
to each block instructing the boot code what to do with the associated data. There are several functions that
can be performed depending on what flags are set in the header. For more details on what options are avail-
able and a description of the stream format refer to the Boot Loader Stream section.

Many of the utilities of the boot code are available to the application as well. This includes things such as
copying memory, comparing memory, or loading another boot stream at run time. Its recommended that
an application use these API's to ensure application code is more easily compatible with future products.
For more details on what API's are available see the Callable API Overview section.

In addition to simple API's the boot code provides the capability to define a custom boot mode in the event
the desired boot mode is not supported. For all details related to how the boot code works, flow diagrams
and data structure descriptions, see the Boot Programming Modelsection and the Main Routine section.

 Boot Loader Stream

 A loader stream is a set of formatted blocks containing instructions for the boot kernel, as well as the appli-
cation and data to be loaded to the chip. This section describes in detail different aspects of the stream, its
blocks, and some common use cases.

 Each block begins with a block header which contains attributes of the block as well as flags to control its
processing by the boot ROM. On power-up or reset the processor begins executing the on-chip boot ROM
and the boot stream is either read from memory or received from a peripheral, depending on the boot
mode specified. Each block in the boot stream instructs the boot kernel to perform some action, most
commonly to simply load data to a specified location. Other actions include running code that initializes
a peripheral, forwarding data to a peripheral, or processing data then loading it to a location.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

29–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 As the Project Flow figure illustrates, a utility is required to process the resulting output from the tool
chain in order to create a valid boot stream. This utility may be in the form of a standalone application or
script that parses an application image file, elf output file or text based file such as Intel hex and creates a
valid boot stream. Formatting a boot stream may also be done internally by a flash programmer utility.

 A loader stream must always begin with a First block, and end with a Final block. The loader file contains
the boot stream and is made available to hardware by programming or burning it into non-volatile external
memory, or sending it through a peripheral during boot time.

Figure 29-1: Project Flow

 The Booting Process figure shows the parallel or serial boot stream contained in a flash memory device.
In host boot scenarios, the non-volatile memory usually connects to the host processor rather than directly
to the processor. After reset the headers are read and parsed by the on-chip boot kernel and the loader
stream is processed block by block. Finally, payload data is copied to destination addresses, either in on-
chip L1 and L2 memory, or off-chip to SDRAM or SRAM.

Figure 29-2: Booting Process

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–3

 In some cases (for example when the BLFAG_INDIRECT flag for any block is set), the boot kernel uses
another memory block for intermediate data storage. To avoid conflicts, the utility used should ensure this
region is booted last.

 Block Structure

Figure 29-3: Boot Header

 A boot stream consists of multiple boot blocks as shown in the figure. Every block is headed by a 16-byte
block header. The 16 bytes are functionally grouped into four 32-bit words: the block code, target address,
byte count, and the argument field. This section describes the fields in general. The uses may vary
depending on the particular block type and boot mode, refer to the block type descriptions and boot modes
for further information.

 Block Code

Table 29-1: Block Header flags

 Bit Name Description

 0-3 BCODE Specific to boot modes (see Boot Modes)

 4 BFLAG_SAVE Saves the memory of this block to off-chip memory in case of power failure. This flag is
not used by the on-chip boot kernel.

 5 BFLAG_AUX Nests special block types as required by special-purpose second-stage loaders. This flag
is not used by the on-chip boot kernel.

 6 reserved

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

29–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 TARGET_ADDRESS

 The TARGET_ADDRESS holds the address that the block applies to, (where the code or data should be
loaded). However, the field is interpreted differently depending on what specific flags are set in the block
code. Refer to each Block Type's documentation for details.

 The following attributes must be true:

• The target address must be divisible by 4, as the boot kernel uses 32-bit DMA for certain operations.

• The target address must point to valid on-chip or off-chip memory locations.

 BYTE_COUNT

 The byte count must be divisible by 4, and also may be zero. This 32-bit field generally holds the size of
the block. In some cases it can be used differently (such as when BFLAG_FILL is set). See the block types
section for information on specific variations.

 ARGUMENT

 The 32-bit field is a user variable for most block types. The value is accessible by the Initcode or the call-
back routine and can therefore be used for optional instructions to these routines.

 The ARGUMENT field is used in different ways by different block types. See the block type descriptions for
further information.

 7 BFLAG_FORWARD Forward payload to a device. Must be used in conjunction with the BFLAG_INDIRECT
flag.

 8 BFLAG_FILL Fill the target location with a specified value.

 9 BFLAG_QUICKBOOT Does not process block for a quick boot (warm boot).

 10 BFLAG_CALLBACK Calls function at the address provided.

 11 BFLAG_INIT Calls function at target address after loading payload to the same address.

 12 BFLAG_IGNORE Block is ignored.

 13 BFLAG_INDIRECT Boots to an intermediate storage place.

 14 BFLAG_FIRST Indicates the block to be the first block of a new .dxe

 15 BFLAG_FINAL Indicates the last block of a loader stream. Booting will complete after processing the
block.

 16-23 HDRCHK A simple XOR checksum of the other 31 bytes in the boot block header.

 24-31 HDRSIGN 0xAD

Table 29-1: Block Header flags (Continued)

 Bit Name Description

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–5

 Block Types

 A loader stream is a set of linked blocks and each block is responsible for performing a certain function
dependent on the block's type. A block type is defined by its flags in the block header. Operations include
functions such as loading data, filling a memory region with data, and instructing the kernel to stop
processing. This section describes each block type and how it is used within a boot loader stream.

 Normal Block

 A block's primary function is to load some data into a specified location of memory. A normal block
instructs the boot kernel to load the data contained in its payload to the location specified in the TARGET_
ADDRESS field. The BYTE_COUNT defines the size of the payload, once the correct amount of data has
been loaded, the kernel moves on to process the next block in the stream.

 First Block

 A first block indicates the start of a boot stream and is always required at the beginning of the boot stream.
In the case of a loader stream that contains Multi-Application Boot Streams, a first block occurring within
the loader stream indicates the beginning of a new application.

 When the kernel processes the first block in a loader stream, the TARGET_ADDRESS also updates the address
the kernel will jump to after loading completes. For more details refer to Boot Termination and Application
Execution .

NOTE: Note that a First Block cannot be combined with a Fill Block

Table 29-2: Flags

 Flag
 Required

 Value

 TARGET_ADDRESS Y Address where payload is loaded (must be valid)

 BYTE_COUNT Y Size of block in bytes

Table 29-3: Flags

 Flag
 Required

 Value

 BFLAG_FIRST Y 1

 ARGUMENT Y Offset to the next application, or first address following loader stream

 TARGET_ADDRESS Y When the block is the first block in a loader stream, also defines the start address for the
application. If the block is not the first in a loader stream the target address is used as in
normal operation.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

29–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 Final Block

 The final block marks the last block in a boot stream (not a application). After processing a final block the
boot kernel jumps to the application's start address. For more information on how the start address is
defined refer to Boot Termination and Application Execution

Further customization to the kernel behavior such as instructing the kernel to return from the boot routine
rather than jumping to the application using initialization codes or the Boot Routine API. Refer to the
Boot Routine API documentation for further details.

 Before the boot kernel passes program control to the application it does some housekeeping. Most of the
registers that were used are put in their default state. However, some register values may differ depending
on the boot mode. See Boot Modes for more information.

 Indirect Block

 An indirect block is first loaded to a storage location before being copied to the destination. This function-
ality is motivated by the following situations:

• Some boot modes may not use DMA from the boot peripheral. The core may not be able to access some
memory locations directly, and some it cannot access efficiently. An intermediate load to a different
location improves overall efficiency.

• In some booting scenarios the data in the payload needs to be operated on or analyzed before it is fully
loaded (such as decryption or checksum calculation). By using an intermediate location such scenarios
are simplified and can be more efficient when loading to off-chip memories (see Callback Block).

 In some cases a boot block may not fit into temporary storage memory so having a larger buffer may
improve boot performance. If an entire block cannot fit into the buffer it is processed in pieces. Initializa-
tion code or callback functions can alter the temporary buffer region, including its location and size, by
modifying the pTempBuffer and dTempByteCount variables in the STRUCT_ROM_BOOT_CONFIG struc-
ture.

Table 29-4: Flags

 Flag
 Required

 Value

 BFLAG_FINAL Y 1

Table 29-5: Flags

 Flag
 Required

 Value

 BFLAG_INDIRECT Y 1

 BFLAG_CALLBACK N Defines a callback function to operate on intermediate data. These 2 flags
are often used together.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–7

 Ignore Block

 An ignore block is a block that is (in most cases) ignored by the loader stream. Ignore blocks are useful
when it's not possible to pass information in another block header. For example, if the first block contains
data rather than application code, then inserting a first block that is an ignore block with the correct appli-
cation start address ensures the correct start address is used. Since this block has no other function it
should be marked as an ignore block so that the kernel will not attempt to process any payload.

 Init Block

 An initialization (Init) block instructs the boot kernel to do a function call to the target address after the
entire block has been loaded. The function called is referred to as the initialization code (Initcode) routine.
If the Initcode routine has been previously loaded, the block may declare a zero-size and have no payload.

 Initcode routines can be used to speed up and customize booting mechanisms exposed by the boot kernel.
Traditionally, an Initcode routine is used to setup system PLL, bit rates, wait states, and the external
memory controllers. If executed early in the boot process, the boot time can be significantly reduced.

 Initcode routines are required to follow the C language calling conventions. The expected C prototype is:

 void initcode(STRUCT_ROM_BOOT_CONFIG * pBootStruct)

 When programming in assembly, be certain to return using a return from subroutine instruction. See the
compiler manual for more information.

 The struct provided to the Initcode routine by the boot kernel contains a variety of information about the
block being processed. This includes header information, locations of temporary block data (for indirect
blocks), target address, and byte count. See Booting Data Structures for a full list and details on the
provided data.

 In the simplest case, an Initcode routine consists of only a single block in which the BFLAG_INIT flag is
set. For larger routines, a sequence of blocks can incrementally load the routine, and only the last block
should set the BFLAG_INIT flag. In the latter case, the last block should have no payload attached, and
simply instruct the boot kernel to issue a call to subroutine instruction.

 An Initcode routine can be overwritten by a successive block if it is no longer needed, otherwise the
routine can be called at multiple points during the boot process, and even remain in memory after booting
is completed for use by the application.

Table 29-6: Flags

 Flag
 Required

 Value

 BFLAG_IGNORE Y 1

 BYTE_COUNT Y Size of block to ignore, may be zero

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

29–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

NOTE: The following list provides requirements for Initcode that is written in C or C++.

• Ensure the initcode routine does not contain calls to the run-time libraries

• Do not assume that parts of the run-time environment, such as the heap, are fully functional

• Ensure that all run-time components are loaded an initialized before the routine executes

 Initcode routine examples can be found in the examples section

 Callback Block

 A callback block instructs the boot kernel to call a pre-registered function upon completion of loading the
block's payload. The purpose of a callback routine is to apply standard processing to the block payload. The
callback routine is registered through an Initcode routine prior to loading a block using the routine. Typi-
cally, callback routines contain checksum, decryption, decompression or hash algorithms.

 To register a callback an Init block must be created whose Initcode modifies the pCallBackFunction
pointer in the STRUCT_ROM_BOOT_CONFIG structure. A callback routine must be registered before a call-
back block can be processed.

Since callback routines require access to the payload data of the boot blocks, the block data must be loaded
before it can be processed. Often an INDIRECT block is used in combination with a callback block.

 Callback routines are expected to meet the C language calling conventions. The prototype is as follows:
s32 CallBackFunction(ROM_BOOT_CONFIG* pBootStruct,

 ROM_BOOT_BUFFER* pCallbackStruct,
 s32 dCbFlags)

 The pBootStruct argument contains the STRUCT_ROM_BOOT_CONFIG information, and the
pCallbackStruct contains the target address and size of the block (may vary when using indirect). The
dCbFlags parameter is specifically used when INDIRECT is also used. The BFLAG_DIRECT flag indicates
that the BFLAG_INDIRECT bit is not active and so that the callback routine is only called once per block.
When the BFLAG_DIRECT is set, the BFLAG_FIRST and BFLAG_FINAL are also set.

 See the Booting Data Structures section for more detailed information on these data.

Table 29-7: Flags

 Flag
 Required

 Value

 BFLAG_INIT Y 1

 TARGET_ADDRESS Y Location to load payload data. Call to subroutine issued to the same
location.

 ARGUMENT N Can be used to supply block specific arguments

 BYTE_COUNT Y Size of payload, may be zero

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–9

 Callback Block Used in Conjunction with Indirect Block

 When a block using a callback routine is also loaded indirectly there are slight behavior differences. The
procedure for loading is:

1. Data is loaded into the temporary buffer defined by pTempBuffer .

2. A call to the pCallBackFunction is issued.

3. After the callback routine returns, if the return value is zero, the memory DMA copies data to the desti-
nation

 If a block does not fit entirely into the temporary buffer, loading is performed similar to indirect blocks,
and the callback function is called after each chunk is loaded into the temporary storage. The dCbFlags
parameter gives information on the specific iteration.

 When a block does not fit entirely into the temporary storage area, the dCbFlags tells the callback
routine whether it is invoked for the first time (BFLAG_FIRST) or whether it is called the last time (BFLAG_
FINAL) for a specific block.

 When DMA is invoked to copy the data, it relies on the pCallbackStruct structure, not the global
pTempBuffer and dTempByteCount variables. The callback routine can control the source of the
memory DMA by altering the content of the pCallbackStruct structure, as may be required if the call-
back routine performs data manipulation such as decompression.

 When an indirect block is used, the return value of the callback routine determines whether the DMA
transfer occurs. If the value is non-zero, then the transfer does not occur.

 Quick Boot Block

Quick Boot Blocks are only processed for a full boot. In some booting scenarios, not all memories need to
be re-initialized. For example, in the case of a warm boot that is called during run-time off-chip SRAM may
not be impacted if it is powered while the processor performs the reboot. If the processor supports
Dynamic RAM, then this may also not be impacted if it was put into a self-refresh mode before the
processor reboots.

Table 29-8: Flags

 Flag
 Required

 Value

 BFLAG_CALLBACK Y 1

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

29–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

The boot kernel uses the following parameters to determine whether or not a quick block should be
processed. See the Project Flow figure in Boot Loader Stream also.

• The RCU_STAT register is read to determine what kind of boot is expected from the boot kernel.

• The BFLAG_WAKEUP bit in the dFlag word of the STRUCT_ROM_BOOT_CONFIG structure indicates
that the final decision was to perform a quick boot. If the boot kernel is called from the application, then
the application can control the boot kernel behavior by setting the BFLAG_WAKEUP flag accordingly.

• The BFLAG_QUICKBOOT flag in the block code word of the block header controls whether the current
block is ignored for quick boot.

See Conditional Processing of Boot Stream Blocks in Block Types for more details on how QUICKBOOT and
IGNORE flags can be used together for conditional processing.

 Save Block

 A save block saves the payload of the block to off-chip memory. This flag is not used by the on-chip boot
kernel but may be used by the user to mark blocks that their application may wish to store to non-volatile
memory and restore from non-volatile memory when the application is loaded. It provides a means of
doing a context restore after a re-boot.

 Conditional Processing of Boot Stream Blocks

 Whenever the boot code is called, an additional flag may be set when calling the boot routine. This flag
results in the boot kernel processing blocks marked as QUICKBOOT blocks in a different manner. The boot
kernel takes the following actions:

• Toggle the IGNORE flag

• As with any IGNORE block, the INIT , CALLBACK , FORWARD , AUX and FINAL flags are cleared

• As with any IGNORE block, the boot code prevents fill blocks from processing

Table 29-9: Flags

 Flag
 Required

 Value

 BFLAG_QUICKBOOT Y 1

Table 29-10: Flags

 Flag
 Required

 Value

 BFLAG_SAVE Y 1

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–11

 Blocks that have IGNORE =0 and QUICKBOOT =1 are normally processed in case of a regular (non-
wakeup) boot scenario. In the event of a wakeup boot situation, the blocks are not processed avoiding
necessary reboot of non-volatile memory if required.

 Blocks that have IGNORE =1 and QUICKBOOT =1 are ignored during a regular boot sequence and only
become active in a wakeup boot situation.

 This allows the boot process to be highly configurable depending upon the boot situation.

 In the case of a FIRST block, the IGNORE flag only controls the processing of the payload associated with
the header. The handling of the start vector and the next dxe pointer is not conditional.

 Single-Block Boot Streams

 This section describes how to bypass booting and execute code directly from SDRAM.

 The simplest boot stream consists of a single block header and one contiguous block of instructions. When
the appropriate flags are set in the block header, the kernel loads the block to the target address, terminates,
and begins executing from the target address of the block.

 The Initial Header for Single-Block Stream table shows an example of a single-block boot stream header
settings that can be loaded using any boot mode. The BFLAG_FIRST and BFLAG_FINAL flags are both
set at the same time and the target address and byte count are determined by the desired location of the
application.

 Direct Code Execution

 Applications may want to avoid long booting times and start code execution directly from flash or
SDRAM memory. This feature is called direct code execution.

 An initial boot block header is required for the processor to fetch and execute program code from the boot
device as early as possible. The safety mechanisms of the block, such as the header signature and the XOR
checksum, are used to avoid unpredictable processor behavior when boot memory is not yet being
programmed with valid data. Rather than blindly executing code, the boot kernel first executes the pre-
boot routine for system customization, then loads the first block header and checks it for consistency. If
the block header is corrupted, the boot kernel goes into a safe idle state and does not start code execution.

Table 29-11: Initial Header for Single-Block Stream

 Field Description of Value

 BLOCK_CODE 0xAD000000|XORSUM|BFLAG_FINAL|BFLAG_FIRST

 TARGET_ADDRESS Start address of block and application code

 BYTE_COUNT number of bytes in the block

 ARGUMENT Functions as next-application pointer in multi-application boot streams.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

29–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 If the initial block header check is good, the boot kernel interrogates the block flags. If the block has the
BFLAG_FINAL flag set, the boot kernel terminates and executes the sequence as described in the Boot
Termination and Application Execution section. To cause the boot kernel to customize the starting
address in advance, the first block must also have the BFLAG_FIRST flag set. The target address field is
then saved as the application start address.

When executing from SPI2 flash memory an alternate method can be used, block headers need not be used
at all. Please refer to the SPI Master Boot Mode section.

 Boot Termination and Application Execution

 When the boot kernel completes the processing of the boot stream a sequence of events is required to then
pass control the loaded application.

 When the boot process is complete the boot code must pass control the loaded application. The first block
of a boot stream, which is marked with the BLOCK_CODE.FIRST flag, contains a pointer to the vector table
in TARGET_ADDR the field of the boot block. This value is written to the RCU0_SVECT0 register when the
flag is processed.

 The boot kernel reads the value of the RCU0_SVECT0 register. This register points to the location of the
vector table for the application. The first two entries of the vector table contain the stack pointer and the
reset vector address where code execution must start from. The boot kernel does not update VTOR or
SP_main . The update of the vector table and the stack pointer is left to the set-up code of the application.
This allows for the boot stack to be preserved both for debug -purposes and in the event a user applications
wishes to return to the boot kernel. Not updating VTOR ensures that the default handers for the interrupts
that are enabled during boot code execution remain in place until the users application reconfigures all
interrupt functionality and handlers for their application.

The stack pointer must be between 0x10000000 and 0x2005FFFF, within the SRAM memory space. A stack
pointer of any other value will result in a call to the error handler routine.

 If the stack for the boot kernel is not required to be preserved, then the users run-time setup can initialize
SP_main back to the top of the data memory region is required to free up additional stack resources.

Table 29-12: Initial Header

 Field Value Comments

 BLOCK_CODE 0xAD7BD006 0xAD000000|XORSUM|BFLAG_FINAL|BFLAG_FIRST|BFLAG_
IGNORE|(MDMACODE & 0x6)

 TARGET_ADDRESS 0x20000020 Start address of application code

 BYTE_COUNT 0x00000010 Ignores 16 bytes to provide space for control data such as version code and
build data. This is optional and can be zero.

 ARGUMENT 0x00000010 Functions as next-application pointer in multi-application boot streams.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–13

 Multi-Application Boot Streams

 This section describes Multi-Applications boot loader streams, in which a single boot stream may consist
of multiple applications, either for multiple cores or for a single core.

 A boot stream is always generated from an elf output file from the linker or from a binary image. When
the loader utility accepts multiple application files on its command line, it generates a contiguous boot
image by default. The second application boot stream is appended immediately to the first one. The utility
updates the ARGUMENT field of all FIRST blocks to point to the next application in the boot stream, the
ARGUMENT field of a FIRST block is therefore referenced as the next-application pointer.

 The next-application pointer of the first application boot stream points relatively to the start address of
the second application boot stream. A multi-application boot image can be seen as a linked list of boot
streams. The next-application pointer of the last application boot stream points relatively to the next free
address in the boot source. This is illustrated by an example shown in the Multi-Application Boot Stream
Example figure.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT LOADER STREAM

29–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 29-4: Multi-Application Boot Stream Example

 The Multi-Application Direct Code Execution Example figure shows a linked list of initial block headers
that instruct the boot kernel to terminate immediately and to start code execution at the address provided
by the target address field of the individual blocks. There is nothing in the boot code that prevents multi-
application boot streams from mixing regular boot streams and direct code execution blocks.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–15

Figure 29-5: Multi-Application Direct Code Execution Example

 Multi-application boot streams allow for the boot code to call an application. The application may be
designed to use the current run-time setup and therefor simply return like any normal function. If an
application returns to the boot code the boot code then continues to boot the next application in the boot
stream.

 An application may also navigate the next-application pointers to find the first spare area of the boot
source that is not occupied by the boot stream.

 Boot Modes

 The boot kernel provides a variety of built-in support, such as call modes, for booting from various periph-
erals. The Boot Modes table describes the various boot modes.

 In slave boot modes, the processor functions as a slave to any host device. In these modes the processor
RESET input is usually controlled by the host device. Typically the host applies the reset sequence and
waits until the processor is ready to boot, depending on the peripheral being used, and transmits the boot
stream data to the processor.

 In a master boot mode, the processor controls the peripheral and indicates to the peripheral when to
transmit the boot stream data.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

29–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 No-Boot Mode

 No-Boot mode is intended for device recovery purposes caused by incorrect programming of the boot
source memory allowing for target connection via an emulator.

 This boot mode is not a slave boot mode, it simply places the processor in a known safe state to allow access
via emulation. The boot code performs the following steps in this boot mode.

• Code and Data Memory Configuration

• Memory Initialization

• Cache Configuration

• Enters an idle loop in which the processor is put into sleep mode by executing the WFI instruction

 The boot mode does not perform the following actions:

• Release any other cores for local initialization (if applicable)

• Enable fault management

• Execute any user pre-boot code (if applicable)

• Release SYS_RESOUT

• Invoke the boot kernel

• Execute the Boot Termination and Application Execution sequence

 When connecting an emulator and starting a debug session, an emulation interrupt is required to wake
up the processor where it may then be debugged in the normal manner.

Table 29-13: Booting Modes

 BMODE[1:0] Boot Source Description

 00 No Boot -idle The processor does not boot. Rather the boot kernel executes and IDLE
instruction.

 01 SPI Master Boot Boot through the Serial Port Interface from SPI memory. For derivatives with
on-chip SPI flash memory the processor boots through SPI2 otherwise the
processor boots through SPI0.

 10 SPI Slave Boot Boot through the Serial Port Interface (SPI0) peripheral configured as a slave

 11 UART Boot Boot through UART0 peripheral configured as a slave

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–17

 SPI Master Boot Mode

 The SPI Master Boot Routine that utilizes the peripheral DMA channel to receive the boot stream from
SPI Flash memory device.

 This SPI Master Boot mode boots from SPI memory connected to the SPI interface. 8-bit, 16-bit, 24-bit
and 32-bit addressable flash devices are supported. Use of the device auto detection feature is enabled by
default, which will update the read command to provide more optimum access.

 SPI memory is read using the standard 0x03 SPI read command by default.

 For booting, the SPI memory is connected as shown in the SPI Memory Connections figure.

Figure 29-6: SPI Memory Connections

 The pull-up resistor on the slave select signal ensures that the memory is deselected when the pin is in a
high-impedance mode such as during reset.

 Initialization codes are allowed to manipulate the dBootCommand variable in the ROM_BOOT_CONFIG
structure to extend the boot mechanism to a second SPI memory connected to another slave select pin.
Updating the field that specifies the slave select signal to be used allows the boot process to process larger
boot streams than are able to fit in a single SPI device.

 If modifying the slave select signal to be used during the boot process, the user must ensure they configure the
pin multiplexing to enable the correct functionality for the pin. Once the boot process has proceeded past the
configuration function and the boot process has actually started, the boot kernel will not perform any further
pin multiplexing operations.

 For SPI master boot the SPE, MSTR and SZ bits are set in the SPI0_CTL register. The TIMOD=2 bits enable
the receive DMA mode. Clearing both the CPOL and CPHA bits results in SPI mode 0. The boot kernel
does not allow SPI0 hardware to control the SEL1 pin. Instead, this pin is toggled in GPIO mode by soft-
ware. Initialization codes are allowed to manipulate the uwSsel variable in the STRUCT_ROM_BOOT_
CONFIG structure to extend the boot mechanism to a second SPI memory connected to another GPIO pin.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

29–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 SPI Device Detection Routine

 Since the boot mode supports booting from various SPI memories, the boot kernel automatically detects
what type of memory is connected. To determine whether the SPI memory device requires an 8, 16, 24 or
32-bit addressing scheme, the boot kernel performs a device detection sequence prior to booting. The
MISO signal requires a pull-up resistor, since the routine relies on the fact that memories do not drive their
data outputs unless the right number of address bytes are received.

 Initially, the boot kernel transmits the read command on the MOSI line. Once the command has been sent
the boot kernel proceeds to transmit a single address byte and waits until the receive FIFO indicates that
the buffer is no longer empty. This first received by is discarded. The boot code then proceeds to issue
another address byte while simultaneously receiving a byte. The received byte. The process continues until
a non-0xFF or 0x00 byte is received or until the full 4 address bytes have been sent without any valid data
being returned.

 The receiving of a non 0x00 or 0xFF byte tells the boot code whether the memory device requires 8, 16,
24, 32 address bits. The lower nibble of the received byte is then used to further customize the boot mode.
This nibble is referred to as the SPIMCODE . The boot kernel has the following settings according the
SPIMCODE Descriptions table.

 If the received value equals 0xFF, it is assumed that the memory device has not driven its data output and
that the 0xFF value is due to the pull-up resistor. Thus, another zero byte is transmitted and the received
data is tested again.

 If the value still equals 0xFF, device detection continues. Device detection aborts immediately if a byte
different than 0xFF is received. The boot kernel continues with normal boot operation and it reissues a
read command to re read from address 0. The first block header is loaded by two read sequences, further
block headers and block payload fields are loaded by separate read sequences.

 The SPI Device Detection Principle figure illustrates how individual devices behave.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–19

Figure 29-7: SPI Device Detection Principle

Table 29-14: SPIMCODE Descriptions

SPIMCODE Mode Command
Dummy

Bytes
Data
Lines

Address
Lines SPI Clock Purpose

0x0 unused

0x1 STANDARD 0x03 0 1 1 SCLK0/32 legacy single-bit SPI mode

0x2 STANDARD 0x03 0 1 1 SCLK0/4 legacy single-bit SPI mode

0x3 FAST READ 0x0B 1 1 1 SCLK0/2 single bit with dummy address
byte

0x4 FAST READ 0x0B 1 1 1 SCLK0/2 single bit with dummy address
byte. SPI_CTL.FMODE is
enabled for full cycle access.

0x5 STANDARD 0x03 0 1 1 SCLK0/3 legacy single bit. SPI_CTL.
FMODE is enabled for full cycle
access.

0x6 FAST READ 0x0B 1 2 1 SCLK0/1 single bit with dummy byte.
SPI_CTL.FMODE is enabled for
full cycle access.

0x7 RAPID-S 0x1B 2 2 2 SCLK0/1 Single bit with dummy bytes.
SPI_CTL.FMODE is enabled for
full cycle access.

0x8 DOR 0x3B 1 2 1 SCLK0/2 dual bit data. SPI_CTL.FMODE
is enabled for full cycle access.

0x9 DIOR 0xBB 1 2 2 SCLK0/2 dual data and address. SPI_
CTL.FMODE is enabled for full
cycle access.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

29–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 Run-time API

 The Boot Routine parameter.

0xA QOR READ
(Quad Mode
Method 1)

0x6B 1 4 1 SCLK0/2 quad bit data mode using quad
enable method 1 with SPI_
CTL.FMODE is enabled for full
cycle access.

0xB QIOR READ
(Quad Mode
Method 1)

0xEB 3 4 4 SCLK0/2 quad data and address using
quad enable method 1 with
SPI_CTL.FMODE is enabled for
full cycle access.

0xC QOR READ
(Quad Mode
Method 2)

0x6B 1 4 1 SCLK0/2 quad data using quad mode
enable method 2. SPI_CTL.
FMODE is enabled for full cycle
access

0xD QIOR READ
(Quad Mode
Method 2)

0xEB 3 4 4 SCLK0/2 quad data and address using
quad mode enable method 2.
SPI_CTL.FMODE is enabled for
full cycle access

0xE QIOR READ
(Quad Mode
Method 3)

0xEB 3 4 4 SCLK0/2 quad data and address using
quad mode enable method 3.
SPI_CTL.FMODE is enabled for
full cycle access

0xF unused

Table 29-14: SPIMCODE Descriptions (Continued)

SPIMCODE Mode Command
Dummy

Bytes
Data
Lines

Address
Lines SPI Clock Purpose

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–21

Figure 29-8: dBootCommand for SPI Master Boot

 SPI Master Boot with MEMMAP Support

 The SPI Master Boot Routine that utilizes the Memory DMA channel to receive the boot stream and also
supports direct code execution from the SPI flash. This boot mode may only be used for SPI peripherals
that support the memory mapped functionality.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

29–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 The SPI peripheral is configured so as to allow for code execution from the code cache and to allow for
DMA transfers to occur via the MDMA channel. This particular boot mode is very limited in actual device
auto-detection capabilities. For a known device such as on devices with an on-chip flash, the boot kernel
is configured to boot in this boot mode if it is supported by the flash device. The boot mode is configured
as per the flash requirements. If the boot source is an off-chip flash device then the peripheral DMA boot
mode is the primary boot mode as that boot mode has more advanced auto-detection support to identify
the external SPI device. A second stage loader or Initcode may be used to then reconfigure the SPI periph-
eral or make a run-time call to the SPI MEMMAP boot mode passing in the required configuration.

 The boot mode uses MDMA to transfer the boot header and payload from the SPI to their intended desti-
nation. The first nibble of the first block header, if present, is used for device detection. As the SPI periph-
eral however is already largely configured to communicate correctly with the SPI flash, the auto-detection
process is only used to implement a change to the SPI clock divider.

 In addition to the boot mode supporting the transfer of data via the use of the boot stream format incor-
porating block headers and payloads, the boot mode also provides support for direct code execution from
the SPI flash.

 There are two methods to implement code execution from the SPI.

• A boot block header that has both the BLOCK_CODE.FIRST and BLOCK_CODE.FINAL flags set. The
address of the vector table must be provided in the TARGET_ADDR field of the block header. This type
of boot header results in termination of the boot code. The reason for the TARGET_ADDR field pointing
to the location of the vector table instead of the actual address to start executing code from is explained
in Boot Termination and Application Execution . This method has the advantage that the device auto-
detection can be used allowing for re-configuration of the SPI clock divider from the look up table
before then executing the application code from the SPI flash.

• If no boot block is located at the boot address of the SPI flash memory then the first 4 bytes of the SPI
flash are analyzed. These first 4 bytes must be the first 32-bit entry of the vector table which corre-
sponds to the main stack pointer location. If the stack pointer is found to point to a valid data memory
location then it is assumed that the flash is programmed. RCU_SVECT0 is then initialized before the
procedure outlined in Boot Termination and Application Execution is executed allowing for code
execution to start from the SPI flash memory without loading any data to internal SRAM.

 The default SPI clock divider settings that are used for the boot mode are selected such that the clock will be
compliant for the defined read command at the maximum supported SCLK frequency of the product and not
the maximum default SCLK frequency.

 SPI Slave Boot Mode

 When using SPI slave mode boot, the processor consumes boot data from an external SPI host device. This
mode supports single, dual, and quad-bit modes. The boot kernel always starts in single bit mode and can
be changed using the appropriate command. The hardware configuration for the modes is shown in the
following figures. As in all slave boot modes, the host device controls the processor's SYS_HWRST input.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–23

Figure 29-9: Connection Between Host (SPI Master) and Processor (SPI Slave)

Figure 29-10: Connection Between Host (SPI Master) and Processor (SPI Slave) DIOM

Figure 29-11: Connection Between Host (SPI Master) and Processor (SPI Slave) QSPI

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

29–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 The host drives the SPI clock and is responsible for timing. The host must provide an active-low chip select
signal that connects to the SPIx_SS input of the processor. It can toggle with each byte transferred or
remain low during the entire procedure. 8-bit data is expected and 16-bit mode is not supported.

 In SPI slave boot mode, the boot kernel sets the SPI_CTL.CPHA bit and clears the SPI_CTL.CPOL bit
in the SPI_CTL register. Therefore the SPI_MISO pin is latched on the falling edge of the SPI_MOSI
pin.

 The SPI slave processor detects the correct bit mode from the host SPI device by reading the first byte sent,
defined as the SPICMD . The following table describes the available codes. If the host starts in dual or
quad-bit mode, additional bytes need to be sent to transmit the correct code.

 In SPI slave boot mode, SPIx_RDY functionality is critical. The SPIx_RDY output is used for back
pressure and requires a pulling resistor. The boot code initially samples the state of the pin to determine
whether the signal is active high or active low and configures polarity in the SPI peripheral accordingly.
The host is only permitted to transfer data when SPIx_RDY is in the active state. This allows the processor
to hold off the host while the processor is in reset or executing the pre-boot and processor initialization
sequences. The SPI is configured to de-assert SPIx_RDY when the receive FIFO is filled to 75% or more.
The SPI Program Flow on the Host Side figure illustrates the required program flow on the host side.

Table 29-15: SPICMD Descriptions

 SPICMD Description

 Starting in Single bit Mode

 0x3 keep single-bit mode

 0x7 switch to dual-bit mode

 0xB switch to quad-bit mode

 If host device starts in DIOM or QSPI

 0xAA,0xBF switch to dual-bit mode

 0xEE,0xEE,0xFE,0xFF switch to quad-bit mode

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–25

Figure 29-12: SPI Program Flow on the Host Side

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

29–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 Run-Time API

 The SPI Slave Boot mode can be called through the Boot Routine API function at run time. Initiating a
boot through the run-time API allows for additional customization such as disabling automatic device
configuration or specifying a different SPI device other than SPI0.

 When ROM_BCMD_NOCFG flag is specified, it is necessary to program pin multiplexing and other SPI
configuration as required, while keeping the SPI_CTL.EN bit cleared.

 The automode detection can be suppressed by the ROM_BCMD_NOAUTO switch. In that case, the
desired configuration must be passed through the ROM_BCMD_SPI_CODE bit field, even if the ROM_
BCMD_NOCFG flag is set.

 Figure SPI Slave Boot Mode describes the fields possible for customization through the dBootCmd param-
eter.

Figure 29-13: dBootCommand

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–27

 UART Slave Boot Mode

 When using UART slave mode boot, the processor receives boot data from a UART host device connected
to the UART interface. The device connected to UART0 is initially detected using an autobaud detection
sequence. After finishing the UART slave boot process, all control and status registers of the used resources
are restored.

 Further customization, such as disabling autobaud detection, and changing the device, can be done using
the Boot Routine API.

 During the boot operation, the host device usually relies on the RTS output of the UART device. At boot
time the processor does not evaluate RTS signals driven by host. Since the RTS is in a high impedance state
when the processor is in reset, or while executing a pre-boot, an external pull-up resistor to VDDEXT is
recommended. The Connection Between Host and Processor figure shows the interconnection required
for booting. The figure does not show physical line drivers and level shifters that are typically required to
meet the individual UART-compatible standards.

Figure 29-14: Connection Between Host and Processor

 When the UART is enabled, the RTS goes immediately low, encouraging the host to send the first boot
stream data as shown in the figure. In the case of half-duplex UART connections, this must be avoided.
The host should wait until it has received the four bytes from the slave processor, before sending any data.

Figure 29-15: Host relying on RTS

 When the boot kernel is processing fill or Initcode blocks, it might require additional processing time and
needs to hold the host off from sending more data. This is signaled using the RTS output.

 The figure above shows RTS timing in case an extended Initcode routine executes. Since code execution
is distracting from the data loading, the host device has to be prevented from sending more data. The
timing of the RTS depends on the state of the RFRT bit in the UART Control register (UART_CTL). This

BOOT ROM AND BOOTING THE PROCESSOR
BOOT MODES

29–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

bit is cleared in case of the UART Slave Boot mode and RTS is de-asserted when the UART receive FIFO
contains 4 or more data words and another start bit is detected.

 Autobaud Detection

 The kernel supports autobaud detection using the '@' character as data. The host is expected to have it's
clock set to rate supported in the UART

 To determine the bit rate when performing the autobaud:

1. the boot kernel expects an '@' character (0x40, eight bits data, one start bit, one stop bit, no parity bit)
on the UART RXD input.

2. The EDBO and UART_CLK register is cleared.

3. The boot kernel acknowledges, and the host then downloads the boot stream. The acknowledgment
consists of four bytes: 0xBF, UART_CLK [15:8], UART_CLK [7:0], 0x00.

4. The host is requested to not send further bytes until it has received the complete acknowledge string.

5. Once the 0x00 byte has been received, the host can send the entire boot stream.

 The host should know the total byte count of the boot stream, but it is not required to have any knowledge
about the content of the boot stream.

Figure 29-16: UART Autobaud Detection Waveform

 The UART Autobaud Detection Waveform figure provides timing information for UART booting. After
the bit rate is known, the UART is enabled and the kernel transmits four bytes.

 Run-time API

 The UART Slave Boot mode can be called through the Boot Routine API function at run time. The run-
time API allows for additional customization. both autobaud detection and device configuration can be
disabled, and a device other than the default, UART0, may be specified.

 If BFROM_BCMD_NOCFG flag is specified, it is the programs responsibility to configure pin multiplexing
as required.

 Autobaud detection can be suppressed using the BFROM_BCMD_NOAUTO switch. In this case, the desired
configuration can be passed through the BFROM_BCMD_UART_CLK bit field. If the BFROM_BCMD_UART_
CLK bit field is zero, UART_CLK finally is evaluated. If the reset value is detected, the default error routine
of the boot kernel is called and the booting process is aborted. Otherwise the value in UART_CLK remains
untouched.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–29

 The dBootCommand figure shows each of the available fields in the dBootCommand parameter in the
Boot Routine API function.

Figure 29-17: dBootCommand

 Boot Programming Model

 This section describes the programming model for booting the processor. The programming model
includes booting functions, API calls, and data structures.

 Each Boot Modes follows implements the same interface to the kernel. This consists of an initialization
function, a configuration function, load function, register function and a cleanup function. For an accurate
description of the details of each boot mode's implementation, it is recommended to look at each function
in the boot source that is provided.

 Page Mode

 For the benefit of page oriented boot source devices , the boot kernel provides support for page operations.
Page mode optimizes memory reads for block organized devices by always reading a page, rather than

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

29–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

reading data on demand. The same temporary buffer used by the indirect blocks is used in page mode. The
size of the buffer is defined by the dTempByteCount variable in the STRUCT_ROM_BOOT_CONFIG structure.
The page size of the physical source device is defined by the dPageByteCount variable.

 The pTempSource variable points to the source address of the data that is currently in the temp buffer.
This variable is an internal variable of the boot kernel. However, at any time programs can set this variable
to -1 to force the kernel to re fetch source data into the temp buffer. The following items also pertain to
Page mode.

• dPageByteCount must be a power-of-2 value (default is 4)

• dTempByteCount must be the same as or a multiple of dPageByteCount (default is 512)

• pTempBuffer does not have special alignment requirements. However, alignment of 32 may speed up
DMA operations.

• In page mode, both block payload data and block headers are loaded through the same mechanism.

 Changing Settings at Run Time

 Programs can change the pTempBuffer , dTempByteCount , and dPageByteCount variables at any
time, even within initialization codes or callbacks. Whenever the settings change the kernel continues to
operate on the old settings until the content of the former temporary buffer has been entirely processed.
The new settings only become active for the next load operation. The kernel can be forced to immediately
switch to the new settings by setting pTempSource to a value of -1. Note that doing so requires the kernel
to re fetch data that had been loaded earlier. Under normal conditions pTempSource should not be
altered.

 The Initcode Routine example illustrates on how page mode can be activated in any boot mode. Think of
SPI master mode that has significant overhead when fetching data in little chunks, and for block headers
or small boot blocks.

procedure initcode (BOOT_CONFIG config)
The config input is the boot config datastructure
change PLL and initialize DDR controller first */
initPLL()
enable page mode operation
set config.dFlags.BITM_ROM_BFLAG_PAGEMODE to true;

set to any unused DDR address,
make sure it is not overwritten by the boot stream
ideally pointing to an unitialized section, such as the stack or heap

 set config.pTempBuffer to 0xABCDABCD;
#update the temp byte count
pSource points to the current source address
pNextDxe points to the first address after the DXE
set config.dTempByteCount to config.pNextDxe - config.pSource

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–31

 CRC32 Protection

 This section describes the CRC32 Protection provisions

 The boot kernel provides mechanisms to allow each block to be verified using a 32-bit CRC. To enable this
feature, use the kernel initcode routine, rom_Crc32Initcode . An Init block that provides this function
can be created as the target address, and the ARGUMENT field containing the CRC32 checksum polyno-
mial. Once this function is called, CRC verification is enabled for all blocks except forward, ignore, and
first blocks. See the Boot Kernel API documentation for the specifics of this Initcode function.

 Error Handler

 This section describes how to customize the error handler

 While the default handler puts the processor into idle mode, an Initcode routine can register a customized
error function by overwriting the error function pointer to create a customized error handler. The
expected prototype is:

void ErrorFunction(

STRUCT_ROM_BOOT_CONFIG* pBootStruct, void *pFailingAddress);

 Use an Initcode Routine (see Block Types) to write the entry address of the error routine to the
pErrorFunction pointer in the STRUCT_ROM_BOOT_CONFIG structure. The error handler has
access to the entire boot structure and receives the instruction address that triggered the error.

 All EVT registers are initialized to the ROM error handler.

 The default ADSP-CM40x Error Routine performs the following actions in the following order:

1. Assign the local variable ErrorAddress the error's address

2. Assign the local variable pBootLocal with pBoot

3. Raise software interrupt 3

4. Enter a while(1); loop

 Fault Management

 Unless the RCU_BCODE_NOFAULTS or RCU_BCODE_HALT registers are set, the main routine enables the
SEC and configures the following interrupts as faults early in the process:

 CGU0_ERR, SEC0_ERR, WDOG0_EXP, DMAC_ERR, CRC0_ERR, SOFT3, C0_DBL_FAULT, C0_
HW_ERR:= SCTL_SEN | SCTL_FEN;

 WDOG1_EXP, C0_BDL_FAULT, C0_HW_ERR= SCTL_SEN | SCTL_FEN;

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

29–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 After memory initialization, the memory protection channels are enabled as faults:

 L2CTL0_ECC_ERR, INTR_C0_L1_PARITY_ERR and in the dual-core case INTR_C1_L1_PARITY_
ERR

 SEC0_FDLY and SEC_FSRDLY are set to 0x100 value. SEC0_FCTL= FIEN | FOEN | EN;

 Note that no interrupt is forwarded to either core.

 If the boot code detects an error by software, its default error handler does the follow:

1. set the INTR_SOFT3 software interrupt

2. wait for interrupt (WFI())

 The boot code does not disable the SEC and fault settings on exit so that a safety hole is not introduced
when transitioning to user application.

 Callable API Overview

 Describes the kernel API available at run-time

 The boot code stored in ROM exposes several functions that can be used during run-time or within Init-
code or callback routines. This section describes the available functions and how they can be used. All
functions meet the C runtime calling conventions . C prototypes are provided through cdef_rom.h
header file, and addresses are provided by the def_rom.h header file.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–33

 Boot Kernel

 The boot kernel API can be used to implement custom boot modes.

void * rom_BootKernel(STRUCT_ROM_BOOT_CONFIG *pBootStruct);

 Boot Routine

 The boot routine provides access to boot an application at run-time through a supported peripheral. The
boot routine often also provides the ability for further customization over the equivalent boot mode.

void* rom_Boot(...)

 The Boot Routine can be used for any kind of second-stage boot for supported boot modes . It provides
options to boot from any device and any channel, whereas booting directly limits the choice to the default
devices and channels. Often any auto-configuration or detection of the device can also be disabled. Each
boot mode defines its down dBootCommand , (see individual boot modes for a description of this param-
eter). The *pCallHook argument is only needed when BITM_ROM_BFLAG_HOOK is set and should
otherwise be NULL . The *pTargetAddress argument is only needed when BITM_ROM_BFLAG_
DATAREAD is set and should otherwise be NULL .

 Name BootKernel -

 PP Define FUNC_ROM_BOOTKERNEL -

 Prototype void rom_BootKernel(STRUCT_ROM_
BOOT_CONFIG *pBootStruct)

 -

 Argument pBootStruct pointer to boot config struct

 Return Value none -

 Name Boot Routine -

 PP Define FUNC_ROM_BOOT -

 Prototype void * rom_Boot(void *pBootStream,
uint32_t dFlags, int32_t
dBlockCount, ROM_BOOT_HOOK_
FUNC *pCallHook, uint32_t
dBootCommand, void *pTargetAddress);

 -

 Argument void *pBootStream Pointer to boot stream

 Argument uint32_t dFlags Refer to the dFlags table .

 Argument int32_t dBlockCount Number of Blocks to load

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

29–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 dFlags Description

 Example
 // SPI Master Boot
 uint32_t dBootCmd = (1 << BITP_ROM_BCMD_SPIM_SPEED) |
 (7 << BITP_ROM_BCMD_SPIM_IOPROT) |
 (0 << BITP_ROM_BCMD_SPIM_DUMMY) |
 (0 << BITP_ROM_BCMD_SPIM_ADDR) |
 (0xD << BITP_ROM_BCMD_SPIM_BCODE) |
 (0 << BITP_ROM_BCMD_SPIM_SSEL) |
 (1 << BITP_ROM_BCMD_SPIM_DEVENUM) |
 (0 << BITP_ROM_BCMD_SPIM_NOAUTO) |
 (0 << BITP_ROM_BCMD_SPIM_HOST) |
 (2 << BITP_ROM_BCMD_SPIM_DEVICE) |
 (0 << BITP_ROM_BCMD_SPIM_NOCFG));
 uint32_t dFlags = 0;

 Argument ROM_BOOT_HOOK_FUNC
*pCallHook

 hook routine. Routine must return true
for boot to continue.

 Argument uint32_t dBootCommand Refer to Run-time API subsections of
Boot Mode sections

 Argument void *pTargetAddress Pointer to the start address of the boot
stream

 Return Value pointer to next free source locations or
pointer to DXE when invoked by ROM_
BFLAG_NEXTDXE switch

 -

Table 29-16: dFlags Description

 Flag Description

 BITM_ROM_BFLAG_NORESTORE do not restore MMR register when done

 BITM_ROM_BFLAG_NORESET issue system reset when done

 BITM_ROM_BFLAG_RETURN issue RTS after load completion

 BITM_ROM_BFLAG_NEXTDXE parse stream via Next DXE pointer

 BITM_ROM_BFLAG_WAKEUP WURESET bit was a '1', enable quick boot

 BITM_ROM_BFLAG_SLAVE boot mode is a slave mode

 BITM_ROM_BFLAG_PERIPHERAL boot mode is a peripheral mode

 BITM_ROM_BFLAG_DATAREAD don't follow boot stream format

 BITM_ROM_BFLAG_HEADER pLoadFunction call for block header

 BITM_ROM_BFLAG_NOFIRSTHEADER don't load first header

 BITM_ROM_BFLAG_PAGEMODE page mode, replaced HDRINDIRECT

 BITM_ROM_BFLAG_HOOK call hook routine after initialization

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–35

 rom_Boot(0/*bootstream*/,0/*dFlags*/,0/*blockCount*/,0/*callhook*/,dBootCmd,0/
targetAddress/);

 CRC 32 Polynomial

 Generates a CRC look-up table using CRC0.

bool rom_Crc32Poly(
uint32_t ulPolynomial);

 CRC Initcode

 The CRC Initcode is called by the boot stream. A respective Init block is inserted by the loader utility when
invoked by the -crc switch. The CRC Initcode extracts the polynomial from the dArgument field of
each block header and calls then the CRC LUT function.

 void rom_Crc32Initcode(STRUCT_ROM_BOOT_CONFIG *pBootStruct);

 Name CRC32 Polynomial -

 PP Define FUNC_ROM_CRC32POLY -

 Prototype bool rom_Crc32Poly(uint32_t
ulPolynomial);

 -

 Argument ulPolynomial Polynomial

 Return Value bool 0 on success

 Stack Requirements none -

 Name CRC32 Polynomial -

 PP Define FUNC_ROM_CRC32INITCODE -

 Prototype void rom_Crc32Initcode(STRUCT_
ROM_BOOT_CONFIG *pBootStruct);

 -

 Argument Pointer to pBootStruct pointer to boot config struct

 Return Value none

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

29–36 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ECC Protection

 Protects 64-bit values by 8-bit ECC checksum using Hamming 7264 method. If return values equals
ROM_ECC_ERROR_1BIT source data is corrected in place. Cycle count is independent of data and
whether correction takes place or not.

uint8_t rom_Ecc(u64 *pData,
uint8_t bChksum, bool bDecode);

 Get Address

 The Get Address routine can be used to access various look-up tables stored in the ROM. The function
returns the address of the lookup table specified by the enumerator provided. Use this function rather than
directly addressing tables to improve compatibility with future parts and silicon revisions.

 Name ECC -

 PP Define FUNC_ROM_ECC -

 Prototype uint8_t rom_Ecc(u64 *pData,
uint8_t bChksum, bool bDecode);

 -

 Argument u64 *pData Pointer to 64-bit data

 Argument uint8_t bChksum 8-bit checksum

 Argument bool bDecode 0=encode, 1=decode

 Return Value 8-bit checksum when bDecode=false
error code when dDecode=true

Table 29-17: bDecode Values

 PP Define Description

 ROM_ECC_ENCODE encode mode

 ROM_ECC_DECODE decode mode

Table 29-18: Error Return Codes

 PP Define Description

 ROM_ECC_ERROR_INVS invalid syndrome/checksum

 ROM_ECC_ERROR_2BIT uncorrectable 2-bit error

 ROM_ECC_ERROR_1BIT 1-bt error, has been corrected

 ROM_ECC_ERROR_NONE no error

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–37

 Functional Description

 Mem Compare

 Mem Compare compares a specified region of memory against a provide 32-bit reference value. The byte
count can be any 32-bit value that is divisible by four, including zero. The DMA channel is disabled after
completion, but the DMA status is not cleared so that in the event of an error the DMA can be debugged.

bool rom_MemCmp(void *pSrc,
uint32_t ulChkVal,

 PP Define FUNC_ROM_GETADDR

 Prototype void * rom_GetAddr(enum ETABLES eTable);

 Arguments R0: eTable enumerator

 Return Value R0: -1 in case of eTable was undefined enum start address of table otherwise

 Stack Requirements none

Table 29-19: eTable enumerators Values

 Index Returned Address

 0 Global constants

 1 boot mode definition table

 2 SoC SPI flash boot mode definitions table

 3 ECC syndrome table

 4 SPI MEMMAP Mode look-up table

 5 SPI Master Boot look-up table

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

29–38 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

uint32_t ulByteCnt);

 Memory Copy

 The Mem Copy function provides a convenient facility to copy memory using MDMA0 from one location
to another. The byte count can be any 32-bit value including zero. The DMA channel is disabled after
completion, but the DMA status is not cleared so that in the event of an error the DMA can be debugged.

bool rom_MemCpy(void *pDst, void *pSrc,
uint32_t ulByteCnt);

 Memory CRC

 Name Memory Compare -

 PP Define FUNC_ROM_MEMCMP -

 Prototype bool rom_MemCmp(void *pSrc,
uint32_t ulChkVal, uint32_t
ulByteCnt)

 -

 Argument void *pSrc Pointer to source address

 Argument uint32_t ulChkVal Compare value

 Argument uint32_t ulByteCnt Byte Count

 Return Value 0: on success -1 on failure

 Stack Requirements none -

 Name Memory Copy -

 PP Define FUNC_ROM_MEMCPY -

 Prototype bool rom_MemCpy(void *pDst, void
*pSrc, uint32_t ulByteCnt);

 -

 Argument void *pDst Destination address

 Argument void *pSrc Source address

 Argument uint32_t ulByteCnt Byte Count

 Return Value 0: on success -1 on failure

 Stack Requirements none -

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–39

 MemCRC scrubs memory using MDMA0 and CRC0 and builds a CRC checksum based on look-up table
as generated by CRC32POLY beforehand. The byte count can be any 32-bit value that is divisible by four,
including zero. The DMA channel is disabled after completion, but the DMA status is not cleared so that
in the event of an error the DMA can be debugged.

bool rom_MemCrc(void *pSrc,
uint32_t ulCrcChk,
uint32_t ulByteCnt);

 Memory Fill

 Mem Fill fills a specified region of memory with a 32-bit value provided. The byte count can be any 32-bit
value that is divisible by four, including zero. The DMA channel is disabled after completion, but the DMA
status is not cleared so that in the event of an error the DMA can be debugged.

bool rom_MemFill(void *pDst,
uint32_t ulFillVal,

 Name Memory CRC -

 PP Define FUNC_ROM_MEMCRC -

 Prototype bool rom_MemCrc(void *pSrc,
uint32_t ulCrcChk, uint32_t
ulByteCnt);

 -

 Argument void *pSrc Source address

 Argument uint32_t ulCrcChk Reference Checksum

 Argument uint32_t ulByteCnt Byte Count

 Return Value 0: on success -1 on failure

 Stack Requirements none -

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

29–40 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

uint32_t ulByteCnt);

 Booting Data Structures

 The programming model for booting the processor uses the data structures defined in this section.

 The programming model for booting the processor uses the data structures defined in this section.

 STRUCT_ROM_BOOT_BUFFER

 Buffer C stuct definition

struct STRUCT_ROM_BOOT_BUFFER

 STRUCT_ROM_BOOT_CONFIG

 Boot kernel configuration struct. This structure contains the parameters for various configurable aspects
of the kernel's operation. Many parameters can be modified during runtime by callbacks or initialization
codes.

 Name Memory Copy -

 PP Define FUNC_ROM_MEMFILL -

 Prototype bool rom_MemFill(void *pDst,
uint32_t ulFillVal, uint32_t
ulByteCnt);

 -

 Argument void *pDst Destination address

 Argument uint32_t ulFillVal Fill Value

 Argument uint32_t ulByteCnt Byte Count

 Return Value 0: on success -1 on failure

 Stack Requirements none -

 void *pBuffer

 int32_t dByteCount

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–41

 struct STRUCT_ROM_BOOT_CONFIG

 void *pSource

 void *pDestination

 uint32_t *pControlRegister

 uint32_t *pAuxControlRegister

 uint32_t *pDmaControlRegister

 uint32_t *pSecControlRegister

 int32_t dControlValue

 int32_t dByteCount

 int32_t dFlags

 uint16_t uwDataWidth

 uint16_t uwSrcModifyMult

 uint16_t uwDstModifyMult

 uint16_t uwUserShort

 int32_t dUserLong

 int32_t dReserved

 void *pModeData

 int32_t dBootCommand

 void *pNextDxe

 ROM_BOOT_ERROR_FUNC *pErrorFunction

 ROM_BOOT_LOAD_FUNC *pLoadFunction

 ROM_BOOT_CALLBACK_FUNC *pCallBackFunction

 ROM_BOOT_CALLBACK_FUNC *pCrcFunction

 ROM_BOOT_CALLBACK_FUNC *pForwardFunction

 STRUCT_ROM_BOOT_HEADER *pHeader

 void *pTempBuffer

BOOT ROM AND BOOTING THE PROCESSOR
BOOT PROGRAMMING MODEL

29–42 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 STRUCT_ROM_BOOT_HEADER

 Boot Header C struct definition
typedef struct STRUCT_ROM_BOOT_HEADER

 STRUCT_ROM_BOOT_SPI

struct STRUCT_ROM_BOOT_SPI

 int32_t dTempByteCount

 void *pTempSource

 int32_t dPageByteCount

 uint32_t ulBlockCount

 uint32_t ulBlockCurrent

 int32_t dClock

 void *pLogBuffer

 void *pLogCurrent

 int32_t dLogByteCount

 int32_t dBlockCode

 void *pTargetAddress

 int32_t dByteCount

 int32_t dArgument

 uint8_t ubReadCommand

 uint8_t ubDummyBytes

 uint8_t ubAddressBytes

 uint8_t ubDataBits

 uint16_t uwClkLower

 uint16_t uwTxCtlUpper

 uint16_t uwRxCtlUpper

BOOT ROM AND BOOTING THE PROCESSOR
SYSTEM RESET AND POWER UP

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–43

 System Reset and Power Up

 Describes the different resetting scenarios

 Please refer to the RCU chapter for a list of available reset sources for the processor.

 Upon exiting reset the processor initializes SP_main to the value contained in the first entry of the vector
table located at address 0x00000000.

 The second entry of the vector table contains the reset vector address from which code execution starts.
The reset vector address points to the relevant entry in the ROM jump table .

 The processor is initially brought up in ACTIVE mode of operation. The boot process continues in active
mode until user application can reconfigure the Oscillator Watchdog to required values based on input
clock source.

ATTENTION: It is the responsibility of the user application code to reconfigure the Oscillator Watchdog
settings and set the processor to FULLON mode of operation.

 Boot ROM Vector Table

 Describes the contents of the Vector table stored in the Boot ROM

 Base Address

 The vector table is located at address 0x00000000 in the ROM

 Number of Entries

 The vector table will have the first 21 compulsory entries for the boot process. The application loaded is
responsible for relocating the vector table and providing the required handlers.

 uint16_t uReserved0

uint32_t nTxCtl

uint32_t nCmdCtl

ROM_BOOT_SPIM_IO_ENABLE_FUNC* pmIOEnFunction

uint8_t nDummy

uint16_t uReserved2

void* pXIPAddress

ADI_ROM_BOOT_SPI_FUNC functions

ADI_ROM_BOOT_SPI_ID id

BOOT ROM AND BOOTING THE PROCESSOR
SYSTEM RESET AND POWER UP

29–44 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 Table Layout

 Each entry in the vector table is 32-bits.

 Boot ROM Jump Table

 The jump table is located at a fixed location in the processor ROM for all product derivatives of a given
processor and provides access to various functions of the ROM.

 Base Address

 The jumptable table is located at address 0x000000C0 in the ROM immediately after the allocated space
for the vector table .

Table 29-20: Boot Vector Table

 Entry Number Byte Offset Description Contents

 0 0x0000 SP_main 0x2005FFF8

 1 0x0004 Reset Vector bootrom_jumptable_main_core0

 2 0x0008 NMI Vector bootrom_vector_nmi

 3 0x000C HardFault Vector bootrom_vector_hardfault

 4 0x0010 MemManage Vector bootrom_vector_memmanage

 5 0x0014 BusFault Vector bootrom_vector_busfault

 6 0x0018 UsageFault Vector bootrom_vector_usagefault

 7 - 10 0x001C - 0x0028 Reserved 0x00000000

 11 0x002C SVCall bootrom_vector_svcall

 12 0x0030 Debug Monitor bootrom_vector_debugmon

 13 0x0034 Reserved 0x00000000

 14 0x0038 PendSV bootrom_vector_pendsv

 15 0x003C SysTick bootrom_vector_systick

 16 0x0040 Oscillator Watchdog bootrom_vector_oscwdog

 17 0x0044 CGU Event bootrom_vector_cguevt

 18 0x0048 L1CC0 Code Cache Parity Error bootrom_vector_ccache_parity_error

 19 0x004C SRAM0 Core Parity Error bootrom_vector_core_parity_error

 20 0x0050 SRAM0_DMA Parity Error bootrom_vector_dma_parity_error

BOOT ROM AND BOOTING THE PROCESSOR
MEMORY INITIALIZATION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–45

 Number of Entries

 The Jumptable consists of 28 entries with each entry consisting of 16 bytes for the core entry jump table
entries and 8 bytes for the general API entries. Any reserved entries have code populated that simply return
to the calling function returning a value of zero. The instructions populated for each 8 byte entry are:

MOV r0, #0
BX LR
NOP

 The initialization of R0 to 0 requires a full 32-bit instruction, while the branch requires a 16-bit instruc-
tion. The additional NOP is added for alignment purposes to align each entry to an 8-byte boundary.

 For the entries that result in a branch to a function in the ROM, the following instructions are imple-
mented:

B <label>
NOP
NOP

 The branch instruction requires a 32-bit instruction and so two additional NOP instructions are also
inserted for alignment.

 Memory Initialization

 The first stage of booting initializes and validates all memory. This is performed before the actual boot
process begins.

 Memory Initialization occurs early in the boot process, before any stream information is read, and before
the boot code has any influence. The boot kernel initializes all memory and cache tags and ensures all
parity and ECC checksum bits are consistent with data. All memory is filled using a fill value.

 The fill value for the processor is 0xbf00bf00

 Main Routine

 Inspects the boot mode setting, any boot code registers that customize the boot process and the reset cause.
The main routine is then responsible for taken the required action and controlling the processor initializa-
tion and calling the boot kernel for the required boot mode.

 All CGU configuration remains at the default values until re-configured by the user application.

 Privileged Mode Configuration

 The processor is required to be executing in privileged mode in order to gain access to all the system
resources.

BOOT ROM AND BOOTING THE PROCESSOR
MAIN ROUTINE

29–46 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 The CM40x processor core defaults to thread mode of execution when it has exited reset. Thread mode
may be configured to execute in both privileged or non-privileged states with privileged being the default
mode and SP_main is used for the current stack.

 The boot code is therefore not required to take any action when coming out of reset in regards to privi-
leged mode of operation regardless of the reset source. If the user makes a call to any of the ROM API's
then it is the users responsibility to ensure the required mode is entered prior to the call.

 Code and Data Memory Configuration

 The processors internal SRAM may be partitioned into areas for instruction fetches and data accesses.

 The default L1 SRAM memory configuration is partitioned such that 50% of the memory is allocated as
L1 instruction memory at locations 0x10000000 - 0x1002FFFF inclusive. There are 6 x 64KB blocks of
SRAM.

 The register of interest is REG_SRAM_CFG and it's default reset value is 0x00000003 to indicate 3 banks
of SRAM are configured for code and the remainder for data.

 The SRAM configured as data memory is located at memory locations 0x20030000 - 0x2005FFFF inclu-
sive.

 The boot code in the ROM will not change the memory configuration from the default 50% split between
code and data.

 Memory Initialization

 Memory initialization ensures that all parity bits are consistent and correct prior to the loading of an appli-
cation.

 Early on in the boot cycle, the processor will initialize the entire internal code and data SRAM to a constant
value. The SRAM memory is parity protected and therefore once parity interrupts are enabled any instruc-
tion and data reads from non-initialized memory can generate core and DMA parity interrupts and also
potentially an NMI interrupt.

 The proposed fill value is 0xE7FEE7FE.

 The 0xE7FE instruction is a branch to itself resulting in an endless loop.

 The MDMA channel is used for this phase of the initialization process. After SRAM memory initialization
has completed and the cache is configured, the parity error interrupts for the core and the DMA channels
are enabled.

BOOT ROM AND BOOTING THE PROCESSOR
MAIN ROUTINE

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–47

 Cache Initialization

 Configures the cache for the initial stages of the boot process.

 The boot code will configure the cache to the following settings:

• CMODE = Full Operation

• PMODE = Full Operation

• CLEAR will be set to ensure a clear request is generated

• CBEN will be cleared to disable back door access to the cache

• NOPRE will be cleared to allow preemptive fetching

• CORG = 16kB, 4Way shared

• ILINE = 256 bits

• DLINE = 256 bits

• ILBF set for fill with line base word

• DLBF set for fill with line base word

• PLIM = Generate a parity error

• PMSK cleared to enable the parity error interrupt generation

 Interrupt and Fault Configuration

 Describes the handling requirements of the default interrupt handlers that are installed for the initial boot
procedure until a user supplied vector table is enabled.

 Although a number of interrupt vectors are specified in the boot ROM vector table , not all these inter-
rupts will be enabled. However a basic handler is installed that will place the device into a safe state should
one of these interrupts occur and the boot ROM vector table is still the active vector table . An interrupt
of any kind means an error has occurred and an appropriate action needs to be taken. By default the
routines all call the standard default Error Handler .

 Reset Vector

 The reset vector defines the address that is to be loaded to the PC register for the first instruction fetch
when coming out of reset.

BOOT ROM AND BOOTING THE PROCESSOR
MAIN ROUTINE

29–48 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 The reset vector points to the entry point of the boot code for that specific core.

 NMI Vector

 The NMI vector points to the NMI exception handler. Hardware is generally responsible for generating
an NMI exception and software can set the exception to a pending state.

 The NMI (Non Maskable Interrupt) interrupt is a permanently enabled interrupt with a fixed priority.

 The default action of this error handler is to call the default Error Handler .

 Hard Fault Vector

 Points to the hardware fault exception handler. It's a generic fault that encapsulates the classes of faults
that cannot be handled by the other exceptions.

 The default action of this error handler is to call the default Error Handler .

 MemManage Vector

 Points to the memory manager exception handler. These exceptions are determined by the MPU or any
memory protection constraints.

 The default action of this error handler is to call the default Error Handler .

 BusFault Vector

 Points to the bus fault exception handler that deals with memory related faults not handled by the
MemManage fault.

 The default action of this error handler is to call the default Error Handler .

 UsageFault Vector

 Points to the usage fault exception handler that handles non memory related faults caused by instruction
execution.

 The default action of this error handler is to call the default Error Handler .

 DebugMonitor Vector

 Points to the debug monitor exception handler that handles debug exceptions such as a debug operation
being performed when debug is not enabled.

 The default action of this error handler is to call the default Error Handler .

BOOT ROM AND BOOTING THE PROCESSOR
MAIN ROUTINE

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–49

 SVCall Vector

 Points to the supervisor call exception handler. The exception is generated via the SVC instruction.

 The default action of this error handler is to call the default Error Handler .

 PendSV Vector

 Points to the interrupt handler for the software generated system calls. Generally used to indicate that an
every requires servicing by the underlying operating system.

 The default action of this error handler is to call the default Error Handler .

 SysTick Vector

 Points to the interrupt handler for the system tick timer.

 The default action of this error handler is to call the default Error Handler .

 Code Cache Parity Error Vector

 Points to the code cache parity error interrupt handler responsible for dealing with code cache parity
errors

 The default action of this error handler is to call the default Error Handler .

 SRAM Parity Error Vector

 Points to the SRAM parity error interrupt handler that deals with SRAM parity errors generated on the
MEM_ICODE, MEM_DCODE or MEM_SYS interfaces.

 The default action of this error handler is to call the default Error Handler .

 SRAM DMA Parity Error Vector

 Points to the interrupt handler for the SRAM DMA Parity errors detected on the SRAM_DMA interface.

 The default action of this error handler is to call the default Error Handler .

 Pre-Boot

 Describes the operations relating to pre-boot configuration of the processor.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT ROM REVISION CONTROL

29–50 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 Wakeup From Deep Sleep

 Describes any special actions taken by the boot code when waking up from a deep sleep state.

 The boot code is not required to perform any actions when waking up from a deep sleep state.

 RESOUT Handling

 The SYS_RESOUT is a signal that can be uses to reset external system components. This signal is used by
the boot code once initialization of the processor is complete.

 The SYS_RESOUT signal is an active low signal that can be used as a reset source to other components in
the system. The signal is asserted low for a hardware or system reset such as during SYS_RESOUT assertion,
hibernate, software triggered reset and clock domain resets. The signal is released by software via REG_
RCU0_CTL.RSTOUTDSRT.

 The boot software releases the SYS_RESOUT signal once the memory initialization is complete.

SYS_RESOUT is not released in the case of NOBOOT.

 Boot Mode Entry

 Describes the operation undertaken by the boot code software to call and execute the boot mode.

 Boot ROM Revision Control

 Describes the provisions for reading ROM version on the processor

 Boot ROM Revision Control

 The boot ROM reserves the 32-bit location at REG_ROM_REVISION for a version code consisting of four
bytes as shown in the ROM Revision Control figure.

BOOT ROM AND BOOTING THE PROCESSOR
BOOT ROM REVISION CONTROL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 29–51

Figure 29-18: ROM Revision Control

BOOT ROM AND BOOTING THE PROCESSOR
BOOT ROM REVISION CONTROL

29–52 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 30–1

30 System Watchpoint Unit (SWU)

The system watchpoint unit (SWU) is a single module used for transaction monitoring. The SWU is
attached to each system slave through the system crossbar interface and provides ports for all system
crossbar address channel signals. The SWU does not have ports for the read/write data channel signals or
the low-power interface signals.

Each SWU contains four match groups of registers with associated hardware. These four SWU match
groups operate independently, but share common event (interrupt and trigger) outputs. Each match group
can monitor either the write or read address channel and can operate in either watchpoint mode or band-
width mode.

SWU Features

The system watchpoint unit has the following features.

• Four independent match groups for each SWU

• Each match group can operate in either bandwidth mode or watchpoint mode

SWU Functional Description

This section describes the function of the SWU match block, interface block and MMR block.

ADSP-CM40x SWU Register List

The system watchpoint unit (SWU) provides debug and development support through flexible transaction
level and bandwidth monitoring and associated event triggering. The SWU generates an events based on
monitoring transactions at the system slaves using four watchpoint match groups. The transaction moni-
toring within each match group may be filtered by address, ID, direction, and other watchpoint attributes.
An event may be a trace message, trigger, or interrupt. The desired event behavior is programmed into the
appropriate system watchpoint controls and attributes. The SWU also provides watchpoint event status
reporting, a global lock, and processor reset. A set of registers govern SWU operations. For more informa-
tion on SWU functionality, see the SWU register descriptions.

SYSTEM WATCHPOINT UNIT (SWU)
SWU FUNCTIONAL DESCRIPTION

30–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

ADSP-CM40x SWU Interrupt List

ADSP-CM40x SWU Trigger List

Table 30-1: ADSP-CM40x SWU Register List

Name Description

SWU_GCTL Global Control Register

SWU_GSTAT Global Status Register

SWU_CTLn Control Register n

SWU_LAn Lower Address Register n

SWU_UAn Upper Address Register n

SWU_IDn ID Register n

SWU_CNTn Count Register n

SWU_TARGn Target Register n

SWU_HISTn Bandwidth History Register n

SWU_CURn Current Register n

Table 30-2: ADSP-CM40x SWU Interrupt List Interrupt List

Interrupt ID Name Description Sensitivity
DMA

Channel

118 SWU0_EVT SWU0 Event LEVEL

119 SWU1_EVT SWU1 Event LEVEL

120 SWU2_EVT SWU2 Event LEVEL

121 SWU3_EVT SWU3 Event LEVEL

122 SWU4_EVT SWU4 Event LEVEL

Table 30-3: ADSP-CM40x SWU Trigger List Trigger Masters

Trigger ID Name Description Sensitivity

60 SWU0_EVT SWU0 Event PULSE/EDGE

61 SWU1_EVT SWU1 Event PULSE/EDGE

SYSTEM WATCHPOINT UNIT (SWU)
SWU FUNCTIONAL DESCRIPTION

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 30–3

SWU Definitions

Watchpoint Mode

Mode in which transactions are recognized on an exact match. Actions can be configured to be taken after
a specified number of matches have occurred.

Bandwidth Mode

Mode in which transactions are recognized and counted inside sampling window.

SWU Architectural Concepts

The information in this section provides basic module design concepts.

SWU Flow Diagram

The following diagram shows the logical program flow of the SWU.

62 SWU2_EVT SWU2 Event PULSE/EDGE

63 SWU3_EVT SWU3 Event PULSE/EDGE

64 SWU4_EVT SWU4 Event PULSE/EDGE

Table 30-4: ADSP-CM40x SWU Trigger List Trigger Slaves

Trigger ID Name Description Sensitivity

43 SWU0_EVT SWU0 Event

44 SWU1_EVT SWU1 Event

45 SWU2_EVT SWU2 Event

46 SWU3_EVT SWU3 Event

47 SWU4_EVT SWU4 Event

Table 30-3: ADSP-CM40x SWU Trigger List Trigger Masters (Continued)

Trigger ID Name Description Sensitivity

SYSTEM WATCHPOINT UNIT (SWU)
SWU FUNCTIONAL DESCRIPTION

30–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 30-1: SWU Logical Flow

SCB Interface

The SWU system crossbar interface block latches all transactions on the system crossbar read and write
address channels when the SWU_GCTL.EN register enable bit is set.

SWU Block Diagram

The following figure shows the SWU block diagram.

SYSTEM WATCHPOINT UNIT (SWU)
SWU OPERATING MODES

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 30–5

Figure 30-2: System Watchpoint Unit Top Level Block Diagram

System Crossbar Block

The SWU system crossbar (SCB) latches all transactions on the SCB read and write address channels when
the SWU_GCTL.EN bit is set.

MMR Block

The SWU MMR block contains the peripheral bus interface and the SWU MMR registers. It also merges
all interrupts and events from each match block into common outputs.

SWU Operating Modes

There are two operating modes supported by the SWU: bandwidth mode and watchpoint mode.

Bandwidth Mode

In bandwidth mode, transactions which match the properties specified in the SWU_CTLn register are
counted during a sampling window determined by the respective SWU_CNTn register. At the end of the
sampling window, results are stored in the SWU_HISTn register. If the sampled bandwidth falls outside a
programmed range, then the programmed action is taken.

SYSTEM WATCHPOINT UNIT (SWU)
SWU EVENT CONTROL

30–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Watchpoint Mode

In watchpoint mode, if the SWU_CTLn.CNTEN bit is set, the SWU_CURn register is decremented for each
match, until it equals zero, at which point any programmed actions are taken. The SWU_CURn register is
then reloaded from the SWU_CNTn register (if the SWU_CTLn.CNTRPTEN bit is set), and the cycle repeats. If
the SWU_CTLn.CNTRPTEN bit is not set, any programmed actions are taken on every match.

Match Block

There are four match blocks for each SWU. Each SWU match block can monitor either the read or write
address channel, selected by the SWU_CTLn.DIR bit, and can operate in either watchpoint or bandwidth
mode, selected by the SWU_CTLn.BWEN bit.

In either mode, the SWU match block can be programmed to match based on address (exact, inclusive/
exclusive range), ID (with masking), security, and lock type. All enabled matches are AND’ed together to
determine a match.

SWU Event Control

The SWU can generate the following events when a match occurs and when the event is enabled by config-
uring the proper bits in the control register.

1. Trace Message

2. Trigger

3. Interrupt

4. Debug

SWU Interrupts

All interrupts and events from each match block are merged into common outputs.

SWU Status and Errors

SWU status and errors are reported in the SWU_GSTAT register. The only error that the SWU records is an
address error when a write or read attempt is made to the SWU’s MMR address space and the register does
not exist. The register contains bits that perform the following functions.

• Indicate whether a particular match group sampled a transaction that is below a minimum target or
above a maximum target in bandwidth mode.

• Indicate whether or not a watchpoint match occurred for each match group.

SYSTEM WATCHPOINT UNIT (SWU)
SWU PROGRAMMING MODEL

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 30–7

• Indicate whether or not an interrupt was triggered due to a match event from one of the match groups.

Triggers

The SWU can be either a trigger master or a trigger slave depending on how the trigger routing unit (TRU)
is configured. As a trigger master, programs must set the SWU_CTLn.TRGEN bit so that when a match condi-
tion is met, a trigger event is generated. Each SWU in the system can also be a trigger slave if mapped as
one in the TRU.

When the SWU is a slave, a trigger event activates the SWU by automatically setting the SWU_GCTL.EN bit.
Since the SWU can be automatically enabled through a trigger event, programs must pre-configure the
SWU before enabling the TRU. Furthermore, even though the SWU can be enabled by a trigger event as a
slave, to disable the SWU, programs must manually clear the SWU_GCTL.EN bit.

SWU Programming Model

The SWU is used by programming the appropriate registers. Each control register is used to configure
various aspects such as the direction of monitoring (reads or writes), whether Bandwidth Mode or Watch-
point Mode is used, setting up which events are triggered when a condition is met while monitoring using
the SWU, and other parameters. Supplemental registers such as the lower and upper address boundaries
are also configured before enabling.

Once the SWU has been enabled and monitoring conditions are met, events are generated if the SWU was
configured to do so.

The global status register can be read to observe the current status of the units.

SWU Mode Configuration

The following sections show the steps for configuring the SWU into bandwidth mode and watchpoint
mode.

Configuring the SWU for Bandwidth Mode

In bandwidth mode, transactions which match are counted during a sampling window. At the end of the
sampling window, results are stored and an action can be taken if the sampled bandwidth goes above and/
or falls below a programmed range.

1. Configure the SWU_CTLn.DIR bit to test the match on writes or reads.

2. Configure the SWU_CTLn.ACMPM bits to address whether comparisons are made, exact match, matches
inside a range or matches outside a range.

3. If ID If comparison ID is desired, set the SWU_CTLn.IDCMPEN bit.

SYSTEM WATCHPOINT UNIT (SWU)
SWU PROGRAMMING MODEL

30–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

4. Set the SWU_CTLn.BLENINC bit to increment by burst length or clear it to increment by 1.

5. Configure the SWU_CTLn.MAXACT and SWU_CTLn.MINACT bits to enable actions taken when the band-
width goes above the maximum, or falls below the minimum, respectively.

6. Set the SWU_CTLn.BWEN=1 to enable bandwidth mode.

7. Program the lower address register, SWU_LAn, and upper address register, SWU_UAn, to define the
memory range for comparison.

8. If ID comparison is enabled, program the ID register, SWU_IDn.

9. Program the count register, SWU_CNTn, with the number of clock cycles for which the SWU will be
counting the number of matches.

10. If the SWU is set to take action when the bandwidth measurement underflows or overflows, the min
and max values should be programmed into the SWU_TARGn register.

11. Enable the SWU

RESULT:

The SWU counts the number of matches in a pre-defined amount of clock cycles programmed by the user.
Lower and upper limits can optionally be defined. If the matches fall outside the limits, an action can be
taken.

Configuring the SWU for Watchpoint Mode

In watchpoint mode, the SWU can trigger a programmed action after every match or after a number of
matches. This sequence can be automatically reset.

1. Set the SWU_CTLn.DIR bit to test the match on writes or reads.

2. Configure the SWU_CTLn.ACMPM bits for address comparisons, exact match, matches inside a range or
matches outside a range are desired.

3. Optionally set the SWU_CTLn.IDCMPEN if ID comparison is desired.

4. Set the SWU_CTLn.CNTEN bit to enable the events to be triggered when the count decrements to zero.

5. Optionally set the SWU_CTLn.CNTRPTEN bit to automatically reload the counter after it has decremented
to zero to start another match sequence.

6. Clear the SWU_CTLn.BWEN = 0 to configure watchpoint mode.

7. Configure the lower address register, SWU_LAn, and upper address register, SWU_UAn, to define the
memory range for comparison.

8. If ID comparison is enabled, configure the ID register, SWU_IDn.

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 30–9

9. Configure the count register, SWU_CNTn, to determine how many matches occur before the watchpoint
group takes action.

10. Enable the SWU.

RESULT:

The SWU detects and counts down the number of match occurrences. When the counter expires, an action
is taken.

ADSP-CM40x SWU Register Descriptions

System Watchpoint Unit (SWU) contains the following registers.

Global Control Register

The SWU global control register (SWU_GCTL) provides SWU reset and enable.

Table 30-5: ADSP-CM40x SWU Register List

Name Description

SWU_GCTL Global Control Register

SWU_GSTAT Global Status Register

SWU_CTLn Control Register n

SWU_LAn Lower Address Register n

SWU_UAn Upper Address Register n

SWU_IDn ID Register n

SWU_CNTn Count Register n

SWU_TARGn Target Register n

SWU_HISTn Bandwidth History Register n

SWU_CURn Current Register n

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

30–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 30-3: SWU_GCTL Register Diagram

Global Status Register

The SWU global status register (SWU_GSTAT) contains status bits for all four watchpoint groups.

Table 30-6: SWU_GCTL Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

1
(R0/W1A)

RST Global Reset.
The SWU_GCTL.RST) is write-1-action/read zero and controls the SWU
operational state. Setting SWU_GCTL.RST resets all SWU registers to their default
values and halts all SWU operations.

0 No Action

1 Reset

0
(R/W)

EN Global Enable.
The SWU_GCTL.EN controls the SWU operational state. Clearing SWU_GCTL.EN
halts the execution of all watchpoint and bandwidth tracking operations without
resetting status registers or associated signals. Setting SWU_GCTL.EN enables the
SWU to begin/resume operation with the current configuration and status.

0 Disable

1 Enable

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 30–11

Figure 30-4: SWU_GSTAT Register Diagram

Table 30-7: SWU_GSTAT Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

30
(R/W1C)

ADDRERR Address Error Status.
The SWU_GSTAT.ADDRERR indicates that the SWU generated an address error.
This status bit is sticky; write-1-to-clear it.

0 Inactive

1 Active

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

30–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

15
(R/W1C)

OVRBW3 Group 3 Bandwidth Above Maximum Target.
See SWU_GSTAT.OVRBW0 description.

1 Group 3 was above maximum bandwidth

14
(R/W1C)

UNDRBW3 Group 3 Bandwidth Below Minimum Target.
See SWU_GSTAT.UNDRBW0 description.

1 Group 3 was below minimum bandwidth

13
(R/W1C)

OVRBW2 Group 2 Bandwidth Above Maximum Target.
See SWU_GSTAT.OVRBW0 description.

1 Group 2 was above maximum bandwidth

12
(R/W1C)

UNDRBW2 Group 2 Bandwidth Below Minimum Target.
See SWU_GSTAT.UNDRBW0 description.

1 Group 2 was below minimum bandwidth

11
(R/W1C)

OVRBW1 Group 1 Bandwidth Above Maximum Target.
See SWU_GSTAT.OVRBW0 description.

1 Group 1 was above maximum bandwidth

10
(R/W1C)

UNDRBW1 Group 1 Bandwidth Below Minimum Target.
See SWU_GSTAT.UNDRBW0 description.

1 Group 1 was below minimum bandwidth

9
(R/W1C)

OVRBW0 Group 0 Bandwidth Above Maximum Target.
The SWU_GSTAT.OVRBW0 - SWU_GSTAT.OVRBW3 -- Group 0 through 3
watchpoint bandwidth over maximum target bits. Each maximum bandwidth bit
indicate (for each group)s that the measured bandwidth over the period defined by
the SWU_CNTn register was over the maximum target. This status bit is sticky; write-
1-to-clear it.

1 Group 0 was above maximum bandwidth

8
(R/W1C)

UNDRBW0 Group 0 Bandwidth Below Minimum Target.
The SWU_GSTAT.UNDRBW0 - SWU_GSTAT.UNDRBW3 -- Group 0 through 3
watchpoint bandwidth below minimum target bits. Each minimum bandwidth bit
indicates (for each group) that the measured bandwidth over the period defined by
the SWU_CNTn register was below the minimum target. This status bit is sticky;
write-1-to-clear it.

1 Group 0 was below minimum bandwidth

7
(R/W1C)

INT3 Group 3 Interrupt Status.
See SWU_GSTAT.INT0 description.

0 No Interrupt

1 Interrupt Occurred

6
(R/W1C)

INT2 Group 2 Interrupt Status.
See SWU_GSTAT.INT0 description.

0 No Interrupt

1 Interrupt Occurred

Table 30-7: SWU_GSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 30–13

Control Register n

The SWU control registers (SWU_CTLn) contain watchpoint attribute controls for all four watchpoint
groups. These controls include enabling watchpoints, selecting the transaction direction for match,
selecting address comparison mode, enabling ID comparison, enabling security comparison, enabling
locked comparison, enabling cycle count, enabling count repeat, enabling debug events, enabling inter-
rupts, enabling triggers, enabling trace messages, enabling bandwidth mode, selecting the burst length
increment, and enabling bandwidth underflow and overflow detection.

5
(R/W1C)

INT1 Group 1 Interrupt Status.
See SWU_GSTAT.INT0 description.

0 No Interrupt

1 Interrupt Occurred

4
(R/W1C)

INT0 Group 0 Interrupt Status.
The SWU_GSTAT.INT0 - SWU_GSTAT.INT3 -- Group 0 through 3 interrupt bits.
Each interrupt bit indicates (for each group) whether a watchpoint group is
contributing to the SWU's interrupt output. This status bit is sticky; write-1-to-clear
it.

0 No interrupt

1 Interrupt Occurred

3
(R/W1C)

MTCH3 Group 3 Match.
See SWU_GSTAT.MTCH0 description.

0 No Match

1 Group 3 Watchpoint Match

2
(R/W1C)

MTCH2 Group 2 Match.
See SWU_GSTAT.MTCH0 description.

0 No match

1 Group 2 Watchpoint Match

1
(R/W1C)

MTCH1 Group 1 Match.
See SWU_GSTAT.MTCH0 description.

0 No match

1 Group 1 Watchpoint Match

0
(R/W1C)

MTCH0 Group 0 Match.
The SWU_GSTAT.MTCH0 - SWU_GSTAT.MTCH3 -- Group 0 through 3 match bits.
Each match bit indicates (for each group) whether a watchpoint match has occurred
in a SWU watchpoint group, as controlled by the group's related watchpoint control
register (SWU_CTLn). This status bit is sticky; write-1-to-clear it.

0 No match

1 Group 0 Watchpoint Match

Table 30-7: SWU_GSTAT Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

30–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 30-5: SWU_CTLn Register Diagram

Table 30-8: SWU_CTLn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

19
(R/W)

MAXACT Action for Bandwidth Above Maximum.
Each SWU_CTLn.MAXACT bit determines whether a watchpoint group takes action
on bandwidth overflow. This feature is only valid in bandwidth mode.

0 No Action

1 Take Action

18
(R/W)

MINACT Action for Bandwidth Below Minimum.
Each SWU_CTLn.MINACT bit determines whether a watchpoint group takes action
on bandwidth underflow. This feature is only valid in bandwidth mode.

0 No Action

1 Take Action

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 30–15

17
(R/W)

BLENINC Increment Bandwidth Count by Burst Length.
Each SWU_CTLn.BLENINC bit controls how a watchpoint group's bandwidth
count is incremented in the SWU_CURn register's SWU_CURn.CURBW field. If the
SWU_CTLn.BLENINC bit is cleared (= 0), the SWU increments the bandwidth
count by 1 for each matching transaction. If the SWU_CTLn.BLENINC bit is set
(=1), the SWU increments the bandwidth count by the burst length of the transaction
for each matching transaction. This feature is only valid for bandwidth mode (SWU_
CTLn.BWEN bit == 1).
Note that if the address range match is enabled (SWU_CTLn.ACMPM bits) and if any
address of a burst falls within the address range, the SWU_CURn.CURBW field is
incremented by the burst length even if some of the burst address fall outside of the
range.
Also, note that the burst size of the transaction is not included in the increment, only
the burst length of the transaction. This increment operation provides an
approximate (not exact) number of bus cycles consumed during the bandwidth.

0 Increment by 1

1 Burst Length Increment for Bandwidth Count

16
(R/W)

BWEN Bandwidth Mode Enable.
Each SWU_CTLn.BWEN bit controls whether a watchpoint group operates in
watchpoint mode or bandwidth mode. In watchpoint mode, the SWU_CTLn.CNTEN
and (optionally) SWU_CTLn.CNTRPTEN registers control usage of the cycle count
for watchpoint group operations. In bandwidth mode, the SWU_CTLn.BLENINC,
SWU_TARGn, and SWU_HISTn registers control usage of watchpoint matches for
watchpoint group operations.

0 Watchpoint Mode

1 Bandwidth Mode

15
(R/W)

TMEN Trace Message Enable.
Each SWU_CTLn.TMEN bit controls whether a match for a watchpoint group
generates a trace message event. This feature is valid in both bandwidth and
watchpoint modes.

0 Disable

1 Enable

14
(R/W)

TRGEN Trigger Enable.
Each SWU_CTLn.TRGEN bit controls whether a match for a watchpoint group
generates a trigger event. This feature is valid in both bandwidth and watchpoint
modes.

0 Disable

1 Enable

Table 30-8: SWU_CTLn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

30–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

13
(R/W)

INTEN Interrupt Enable.
Each SWU_CTLn.INTEN bit controls whether a match for a watchpoint group
generates an interrupt. This feature is valid in both bandwidth and watchpoint
modes.

0 Disable

1 Enable

12
(R/W)

DBGEN Debug Event Enable.
Each SWU_CTLn.DBGEN bit controls debug event comparison for a watchpoint
group, permitting matches based on debug status.

0 Disable

1 Enable

9
(R/W)

CNTRPTEN Count Repeat Enable.
Each SWU_CTLn.CNTRPTEN bit controls whether the watchpoint group's cycle
count is reloaded and repeated after cycle countdown. If the SWU_CTLn register's
SWU_CTLn.CNTRPTEN bit is set, the SWU_CURn register's SWU_CURn.CURCNT
field is reloaded from SWU_CNTn register's SWU_CNTn.COUNT field, and the
countdown starts again. If SWU_CTLn.CNTRPTEN bit is cleared, the expired count
remains zero, and no further events are signalled. (See the SWU_CTLn.CNTEN bit
description for information regarding the countdown setup.)

0 Disable

1 Enable

8
(R/W)

CNTEN Count Enable.
Each SWU_CTLn.CNTEN bit controls whether the cycle count in the watchpoint
group's SWU_CNTn register is decremented each cycle until it reaches zero. This
feature is only valid in watchpoint mode (SWU_CTLn.BWEN bit == 0).When the
count reaches zero, any enabled watchpoint events are triggered. (See the SWU_
CTLn.CNTRPTEN bit description for optional actions at that may occur at the end
of the countdown.)

0 Disable

1 Enable

6
(R/W)

LCMPEN Locked Comparison Enable.
Each SWU_CTLn.LCMPEN bit controls locked comparison operation of an SWU
watchpoint group, permitting matches based on lock status.

0 Match on all transaction

1 Match only locked transactions

5
(R/W)

SCMPEN Secure Comparison Enable.
Each SWU_CTLn.SCMPEN bit controls secure transaction comparison operation of
an SWU watchpoint group, permitting matches based on transaction security.

0 Match on all transaction

1 Match only secure transactions

Table 30-8: SWU_CTLn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 30–17

Lower Address Register n

The SWU lower address registers (SWU_LAn) contain each watchpoint group's lower address for address
match comparison. In exact match on SWU_LAn address mode (SWU_CTLn.ACMPM bits =01), the watchpoint
group uses only this address for match comparison.

4
(R/W)

IDCMPEN ID Comparison Enable.
Each SWU_CTLn.IDCMPEN bit controls the ID comparison operation of an SWU
watchpoint group. The ID match is based on comparison with the value in the SWU_
IDn register.

3:2
(R/W)

ACMPM Address Comparison Mode.
Each set of SWU_CTLn.ACMPM bits control the address comparison operation of an
SWU watchpoint group. The address within range for comparison is defined as
(SWU_LAn register <= address < SWU_UAn register). The address outside range for
comparison is defined as (address < SWU_LAn) or (SWU_UAn<= address).

0 No address comparison

1 Exact match on LAn

2 Match on address within range

3 Match on address outside range

1
(R/W)

DIR Transaction Direction for Match.
Each SWU_CTLn.DIR bit determines whether the SWU check reads or writes for
watchpoint matches.

0 Match on reads only

1 Match on writes only

0
(R/W)

EN Enable Watchpoint.
Each SWU_CTLn.EN bit controls the operation of one SWU watchpoint group.
Clearing the SWU_CTLn.EN bit halts the execution of watchpoint or bandwidth
tracking operations in the watchpoint group without resetting status or configuration
registers. Setting the SWU_CTLn.EN bit enables the SWU watchpoint group to begin
or resume operation with the current configuration and status.

0 Disable

1 Enable

Table 30-8: SWU_CTLn Register Fields (Continued)

Bit No.
(Access) Bit Name Description/Enumeration

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

30–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 30-6: SWU_LAn Register Diagram

Upper Address Register n

The SWU upper address registers (SWU_UAn) contain each watchpoint group's upper address for address
match comparison. In exact match on SWU_LAn address mode (SWU_CTLn.ACMPM bits =01), the SWU_UAn is
not used for match comparison.

Figure 30-7: SWU_UAn Register Diagram

Table 30-9: SWU_LAn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

ADDR Lower Address.

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 30–19

ID Register n

The SWU ID registers (SWU_IDn) contain a 16-bit ID field (SWU_IDn.ID) and a 16-bit ID mask field (SWU_
IDn.IDMASK) that watchpoint groups use for ID comparison. The ID on the bus is AND'ed with the SWU_
IDn.IDMASK field, then the watchpoint group compares the result against the SWU_IDn.ID field.

Figure 30-8: SWU_IDn Register Diagram

Count Register n

The SWU count registers (SWU_CNTn) contain a 16-bit count field (SWU_CNTn.COUNT) whose usage differs
depending on the mode of the watchpoint group. In bandwidth mode, the SWU_CNTn.COUNT field value
defines the number of clock cycles in a bandwidth period. In watchpoint mode, when the cycle count is
enabled, the SWU_CNTn.COUNT field value determines how many matches occur before the watchpoint
group takes action.

Table 30-10: SWU_UAn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/W)

ADDR Upper Address.

Table 30-11: SWU_IDn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

IDMASK Identity Mask (for Or with ID).

15:0
(R/W)

ID Identity.

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

30–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 30-9: SWU_CNTn Register Diagram

Target Register n

The SWU target registers (SWU_TARGn) contain a minimum value field (SWU_TARGn.BWMIN) and maximum
value field (SWU_TARGn.BWMAX) of bandwidth targets used by watchpoint groups in bandwidth mode.
When the bandwidth period expires, if the current bandwidth value (SWU_CURn register, SWU_CURn.CURBW
bits) is below the minimum target or above the maximum target, the watchpoint group takes action as
enabled by the SWU_CTLn register's SWU_CTLn.MINACT or SWU_CTLn.MAXACT bits.

In bandwidth mode, note that the watchpoint group increments its count of either data bus transactions
or address bus transactions (bursts) as selected by the SWU_CTLn.BLENINC bit. Keep this mode selection in
mind when programming the bandwidth target values.

Figure 30-10: SWU_TARGn Register Diagram

Table 30-12: SWU_CNTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

15:0
(R/W)

COUNT Count.

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 30–21

Bandwidth History Register n

The SWU bandwidth history registers (SWU_HISTn) contain data copied from a watchpoint group's current
bandwidth value (SWU_CURn register, SWU_CURn.CURBW bits) at the end of the last two watchpoint periods.
At the end of each watchpoint period, the SWU copies the previous bandwidth value from the SWU_HISTn.
BWHIST0 field to the SWU_HISTn.BWHIST1 field and copies the new bandwidth value from the SWU_CURn.
CURBW field to the SWU_HISTn.BWHIST0 field.

Figure 30-11: SWU_HISTn Register Diagram

Current Register n

The SWU current register (SWU_CURn) operation varies depending whether the watchpoint group is in
bandwidth mode or watchpoint mode. In both modes, the watchpoint count begins when the SWU loads

Table 30-13: SWU_TARGn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/W)

BWMAX Maximum Bandwidth Target.

15:0
(R/W)

BWMIN Minimum Bandwidth Target.

Table 30-14: SWU_HISTn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/NW)

BWHIST1 Bandwidth from Window Before Last.

15:0
(R/NW)

BWHIST0 Bandwidth from Last Window.

SYSTEM WATCHPOINT UNIT (SWU)
ADSP-CM40X SWU REGISTER DESCRIPTIONS

30–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

the register's SWU_CURn.CURCNT field from the SWU_CNTn register's SWU_CNTn.COUNT field when the watch-
point count is enabled (SWU_CTLn register, SWU_CTLn.CNTEN bit =1).

In bandwidth mode, the current count field (SWU_CURn.CURCNT) contains the cycle count remaining
within the current watchpoint period. The SWU decrements this value every cycle until the count reaches
zero. At that point, the SWU reloads the SWU_CURn.CURCNT field from SWU_CNTn register's SWU_CNTn.
COUNT field. In bandwidth mode, the current bandwidth field (SWU_CURn.CURBW) contains the count of
watchpoint matches (bandwidth) accumulated in the current watchpoint period.

In watchpoint mode, the current count field (SWU_CURn.CURCNT) contains the watchpoint match count
remaining within the current watchpoint period. The SWU decrements this value with every watchpoint
match until the count reaches zero. At that point, the SWU reloads the SWU_CURn.CURCNT field from SWU_
CNTn register's SWU_CNTn.COUNT field if the SWU_CTLn register's SWU_CTLn.CNTRPTEN bit is set (=1). In
watchpoint mode, the current bandwidth field (SWU_CURn.CURBW) is undefined.

Figure 30-12: SWU_CURn Register Diagram

Table 30-15: SWU_CURn Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:16
(R/NW)

CURBW Current Bandwidth.

15:0
(R/NW)

CURCNT Current Count.

 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 31–1

31 JTAG debug and Serial Wire Debug Port (SWJ-
DP)

SWJ-DP is a combined JTAG-DP and SW-DP that enables either a Serial Wire Debug (SWD) or JTAG
probe to be connected to a target. SWD signals share the same pins as JTAG. There is an autodetect mech-
anism that switches between JTAGDP and SW-DP depending on which special data sequence is used the
emulator pod transmits to the JTAG pins.The SWJ-DP behaves as a JTAG target if normal JTAG
sequences are sent to it and as a single wire target if the SW_DP sequence is transmitted.

Embedded Trace Macrocell (ETM) and Instrumentation Trace Macro-
cell (ITM)

The ADSP-CM40x processors support both Embedded Trace Macrocell (ETM) and Instrumentation
Trace Macrocell (ITM). These both offer an optional debug component that enables logging of real-time
instruction and data flow within the CPU core. This data is stored and read through special debugger pods
that have the trace feature capability. ITM is a single-data pin feature and the ETM is a 4-data pin feature.

ADSP-CM40x JTAG Register Descriptions

JTAG (JTAG) contains the following registers.

IDCODE Register

The ID code register contains bit fields describing the processor silicon revision, product identification,
and manufacturer identification.

Table 31-1: ADSP-CM40x JTAG Register List

Name Description

JTAG_IDCODE IDCODE Register

JTAG_USERCODE User Code Register

JTAG DEBUG AND SERIAL WIRE DEBUG PORT (SWJ-DP)
ADSP-CM40X JTAG REGISTER DESCRIPTIONS

31–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

Figure 31-1: JTAG_IDCODE Register Diagram

User Code Register

USERCODE is "0".

Figure 31-2: JTAG_USERCODE Register Diagram

Table 31-2: JTAG_IDCODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:28
(R/NW)

REVID Revision ID.

27:12
(R/NW)

PRID Product ID.

11:1
(R/NW)

MFID Manufacturer ID.

0
(R/NW)

NA Reserved.

JTAG DEBUG AND SERIAL WIRE DEBUG PORT (SWJ-DP)
ADSP-CM40X JTAG REGISTER DESCRIPTIONS

ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE 31–3

Table 31-3: JTAG_USERCODE Register Fields

Bit No.
(Access) Bit Name Description/Enumeration

31:0
(R/NW)

USERID User Code.

JTAG DEBUG AND SERIAL WIRE DEBUG PORT (SWJ-DP)
ADSP-CM40X JTAG REGISTER DESCRIPTIONS

31–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

 ADSP-CM

I
 Index

ADCC), 24-81
Symbols
(Amplitude) Limits for Secondary Filter 0 Register,
SINC (SINC_LIMIT0), 27-38
(Amplitude) Limits for Secondary Filter 1 Register,
SINC (SINC_LIMIT1), 27-39
(Amplitude) Limits for Secondary Filter 2 Register,
SINC (SINC_LIMIT2), 27-40
(Amplitude) Limits for Secondary Filter 3 Register,
SINC (SINC_LIMIT3), 27-40

A
Abort Acknowledge 1 Register , CAN (CAN_AA1),
19-36
Abort Acknowledge 2 Register, CAN (CAN_AA2),
19-49
Acceptance Mask (H) Register, CAN (CAN_AMnnH),
19-79
Acceptance Mask (L) Register, CAN (CAN_AMnnL),
19-79
active mode, 6-2, 6-5
ADC Configuration Register, ADCC (ADCC_CFG),
24-75
ADCC0_ERR interrupt, 7-4, 24-11
ADCC0_TMR0_EVT interrupt, 7-6, 8-3, 24-11
ADCC0_TMR1_EVT interrupt, 7-6, 8-3, 24-11
ADCC0_TRIG0 interrupt, 8-5, 24-11
ADCC0_TRIG1 interrupt, 8-5, 24-11
ADCC0_TRIG2 interrupt, 8-5, 24-11
ADCC0_TRIG3 interrupt, 8-5, 24-11
ADCC0_TRIG4 interrupt, 8-5, 24-11
ADCC0_TRIG5 interrupt, 8-5, 24-11
ADCC_BPTR0 (Base Pointer 0 Register, ADCC),
24-71
ADCC_BPTR1 (DMA Base Pointer 1 Register, AD-
CC), 24-77
ADCC_BWMON0 (Bandwidth Monitor 0 Register,
ADCC), 24-75
ADCC_BWMON1 (Bandwidth Monitor 1 Register,

ADCC_CBSIZ0 (Circular Buffer Size 0 Register, AD-
CC), 24-72
ADCC_CBSIZ1 (Circular Buffer Size 1 Register, AD-
CC), 24-78
ADCC_CFG (ADC Configuration Register, ADCC),
24-75
ADCC_CTL (Control Register, ADCC), 24-43
ADCC_ECOL (Event Collision Status Register, AD-
CC), 24-68
ADCC_EIMSK (Event Interrupt Mask Register, AD-
CC), 24-56
ADCC_EIMSK_CLR (Event Interrupt Mask Clear
Register, ADCC), 24-59
ADCC_EIMSK_SET (Event Interrupt Mask Set Reg-
ister, ADCC), 24-57
ADCC_EISTAT (Event Interrupt Status Register, AD-
CC), 24-54
ADCC_EMISS (Event Miss Status Register, ADCC),
24-70
ADCC_EPND (Pending Events Status Register, AD-
CC), 24-84
ADCC_ERRMSK (Error Mask Register, ADCC),
24-49
ADCC_ERRMSK_CLR (Error Mask Clear Register,
ADCC), 24-53
ADCC_ERRMSK_SET (Error Mask Set Register,
ADCC), 24-51
ADCC_ERRSTAT (Error Status Register, ADCC),
24-47
ADCC_EVCTLnn (Event n Control Register, ADCC),
24-82
ADCC_EVDATnn (Event n Data Register, ADCC),
24-88
ADCC_EVSTATnn (Event n Status Register, ADCC),
24-89
ADCC_EVTEN (Event Enable Register, ADCC),
24-64
40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–1

INDEX
ADCC_EVTEN_CLR (Event Enable Clear Register,
ADCC), 24-67
ADCC_EVTEN_SET (Event Enable Set Register,
ADCC), 24-65
ADCC_EVTnn (Event n Time Register, ADCC),
24-81
ADCC_FIMSK (Frame Interrupt Mask Register, AD-
CC), 24-61
ADCC_FIMSK_CLR (Frame Interrupt Mask Clear
Register, ADCC), 24-62
ADCC_FIMSK_SET (Frame Interrupt Mask Set Reg-
ister, ADCC), 24-62
ADCC_FISTAT (Frame Interrupt Status Register,
ADCC), 24-60
ADCC_FRINC0 (Frame Increment 0 Register, AD-
CC), 24-72
ADCC_FRINC1 (Frame Increment 1 Register, AD-
CC), 24-77
ADCC_T0STAT (Timer 0 Status Register, ADCC),
24-85
ADCC_T1STAT (Timer 1 Status Register, ADCC),
24-86
ADCC_TCA0 (Timing Control A (ADC0) Register,
ADCC), 24-73
ADCC_TCA1 (Timing Control A (ADC1) Register,
ADCC), 24-79
ADCC_TCB0 (Timing Control B (ADC0) Register,
ADCC), 24-74
ADCC_TCB1 (Timing Control B (ADC1) Register,
ADCC), 24-80
ADCC_TMR0 (Timer 0 Current Count Register, AD-
CC), 24-86
ADCC_TMR1 (Timer 1 Current Count Register, AD-
CC), 24-87
arbitration, fixed, 3-8
arbitration, SCB, 3-8
architectural model, SCB, 3-4

B
Bandwidth History Register n, SWU (SWU_HISTn),
30-21
Bandwidth Limit Count Current, DMA (DMA_B-
WLCNT_CUR), 11-64
Bandwidth Limit Count, DMA (DMA_BWLCNT),
11-64

Bandwidth Monitor 0 Register, ADCC (ADCC_BW-
MON0), 24-75
Bandwidth Monitor 1 Register, ADCC (ADCC_BW-
MON1), 24-81
Bandwidth Monitor Count Current, DMA (DMA_B-
WMCNT_CUR), 11-66
Bandwidth Monitor Count, DMA (DMA_BWMCNT),
11-65
Bank 0 Control Register, SMC (SMC_B0CTL), 9-20
Bank 0 Extended Timing Register, SMC
(SMC_B0ETIM), 9-24
Bank 0 Timing Register, SMC (SMC_B0TIM), 9-22
Bank 1 Control Register, SMC (SMC_B1CTL), 9-25
Bank 1 Extended Timing Register, SMC
(SMC_B1ETIM), 9-30
Bank 1 Timing Register, SMC (SMC_B1TIM), 9-28
Bank 2 Control Register, SMC (SMC_B2CTL), 9-31
Bank 2 Extended Timing Register, SMC
(SMC_B2ETIM), 9-36
Bank 2 Timing Register, SMC (SMC_B2TIM), 9-34
Bank 3 Control Register, SMC (SMC_B3CTL), 9-37
Bank 3 Extended Timing Register, SMC
(SMC_B3ETIM), 9-42
Bank 3 Timing Register, SMC (SMC_B3TIM), 9-40
Base Pointer 0 Register, ADCC (ADCC_BPTR0),
24-71
Base Pointer 0 Register, DACC (DACC_BPTR0),
25-33
Base Pointer 1 Register, DACC (DACC_BPTR1),
25-37
Bias for Group 0 Register, SINC (SINC_BIAS0),
27-41
Bias for Group 1 Register, SINC (SINC_BIAS1),
27-42
Boot Code Register, RCU (RCU_BCODE), 28-9
Broadcast (Write) Control Register, DACC (DAC-
C_BCST_CTL), 25-40
Broadcast Delay Register, TIMER (TIMER_B-
CAST_DLY), 13-40
Broadcast Period Register, TIMER (TIMER_B-
CAST_PER), 13-39
Broadcast Width Register, TIMER (TIMER_B-
CAST_WID), 13-39
bus error, CGU, 4-6
bus error, DPM, 6-6
I–2 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
Bus Fault Error Information Register, M4P
(M4P_BUSFLT), 2-43
bypass, PLL, 4-4

C
Cache Counter Control Register, M4P (M4P_-
CACHE_CNTCTL), 2-46
Cache DCODE Line Fill Counter Register, M4P
(M4P_CACHE_DFILL), 2-52
Cache DCODE Miss Counter Register, M4P (M4P_-
CACHE_DMISS), 2-50
Cache DCODE Reference Counter Register, M4P
(M4P_CACHE_DREF), 2-49
Cache ICODE Line Fill Counter Register, M4P
(M4P_CACHE_IFILL), 2-51
Cache ICODE Miss Counter Register, M4P (M4P_-
CACHE_IMISS), 2-49
Cache ICODE Reference Counter Register, M4P
(M4P_CACHE_IREF), 2-48
CAN Master Control Register, CAN (CAN_CTL),
19-70
CAN0_RX interrupt, 7-7, 19-4
CAN0_STAT interrupt, 7-7, 19-4
CAN0_TX interrupt, 7-7, 19-4
CAN1_RX interrupt, 7-7, 19-4
CAN1_STAT interrupt, 7-7, 19-4
CAN1_TX interrupt, 7-7, 19-4
CAN_AA1 (Abort Acknowledge 1 Register, CAN),
19-36
CAN_AA2 (Abort Acknowledge 2 Register, CAN),
19-49
CAN_AMnnH (Acceptance Mask (H) Register, CAN),
19-79
CAN_AMnnL (Acceptance Mask (L) Register, CAN),
19-79
CAN_CEC (Error Counter Register, CAN), 19-62
CAN_CLK (Clock Register, CAN), 19-57
CAN_CTL (CAN Master Control Register, CAN),
19-70
CAN_DBG (Debug Register, CAN), 19-59
CAN_ESR (Error Status Register, CAN), 19-74
CAN_EWR (Error Counter Warning Level Register,
CAN), 19-74
CAN_GIF (Global CAN Interrupt Flag Register,
CAN), 19-68

CAN_GIM (Global CAN Interrupt Mask Register,
CAN), 19-66
CAN_GIS (Global CAN Interrupt Status Register,
CAN), 19-63
CAN_INT (Interrupt Pending Register, CAN), 19-71
CAN_MBIM1 (Mailbox Interrupt Mask 1 Register,
CAN), 19-41
CAN_MBIM2 (Mailbox Interrupt Mask 2 Register,
CAN), 19-54
CAN_MBnn_DATA0 (Mailbox Word 0 Register,
CAN), 19-80
CAN_MBnn_DATA1 (Mailbox Word 1 Register,
CAN), 19-81
CAN_MBnn_DATA2 (Mailbox Word 2 Register,
CAN), 19-81
CAN_MBnn_DATA3 (Mailbox Word 3 Register,
CAN), 19-82
CAN_MBnn_ID0 (Mailbox ID 0 Register, CAN),
19-83
CAN_MBnn_ID1 (Mailbox ID 1 Register, CAN),
19-84
CAN_MBnn_LENGTH (Mailbox Length Register,
CAN), 19-82
CAN_MBnn_TIMESTAMP (Mailbox Timestamp
Register, CAN), 19-83
CAN_MBRIF1 (Mailbox Receive Interrupt Flag 1
Register, CAN), 19-40
CAN_MBRIF2 (Mailbox Receive Interrupt Flag 2
Register, CAN), 19-53
CAN_MBTD (Temporary Mailbox Disable Register,
CAN), 19-73
CAN_MBTIF1 (Mailbox Transmit Interrupt Flag 1
Register, CAN), 19-39
CAN_MBTIF2 (Mailbox Transmit Interrupt Flag 2
Register, CAN), 19-52
CAN_MC1 (Mailbox Configuration 1 Register, CAN),
19-31
CAN_MC2 (Mailbox Configuration 2 Register, CAN),
19-44
CAN_MD1 (Mailbox Direction 1 Register, CAN),
19-32
CAN_MD2 (Mailbox Direction 2 Register, CAN),
19-45
CAN_OPSS1 (Overwrite Protection/Single Shot
Transmission 1 Register, CAN), 19-43
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–3

INDEX
CAN_OPSS2 (Overwrite Protection/Single Shot
Transmission 2 Register, CAN), 19-56
CAN_RFH1 (Remote Frame Handling 1 Register,
CAN), 19-42
CAN_RFH2 (Remote Frame Handling 2 Register,
CAN), 19-55
CAN_RML1 (Receive Message Lost 1 Register,
CAN), 19-38
CAN_RML2 (Receive Message Lost 2 Register,
CAN), 19-50
CAN_RMP1 (Receive Message Pending 1 Register,
CAN), 19-37
CAN_RMP2 (Receive Message Pending 2 Register,
CAN), 19-50
CAN_STAT (Status Register, CAN), 19-60
CAN_TA1 (Transmission Acknowledge 1 Register,
CAN), 19-35
CAN_TA2 (Transmission Acknowledge 2 Register,
CAN), 19-48
CAN_TIMING (Timing Register, CAN), 19-57
CAN_TRR1 (Transmission Request Reset 1 Register,
CAN), 19-34
CAN_TRR2 (Transmission Request Reset 2 Register,
CAN), 19-47
CAN_TRS1 (Transmission Request Set 1 Register,
CAN), 19-33
CAN_TRS2 (Transmission Request Set 2 Register,
CAN), 19-46
CAN_UCCNF (Universal Counter Configuration
Mode Register, CAN), 19-77
CAN_UCCNT (Universal Counter Register, CAN),
19-76
CAN_UCRC (Universal Counter Reload/Capture Reg-
ister, CAN), 19-77
CCLKn clock domains, 3-7
CGU bus error, 4-6
CGU event, 4-6
CGU0_ERR interrupt, 4-2, 7-6
CGU0_EVT interrupt, 4-2, 4-3, 7-3, 8-2
CGU_CLKOUTSEL (CLKOUT Select Register,
CGU), 4-17
CGU_CTL (Control Register, CGU), 4-11
CGU_DIV (Clocks Divisor Register, CGU), 4-15
CGU_OSCWDCTL (Oscillator Watchdog Register,
CGU), 4-19

CGU_STAT (Status Register, CGU), 4-13
CGU_TSCOUNT0 (Timestamp Counter 32 l.s.b.,
CGU), 4-22
CGU_TSCOUNT1 (Timestamp Counter 32 m.s.b.
Register, CGU), 4-23
CGU_TSCTL (Timestamp Control Register, CGU),
4-20
CGU_TSVALUE0 (Timestamp Counter Initial 32
l.s.b. Value Register, CGU), 4-21
CGU_TSVALUE1 (Timestamp Counter Initial m.s.b.
Value Register, CGU), 4-21
Chan nel D-Low Heightened-Precision Duty-1 Regis-
ter, PWM (PWM_DL1_HP), 16-111
Channel A Control Register, PWM (PWM_ACTL),
16-79
Channel A Delay Register, PWM (PWM_DLYA),
16-76
Channel A-High Duty-0 Register, PWM (PW-
M_AH0), 16-81
Channel A-High Duty-1 Register, PWM (PW-
M_AH1), 16-82
Channel A-High Full Duty0 Register, PWM (PW-
M_AH_DUTY0), 16-112
Channel A-High Full Duty1 Register, PWM (PW-
M_AH_DUTY1), 16-113
Channel A-High Heightened-Precision Duty-0 Regis-
ter, PWM (PWM_AH0_HP), 16-82
Channel A-High Heightened-Precision Duty-1 Regis-
ter, PWM (PWM_AH1_HP), 16-83
Channel A-Low Duty-0 Register, PWM (PWM_AL0),
16-84
Channel A-Low Duty-1 Register, PWM (PWM_AL1),
16-85
Channel A-Low Full Duty0 Register, PWM (PW-
M_AL_DUTY0), 16-114
Channel A-Low Full Duty1 Register, PWM (PW-
M_AL_DUTY1), 16-115
Channel A-Low Heightened-Precision Duty-0 Regis-
ter, PWM (PWM_AL0_HP), 16-85
Channel A-Low Heightened-Precision Duty-1 Regis-
ter, PWM (PWM_AL1_HP), 16-86
Channel B Control Register, PWM (PWM_BCTL),
16-87
Channel B Delay Register, PWM (PWM_DLYB),
16-77
I–4 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
Channel B-High Duty-0 Register, PWM (PWM_BH0),
16-89
Channel B-High Duty-1 Register, PWM (PWM_BH1),
16-90
Channel B-High Full Duty0 Register, PWM (PW-
M_BH_DUTY0), 16-116
Channel B-High Full Duty1 Register, PWM (PW-
M_BH_DUTY1), 16-117
Channel B-High Heightened-Precision Duty-0 Regis-
ter, PWM (PWM_BH0_HP), 16-90
Channel B-High Heightened-Precision Duty-1 Regis-
ter, PWM (PWM_BH1_HP), 16-91
Channel B-Low Duty-0 Register, PWM (PWM_BL0),
16-92
Channel B-Low Duty-1 Register, PWM (PWM_BL1),
16-93
Channel B-Low Full Duty0 Register, PWM (PW-
M_BL_DUTY0), 16-118
Channel B-Low Full Duty1 Register, PWM (PW-
M_BL_DUTY1), 16-119
Channel B-Low Heightened-Precision Duty-0 Regis-
ter, PWM (PWM_BL0_HP), 16-94
Channel B-Low Heightened-Precision Duty-1 Regis-
ter, PWM (PWM_BL1_HP), 16-94
Channel C Control Register, PWM (PWM_CCTL),
16-95
Channel C Delay Register, PWM (PWM_DLYC),
16-77
Channel C-High Full Duty0 Register, PWM (PW-
M_CH_DUTY0), 16-120
Channel C-High Full Duty1 Register, PWM (PW-
M_CH_DUTY1), 16-121
Channel C-High Pulse Duty Register 0, PWM (PW-
M_CH0), 16-98
Channel C-High Pulse Duty Register 1, PWM (PW-
M_CH1), 16-98
Channel C-High Pulse Heightened-Precision Duty
Register 0, PWM (PWM_CH0_HP), 16-99
Channel C-High Pulse Heightened-Precision Duty
Register 1, PWM (PWM_CH1_HP), 16-100
Channel C-Low Duty-1 Register, PWM (PWM_CL1),
16-101
Channel C-Low Full Duty0 Register, PWM (PWM_-
CL_DUTY0), 16-122
Channel C-Low Full Duty1 Register, PWM (PWM_-

CL_DUTY1), 16-123
Channel C-Low Heightened-Precision Duty-1 Regis-
ter, PWM (PWM_CL1_HP), 16-103
Channel C-Low Pulse Duty Register 0, PWM (PWM_-
CL0), 16-101
Channel C-Low Pulse Duty Register 1, PWM (PWM_-
CL0_HP), 16-102
Channel Config Register, PWM (PWM_CHANCFG),
16-53
Channel D Control Register, PWM (PWM_DCTL),
16-103
Channel D Delay Register, PWM (PWM_DLYD),
16-78
Channel D High Pulse Heightened-Precision Duty
Register 1, PWM (PWM_DH1_HP), 16-108
Channel D-High Duty-0 Register, PWM (PW-
M_DH0), 16-106
Channel D-High Full Duty0 Register, PWM (PW-
M_DH_DUTY0), 16-124
Channel D-High Full Duty1 Register, PWM (PW-
M_DH_DUTY1), 16-125
Channel D-High Pulse Duty Register 1, PWM (PW-
M_DH1), 16-106
Channel D-High Pulse Heightened-Precision Duty
Register 0, PWM (PWM_DH0_HP), 16-107
Channel D-Low Full Duty0 Register, PWM (PW-
M_DL_DUTY0), 16-126
Channel D-Low Full Duty1 Register, PWM (PW-
M_DL_DUTY1), 16-127
Channel D-Low Heightened-Precision Duty-0 Regis-
ter, PWM (PWM_DL0_HP), 16-110
Channel D-Low Pulse Duty Register 0, PWM (PW-
M_DL0), 16-109
Channel D-Low Pulse Duty Register 1, PWM (PW-
M_DL1), 16-109
Chop Configuration Register, PWM (PWM_CHOP-
CFG), 16-69
Circular Buffer Size 0 Register, ADCC (ADCC_CB-
SIZ0), 24-72
Circular Buffer Size 1 Register, ADCC (ADCC_CB-
SIZ1), 24-78
CLKOUT Select Register, CGU (CGU_CLKOUT-
SEL), 4-17
Clock Control Register, SINC (SINC_CLK), 27-29
clock domain, SCB, 3-7
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–5

INDEX
clock generation unit (CGU), 4-3
clock multiplier/divisor, 4-4
Clock Rate Register, SPI (SPI_CLK), 22-57
Clock Rate Register, UART (UART_CLK), 17-37
Clock Register, CAN (CAN_CLK), 19-57
Clocks Divisor Register, CGU (CGU_DIV), 4-15
CNT0_STAT interrupt, 7-5, 8-3, 15-3
CNT1_STAT interrupt, 7-5, 8-3, 15-3, 15-4
CNT2_STAT interrupt, 7-5, 8-3, 15-3, 15-4
CNT3_STAT interrupt, 7-5, 8-3, 15-3, 15-4
CNT_CFG (Configuration Register, CNT), 15-21
CNT_CMD (Command Register, CNT), 15-30
CNT_CNTR (Counter Register, CNT), 15-33
CNT_DEBNCE (Debounce Register, CNT), 15-31
CNT_IMSK (Interrupt Mask Register, CNT), 15-24
CNT_MAX (Maximum Count Register, CNT), 15-33
CNT_MDIV (M Value for Divider, CNT), 15-35
CNT_MIN (Minimum Count Register, CNT), 15-34
CNT_NDIV (N Value for Divider, CNT), 15-35
CNT_STAT (Status Register, CNT), 15-27
Code Cache Configuration and Status Register, M4P
(M4P_CACHE_CFG), 2-30
Code Cache Parity Error Address Register, M4P
(M4P_CACHE_PEADDR), 2-36
Coefficient RAM Register, HAE (HAE_CO-
EF_RAM), 26-20
Command Register, CNT (CNT_CMD), 15-30
Common Interrupts Enable Register, USB (US-
B_IEN), 20-92
Common Interrupts Register, USB (USB_IRQ), 20-90
Configuration 0 Register, HAE (HAE_CFG0), 26-21
Configuration 1 Register, HAE (HAE_CFG1), 26-22
Configuration 2 Register, HAE (HAE_CFG2), 26-22
Configuration 3 Register, HAE (HAE_CFG3), 26-24
Configuration 4 Register, HAE (HAE_CFG4), 26-29
Configuration Register, CNT (CNT_CFG), 15-21
Configuration Register, DMA (DMA_CFG), 11-48
Control 0 Register, DACC (DACC_CTL0), 25-19
Control 1 Register, DACC (DACC_CTL1), 25-21
Control Register n, SWU (SWU_CTLn), 30-14
Control Register, ADCC (ADCC_CTL), 24-43
Control Register, CGU (CGU_CTL), 4-11
Control Register, CRC (CRC_CTL), 10-27
Control Register, DPM (DPM_CTL), 6-9
Control Register, PWM (PWM_CTL), 16-50

Control Register, RCU (RCU_CTL), 28-5
Control Register, SINC (SINC_CTL), 27-19
Control Register, SPI (SPI_CTL), 22-47
Control Register, SPU (SPU_CTL), 5-8
Control Register, TWI (TWI_CTL), 18-20
Control Register, UART (UART_CTL), 17-27
Control Register, WDOG (WDOG_CTL), 14-4
COP pin, 7-13
Core Clock Buffer Disable Register, DPM (DPM_C-
CBF_DIS), 6-12
Core Clock Buffer Enable Register, DPM (DPM_C-
CBF_EN), 6-13
Core Clock Buffer Status Register, DPM (DPM_CCB-
F_STAT), 6-14
Core Clock Buffer Status Sticky Register, DPM (DP-
M_CCBF_STAT_STKY), 6-15
core clock n (CCLKn), 4-3, 4-4
Count 0 Register, DACC (DACC_CNT0), 25-34
Count 1 Register, DACC (DACC_CNT1), 25-38
Count Register n, SWU (SWU_CNTn), 30-20
Count Register, WDOG (WDOG_CNT), 14-5
Counter Register, CNT (CNT_CNTR), 15-33
CRC Current Result Register, CRC (CRC_RE-
SULT_CUR), 10-39
CRC Final Result Register, CRC (CRC_RESULT_-
FIN), 10-39
CRC0_DCNTEXP interrupt, 7-6, 10-3
CRC0_ERR interrupt, 7-6, 10-4
CRC_COMP (Data Compare Register, CRC), 10-31
CRC_CTL (Control Register, CRC), 10-27
CRC_DCNT (Data Word Count Register, CRC), 10-30
CRC_DCNTCAP (Data Count Capture Register,
CRC), 10-38
CRC_DCNTRLD (Data Word Count Reload Register,
CRC), 10-30
CRC_DFIFO (Data FIFO Register, CRC), 10-32
CRC_FILLVAL (Fill Value Register, CRC), 10-32
CRC_INEN (Interrupt Enable Register, CRC), 10-33
CRC_INEN_CLR (Interrupt Enable Clear Register,
CRC), 10-35
CRC_INEN_SET (Interrupt Enable Set Register,
CRC), 10-34
CRC_POLY (Polynomial Register, CRC), 10-35
CRC_RESULT_CUR (CRC Current Result Register,
CRC), 10-39
I–6 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
CRC_RESULT_FIN (CRC Final Result Register,
CRC), 10-39
CRC_STAT (Status Register, CRC), 10-36
Current Address, DMA (DMA_ADDR_CUR), 11-58
Current Count 0 Register, DACC (DACC_CNT-
CUR0), 25-41
Current Count 1 Register, DACC (DACC_CNT-
CUR1), 25-42
Current Count(1D) or intra-row XCNT (2D), DMA
(DMA_XCNT_CUR), 11-62
Current Descriptor Pointer, DMA (DMA_D-
SCPTR_CUR), 11-57
Current Register n, SWU (SWU_CURn), 30-22
Current Row Count (2D only), DMA
(DMA_YCNT_CUR), 11-63
cyclic redunda ncy check (CRC), 3-7

D
DACC0_DAC0 interrupt, 7-6, 25-4
DACC0_DAC1 interrupt, 7-6, 25-4
DACC0_ERR interrupt, 7-4, 25-4
DACC_BCST_CTL (Broadcast (Write) Control Reg-
ister, DACC), 25-40
DACC_BPTR0 (Base Pointer 0 Register, DACC),
25-33
DACC_BPTR1 (Base Pointer 1 Register, DACC),
25-37
DACC_CNT0 (Count 0 Register, DACC), 25-34
DACC_CNT1 (Count 1 Register, DACC), 25-38
DACC_CNTCUR0 (Current Count 0 Register,
DACC), 25-41
DACC_CNTCUR1 (Current Count 1 Register,
DACC), 25-42
DACC_CTL0 (Control 0 Register, DACC), 25-19
DACC_CTL1 (Control 1 Register, DACC), 25-21
DACC_DAT0 (Data FIFO 0 Register, DACC), 25-35
DACC_DAT1 (Data FIFO 1 Register, DACC), 25-39
DACC_ERRMSK (Error Mask Register, DACC),
25-24
DACC_ERRMSK_CLR (Error Mask Clear Register,
DACC), 25-27
DACC_ERRMSK_SET (Error Mask Set Register,
DACC), 25-26
DACC_ERRSTAT (Error Status Register, DACC),
25-23

DACC_IMSK (Interrupt Mask Register, DACC),
25-29
DACC_IMSK_CLR (Interrupt Mask Clear Register,
DACC), 25-31
DACC_IMSK_SET (Interrupt Mask Set Register,
DACC), 25-30
DACC_ISTAT (Interrupt Status Register, DACC),
25-28
DACC_MOD0 (Modify 0 Register, DACC), 25-33
DACC_MOD1 (Modify 1 Register, DACC), 25-37
DACC_STAT (Status Register, DACC), 25-43
DACC_TC0 (Timing Control 0 Register, DACC),
25-32
DACC_TC1 (Timing Control 1 Register, DACC),
25-36
Data (Configuration) RAM Register, HAE (HAE_-
DATA_RAM), 26-28
Data Compare Register, CRC (CRC_COMP), 10-31
Data Count Capture Register, CRC (CRC_DCNT-
CAP), 10-38
Data FIFO 0 Register, DACC (DACC_DAT0), 25-35
Data FIFO 1 Register, DACC (DACC_DAT1), 25-39
Data FIFO Register, CRC (CRC_DFIFO), 10-32
Data Interrupt Latch Register, TIMER (TIMER_-
DATA_ILAT), 13-35
Data Interrupt Mask Register, TIMER (TIMER_-
DATA_IMSK), 13-32
Data Word Count Register, CRC (CRC_DCNT), 10-30
Data Word Count Reload Register, CRC (CRC_DCN-
TRLD), 10-30
DCLK clock domain, 3-7
Dead Time Register, PWM (PWM_DT), 16-70
Debounce Register, CNT (CNT_DEBNCE), 15-31
Debug Register, CAN (CAN_DBG), 19-59
Debug Register, EMAC (EMAC_DBG), 21-108
deep sleep mode, 6-2, 6-5
deep sleep mode, configuring, 6-7
Delay Register, SPI (SPI_DLY), 22-57
Device Control Register, USB (USB_DEV_CTL),
20-98
DIDT Coefficient Register, HAE (HAE_DIDT_CO-
EF), 26-30
DIDT Gain Register, HAE (HAE_DIDT_GAIN),
26-30
DMA Base Pointer 1 Register, ADCC (ADC-
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–7

INDEX
C_BPTR1), 24-77
DMA Bus Mode Register, EMAC (EMAC_D-
MA_BUSMODE), 21-200
DMA Channel n Address Register, USB (USB_D-
MAn_ADDR), 20-143
DMA Channel n Control Register, USB (USB_D-
MAn_CTL), 20-141
DMA Channel n Count Register, USB (USB_D-
MAn_CNT), 20-144
DMA channels, SCB, 3-6
DMA Interrupt Enable Register, EMAC (EMAC_D-
MA_IEN), 21-213
DMA Interrupt Register, USB (USB_DMA_IRQ),
20-139
DMA Missed Frame Register, EMAC (EMAC_D-
MA_MISS_FRM), 21-215
DMA Operation Mode Register, EMAC (EMAC_D-
MA_OPMODE), 21-209
DMA Rx Buffer Current Register, EMAC (EMAC_D-
MA_RXBUF_CUR), 21-221
DMA Rx Descriptor Current Register, EMAC
(EMAC_DMA_RXDSC_CUR), 21-219
DMA Rx Descriptor List Address Register, EMAC
(EMAC_DMA_RXDSC_ADDR), 21-203
DMA Rx Interrupt Watch Dog Register, EMAC
(EMAC_DMA_RXIWDOG), 21-216
DMA Rx Poll Demand register, EMAC (EMAC_D-
MA_RXPOLL), 21-202
DMA SCB Bus Mode Register, EMAC (EMAC_D-
MA_BMMODE), 21-217
DMA SCB Status Register, EMAC (EMAC_D-
MA_BMSTAT), 21-218
DMA Status Register, EMAC (EMAC_DMA_STAT),
21-205
DMA Tx Buffer Current Register, EMAC (EMAC_D-
MA_TXBUF_CUR), 21-220
DMA Tx Descriptor Current Register, EMAC
(EMAC_DMA_TXDSC_CUR), 21-219
DMA Tx Descriptor List Address Register, EMAC
(EMAC_DMA_TXDSC_ADDR), 21-204
DMA Tx Poll Demand Register, EMAC (EMAC_D-
MA_TXPOLL), 21-202
DMA_ADDR_CUR (Current Address, DMA), 11-58
DMA_ADDRSTART (Start Address of Current Buf-
fer, DMA), 11-47

DMA_BWLCNT (Bandwidth Limit Count, DMA),
11-64
DMA_BWLCNT_CUR (Bandwidth Limit Count Cur-
rent, DMA), 11-64
DMA_BWMCNT (Bandwidth Monitor Count, DMA),
11-65
DMA_BWMCNT_CUR (Bandwidth Monitor Count
Current, DMA), 11-66
DMA_CFG (Configuration Register, DMA), 11-48
DMA_DSCPTR_CUR (Current Descriptor Pointer,
DMA), 11-57
DMA_DSCPTR_NXT (Pointer to Next Initial De-
scriptor, DMA), 11-46
DMA_DSCPTR_PRV (Previous Initial Descriptor
Pointer, DMA), 11-58
DMA_STAT (Status Register, DMA), 11-59
DMA_XCNT (Inner Loop Count Start Value, DMA),
11-54
DMA_XCNT_CUR (Current Count(1D) or intra-row
XCNT (2D), DMA), 11-62
DMA_XMOD (Inner Loop Address Increment,
DMA), 11-55
DMA_YCNT (Outer Loop Count Start Value (2D on-
ly), DMA), 11-55
DMA_YCNT_CUR (Current Row Count (2D only),
DMA), 11-63
DMA_YMOD (Outer Loop Address Increment (2D
only), DMA), 11-56
DPM bus error, 6-6
DPM event, 6-6
DPM0_EVT interrupt, 6-2, 7-6
DPM_CCBF_DIS (Core Clock Buffer Disable Regis-
ter, DPM), 6-12
DPM_CCBF_EN (Core Clock Buffer Enable Register,
DPM), 6-13
DPM_CCBF_STAT (Core Clock Buffer Status Regis-
ter, DPM), 6-14
DPM_CCBF_STAT_STKY (Core Clock Buffer Sta-
tus Sticky Register, DPM), 6-15
DPM_CTL (Control Register, DPM), 6-9
DPM_SCBF_DIS (System Clock Buffer Disable Reg-
ister, DPM), 6-15
DPM_STAT (Status Register, DPM), 6-11
DPM_WAKE_EN (Wakeup Enable Register, DPM),
6-16
I–8 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
DPM_WAKE_POL (Wakeup Polarity Register,
DPM), 6-17
DPM_WAKE_STAT (Wakeup Status Register,
DPM), 6-18
dynamic memory clock (DCLK), 4-4
dynamic power management (DPM), 4-3

E
EMAC0_STAT interrupt, 7-5, 8-3, 21-8
EMAC_ADDR0_HI (MAC Address 0 High Register,
EMAC), 21-113
EMAC_ADDR0_LO (MAC Address 0 Low Register,
EMAC), 21-113
EMAC_DBG (Debug Register, EMAC), 21-108
EMAC_DMA_BMMODE (DMA SCB Bus Mode
Register, EMAC), 21-217
EMAC_DMA_BMSTAT (DMA SCB Status Register,
EMAC), 21-218
EMAC_DMA_BUSMODE (DMA Bus Mode Regis-
ter, EMAC), 21-200
EMAC_DMA_IEN (DMA Interrupt Enable Register,
EMAC), 21-213
EMAC_DMA_MISS_FRM (DMA Missed Frame
Register, EMAC), 21-215
EMAC_DMA_OPMODE (DMA Operation Mode
Register, EMAC), 21-209
EMAC_DMA_RXBUF_CUR (DMA Rx Buffer Cur-
rent Register, EMAC), 21-221
EMAC_DMA_RXDSC_ADDR (DMA Rx Descriptor
List Address Register, EMAC), 21-203
EMAC_DMA_RXDSC_CUR (DMA Rx Descriptor
Current Register, EMAC), 21-219
EMAC_DMA_RXIWDOG (DMA Rx Interrupt Watch
Dog Register, EMAC), 21-216
EMAC_DMA_RXPOLL (DMA Rx Poll Demand reg-
ister, EMAC), 21-202
EMAC_DMA_STAT (DMA Status Register, EMAC),
21-205
EMAC_DMA_TXBUF_CUR (DMA Tx Buffer Cur-
rent Register, EMAC), 21-220
EMAC_DMA_TXDSC_ADDR (DMA Tx Descriptor
List Address Register, EMAC), 21-204
EMAC_DMA_TXDSC_CUR (DMA Tx Descriptor
Current Register, EMAC), 21-219
EMAC_DMA_TXPOLL (DMA Tx Poll Demand Reg-

ister, EMAC), 21-202
EMAC_FLOWCTL (FLow Control Register, EMAC),
21-106
EMAC_HASHTBL_HI (Hash Table High Register,
EMAC), 21-102
EMAC_HASHTBL_LO (Hash Table Low Register,
EMAC), 21-103
EMAC_IMSK (Interrupt Mask Register, EMAC),
21-112
EMAC_IPC_RXIMSK (MMC IPC Rx Interrupt Mask
Register, EMAC), 21-158
EMAC_IPC_RXINT (MMC IPC Rx Interrupt Regis-
ter, EMAC), 21-162
EMAC_ISTAT (Interrupt Status Register, EMAC),
21-111
EMAC_MACCFG (MAC Configuration Register,
EMAC), 21-96
EMAC_MACFRMFILT (MAC Rx Frame Filter Reg-
ister, EMAC), 21-100
EMAC_MMC_CTL (MMC Control Register,
EMAC), 21-114
EMAC_MMC_RXIMSK (MMC Rx Interrupt Mask
Register, EMAC), 21-122
EMAC_MMC_RXINT (MMC Rx Interrupt Register,
EMAC), 21-116
EMAC_MMC_TXIMSK (MMC TX Interrupt Mask
Register, EMAC), 21-125
EMAC_MMC_TXINT (MMC Tx Interrupt Register,
EMAC), 21-119
EMAC_RX1024TOMAX_GB (Rx 1024- to Max-Byte
Frames (Good/Bad) Register, EMAC), 21-152
EMAC_RX128TO255_GB (Rx 128- to 255-Byte
Frames (Good/Bad) Register, EMAC), 21-150
EMAC_RX256TO511_GB (Rx 256- to 511-Byte
Frames (Good/Bad) Register, EMAC), 21-151
EMAC_RX512TO1023_GB (Rx 512- to 1023-Byte
Frames (Good/Bad) Register, EMAC), 21-152
EMAC_RX64_GB (Rx 64-Byte Frames (Good/Bad)
Register, EMAC), 21-149
EMAC_RX65TO127_GB (Rx 65- to 127-Byte Frames
(Good/Bad) Register, EMAC), 21-150
EMAC_RXALIGN_ERR (Rx alignment Error Regis-
ter, EMAC), 21-146
EMAC_RXBCASTFRM_G (Rx Broadcast Frames
(Good) Register, EMAC), 21-144
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–9

INDEX
EMAC_RXCRC_ERR (Rx CRC Error Register,
EMAC), 21-146
EMAC_RXFIFO_OVF (Rx FIFO Overflow Register,
EMAC), 21-155
EMAC_RXFRMCNT_GB (Rx Frame Count
(Good/Bad) Register, EMAC), 21-143
EMAC_RXICMP_ERR_FRM (Rx ICMP Error
Frames Register, EMAC), 21-173
EMAC_RXICMP_ERR_OCT (Rx ICMP Error Octets
Register, EMAC), 21-182
EMAC_RXICMP_GD_FRM (Rx ICMP Good Frames
Register, EMAC), 21-173
EMAC_RXICMP_GD_OCT (Rx ICMP Good Octets
Register, EMAC), 21-181
EMAC_RXIPV4_FRAG_FRM (Rx IPv4 Datagrams
Fragmented Frames Register, EMAC), 21-167
EMAC_RXIPV4_FRAG_OCT (Rx IPv4 Datagrams
Fragmented Octets Register, EMAC), 21-176
EMAC_RXIPV4_GD_FRM (Rx IPv4 Datagrams
(Good) Register, EMAC), 21-166
EMAC_RXIPV4_GD_OCT (Rx IPv4 Datagrams
Good Octets Register, EMAC), 21-174
EMAC_RXIPV4_HDR_ERR_FRM (Rx IPv4 Data-
grams Header Errors Register, EMAC), 21-166
EMAC_RXIPV4_HDR_ERR_OCT (Rx IPv4 Data-
grams Header Errors Register, EMAC), 21-175
EMAC_RXIPV4_NOPAY_FRM (Rx IPv4 Datagrams
No Payload Frame Register, EMAC), 21-167
EMAC_RXIPV4_NOPAY_OCT (Rx IPv4 Datagrams
No Payload Octets Register, EMAC), 21-175
EMAC_RXIPV4_UDSBL_FRM (Rx IPv4 UDP Dis-
abled Frames Register, EMAC), 21-168
EMAC_RXIPV4_UDSBL_OCT (Rx IPv4 UDP Dis-
abled Octets Register, EMAC), 21-177
EMAC_RXIPV6_GD_FRM (Rx IPv6 Datagrams
Good Frames Register, EMAC), 21-169
EMAC_RXIPV6_GD_OCT (Rx IPv6 Good Octets
Register, EMAC), 21-177
EMAC_RXIPV6_HDR_ERR_FRM (Rx IPv6 Data-
grams Header Error Frames Register, EMAC), 21-169
EMAC_RXIPV6_HDR_ERR_OCT (Rx IPv6 Header
Errors Register, EMAC), 21-178
EMAC_RXIPV6_NOPAY_FRM (Rx IPv6 Datagrams
No Payload Frames Register, EMAC), 21-170
EMAC_RXIPV6_NOPAY_OCT (Rx IPv6 No Pay-

load Octets Register, EMAC), 21-178
EMAC_RXJAB_ERR (Rx Jab Error Register,
EMAC), 21-147
EMAC_RXLEN_ERR (Rx Length Error Register,
EMAC), 21-153
EMAC_RXMCASTFRM_G (Rx Multicast Frames
(Good) Register, EMAC), 21-145
EMAC_RXOCTCNT_G (Rx Octet Count (Good)
Register, EMAC), 21-144
EMAC_RXOCTCNT_GB (Rx Octet Count
(Good/Bad) Register, EMAC), 21-143
EMAC_RXOORTYPE (Rx Out Of Range Type Reg-
ister, EMAC), 21-154
EMAC_RXOSIZE_G (Rx Oversize (Good) Register,
EMAC), 21-149
EMAC_RXPAUSEFRM (Rx Pause Frames Register,
EMAC), 21-155
EMAC_RXRUNT_ERR (Rx Runt Error Register,
EMAC), 21-147
EMAC_RXTCP_ERR_FRM (Rx TCP Error Frames
Register, EMAC), 21-172
EMAC_RXTCP_ERR_OCT (Rx TCP Error Octets
Register, EMAC), 21-181
EMAC_RXTCP_GD_FRM (Rx TCP Good Frames
Register, EMAC), 21-172
EMAC_RXTCP_GD_OCT (Rx TCP Good Octets
Register, EMAC), 21-180
EMAC_RXUCASTFRM_G (Rx Unicast Frames
(Good) Register, EMAC), 21-153
EMAC_RXUDP_ERR_FRM (Rx UDP Error Frames
Register, EMAC), 21-171
EMAC_RXUDP_ERR_OCT (Rx UDP Error Octets
Register, EMAC), 21-180
EMAC_RXUDP_GD_FRM (Rx UDP Good Frames
Register, EMAC), 21-170
EMAC_RXUDP_GD_OCT (Rx UDP Good Octets
Register, EMAC), 21-179
EMAC_RXUSIZE_G (Rx Undersize (Good) Register,
EMAC), 21-148
EMAC_RXVLANFRM_GB (Rx VLAN Frames
(Good/Bad) Register, EMAC), 21-156
EMAC_RXWDOG_ERR (Rx Watch Dog Error Reg-
ister, EMAC), 21-156
EMAC_SMI_ADDR (SMI Address Register, EMAC),
21-103
I–10 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
EMAC_SMI_DATA (SMI Data Register, EMAC),
21-105
EMAC_TM_ADDEND (Time Stamp Addend Regis-
ter, EMAC), 21-190
EMAC_TM_AUXSTMP_NSEC (Time Stamp Auxil-
iary TS Nano Seconds Register, EMAC), 21-197
EMAC_TM_AUXSTMP_SEC (Time Stamp Auxilia-
ry TM Seconds Register, EMAC), 21-197
EMAC_TM_CTL (Time Stamp Control Register,
EMAC), 21-183
EMAC_TM_HISEC (Time Stamp High Second Reg-
ister, EMAC), 21-192
EMAC_TM_NSEC (Time Stamp Nanoseconds Regis-
ter, EMAC), 21-188
EMAC_TM_NSECUPDT (Time Stamp Nanoseconds
Update Register, EMAC), 21-189
EMAC_TM_NTGTM (Time Stamp Target Time
Nanoseconds Register, EMAC), 21-191
EMAC_TM_PPSCTL (PPS Control Register,
EMAC), 21-194
EMAC_TM_PPSINTVL (Time Stamp PPS Interval
Register, EMAC), 21-198
EMAC_TM_PPSWIDTH (PPS Width Register,
EMAC), 21-199
EMAC_TM_SEC (Time Stamp Low Seconds Regis-
ter, EMAC), 21-187
EMAC_TM_SECUPDT (Time Stamp Seconds Up-
date Register, EMAC), 21-188
EMAC_TM_STMPSTAT (Time Stamp Status Regis-
ter, EMAC), 21-193
EMAC_TM_SUBSEC (Time Stamp Sub Second In-
crement Register, EMAC), 21-186
EMAC_TM_TGTM (Time Stamp Target Time Sec-
onds Register, EMAC), 21-190
EMAC_TX1024TOMAX_GB (Tx 1024- to Max-Byte
Frames (Good/Bad) Register, EMAC), 21-133
EMAC_TX128TO255_GB (Tx 128- to 255-Byte
Frames (Good/Bad) Register, EMAC), 21-131
EMAC_TX256TO511_GB (Tx 256- to 511-Byte
Frames (Good/Bad) Register, EMAC), 21-132
EMAC_TX512TO1023_GB (Tx 512- to 1023-Byte
Frames (Good/Bad) Register, EMAC), 21-132
EMAC_TX64_GB (Tx 64-Byte Frames (Good/Bad)
Register, EMAC), 21-130
EMAC_TX65TO127_GB (Tx 65- to 127-Byte Frames

(Good/Bad) Register, EMAC), 21-131
EMAC_TXBCASTFRM_G (Tx Broadcast Frames
(Good) Register, EMAC), 21-129
EMAC_TXBCASTFRM_GB (Tx Broadcast Frames
(Good/Bad) Register, EMAC), 21-135
EMAC_TXCARR_ERR (Tx Carrier Error Register,
EMAC), 21-139
EMAC_TXDEFERRED (Tx Deferred Register,
EMAC), 21-137
EMAC_TXEXCESSCOL (Tx Excess Collision Regis-
ter, EMAC), 21-138
EMAC_TXEXCESSDEF (Tx Excess Deferral Regis-
ter, EMAC), 21-141
EMAC_TXFRMCNT_G (Tx Frame Count (Good)
Register, EMAC), 21-140
EMAC_TXFRMCNT_GB (Tx Frame Count
(Good/Bad) Register, EMAC), 21-128
EMAC_TXLATECOL (Tx Late Collision Register,
EMAC), 21-138
EMAC_TXMCASTFRM_G (Tx Multicast Frames
(Good) Register, EMAC), 21-129
EMAC_TXMCASTFRM_GB (Tx Multicast Frames
(Good/Bad) Register, EMAC), 21-134
EMAC_TXMULTCOL_G (Tx Multiple Collision
(Good) Register, EMAC), 21-137
EMAC_TXOCTCNT_G (Tx Octet Count (Good)
Register, EMAC), 21-140
EMAC_TXOCTCNT_GB (Tx OCT Count
(Good/Bad) Register, EMAC), 21-128
EMAC_TXPAUSEFRM (Tx Pause Frame Register,
EMAC), 21-141
EMAC_TXSNGCOL_G (Tx Single Collision (Good)
Register, EMAC), 21-136
EMAC_TXUCASTFRM_GB (Tx Unicast Frames
(Good/Bad) Register, EMAC), 21-134
EMAC_TXUNDR_ERR (Tx Underflow Error Regis-
ter, EMAC), 21-135
EMAC_TXVLANFRM_G (Tx VLAN Frames (Good)
Register, EMAC), 21-142
EMAC_VLANTAG (VLAN Tag Register, EMAC),
21-107
Endpoint Information Register, USB (USB_EPINFO),
20-99
EP0 Configuration and Status (Host) Register, USB
(USB_EP0_CSRn_H), 20-109
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–11

INDEX
EP0 Configuration and Status (Peripheral) Register,
USB (USB_EP0_CSRn_P), 20-115
EP0 Configuration Information Register, USB (US-
B_EP0_CFGDATAn), 20-137
EP0 Connection Type Register, USB (USB_EP0_-
TYPEn), 20-130
EP0 NAK Limit Register, USB (USB_EP0_NAK-
LIMITn), 20-132
EP0 Number of Received Bytes Register, USB (US-
B_EP0_CNTn), 20-128
EPn Number of Bytes Received Register, USB (US-
B_EPn_RXCNT), 20-129
EPn Receive Configuration and Status (Host) Register,
USB (USB_EPn_RXCSR_H), 20-121
EPn Receive Configuration and Status (Pe ripheral)
Register, USB (USB_EPn_RXCSR_P), 20-125
EPn Receive Maximum Packet Length Register, USB
(USB_EPn_RXMAXP), 20-120
EPn Receive Polling Interval Register, USB (US-
B_EPn_RXINTERVAL), 20-136
EPn Receive Type Register, USB (USB_EPn_RX-
TYPE), 20-134
EPn Request Packet Count Register, USB (USB_RQP-
KTCNTn), 20-144
EPn Transmit Configuration and Status (Host) Regis-
ter, USB (USB_EPn_TXCSR_H), 20-111
EPn Transmit Configuration and Status (Peripheral)
Register, USB (USB_EPn_TXCSR_P), 20-117
EPn Transmit Maximum Packet Length Register, USB
(USB_EPn_TXMAXP), 20-108
EPn Transmit Polling Interval Register, USB (US-
B_EPn_TXINTERVAL), 20-133
EPn Transmit Type Register, USB (USB_EPn_TX-
TYPE), 20-130
Error Address Register, TRU (TRU_ERRADDR),
8-11
Error Counter Register, CAN (CAN_CEC), 19-62
Error Counter Warning Level Register, CAN
(CAN_EWR), 19-74
Error Mask Clear Register, ADCC (ADCC_ER-
RMSK_CLR), 24-53
Error Mask Clear Register, DACC (DACC_ER-
RMSK_CLR), 25-27
Error Mask Register, ADCC (ADCC_ERRMSK),
24-49

Error Mask Register, DACC (DACC_ERRMSK),
25-24
Error Mask Set Register, ADCC (ADCC_ER-
RMSK_SET), 24-51
Error Mask Set Register, DACC (DACC_ER-
RMSK_SET), 25-26
Error Status Register, ADCC (ADCC_ERRSTAT),
24-47
Error Status Register, CAN (CAN_ESR), 19-74
Error Status Register, DACC (DACC_ERRSTAT),
25-23
Error Type Status Register, TIMER (TIMER_ERR_-
TYPE), 13-37
Event Collision Status Register, ADCC (ADC-
C_ECOL), 24-68
Event Enable Clear Register, ADCC (ADC-
C_EVTEN_CLR), 24-67
Event Enable Register, ADCC (ADCC_EVTEN),
24-64
Event Enable Set Register, ADCC (ADC-
C_EVTEN_SET), 24-65
Event Interrupt Mask Clear Register, ADCC (ADC-
C_EIMSK_CLR), 24-59
Event Interrupt Mask Register, ADCC (ADCC_E-
IMSK), 24-56
Event Interrupt Mask Set Register, ADCC (ADCC_E-
IMSK_SET), 24-57
Event Interrupt Status Register, ADCC (ADCC_EI-
STAT), 24-54
Event Miss Status Register, ADCC (ADCC_EMISS),
24-70
Event n Control Register, ADCC (ADCC_EVCTLnn),
24-82
Event n Data Register, ADCC (ADCC_EVDATnn),
24-88
Event n Status Register, ADCC (ADCC_EVSTATnn),
24-89
Event n Time Register, ADCC (ADCC_EVTnn),
24-81
event, CGU, 4-6
event, DPM, 6-6

F
Fault Control Register, SEC (SEC_FCTL), 7-20
Fault COP Period Current Register, SEC (SEC_FCOP-
I–12 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
P_CUR), 7-29
Fault COP Period Register, SEC (SEC_FCOPP), 7-28
Fault Delay Current Register, SEC (SEC_FD-
LY_CUR), 7-26
Fault Delay Register, SEC (SEC_FDLY), 7-26
Fault End Register, SEC (SEC_FEND), 7-25
Fault Source ID Register, SEC (SEC_FSID), 7-24
Fault Status Register, SEC (SEC_FSTAT), 7-22
Fault System Reset Delay Current Register, SEC
(SEC_FSRDLY_CUR), 7-28
Fault System Reset Delay Register, SEC (SEC_FSRD-
LY), 7-27
FIFO Byte (8-Bit) Register, USB (USB_FIFOBn),
20-96
FIFO Control Register, TWI (TWI_FIFOCTL), 18-34
FIFO Half-Word (16-Bit) Register, USB (USB_FI-
FOHn), 20-96
FIFO Size, USB (USB_EPn_FIFOSZ), 20-138
FIFO Status Register, TWI (TWI_FIFOSTAT), 18-36
FIFO Word (32-Bit) Register, USB (USB_FIFOn),
20-97
Fill Value Register, CRC (CRC_FILLVAL), 10-32
fixed arbitration, 3-8
FLow Control Register, EMAC (EMAC_FLOWCTL),
21-106
Frame Increment 0 Register, ADCC (ADCC_-
FRINC0), 24-72
Frame Increment 1 Register, ADCC (ADCC_-
FRINC1), 24-77
Frame Interrupt Mask Clear Register, ADCC (ADC-
C_FIMSK_CLR), 24-62
Frame Interrupt Mask Register, ADCC (ADC-
C_FIMSK), 24-61
Frame Interrupt Mask Set Register, ADCC (ADC-
C_FIMSK_SET), 24-62
Frame Interrupt Status Register, ADCC (ADCC_FI-
STAT), 24-60
Frame Number Register, USB (USB_FRAME), 20-93
FS PHY Control, USB (USB_PHY_CTL), 20-155
FS PHY Status, USB (USB_PHY_STAT), 20-156
full-on mode, 6-3
Full-Speed EOF 1 Register, USB (USB_FS_EOF1),
20-102
Function Address Register, USB (USB_FADDR),
20-83

G
Global CAN Interrupt Flag Register, CAN (CAN_-
GIF), 19-68
Global CAN Interrupt Mask Register, CAN
(CAN_GIM), 19-66
Global CAN Interrupt Status Register, CAN
(CAN_GIS), 19-63
Global Control Register, SEC (SEC_GCTL), 7-17
Global Control Register, SWU (SWU_GCTL), 30-10
Global Control Register, TRU (TRU_GCTL), 8-13
Global Raise Register, SEC (SEC_RAISE), 7-19
Global Status Register, SEC (SEC_GSTAT), 7-18
Global Status Register, SWU (SWU_GSTAT), 30-11

H
HAE0_RXDMA_CH0 interrupt, 7-6, 8-3, 8-5, 26-3,
26-4
HAE0_RXDMA_CH1 interrupt, 7-6, 8-3, 8-5, 26-3,
26-4
HAE0_STAT interrupt, 7-5, 26-3
HAE0_TXDMA interrupt, 7-6, 8-3, 8-5, 26-3, 26-4
HAE_CFG0 (Configuration 0 Register, HAE), 26-21
HAE_CFG1 (Configuration 1 Register, HAE), 26-22
HAE_CFG2 (Configuration 2 Register, HAE), 26-22
HAE_CFG3 (Configuration 3 Register, HAE), 26-24
HAE_CFG4 (Configuration 4 Register, HAE), 26-29
HAE_COEF_RAM (Coefficient RAM Register,
HAE), 26-20
HAE_DATA_RAM (Data (Configuration) RAM Reg-
ister, HAE), 26-28
HAE_DIDT_COEF (DIDT Coefficient Register,
HAE), 26-30
HAE_DIDT_GAIN (DIDT Gain Register, HAE),
26-30
HAE_Hnn_INDX (Harmonic n Index Register, HAE),
26-32
HAE_ISAMPLE (I (Current) Sample Register, HAE),
26-25
HAE_IWAVEFORM (I (Current) Waveform Register,
HAE), 26-27
HAE_RESULTS_RAM (Results RAM Register,
HAE), 26-28
HAE_RUN (Run Register, HAE), 26-19
HAE_STAT (Status Register, HAE), 26-24
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–13

INDEX
HAE_VLEVEL (Voltage Level Register, HAE), 26-31
HAE_VSAMPLE (V (Voltage) Sample Register,
HAE), 26-26
HAE_VWAVEFORM (V (Voltage) Waveform Regis-
ter, HAE), 26-27
Half SPORT 'A' Control 2 Register, SPORT
(SPORT_CTL2_A), 23-62
Half SPORT 'A' Control Register, SPORT
(SPORT_CTL_A), 23-47
Half SPORT 'A' Divisor Register, SPORT
(SPORT_DIV_A), 23-54
Half SPORT 'A' Error Register, SPORT (SPORT_ER-
R_A), 23-60
Half SPORT 'A' Multi-channel 0-31 Select Register,
SPORT (SPORT_CS0_A), 23-57
Half SPORT 'A' Multi-channel 32-63 Select Register,
SPORT (SPORT_CS1_A), 23-58
Half SPORT 'A' Multi-channel 64-95 Select Register,
SPORT (SPORT_CS2_A), 23-59
Half SPORT 'A' Multi-channel 96-127 Select Register,
SPORT (SPORT_CS3_A), 23-59
Half SPORT 'A' Multi-channel Control Register,
SPORT (SPORT_MCTL_A), 23-56
Half SPORT 'A' Multi-channel Status Register,
SPORT (SPORT_MSTAT_A), 23-62
Half SPORT 'A' Rx Buffer (Primary) Register, SPORT
(SPORT_RXPRI_A), 23-64
Half SPORT 'A' Rx Buffer (Secondary) Register,
SPORT (SPORT_RXSEC_A), 23-66
Half SPORT 'A' Tx Buffer (Primary) Register, SPORT
(SPORT_TXPRI_A), 23-64
Half SPORT 'A' Tx Buffer (Secondary) Register,
SPORT (SPORT_TXSEC_A), 23-65
Half SPORT 'B' Control 2 Register, SPORT
(SPORT_CTL2_B), 23-82
Half SPORT 'B' Control Register, SPORT
(SPORT_CTL_B), 23-67
Half SPORT 'B' Divisor Register, SPORT
(SPORT_DIV_B), 23-74
Half SPORT 'B' Error Register, SPORT (SPORT_ER-
R_B), 23-80
Half SPORT 'B' Multi-channel 0-31 Select Register,
SPORT (SPORT_CS0_B), 23-77
Half SPORT 'B' Multi-channel 32-63 Select Register,
SPORT (SPORT_CS1_B), 23-78

Half SPORT 'B' Multichannel 64-95 Select Register,
SPORT (SPORT_CS2_B), 23-79
Half SPORT 'B' Multichannel 96-127 Select Register,
SPORT (SPORT_CS3_B), 23-79
Half SPORT 'B' Multi-channel Control Register,
SPORT (SPORT_MCTL_B), 23-76
Half SPORT 'B' Multi-channel Status Register,
SPORT (SPORT_MSTAT_B), 23-82
Half SPORT 'B' Rx Buffer (Primary) Register, SPORT
(SPORT_RXPRI_B), 23-84
Half SPORT 'B' Rx Buffer (Secondary) Register,
SPORT (SPORT_RXSEC_B), 23-86
Half SPORT 'B' Tx Buffer (Primary) Register, SPORT
(SPORT_TXPRI_B), 23-84
Half SPORT 'B' Tx Buffer (Secondary) Register,
SPORT (SPORT_TXSEC_B), 23-85
Harmonic n Index Register, HAE (HAE_Hnn_INDX),
26-32
Hash Table High Register, EMAC (EMAC_HASHT-
BL_HI), 21-102
Hash Table Low Register, EMAC (EMAC_HASHT-
BL_LO), 21-103
hierarchical model, SCB, 3-5
History Status Register, SINC (SINC_HIS_STAT),
27-47

I
I (Current) Sample Register, HAE (HAE_ISAMPLE),
26-25
I (Current) Waveform Register, HAE (HAE_IWAVE-
FORM), 26-27
ID Control, USB (USB_IDCTL), 20-155
ID Register n, SWU (SWU_IDn), 30-19
IDCODE Register, JTAG (JTAG_IDCODE), 31-2
Index Register, USB (USB_INDEX), 20-94
Inner Loop Address Increment, DMA (DMA_X-
MOD), 11-55
Inner Loop Count Start Value, DMA (DMA_XCNT),
11-54
interfaces, SCB, 3-7
Interrupt Enable Clear Register, CRC (CRC_INEN_-
CLR), 10-35
Interrupt Enable Register, CRC (CRC_INEN), 10-33
Interrupt Enable Set Register, CRC
(CRC_INEN_SET), 10-34
I–14 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
Interrupt Latch Register, PWM (PWM_ILAT), 16-68
Interrupt Mask Clear Register, DACC (DAC-
C_IMSK_CLR), 25-31
Interrupt Mask Clear Register, SPI (SPI_IMSK_CLR),
22-66
Interrupt Mask Clear Register, UART
(UART_IMSK_CLR), 17-43
Interrupt Mask Register, CNT (CNT_IMSK), 15-24
Interrupt Mask Register, DACC (DACC_IMSK),
25-29
Interrupt Mask Register, EMAC (EMAC_IMSK),
21-112
Interrupt Mask Register, PWM (PWM_IMSK), 16-66
Interrupt Mask Register, SPI (SPI_IMSK), 22-64
Interrupt Mask Register, TWI (TWI_IMSK), 18-33
Interrupt Mask Register, UART (UART_IMSK),
17-38
Interrupt Mask Set Register, DACC (DAC-
C_IMSK_SET), 25-30
Interrupt Mask Set Register, SPI (SPI_IMSK_SET),
22-67
Interrupt Mask Set Register, UART
(UART_IMSK_SET), 17-41
Interrupt Pending Register, CAN (CAN_INT), 19-71
Interrupt Status Register, DACC (DACC_ISTAT),
25-28
Interrupt Status Register, EMAC (EMAC_ISTAT),
21-111
Interrupt Status Register, TWI (TWI_ISTAT), 18-30

J
JTAG_IDCODE (IDCODE Register, JTAG), 31-2
JTAG_USERCODE (User Code Register, JTAG),
31-2

L
latency, peripheral SCB, 3-6
Level Control for Group 0 Register, SINC (SIN-
C_LEVEL0), 27-34
Level Control for Group 1 Register, SINC (SIN-
C_LEVEL1), 27-36
Link Information Register, USB (USB_LINKINFO),
20-101
Lower Address Register n, SWU (SWU_LAn), 30-18

Low-Speed EOF 1 Register, USB (USB_LS_EOF1),
20-103
LPM Attribute Register, USB (USB_LPM_ATTR),
20-147
LPM Control Register, USB (USB_LPM_CTL),
20-148
LPM Function Address Register, USB (USB_LPM_-
FADDR), 20-153
LPM Interrupt Enable Register, USB (USB_LP-
M_IEN), 20-150
LPM Interrupt Status Register, USB (USB_LP-
M_IRQ), 20-151

M
M Value for Divider, CNT (CNT_MDIV), 15-35
M4P0_BUS_FAULT interrupt, 2-4, 7-3
M4P0_CORE_SRAM_PERR interrupt, 2-4, 7-3
M4P0_DMA_SRAM_PERR interrupt, 2-4, 7-3
M4P0_L1CC_PERR interrupt, 2-4, 7-3
M4P0_LOCKUP interrupt, 2-4, 7-3
M4P0_SRAM_PERR_FLT interrupt, 2-4, 7-3
M4P_BUSFLT (Bus Fault Error Information Register,
M4P), 2-43
M4P_CACHE_CFG (Code Cache Configuration and
Status Register, M4P), 2-30
M4P_CACHE_CNTCTL (Cache Counter Control
Register, M4P), 2-46
M4P_CACHE_DFILL (Cache DCODE Line Fill
Counter Register, M4P), 2-52
M4P_CACHE_DMISS (Cache DCODE Miss Counter
Register, M4P), 2-50
M4P_CACHE_DREF (Cache DCODE Reference
Counter Register, M4P), 2-49
M4P_CACHE_IFILL (Cache ICODE Line Fill Count-
er Register, M4P), 2-51
M4P_CACHE_IMISS (Cache ICODE Miss Counter
Register, M4P), 2-49
M4P_CACHE_IREF (Cache ICODE Reference
Counter Register, M4P), 2-48
M4P_CACHE_MEMX (MEMX Space Configuration
Register, M4P), 2-37
M4P_CACHE_MEMY (MEMY Space Configuration
Register, M4P), 2-38
M4P_CACHE_PEADDR (Code Cache Parity Error
Address Register, M4P), 2-36
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–15

INDEX
M4P_SRAM_CFG (SRAM Configuration Register,
M4P), 2-39
M4P_SRAM_PEADDR_CORE (SRAM Parity Error
Address (Core) Register, M4P), 2-41
M4P_SRAM_PEADDR_DMA (SRAM Parity Error
Address (DMA) Register, M4P), 2-42
M4P_STCALIB (SysTick Calibration Register, M4P),
2-44
M4_SCS0_BusFault interrupt, 7-2
M4_SCS0_DebugMonitor interrupt, 7-3
M4_SCS0_HardFault interrupt, 7-2
M4_SCS0_MemoryManagement interrupt, 7-2
M4_SCS0_NonMaskableInt interrupt, 7-2
M4_SCS0_PendSV interrupt, 7-3
M4_SCS0_RESET interrupt, 7-2
M4_SCS0_SVCall interrupt, 7-3
M4_SCS0_SysTick interrupt, 7-3
M4_SCS0_UsageFault interrupt, 7-2
Ma ilbox Transmit Interrupt Flag 2 Register, CAN
(CAN_MBTIF2), 19-52
MAC Address 0 High Register, EMAC (EMAC_AD-
DR0_HI), 21-113
MAC Address 0 Low Register, EMAC (EMAC_AD-
DR0_LO), 21-113
MAC Configuration Register, EMAC (EMAC_MAC-
CFG), 21-96
MAC Rx Frame Filter Register, EMAC
(EMAC_MACFRMFILT), 21-100
Mailbox Configuration 1 Register, CAN (CAN_MC1),
19-31
Mailbox Configuration 2 Register, CAN (CAN_MC2),
19-44
Mailbox Direction 1 Register, CAN (CAN_MD1),
19-32
Mailbox Direction 2 Register, CAN (CAN_MD2),
19-45
Mailbox ID 0 Register, CAN (CAN_MBnn_ID0),
19-83
Mailbox ID 1 Register, CAN (CAN_MBnn_ID1),
19-84
Mailbox Interrupt Mask 1 Register, CAN (CAN_M-
BIM1), 19-41
Mailbox Interrupt Mask 2 Register, CAN (CAN_M-
BIM2), 19-54
Mailbox Length Register, CAN (CAN_MBn-

n_LENGTH), 19-82
Mailbox Receive Interrupt Flag 1 Register, CAN
(CAN_MBRIF1), 19-40
Mailbox Receive Interrupt Flag 2 Register, CAN
(CAN_MBRIF2), 19-53
Mailbox Timestamp Register, CAN (CAN_MBnn_-
TIMESTAMP), 19-83
Mailbox Transmit Interrupt Flag 1 Register, CAN
(CAN_MBTIF1), 19-39
Mailbox Word 0 Register, CAN (CAN_MBnn_DA-
TA0), 19-80
Mailbox Word 1 Register, CAN (CAN_MBnn_DA-
TA1), 19-81
Mailbox Word 2 Register, CAN (CAN_MBnn_DA-
TA2), 19-81
Mailbox Word 3 Register, CAN (CAN_MBnn_DA-
TA3), 19-82
Masked Interrupt Clear Register, SPI (SPI_ILAT_-
CLR), 22-75
Masked Interrupt Condition Register, SPI (SPI_ILAT),
22-73
Master 0 IB Sync Mode, SCB (SC-
B_MST00_IB_SYNC), 3-13
Master 0 Read Quality of Service, SCB (SC-
B_MST00_IB_RQOS), 3-14
Master 0 Write Quality of Service, SCB (SC-
B_MST00_IB_WQOS), 3-14
Master 1 IB Sync Mode, SCB (SC-
B_MST01_IB_SYNC), 3-15
Master 1 Read Quality of Service, SCB (SC-
B_MST01_IB_RQOS), 3-16
Master 1 Write Quality of Service, SCB (SC-
B_MST01_IB_WQOS), 3-16
Master 10 Read Quality of Service, SCB (SC-
B_MST10_RQOS), 3-28
Master 10 Write Quality of Service, SCB (SC-
B_MST10_WQOS), 3-28
Master 11 Read Qua lity of Service, SCB (SC-
B_MST11_RQOS), 3-29
Master 11 Write Quality of Service, SCB (SC-
B_MST11_WQOS), 3-30
Master 12 Read Quality of Service, SCB (SC-
B_MST12_RQOS), 3-30
Master 12 Write Quality of Service, SCB (SC-
B_MST12_WQOS), 3-31
I–16 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
Master 13 Read Quality of Service, SCB (SC-
B_MST13_RQOS), 3-32
Master 13 Write Quality of Service, SCB (SC-
B_MST13_WQOS), 3-32
Master 14 Read Quality of Service, SCB (SC-
B_MST14_RQOS), 3-33
Master 14 Write Quality of Service, SCB (SC-
B_MST14_WQOS), 3-34
Master 15 Read Quality of Service, SCB (SC-
B_MST15_RQOS), 3-34
Master 15 Write Quality of Service, SCB (SC-
B_MST15_WQOS), 3-35
Master 16 Read Quality of Service, SCB (SC-
B_MST16_RQOS), 3-36
Master 16 Write Quality of Service, SCB (SC-
B_MST16_WQOS), 3-36
Master 17 Read Quality of Service, SCB (SC-
B_MST17_RQOS), 3-37
Master 17 Write Quality of Service, SCB (SC-
B_MST17_WQOS), 3-38
Master 18 Read Quality of Service, SCB (SC-
B_MST18_RQOS), 3-38
Master 18 Write Quality of Service, SCB (SC-
B_MST18_WQOS), 3-39
Master 19 Read Quality of Service, SCB (SC-
B_MST19_RQOS), 3-40
Master 19 Write Quality of Service, SCB (SC-
B_MST19_WQOS), 3-40
Master 2 Read Quality of Service, SCB (SC-
B_MST02_RQOS), 3-17
Master 2 Write Quality of Service, SCB (SC-
B_MST02_WQOS), 3-18
Master 20 Write Quality of Service, SCB (SC-
B_MST20_WQOS), 3-42
Master 21 Read Quality of Service, SCB (SC-
B_MST21_RQOS), 3-42
Master 21 Write Quality of Service, SCB (SC-
B_MST21_WQOS), 3-43
Master 22 Read Quality of Service, SCB (SC-
B_MST22_RQOS), 3-44
Master 22 Write Quality of Service, SCB (SC-
B_MST22_WQOS), 3-44
Master 23 Read Quality of Service, SCB (SC-
B_MST23_RQOS), 3-45
Master 23 Write Quality of Service, SCB (SC-

B_MST23_WQOS), 3-46
Master 24 Read Quality of Service, SCB (SC-
B_MST24_RQOS), 3-46
Master 24 Write Quality of Service, SCB (SC-
B_MST24_WQOS), 3-47
Master 25 Read Quality of Service, SCB (SC-
B_MST25_RQOS), 3-48
Master 25 Write Quality of Service, SCB (SC-
B_MST25_WQOS), 3-48
Master 26 Read Quality of Service, SCB (SC-
B_MST26_RQOS), 3-49
Master 26 Write Quality of Service, SCB (SC-
B_MST26_WQOS), 3-50
Master 3 Read Quality of Service, SCB (SC-
B_MST03_RQOS), 3-18
Master 3 Write Quality of Service, SCB (SC-
B_MST03_WQOS), 3-19
Master 4 Read Quality of Service, SCB (SC-
B_MST04_RQOS), 3-20
Master 4 Write Quality of Service, SCB (SC-
B_MST04_WQOS), 3-20
Master 5 Read Quality of Service, SCB (SC-
B_MST05_RQOS), 3-21
Master 5 Write Quality of Service, SCB (SC-
B_MST05_WQOS), 3-22
Master 6 Read Quality of Service, SCB (SC-
B_MST06_RQOS), 3-22
Master 6 Write Quality of Service, SCB (SC-
B_MST06_WQOS), 3-23
Master 7 Read Quality of Service, SCB (SC-
B_MST07_RQOS), 3-24
Master 7 Write Quality of Service, SCB (SC-
B_MST07_WQOS), 3-24
Master 8 Read Quality of Service, SCB (SC-
B_MST08_RQOS), 3-25
Master 8 Write Quality of Service, SCB (SC-
B_MST08_WQOS), 3-26
Master 9 Read Quality of Service, SCB (SC-
B_MST09_RQOS), 3-26
Master 9 Write Quality of Service, SCB (SC-
B_MST09_WQOS), 3-27
Master Interface (MI), 3-4
Master Mode Address Register, TWI (TWI_M-
STRADDR), 18-29
Master Mode Control Registers, TWI (TWI_M-
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–17

INDEX
STRCTL), 18-24
Master Mode Status Register, TWI (TWI_M-
STRSTAT), 18-27
Master Trigger Register, TRU (TRU_MTR), 8-10
Master20 Read Quality of Service, SCB (SC-
B_MST20_RQOS), 3-41
Maximum Count Register, CNT (CNT_MAX), 15-33
maximum individual packet size (MaxPktSize), 20-24,
20-25, 20-26, 20-27, 20-28
MaxPktSize (maximum individual packet size), 20-24,
20-25, 20-26, 20-27, 20-28
memory DMA (MDMA), 3-7
Memory Mapped Read Header, SPI (SPI_MMRDH),
22-78
memory mapped register (MMR), 3-7
MEMX Space Configuration Register, M4P (M4P_-
CACHE_MEMX), 2-37
MEMY Space Configuration Register, M4P (M4P_-
CACHE_MEMY), 2-38
Message Clear Bits Register, RCU (RCU_MSG_-
CLR), 28-15
Message Register, RCU (RCU_MSG), 28-11
Message Set Bits Register, RCU (RCU_MSG_SET),
28-13
MI (Master Interface), 3-4
Minimum Count Register, CNT (CNT_MIN), 15-34
MMC Control Register, EMAC (EMAC_M-
MC_CTL), 21-114
MMC IPC Rx Interrupt Mask Register, EMAC
(EMAC_IPC_RXIMSK), 21-158
MMC IPC Rx Interrupt Register, EMAC (EMAC_IP-
C_RXINT), 21-162
MMC Rx Interrupt Mask Register, EMAC
(EMAC_MMC_RXIMSK), 21-122
MMC Rx Interrupt Register, EMAC (EMAC_M-
MC_RXINT), 21-116
MMC TX Interrupt Mask Register, EMAC
(EMAC_MMC_TXIMSK), 21-125
MMC Tx Interrupt Register, EMAC (EMAC_M-
MC_TXINT), 21-119
modes, operating, 6-3
Modify 0 Register, DACC (DACC_MOD0), 25-33
Modify 1 Register, DACC (DACC_MOD1), 25-37
MPn Receive Function Address Register, USB (US-
B_MPn_RXFUNCADDR), 20-106

MPn Receive Hub Address Register, USB (USB_MP-
n_RXHUBADDR), 20-107
MPn Receive Hub Port Register, USB (USB_MP-
n_RXHUBPORT), 20-107
MPn Transmit Function Address Register, USB (US-
B_MPn_TXFUNCADDR), 20-104
MPn Transmit Hub Address Register, USB (US-
B_MPn_TXHUBADDR), 20-105
MPn Transmit Hub Port Register, USB (USB_MP-
n_TXHUBPORT), 20-106

N
N Value for Divider, CNT (CNT_NDIV), 15-35

O
OCLK clock domain, 3-7
operating modes, 6-3
Oscillator Watchdog Register, CGU
(CGU_OSCWDCTL), 4-19
Outer Loop Address Increment (2D only), DMA
(DMA_YMOD), 11-56
Outer Loop Count Start Value (2D only), DMA
(DMA_YCNT), 11-55
output clock (OCLK), 4-4
Overwrite Protection/Single Shot Transmission 1 Reg-
ister, CAN (CAN_OPSS1), 19-43
Overwrite Protection/Single Shot Transmission 2 Reg-
ister, CAN (CAN_OPSS2), 19-56

P
PADS_PCFG0 (Peripheral Configuration0 Register,
PADS), 12-103
Pair 0 Secondary (Filter) History n Register, SINC
(SINC_P0SEC_HISTn), 27-49
Pair 1 Secondary (Filter) History n Register, SINC
(SINC_P1SEC_HISTn), 27-49
Pair 2 Secondary (Filter) History n Register, SINC
(SINC_P2SEC_HISTn), 27-50
Pair 3 Secondary (Filter) History n Register, SINC
(SINC_P3SEC_HISTn), 27-51
Pending Events Status Register, ADCC (ADC-
C_EPND), 24-84
Peripheral Configuration0 Register, PADS (PADS_P-
CFG0), 12-103
I–18 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
peripheral latency, 3-6
phase-locked loop (PLL), 4-3
phase-locked loop clock (PLLCLK), 4-3, 4-8
Pint Assign Register, PINT (PINT_ASSIGN), 12-83
Pint Edge Clear Register, PINT (PINT_EDGE_CLR),
12-87
Pint Edge Set Register, PINT (PINT_EDGE_SET),
12-84
Pint Invert Clear Register, PINT (PINT_INV_CLR),
12-93
Pint Invert Set Register, PINT (PINT_INV_SET),
12-90
Pint Latch Register, PINT (PINT_LATCH), 12-100
Pint Mask Clear Register, PINT (PINT_MSK_CLR),
12-77
Pint Mask Set Register, PINT (PINT_MSK_SET),
12-74
Pint Pinstate Register, PINT (PINT_PINSTATE),
12-96
Pint Request Register, PINT (PINT_REQ), 12-80
PINT0_BLOCK interrupt, 7-3, 8-3, 12-11
PINT1_BLOCK interrupt, 7-3, 8-3, 12-11
PINT2_BLOCK interrupt, 7-3, 8-3, 12-11
PINT3_BLOCK interrupt, 7-3, 8-3, 12-11
PINT4_BLOCK interrupt, 7-3, 8-3, 12-11
PINT_ASSIGN (Pint Assign Register, PINT), 12-83
PINT_EDGE_CLR (Pint Edge Clear Register, PINT),
12-87
PINT_EDGE_SET (Pint Edge Set Register, PINT),
12-84
PINT_INV_CLR (Pint Invert Clear Register, PINT),
12-93
PINT_INV_SET (Pint Invert Set Register, PINT),
12-90
PINT_LATCH (Pint Latch Register, PINT), 12-100
PINT_MSK_CLR (Pint Mask Clear Register, PINT),
12-77
PINT_MSK_SET (Pint Mask Set Register, PINT),
12-74
PINT_PINSTATE (Pint Pinstate Register, PINT),
12-96
PINT_REQ (Pint Request Register, PINT), 12-80
PLL bypass, 4-4
PLL control unit (PCU), 4-3
Pointer to Next Initial Descriptor, DMA (DMA_D-

SCPTR_NXT), 11-46
Polynomial Register, CRC (CRC_POLY), 10-35
Port x Function Enable Clear Register, PORT
(PORT_FER_CLR), 12-26
Port x Function Enable Register, PORT (PORT_FER),
12-21
Port x Function Enable Set Register, PORT
(PORT_FER_SET), 12-23
Port x GPIO Data Clear Register, PORT (PORT_-
DATA_CLR), 12-35
Port x GPIO Data Register, PORT (PORT_DATA),
12-29
Port x GPIO Data Set Register, PORT (PORT_-
DATA_SET), 12-31
Port x GPIO Direction Clear Register, PORT
(PORT_DIR_CLR), 12-45
Port x GPIO Direction Register, PORT (PORT_DIR),
12-39
Port x GPIO Direction Set Register, PORT
(PORT_DIR_SET), 12-42
Port x GPIO Input Enable Clear Register, PORT
(PORT_INEN_CLR), 12-54
Port x GPIO Input Enable Register, PORT (PORT_IN-
EN), 12-48
Port x GPIO Input Enable Set Register, PORT
(PORT_INEN_SET), 12-51
Port x GPIO Input Enable Toggle Register, PORT
(PORT_DATA_TGL), 12-59
Port x GPIO Lock Register, PORT (PORT_LOCK),
12-71
Port x GPIO Polarity Invert Clear Register, PORT
(PORT_POL_CLR), 12-68
Port x GPIO Polarity Invert Register, PORT
(PORT_POL), 12-62
Port x GPIO Polarity Invert Set Register, PORT
(PORT_POL_SET), 12-65
Port x Multiplexer Control Register, PORT
(PORT_MUX), 12-57
PORT_DATA (Port x GPIO Data Register, PORT),
12-29
PORT_DATA_CLR (Port x GPIO Data Clear Regis-
ter, PORT), 12-35
PORT_DATA_SET (Port x GPIO Data Set Register,
PORT), 12-31
PORT_DATA_TGL (Port x GPIO Input Enable Tog-
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–19

INDEX
gle Register, PORT), 12-59
PORT_DIR (Port x GPIO Direction Register, PORT),
12-39
PORT_DIR_CLR (Port x GPIO Direction Clear Reg-
ister, PORT), 12-45
PORT_DIR_SET (Port x GPIO Direction Set Register,
PORT), 12-42
PORT_FER (Port x Function Enable Register, PORT),
12-21
PORT_FER_CLR (Port x Function Enable Clear Reg-
ister, PORT), 12-26
PORT_FER_SET (Port x Function Enable Set Regis-
ter, PORT), 12-23
PORT_INEN (Port x GPIO Input Enable Register,
PORT), 12-48
PORT_INEN_CLR (Port x GPIO Input Enable Clear
Register, PORT), 12-54
PORT_INEN_SET (Port x GPIO Input Enable Set
Register, PORT), 12-51
PORT_LOCK (Port x GPIO Lock Register, PORT),
12-71
PORT_MUX (Port x Multiplexer Control Register,
PORT), 12-57
PORT_POL (Port x GPIO Polarity Invert Register,
PORT), 12-62
PORT_POL_CLR (Port x GPIO Polarity Invert Clear
Register, PORT), 12-68
PORT_POL_SET (Port x GPIO Polarity Invert Set
Register, PORT), 12-65
Power and Device Control Register, USB (US-
B_POWER), 20-84
power dissipation, 6-5
power modes, 6-2
PPS Control Register, EMAC (EMAC_T-
M_PPSCTL), 21-194
PPS Width Register, EMAC (EMAC_T-
M_PPSWIDTH), 21-199
Previous Initial Descriptor Pointer, DMA (DMA_D-
SCPTR_PRV), 11-58
Primary (Filters) Head for Group 0 Register, SINC
(SINC_PHEAD0), 27-44
Primary (Filters) Head for Group 1 Register, SINC
(SINC_PHEAD1), 27-45
Primary (Filters) Pointer for Group 0 Register, SINC
(SINC_PPTR0), 27-42

Primary (Filters) Pointer for Group 1 Register, SINC
(SINC_PPTR1), 27-43
Primary (Filters) Tail for Group 0 Register, SINC
(SINC_PTAIL0), 27-45
Primary (Filters) Tail for Group 1 Register, SINC
(SINC_PTAIL1), 27-46
PWM0_SYNC interrupt, 7-3, 8-3, 16-5
PWM0_TRIP interrupt, 7-3, 16-5
PWM0_TRIP_TRIG0 interrupt, 8-6, 16-5
PWM0_TRIP_TRIG1 interrupt, 8-6, 16-5
PWM0_TRIP_TRIG2 interrupt, 8-6, 16-5
PWM1_SYNC interrupt, 7-3, 8-3, 16-5
PWM1_TRIP interrupt, 7-3, 16-5
PWM1_TRIP_TRIG0 interrupt, 8-6, 16-5
PWM1_TRIP_TRIG1 interrupt, 8-6, 16-5
PWM1_TRIP_TRIG2 interrupt, 8-6, 16-5
PWM2_SYNC interrupt, 7-3, 8-3, 16-5
PWM2_TRIP interrupt, 7-3, 16-5
PWM2_TRIP_TRIG0 interrupt, 8-6, 16-5
PWM2_TRIP_TRIG1 interrupt, 8-6, 16-5
PWM2_TRIP_TRIG2 interrupt, 8-6, 16-5
PWM_ACTL (Channel A Control Register, PWM),
16-79
PWM_AH0 (Channel A-High Duty-0 Register,
PWM), 16-81
PWM_AH0_HP (Channel A-High Heightened-Preci-
sion Duty-0 Register, PWM), 16-82
PWM_AH1 (Channel A-High Duty-1 Register,
PWM), 16-82
PWM_AH1_HP (Channel A-High Heightened-Preci-
sion Duty-1 Register, PWM), 16-83
PWM_AH_DUTY0 (Channel A-High Full Duty0
Register, PWM), 16-112
PWM_AH_DUTY1 (Channel A-High Full Duty1
Register, PWM), 16-113
PWM_AL0 (Channel A-Low Duty-0 Register, PWM),
16-84
PWM_AL0_HP (Channel A-Low Heightened-Preci-
sion Duty-0 Register, PWM), 16-85
PWM_AL1 (Channel A-Low Duty-1 Register, PWM),
16-85
PWM_AL1_HP (Channel A-Low Heightened-Preci-
sion Duty-1 Register, PWM), 16-86
PWM_AL_DUTY0 (Channel A-Low Full Duty0 Reg-
ister, PWM), 16-114
I–20 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
PWM_AL_DUTY1 (Channel A-Low Full Duty1 Reg-
ister, PWM), 16-115
PWM_BCTL (Channel B Control Register, PWM),
16-87
PWM_BH0 (Channel B-High Duty-0 Register, PWM),
16-89
PWM_BH0_HP (Channel B-High Heightened-Preci-
sion Duty-0 Register, PWM), 16-90
PWM_BH1 (Channel B-High Duty-1 Register, PWM),
16-90
PWM_BH1_HP (Channel B-High Heightened-Preci-
sion Duty-1 Register, PWM), 16-91
PWM_BH_DUTY0 (Channel B-High Full Duty0 Reg-
ister, PWM), 16-116
PWM_BH_DUTY1 (Channel B-High Full Duty1 Reg-
ister, PWM), 16-117
PWM_BL0 (Channel B-Low Duty-0 Register, PWM),
16-92
PWM_BL0_HP (Channel B-Low Heightened-Preci-
sion Duty-0 Register, PWM), 16-94
PWM_BL1 (Channel B-Low Duty-1 Register, PWM),
16-93
PWM_BL1_HP (Channel B-Low Heightened-Preci-
sion Duty-1 Register, PWM), 16-94
PWM_BL_DUTY0 (Channel B-Low Full Duty0 Reg-
ister, PWM), 16-118
PWM_BL_DUTY1 (Channel B-Low Full Duty1 Reg-
ister, PWM), 16-119
PWM_CCTL (Channel C Control Register, PWM),
16-95
PWM_CH0 (Channel C-High Pulse Duty Register 0,
PWM), 16-98
PWM_CH0_HP (Channel C-High Pulse Height-
ened-Precision Duty Register 0, PWM), 16-99
PWM_CH1 (Channel C-High Pulse Duty Register 1,
PWM), 16-98
PWM_CH1_HP (Channel C-High Pulse Height-
ened-Precision Duty Register 1, PWM), 16-100
PWM_CHANCFG (Channel Config Register, PWM),
16-53
PWM_CH_DUTY0 (Channel C-High Full Duty0 Reg-
ister, PWM), 16-120
PWM_CH_DUTY1 (Channel C-High Full Duty1 Reg-
ister, PWM), 16-121
PWM_CHOPCFG (Chop Configuration Register,

PWM), 16-69
PWM_CL0 (Channel C-Low Pulse Duty Register 0,
PWM), 16-101
PWM_CL0_HP (Channel C-Low Pulse Duty Register
1, PWM), 16-102
PWM_CL1 (Channel C-Low Duty-1 Register, PWM),
16-101
PWM_CL1_HP (Channel C-Low Heightened-Preci-
sion Duty-1 Register, PWM), 16-103
PWM_CL_DUTY0 (Channel C-Low Full Duty0 Reg-
ister, PWM), 16-122
PWM_CL_DUTY1 (Channel C-Low Full Duty1 Reg-
ister, PWM), 16-123
PWM_CTL (Control Register, PWM), 16-50
PWM_DCTL (Channel D Control Register, PWM),
16-103
PWM_DH0 (Channel D-High Duty-0 Register,
PWM), 16-106
PWM_DH0_HP (Channel D-High Pulse Height-
ened-Precision Duty Register 0, PWM), 16-107
PWM_DH1 (Channel D-High Pulse Duty Register 1,
PWM), 16-106
PWM_DH1_HP (Channel D High Pulse Height-
ened-Precision Duty Register 1, PWM), 16-108
PWM_DH_DUTY0 (Channel D-High Full Duty0
Register, PWM), 16-124
PWM_DH_DUTY1 (Channel D-High Full Duty1
Register, PWM), 16-125
PWM_DL0 (Channel D-Low Pulse Duty Register 0,
PWM), 16-109
PWM_DL0_HP (Channel D-Low Heightened-Preci-
sion Duty-0 Register, PWM), 16-110
PWM_DL1 (Channel D-Low Pulse Duty Register 1,
PWM), 16-109
PWM_DL1_HP (Channel D-Low Heightened-Preci-
sion Duty-1 Register, PWM), 16-111
PWM_DL_DUTY0 (Channel D-Low Full Duty0 Reg-
ister, PWM), 16-126
PWM_DL_DUTY1 (Channel D-Low Full Duty1 Reg-
ister, PWM), 16-127
PWM_DLYA (Channel A Delay Register, PWM),
16-76
PWM_DLYB (Channel B Delay Register, PWM),
16-77
PWM_DLYC (Channel C Delay Register, PWM),
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–21

INDEX
16-77
PWM_DLYD (Channel D Delay Register, PWM),
16-78
PWM_DT (Dead Time Register, PWM), 16-70
PWM_ILAT (Interrupt Latch Register, PWM), 16-68
PWM_IMSK (Interrupt Mask Register, PWM), 16-66
PWM_STAT (Status Register, PWM), 16-62
PWM_SYNC_WID (Sync Pulse Width Register,
PWM), 16-71
PWM_TM0 (Timer 0 Period Register, PWM), 16-72
PWM_TM1 (Timer 1 Period Register, PWM), 16-73
PWM_TM2 (Timer 2 Period Register, PWM), 16-74
PWM_TM3 (Timer 3 Period Register, PWM), 16-74
PWM_TM4 (Timer 4 Period Register, PWM), 16-75
PWM_TRIPCFG (Trip Config Register, PWM), 16-59

R
RAM Information Register, USB (USB_RAMINFO),
20-100
Rate Control for Group 0 Register, SINC (SIN-
C_RATE0), 27-31
Rate Control for Group 1 Register, SINC (SIN-
C_RATE1), 27-33
RCU0_SYSRST0 interrupt, 8-4, 28-2
RCU0_SYSRST1 interrupt, 8-4, 28-2
RCU_BCODE (Boot Code Register, RCU), 28-9
RCU_CTL (Control Register, RCU), 28-5
RCU_MSG (Message Register, RCU), 28-11
RCU_MSG_CLR (Message Clear Bits Register,
RCU), 28-15
RCU_MSG_SET (Message Set Bits Register, RCU),
28-13
RCU_STAT (Status Register, RCU), 28-7
RCU_SVECT0 (Software Vector Register 0, RCU),
28-10
RCU_SVECT_LCK (SVECT Lock Register, RCU),
28-8
Receive Buffer Register, UART (UART_RBR), 17-44
Receive Control Register, SPI (SPI_RXCTL), 22-52
Receive Counter Register, UART (UART_RXCNT),
17-48
Receive FIFO Data Register, SPI (SPI_RFIFO), 22-76
Receive Interrupt Enable Register, USB (USB_INTR-
RXE), 20-89
Receive Interrupt Register, USB (USB_INTRRX),

20-87
Receive Message Lost 1 Register, CAN
(CAN_RML1), 19-38
Receive Message Lost 2 Register, CAN
(CAN_RML2), 19-50
Receive Message Pending 1 Register, CAN
(CAN_RMP1), 19-37
Receive Message Pending 2 Register, CAN
(CAN_RMP2), 19-50
Receive Shift Register, UART (UART_RSR), 17-47
Received Word Count Register, SPI (SPI_RWC),
22-62
Received Word Count Reload Register, SPI (SPI_RW-
CR), 22-62
registers

diagram conventions, -lxxiii
Remote Frame Handling 1 Register, CAN
(CAN_RFH1), 19-42
Remote Frame Handling 2 Register, CAN
(CAN_RFH2), 19-55
reset, 6-4
reset control unit (RCU), 4-3
Results RAM Register, HAE (HAE_RE-
SULTS_RAM), 26-28
Run Clear Register, TIMER (TIMER_RUN_CLR),
13-29
Run Register, HAE (HAE_RUN), 26-19
Run Register, TIMER (TIMER_RUN), 13-27
Run Set Register, TIMER (TIMER_RUN_SET),
13-28
Rx 1024- to Max-Byte Frames (Good/Bad) Register,
EMAC (EMAC_RX1024TOMAX_GB), 21-152
Rx 128- to 255-Byte Frames (Good/Bad) Register,
EMAC (EMAC_RX128TO255_GB), 21-150
Rx 256- to 511-Byte Frames (Good/Bad) Register,
EMAC (EMAC_RX256TO511_GB), 21-151
Rx 512- to 1023-Byte Frames (Good/Bad) Register,
EMAC (EMAC_RX512TO1023_GB), 21-152
Rx 64-Byte Frames (Good/Bad) Register, EMAC
(EMAC_RX64_GB), 21-149
Rx 65- to 127-Byte Frames (Good/Bad) Register,
EMAC (EMAC_RX65TO127_GB), 21-150
Rx alignment Error Register, EMAC (EMAC_RXAL-
IGN_ERR), 21-146
Rx Broadcast Frames (Good) Register, EMAC
I–22 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
(EMAC_RXBCASTFRM_G), 21-144
Rx CRC Error Register, EMAC (EMAC_RX-
CRC_ERR), 21-146
Rx Data Double-Byte Register, TWI (TWI_RXDA-
TA16), 18-39
Rx Data Single-Byte Register, TWI (TWI_RXDA-
TA8), 18-38
RX Double Packet Buffer Disable for Endpoints 1 to 3,
USB (USB_RXDPKTBUFDIS), 20-145
Rx FIFO Overflow Register, EMAC (EMAC_RXFI-
FO_OVF), 21-155
Rx Frame Count (Good/Bad) Register, EMAC
(EMAC_RXFRMCNT_GB), 21-143
Rx ICMP Error Frames Register, EMAC (EMAC_RX-
ICMP_ERR_FRM), 21-173
Rx ICMP Error Octets Register, EMAC (EMAC_RX-
ICMP_ERR_OCT), 21-182
Rx ICMP Good Frames Register, EMAC
(EMAC_RXICMP_GD_FRM), 21-173
Rx ICMP Good Octets Register, EMAC (EMAC_RX-
ICMP_GD_OCT), 21-181
Rx IPv4 Datagrams (Good) Register, EMAC
(EMAC_RXIPV4_GD_FRM), 21-166
Rx IPv4 Datagrams Fragmented Frames Register,
EMAC (EMAC_RXIPV4_FRAG_FRM), 21-167
Rx IPv4 Datagrams Fragmented Octets Register,
EMAC (EMAC_RXIPV4_FRAG_OCT), 21-176
Rx IPv4 Datagrams Good Octets Register, EMAC
(EMAC_RXIPV4_GD_OCT), 21-174
Rx IPv4 Datagrams Header Errors Register, EMAC
(EMAC_RXIPV4_HDR_ERR_FRM), 21-166
Rx IPv4 Datagrams Header Errors Register, EMAC
(EMAC_RXIPV4_HDR_ERR_OCT), 21-175
Rx IPv4 Datagrams No Payload Frame Register,
EMAC (EMAC_RXIPV4_NOPAY_FRM), 21-167
Rx IPv4 Datagrams No Payload Octets Register,
EMAC (EMAC_RXIPV4_NOPAY_OCT), 21-175
Rx IPv4 UDP Disabled Frames Register, EMAC
(EMAC_RXIPV4_UDSBL_FRM), 21-168
Rx IPv4 UDP Disabled Octets Register, EMAC
(EMAC_RXIPV4_UDSBL_OCT), 21-177
Rx IPv6 Datagrams Good Frames Register, EMAC
(EMAC_RXIPV6_GD_FRM), 21-169
Rx IPv6 Datagrams Header Error Frames Register,
EMAC (EMAC_RXIPV6_HDR_ERR_FRM), 21-169

Rx IPv6 Datagrams No Payload Frames Register,
EMAC (EMAC_RXIPV6_NOPAY_FRM), 21-170
Rx IPv6 Good Octets Register, EMAC (EMAC_RX-
IPV6_GD_OCT), 21-177
Rx IPv6 Header Errors Register, EMAC (EMAC_RX-
IPV6_HDR_ERR_OCT), 21-178
Rx IPv6 No Payload Octets Register, EMAC
(EMAC_RXIPV6_NOPAY_OCT), 21-178
Rx Jab Error Register, EMAC (EMAC_RX-
JAB_ERR), 21-147
Rx Length Error Register, EMAC (EMAC_RX-
LEN_ERR), 21-153
Rx Multicast Frames (Good) Register, EMAC
(EMAC_RXMCASTFRM_G), 21-145
Rx Octet Count (Good) Register, EMAC
(EMAC_RXOCTCNT_G), 21-144
Rx Octet Count (Good/Bad) Register, EMAC
(EMAC_RXOCTCNT_GB), 21-143
Rx Out Of Range Type Register, EMAC (EMAC_RX-
OORTYPE), 21-154
Rx Oversize (Good) Register, EMAC (EMAC_RXO-
SIZE_G), 21-149
Rx Pause Frames Register, EMAC (EMAC_RX-
PAUSEFRM), 21-155
Rx Runt Error Register, EMAC (EMAC_RX-
RUNT_ERR), 21-147
Rx TCP Error Frames Register, EMAC (EMAC_RX-
TCP_ERR_FRM), 21-172
Rx TCP Error Octets Register, EMAC (EMAC_RX-
TCP_ERR_OCT), 21-181
Rx TCP Good Frames Register, EMAC (EMAC_RX-
TCP_GD_FRM), 21-172
Rx TCP Good Octets Register, EMAC (EMAC_RX-
TCP_GD_OCT), 21-180
Rx UDP Error Frames Register, EMAC (EMAC_RX-
UDP_ERR_FRM), 21-171
Rx UDP Error Octets Register, EMAC (EMAC_RX-
UDP_ERR_OCT), 21-180
Rx UDP Good Frames Register, EMAC (EMAC_RX-
UDP_GD_FRM), 21-170
Rx UDP Good Octets Register, EMAC (EMAC_RX-
UDP_GD_OCT), 21-179
Rx Undersize (Good) Register, EMAC (EMAC_RXU-
SIZE_G), 21-148
Rx Unicast Frames (Good) Register, EMAC
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–23

INDEX
(EMAC_RXUCASTFRM_G), 21-153
Rx VLAN Frames (Good/Bad) Register, EMAC
(EMAC_RXVLANFRM_GB), 21-156
Rx Watch Dog Error Register, EMAC (EMAC_RXW-
DOG_ERR), 21-156

S
SCB architectural model, 3-4
SCB hierarchical model, 3-5
SCB interfaces, 3-7
SCB latency, 3-6
SCB_MST00_IB_RQOS (Master 0 Read Quality of
Service, SCB), 3-14
SCB_MST00_IB_SYNC (Master 0 IB Sync Mode,
SCB), 3-13
SCB_MST00_IB_WQOS (Master 0 Write Quality of
Service, SCB), 3-14
SCB_MST01_IB_RQOS (Master 1 Read Quality of
Service, SCB), 3-16
SCB_MST01_IB_SYNC (Master 1 IB Sync Mode,
SCB), 3-15
SCB_MST01_IB_WQOS (Master 1 Write Quality of
Service, SCB), 3-16
SCB_MST02_RQOS (Master 2 Read Quality of Ser-
vice, SCB), 3-17
SCB_MST02_WQOS (Master 2 Write Quality of Ser-
vice, SCB), 3-18
SCB_MST03_RQOS (Master 3 Read Quality of Ser-
vice, SCB), 3-18
SCB_MST03_WQOS (Master 3 Write Quality of Ser-
vice, SCB), 3-19
SCB_MST04_RQOS (Master 4 Read Quality of Ser-
vice, SCB), 3-20
SCB_MST04_WQOS (Master 4 Write Quality of Ser-
vice, SCB), 3-20
SCB_MST05_RQOS (Master 5 Read Quality of Ser-
vice, SCB), 3-21
SCB_MST05_WQOS (Master 5 Write Quality of Ser-
vice, SCB), 3-22
SCB_MST06_RQOS (Master 6 Read Quality of Ser-
vice, SCB), 3-22
SCB_MST06_WQOS (Master 6 Write Quality of Ser-
vice, SCB), 3-23
SCB_MST07_RQOS (Master 7 Read Quality of Ser-
vice, SCB), 3-24

SCB_MST07_WQOS (Master 7 Write Quality of Ser-
vice, SCB), 3-24
SCB_MST08_RQOS (Master 8 Read Quality of Ser-
vice, SCB), 3-25
SCB_MST08_WQOS (Master 8 Write Quality of Ser-
vice, SCB), 3-26
SCB_MST09_RQOS (Master 9 Read Quality of Ser-
vice, SCB), 3-26
SCB_MST09_WQOS (Master 9 Write Quality of Ser-
vice, SCB), 3-27
SCB_MST10_RQOS (Master 10 Read Quality of Ser-
vice, SCB), 3-28
SCB_MST10_WQOS (Master 10 Write Quality of
Service, SCB), 3-28
SCB_MST11_RQOS (Master 11 Read Quality of Ser-
vice, SCB), 3-29
SCB_MST11_WQOS (Master 11 Write Quality of
Service, SCB), 3-30
SCB_MST12_RQOS (Master 12 Read Quality of Ser-
vice, SCB), 3-30
SCB_MST12_WQOS (Master 12 Write Quality of
Service, SCB), 3-31
SCB_MST13_RQOS (Master 13 Read Quality of Ser-
vice, SCB), 3-32
SCB_MST13_WQOS (Master 13 Write Quality of
Service, SCB), 3-32
SCB_MST14_RQOS (Master 14 Read Quality of Ser-
vice, SCB), 3-33
SCB_MST14_WQOS (Master 14 Write Quality of
Service, SCB), 3-34
SCB_MST15_RQOS (Master 15 Read Quality of Ser-
vice, SCB), 3-34
SCB_MST15_WQOS (Master 15 Write Quality of
Service, SCB), 3-35
SCB_MST16_RQOS (Master 16 Read Quality of Ser-
vice, SCB), 3-36
SCB_MST16_WQOS (Master 16 Write Quality of
Service, SCB), 3-36
SCB_MST17_ WQOS (Master 17 Write Quality of
Service, SCB), 3-38
SCB_MST17_RQOS (Master 17 Read Quality of Ser-
vice, SCB), 3-37
SCB_MST18_RQOS (Master 18 Read Quality of Ser-
vice, SCB), 3-38
SCB_MST18_WQOS (Master 18 Write Quality of
I–24 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
Service, SCB), 3-39
SCB_MST19_RQOS (Master 19 Read Quality of Ser-
vice, SCB), 3-40
SCB_MST19_WQOS (Master 19 Write Quality of
Service, SCB), 3-40
SCB_MST20_RQOS (Master20 Read Quality of Ser-
vice, SCB), 3-41
SCB_MST20_WQOS (Master 20 Write Quality of
Service, SCB), 3-42
SCB_MST21_RQOS (Master 21 Read Quality of Ser-
vice, SCB), 3-42
SCB_MST21_WQOS (Master 21 Write Quality of
Service, SCB), 3-43
SCB_MST22_RQOS (Master 22 Read Quality of Ser-
vice, SCB), 3-44
SCB_MST22_WQOS (Master 22 Write Quality of
Service, SCB), 3-44
SCB_MST23_RQOS (Master 23 Read Quality of Ser-
vice, SCB), 3-45
SCB_MST23_WQOS (Master 23 Write Quality of
Service, SCB), 3-46
SCB_MST24_RQOS (Master 24 Read Quality of Ser-
vice, SCB), 3-46
SCB_MST24_WQOS (Master 24 Write Quality of
Service, SCB), 3-47
SCB_MST25_RQOS (Master 25 Read Quality of Ser-
vice, SCB), 3-48
SCB_MST25_WQOS (Master 25 Write Quality of
Service, SCB), 3-48
SCB_MST26_RQOS (Master 26 Read Quality of Ser-
vice, SCB), 3-49
SCB_MST26_WQOS (Master 26 Write Quality of
Service, SCB), 3-50
SCL Clock Divider Register, TWI (TWI_CLKDIV),
18-20
SCLK clock domain, 3-7
Scratch Register, UART (UART_SCR), 17-36
SEC0_ERR interrupt, 7-3
SEC0_FAULT interrupt, 7-7, 8-4
SEC_FCOPP (Fault COP Period Register, SEC), 7-28
SEC_FCOPP_CUR (Fault COP Period Current Regis-
ter, SEC), 7-29
SEC_FCTL (Fault Control Register, SEC), 7-20
SEC_FDLY (Fault Delay Register, SEC), 7-26
SEC_FDLY_CUR (Fault Delay Current Register,

SEC), 7-26
SEC_FEND (Fault End Register, SEC), 7-25
SEC_FSID (Fault Source ID Register, SEC), 7-24
SEC_FSRDLY (Fault System Reset Delay Register,
SEC), 7-27
SEC_FSRDLY_CUR (Fault System Reset Delay Cur-
rent Register, SEC), 7-28
SEC_FSTAT (Fault Status Register, SEC), 7-22
SEC_GCTL (Global Control Register, SEC), 7-17
SEC_GSTAT (Global Status Register, SEC), 7-18
SEC_RAISE (Global Raise Register, SEC), 7-19
SEC_SCTLn (Source Control Register n, SEC), 7-30
SEC_SSTATn (Source Status Register n, SEC), 7-31
serial peripheral interface (SPI), 3-7
serial port (SPORT), 3-7
SI (Slave Interface), 3-4
SINC0_DATA0 interrupt, 8-3, 27-4
SINC0_DATA1 interrupt, 8-3, 27-4
SINC0_P0_OVLD interrupt, 8-3, 27-3
SINC0_P1_OVLD interrupt, 8-3, 27-3
SINC0_P2_OVLD interrupt, 8-3, 27-3
SINC0_P3_OVLD interrupt, 8-3, 27-4
SINC0_STAT interrupt, 7-5, 27-3
SINC0_SYNC0 interrupt, 8-6, 27-4
SINC0_SYNC1 interrupt, 8-6, 27-4
SINC_BIAS0 (Bias for Group 0 Register, SINC),
27-41
SINC_BIAS1 (Bias for Group 1 Register, SINC),
27-42
SINC_CLK (Clock Control Register, SINC), 27-29
SINC_CTL (Control Register, SINC), 27-19
SINC_HIS_STAT (History Status Register, SINC),
27-47
SINC_LEVEL0 (Level Control for Group 0 Register,
SINC), 27-34
SINC_LEVEL1 (Level Control for Group 1 Register,
SINC), 27-36
SINC_LIMIT0 ((Amplitude) Limits for Secondary Fil-
ter 0 Register, SINC), 27-38
SINC_LIMIT1 ((Amplitude) Limits for Secondary Fil-
ter 1 Register, SINC), 27-39
SINC_LIMIT2 ((Amplitude) Limits for Secondary Fil-
ter 2 Register, SINC), 27-40
SINC_LIMIT3 ((Amplitude) Limits for Secondary Fil-
ter 3 Register, SINC), 27-40
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–25

INDEX
SINC_P0SEC_HISTn (Pair 0 Secondary (Filter) His-
tory n Register, SINC), 27-49
SINC_P1SEC_HISTn (Pair 1 Secondary (Filter) His-
tory n Register, SINC), 27-49
SINC_P2SEC_HISTn (Pair 2 Secondary (Filter) His-
tory n Register, SINC), 27-50
SINC_P3SEC_HISTn (Pair 3 Secondary (Filter) His-
tory n Register, SINC), 27-51
SINC_PHEAD0 (Primary (Filters) Head for Group 0
Register, SINC), 27-44
SINC_PHEAD1 (Primary (Filters) Head for Group 1
Register, SINC), 27-45
SINC_PPTR0 (Primary (Filters) Pointer for Group 0
Register, SINC), 27-42
SINC_PPTR1 (Primary (Filters) Pointer for Group 1
Register, SINC), 27-43
SINC_PTAIL0 (Primary (Filters) Tail for Group 0
Register, SINC), 27-45
SINC_PTAIL1 (Primary (Filters) Tail for Group 1
Register, SINC), 27-46
SINC_RATE0 (Rate Control for Group 0 Register,
SINC), 27-31
SINC_RATE1 (Rate Control for Group 1 Register,
SINC), 27-33
SINC_STAT (Status Register, SINC), 27-22
Slave Interface (SI), 3-4
Slave Mode Address Register, TWI (TWI_SLVAD-
DR), 18-24
Slave Mode Control Register, TWI (TWI_SLVCTL),
18-22
Slave Mode Status Register, TWI (TWI_SLVSTAT),
18-23
Slave Select Register, SPI (SPI_SLVSEL), 22-59
Slave Select Register, TRU (TRU_SSRn), 8-10
SMC_B0CTL (Bank 0 Control Register, SMC), 9-20
SMC_B0ETIM (Bank 0 Extended Timing Register,
SMC), 9-24
SMC_B0TIM (Bank 0 Timing Register, SMC), 9-22
SMC_B1CTL (Bank 1 Control Register, SMC), 9-25
SMC_B1ETIM (Bank 1 Extended Timing Register,
SMC), 9-30
SMC_B1TIM (Bank 1 Timing Register, SMC), 9-28
SMC_B2CTL (Bank 2 Control Register, SMC), 9-31
SMC_B2ETIM (Bank 2 Extended Timing Register,
SMC), 9-36

SMC_B2TIM (Bank 2 Timing Register, SMC), 9-34
SMC_B3CTL (Bank 3 Control Register, SMC), 9-37
SMC_B3ETIM (Bank 3 Extended Timing Register,
SMC), 9-42
SMC_B3TIM (Bank 3 Timing Register, SMC), 9-40
SMI Address Register, EMAC (EMAC_SMI_ADDR),
21-103
SMI Data Register, EMAC (EMAC_SMI_DATA),
21-105
Software Reset Register, USB (USB_SOFT_RST),
20-103
Software Vector Register 0, RCU (RCU_SVECT0),
28-10
Source Control Register n, SEC (SEC_SCTLn), 7-30
Source Status Register n, SEC (SEC_SSTATn), 7-31
SPI Memory Top Address, SPI (SPI_MMTOP), 22-81
SPI0_ERR interrupt, 7-4, 22-4
SPI0_RXDMA interrupt, 7-5, 8-3, 8-5, 22-4
SPI0_STAT interrupt, 7-5, 22-4
SPI0_TXDMA interrupt, 7-5, 8-3, 8-5, 22-4
SPI1_ERR interrupt, 7-4, 22-4
SPI1_RXDMA interrupt, 7-5, 8-3, 8-5, 22-4
SPI1_STAT interrupt, 7-5, 22-4
SPI1_TXDMA interrupt, 7-5, 8-3, 8-5, 22-4
SPI2_ERR interrupt, 7-4, 22-4
SPI2_RX interrupt, 7-5, 22-4
SPI2_STAT interrupt, 7-6, 22-4
SPI2_TX interrupt, 7-5, 22-4
SPI_CLK (Clock Rate Register, SPI), 22-57
SPI_CTL (Control Register, SPI), 22-47
SPI_DLY (Delay Register, SPI), 22-57
SPI_ILAT (Masked Interrupt Condition Register, SPI),
22-73
SPI_ILAT_CLR (Masked Interrupt Clear Register,
SPI), 22-75
SPI_IMSK (Interrupt Mask Register, SPI), 22-64
SPI_IMSK_CLR (Interrupt Mask Clea r Register,
SPI), 22-66
SPI_IMSK_SET (Interrupt Mask Set Register, SPI),
22-67
SPI_MMRDH (Memory Mapped Read Header, SPI),
22-78
SPI_MMTOP (SPI Memory Top Address, SPI), 22-81
SPI_RFIFO (Receive FIFO Data Register, SPI), 22-76
SPI_RWC (Received Word Count Register, SPI),
I–26 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
22-62
SPI_RWCR (Received Word Count Reload Register,
SPI), 22-62
SPI_RXCTL (Receive Control Register, SPI), 22-52
SPI_SLVSEL (Slave Select Register, SPI), 22-59
SPI_STAT (Status Register, SPI), 22-69
SPI_TFIFO (Transmit FIFO Data Register, SPI), 22-77
SPI_TWC (Transmitted Word Count Register, SPI),
22-63
SPI_TWCR (Transmitted Word Count Reload Regis-
ter, SPI), 22-64
SPI_TXCTL (Transmit Control Register, SPI), 22-55
SPORT0_A_DMA interrupt, 7-5, 8-3, 8-5, 23-8, 23-9
SPORT0_A_STAT interrupt, 7-5, 23-8
SPORT0_B_DMA interrupt, 7-5, 8-3, 8-5, 23-8, 23-9
SPORT0_B_STAT interrupt, 7-5, 23-8
SPORT1_A_DMA interrupt, 7-5, 8-3, 8-5, 23-8, 23-9
SPORT1_A_STAT interrupt, 7-5, 23-8
SPORT1_B_DMA interrupt, 7-5, 8-3, 8-5, 23-9
SPORT1_B_STAT interrupt, 7-5, 23-8
SPORT_CS0_A (Half SPORT 'A' Multi-channel 0-31
Select Register, SPORT), 23-57
SPORT_CS0_B (Half SPORT 'B' Multi-channel 0-31
Select Register, SPORT), 23-77
SPORT_CS1_A (Half SPORT 'A' Multi-channel
32-63 Select Register, SPORT), 23-58
SPORT_CS1_B (Half SPORT 'B' Multi-channel 32-63
Select Register, SPORT), 23-78
SPORT_CS2_A (Half SPORT 'A' Multi-channel
64-95 Select Register, SPORT), 23-59
SPORT_CS2_B (Half SPORT 'B' Multichannel 64-95
Select Register, SPORT), 23-79
SPORT_CS3_A (Half SPORT 'A' Multi-channel
96-127 Select Register, SPORT), 23-59
SPORT_CS3_B (Half SPORT 'B' Multichannel
96-127 Select Register, SPORT), 23-79
SPORT_CTL2_A (Half SPORT 'A' Control 2 Regis-
ter, SPORT), 23-62
SPORT_CTL2_B (Half SPORT 'B' Control 2 Register,
SPORT), 23-82
SPORT_CTL_A (Half SPORT 'A' Control Register,
SPORT), 23-47
SPORT_CTL_B (Half SPORT 'B' Control Register,
SPORT), 23-67
SPORT_DIV_A (Half SPORT 'A' Divisor Register,

SPORT), 23-54
SPORT_DIV_B (Half SPORT 'B' Divisor Register,
SPORT), 23-74
SPORT_ERR_A (Half SPORT 'A' Error Register,
SPORT), 23-60
SPORT_ERR_B (Half SPORT 'B' Error Register,
SPORT), 23-80
SPORT_MCTL_A (Half SPORT 'A' Multi-channel
Control Register, SPORT), 23-56
SPORT_MCTL_B (Half SPORT 'B' Multi-channel
Control Register, SPORT), 23-76
SPORT_MSTAT_A (Half SPORT 'A' Multi-channel
Status Register, SPORT), 23-62
SPORT_MSTAT_B (Half SPORT 'B' Multi-channel
Status Register, SPORT), 23-82
SPORT_RXPRI_A (Half SPORT 'A' Rx Buffer (Pri-
mary) Register, SPORT), 23-64
SPORT_RXPRI_B (Half SPORT 'B' Rx Buffer (Pri-
mary) Register, SPORT), 23-84
SPORT_RXSEC_A (Half SPORT 'A' Rx Buffer (Sec-
ondary) Register, SPORT), 23-66
SPORT_RXSEC_B (Half SPORT 'B' Rx Buffer (Sec-
ondary) Register, SPORT), 23-86
SPORT_TXPRI_A (Half SPORT 'A' Tx Buffer (Pri-
mary) Register, SPORT), 23-64
SPORT_TXPRI_B (Half SPORT 'B' Tx Buffer (Pri-
mary) Register, SPORT), 23-84
SPORT_TXSEC_A (Half SPORT 'A' Tx Buffer (Sec-
ondary) Register, SPORT), 23-65
SPORT_TXSEC_B (Half SPORT 'B' Tx Buffer (Sec-
ondary) Register, SPORT), 23-85
SPU_CTL (Control Register, SPU), 5-8
SPU_STAT (Status Register, SPU), 5-8
SPU_WPn (Write Protect Register n, SPU), 5-9
SRAM Configuration Register, M4P (M4P_S-
RAM_CFG), 2-39
SRAM Parity Error Address (Core) Register, M4P
(M4P_SRAM_PEADDR_CORE), 2-41
SRAM Parity Error Address (DMA) Register, M4P
(M4P_SRAM_PEADDR_DMA), 2-42
Start Address of Current Buffer, DMA (DMA_AD-
DRSTART), 11-47
static memory controller (SMC), 3-7
Status Information Register, TRU (TRU_STAT), 8-12
Status Interrupt Latch Register, TIMER (TIM-
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–27

INDEX
ER_STAT_ILAT), 13-36
Status Interrupt Mask Register, TIMER (TIM-
ER_STAT_IMSK), 13-32
Status Register, CAN (CAN_STAT), 19-60
Status Register, CGU (CGU_STAT), 4-13
Status Register, CNT (CNT_STAT), 15-27
Status Register, CRC (CRC_STAT), 10-36
Status Register, DACC (DACC_STAT), 25-43
Status Register, DMA (DMA_STAT), 11-59
Status Register, DPM (DPM_STAT), 6-11
Status Register, HAE (HAE_STAT), 26-24
Status Register, PWM (PWM_STAT), 16-62
Status Register, RCU (RCU_STAT), 28-7
Status Register, SINC (SINC_STAT), 27-22
Status Register, SPI (SPI_STAT), 22-69
Status Register, SPU (SPU_STAT), 5-8
Status Register, UART (UART_STAT), 17-32
Stop Configuration Clear Register, TIMER (TIM-
ER_STOP_CFG_CLR), 13-31
Stop Configuration Register, TIMER (TIM-
ER_STOP_CFG), 13-29
Stop Configuration Set Register, TIMER (TIM-
ER_STOP_CFG_SET), 13-30
SVECT Lock Register, RCU (RCU_SVECT_LCK),
28-8
SWU

block diagram, 30-4
SWU0_EVT interrupt, 7-6, 8-4, 8-6, 30-2, 30-3
SWU1_EVT interrupt, 7-6, 8-4, 8-6, 30-2, 30-3
SWU2_EVT interrupt, 7-7, 8-4, 8-6, 30-2, 30-3
SWU3_EVT interrupt, 7-7, 8-4, 8-6, 30-2, 30-3
SWU4_EVT interrupt, 7-7, 8-4, 8-6, 30-2, 30-3
SWU_CNTn (Count Register n, SWU), 30-20
SWU_CTLn (Control Register n, SWU), 30-14
SWU_CURn (Current Register n, SWU), 30-22
SWU_GCTL (Global Control Register, SWU), 30-10
SWU_GSTAT (Global Status Register, SWU), 30-11
SWU_HISTn (Bandwidth History Register n, SWU),
30-21
SWU_IDn (ID Register n, SWU), 30-19
SWU_LAn (Lower Address Register n, SWU), 30-18
SWU_TARGn (Target Register n, SWU), 30-20
SWU_UAn (Upper Address Register n, SWU), 30-18
Sync Pulse Width Register, PWM (PWM_SYN-
C_WID), 16-71

synchronization, FIFO, 3-10
SYS0_C0_NMI_S0 interrupt, 8-5
SYS0_C0_NMI_S1 interrupt, 8-5
SYS0_ECT_EVT0 interrupt, 7-3
SYS0_ECT_EVT1 interrupt, 7-3
SYS0_HAE0_RXDMA_CH0_ERR interrupt, 7-4
SYS0_HAE0_RXDMA_CH1_ERR interrupt, 7-4
SYS0_HAE0_TXDMA_ERR interrupt, 7-4
SYS0_MDMA0_DST interrupt, 7-6, 8-4, 8-6
SYS0_MDMA0_DST_CRC0_OUT_ERR interrupt,
7-4
SYS0_MDMA0_SRC interrupt, 7-6, 8-4, 8-6
SYS0_MDMA0_SRC_CRC0_IN_ERR interrupt, 7-4
SYS0_MDMA1_DST interrupt, 7-6, 8-4, 8-6
SYS0_MDMA1_DST_ERR interrupt, 7-4
SYS0_MDMA1_SRC interrupt, 7-6, 8-4, 8-6
SYS0_MDMA1_SRC_ERR interrupt, 7-4
SYS0_OSCW_EVT interrupt, 7-3
SYS0_SOFT0 interrupt, 7-6, 8-4
SYS0_SOFT1 interrupt, 7-6, 8-4
SYS0_SOFT2 interrupt, 7-6, 8-4
SYS0_SOFT3 interrupt, 7-6, 8-4
SYS0_SOFT4 interrupt, 8-4
SYS0_SOFT5 interrupt, 8-4
SYS0_SPI0_RXDMA_ERR interrupt, 7-4
SYS0_SPI0_TXDMA_ERR interrupt, 7-4
SYS0_SPI1_RXDMA_ERR interrupt, 7-4
SYS0_SPI1_TXDMA_ERR interrupt, 7-4
SYS0_SPORT0_A_DMA_ERR interrupt, 7-3
SYS0_SPORT0_B_DMA_ERR interrupt, 7-4
SYS0_SPORT1_A_DMA_ERR interrupt, 7-4
SYS0_SPORT1_B_DMA_ERR interrupt, 7-4
SYS0_UART0_RXDMA_ERR interrupt, 7-4
SYS0_UART0_TXDMA_ERR interrupt, 7-4
SYS0_UART1_RXDMA_ERR interrupt, 7-4
SYS0_UART1_TXDMA_ERR interrupt, 7-4
SYS0_UART2_RXDMA_ERR interrupt, 7-4
SYS0_UART2_TXDMA_ERR interrupt, 7-4
SYS1_ECT_MST0 interrupt, 8-4
SYS1_ECT_MST1 interrupt, 8-4
SYS1_ECT_MST2 interrupt, 8-4
SYS1_ECT_MST3 interrupt, 8-4
SYS1_ECT_SLV0 interrupt, 8-6
SYS1_ECT_SLV1 interrupt, 8-6
SYS1_ECT_SLV2 interrupt, 8-6
I–28 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
SYS1_ECT_SLV3 interrupt, 8-6
SYSCLK clock domain, 3-7
system clock (SYSCLK), 4-3, 4-4
System Clock Buffer Disable Register, DPM (DP-
M_SCBF_DIS), 6-15
system clock input (SYS_CLKIN), 4-4
system clock output (SYS_CLKOUT), 4-4
system peripherals clock (SCLKn), 4-3, 4-4
SysTick Calibration Register, M4P (M4P_STCALIB),
2-44

T
Target Register n, SWU (SWU_TARGn), 30-20
Temporary Mailbox Disable Register, CAN
(CAN_MBTD), 19-73
Testmode Register, USB (USB_TESTMODE), 20-95
Time Stamp Addend Register, EMAC (EMAC_T-
M_ADDEND), 21-190
Time Stamp Auxiliary TM Seconds Register, EMAC
(EMAC_TM_AUXSTMP_SEC), 21-197
Time Stamp Auxiliary TS Nano Seconds Register,
EMAC (EMAC_TM_AUXSTMP_NSEC), 21-197
Time Stamp Control Register, EMAC (EMAC_T-
M_CTL), 21-183
Time Stamp High Second Register, EMAC
(EMAC_TM_HISEC), 21-192
Time Stamp Low Seconds Register, EMAC
(EMAC_TM_SEC), 21-187
Time Stamp Nanoseconds Register, EMAC
(EMAC_TM_NSEC), 21-188
Time Stamp Nanoseconds Update Register, EMAC
(EMAC_TM_NSECUPDT), 21-189
Time Stamp PPS Interval Register, EMAC (EMAC_T-
M_PPSINTVL), 21-198
Time Stamp Seconds Update Register, EMAC
(EMAC_TM_SECUPDT), 21-188
Time Stamp Status Register, EMAC (EMAC_TM_ST-
MP STAT), 21-193
Time Stamp Sub Second Increment Register, EMAC
(EMAC_TM_SUBSEC), 21-186
Time Stamp Target Time Nanoseconds Register,
EMAC (EMAC_TM_NTGTM), 21-191
Time Stamp Target Time Seconds Register, EMAC
(EMAC_TM_TGTM), 21-190
Timer 0 Current Count Register, ADCC (ADCC_T-

MR0), 24-86
Timer 0 Period Register, PWM (PWM_TM0), 16-72
Timer 0 Status Register, ADCC (ADCC_T0STAT),
24-85
Timer 1 Current Count Register, ADCC (ADCC_T-
MR1), 24-87
Timer 1 Period Register, PWM (PWM_TM1), 16-73
Timer 1 Status Register, ADCC (ADCC_T1STAT),
24-86
Timer 2 Period Register, PWM (PWM_TM2), 16-74
Timer 3 Period Register, PWM (PWM_TM3), 16-74
Timer 4 Period Register, PWM (PWM_TM4), 16-75
Timer n Configuration Register, TIMER (TIMER_T-
MRn_CFG), 13-41
Timer n Counter Register, TIMER (TIMER_TM-
Rn_CNT), 13-44
Timer n Delay Register, TIMER (TIMER_TMRn_D-
LY), 13-46
Timer n Period Register, TIMER (TIMER_TM-
Rn_PER), 13-45
Timer n Width Register, TIMER (TIMER_TM-
Rn_WID), 13-46
TIMER0_STAT interrupt, 7-4, 13-3
TIMER0_TMR0 interrupt, 7-4, 8-2, 8-4, 13-3, 13-4
TIMER0_TMR1 interrupt, 7-4, 8-2, 8-4, 13-3, 13-4
TIMER0_TMR2 interrupt, 7-4, 8-2, 8-5, 13-3, 13-4
TIMER0_TMR3 interrupt, 7-4, 8-2, 8-5, 13-3, 13-4
TIMER0_TMR4 interrupt, 7-4, 8-2, 8-5, 13-3, 13-4
TIMER0_TMR5 interrupt, 7-4, 8-2, 8-5, 13-3, 13-4
TIMER0_TMR6 interrupt, 7-4, 8-2, 8-5, 13-3, 13-4
TIMER0_TMR7 interrupt, 7-5, 8-2, 8-5, 13-3, 13-4
TIMER_BCAST_DLY (Broadcast Delay Register,
TIMER), 13-40
TIMER_BCAST_PER (Broadcast Period Register,
TIMER), 13-39
TIMER_BCAST_WID (Broadcast Width Register,
TIMER), 13-39
TIMER_DATA_ILAT (Data Interrupt Latch Register,
TIMER), 13-35
TIMER_DATA_IMSK (Data Interrupt Mask Register,
TIMER), 13-32
TIMER_ERR_TYPE (Error Type Status Register,
TIMER), 13-37
TIMER_RUN (Run Register, TIMER), 13-27
TIMER_RUN_CLR (Run Clear Register, TIMER),
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–29

INDEX
13-29
TIMER_RUN_SET (Run Set Register, TIMER),
13-28
TIMER_STAT_ILAT (Status Interrupt Latch Regis-
ter, TIMER), 13-36
TIMER_STAT_IMSK (Status Interrupt Mask Regis-
ter, TIMER), 13-32
TIMER_STOP_CFG (Stop Configuration Register,
TIMER), 13-29
TIMER_STOP_CFG_CLR (Stop Configuration Clear
Register, TIMER), 13-31
TIMER_STOP_CFG_SET (Stop Configuration Set
Register, TIMER), 13-30
TIMER_TMRn_CFG (Timer n Configuration Regis-
ter, TIMER), 13-41
TIMER_TMRn_CNT (Timer n Counter Register,
TIMER), 13-44
TIMER_TMRn_DLY (Timer n Delay Register, TIM-
ER), 13-46
TIMER_TMRn_PER (Timer n Period Register, TIM-
ER), 13-45
TIMER_TMRn_WID (Timer n Width Register, TIM-
ER), 13-46
TIMER_TRG_IE (Trigger Slave Enable Register,
TIMER), 13-34
TIMER_TRG_MSK (Trigger Master Mask Register,
TIMER), 13-33
Timestamp Control Register, CGU (CGU_TSCTL),
4-20
Timestamp Counter 32 l.s.b., CGU
(CGU_TSCOUNT0), 4-22
Timestamp Counter 32 m.s.b. Register, CGU
(CGU_TSCOUNT1), 4-23
Timestamp Counter Initial 32 l.s.b. Value Register,
CGU (CGU_TSVALUE0), 4-21
Timestamp Counter Initial m.s.b. Value Register, CGU
(CGU_TSVALUE1), 4-21
Timing Control 0 Register, DACC (DACC_TC0),
25-32
Timing Control 1 Register, DACC (DACC_TC1),
25-36
Timing Control A (ADC0) Register, ADCC (ADC-
C_TCA0), 24-73
Timing Control A (ADC1) Register, ADCC (ADC-
C_TCA1), 24-79

Timing Control B (ADC0) Register, ADCC (ADC-
C_TCB0), 24-74
Timing Control B (ADC1) Register, ADCC (ADC-
C_TCB1), 24-80
Timing Register, CAN (CAN_TIMING), 19-57
transfer size (TxferSize), 20-24, 20-26
Transmission Acknowledge 1 Register, CAN (CAN_-
TA1), 19-35
Transmission Acknowledge 2 Register, CAN (CAN_-
TA2), 19-48
Transmission Request Reset 1 Register, CAN
(CAN_TRR1), 19-34
Transmission Request Reset 2 Register, CAN
(CAN_TRR2), 19-47
Transmission Request Set 1 Register, CAN
(CAN_TRS1), 19-33
Transmission Request Set 2 Register, CAN
(CAN_TRS2), 19-46
Transmit Address/Insert Pulse Register, UART
(UART_TAIP), 17-46
Transmit Control Register, SPI (SPI_TXCTL), 22-55
Transmit Counter Register, UART (UART_TXCNT),
17-48
Transmit FIFO Data Register, SPI (SPI_TFIFO), 22-77
Transmit Hold Register, UART (UART_THR), 17-45
Transmit Interrupt Enable Register, USB (USB_IN-
TRTXE), 20-88
Transmit Interrupt Register, USB (USB_INTRTX),
20-86
Transmit Shift Register, UART (UART_TSR), 17-46
Transmitted Word Count Register, SPI (SPI_TWC),
22-63
Transmitted Word Count Reload Register, SPI
(SPI_TWCR), 22-64
Trigger Master Mask Register, TIMER (TIM-
ER_TRG_MSK), 13-33
Trigger Slave Enable Register, TIMER (TIM-
ER_TRG_IE), 13-34
Trip Config Register, PWM (PWM_TRIPCFG), 16-59
TRU0_INT0 interrupt, 7-6, 8-2
TRU0_INT1 interrupt, 7-6, 8-2
TRU0_INT2 interrupt, 7-6, 8-2
TRU0_INT3 interrupt, 7-6, 8-2
TRU0_IRQ0 interrupt, 8-5
TRU0_IRQ1 interrupt, 8-5
I–30 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
TRU0_IRQ2 interrupt, 8-5
TRU0_IRQ3 interrupt, 8-5
TRU_ERRADDR (Error Address Register, TRU),
8-11
TRU_GCTL (Global Control Register, TRU), 8-13
TRU_MTR (Master Trigger Register, TRU), 8-10
TRU_SSRn (Slave Select Register, TRU), 8-10
TRU_STAT (Status Information Register, TRU), 8-12
TWI0_DATA interrupt, 7-6, 18-3
TWI_CLKDIV (SCL Clock Divider Register, TWI),
18-20
TWI_CTL (Control Register, TWI), 18-20
TWI_FIFOCTL (FIFO Control Register, TWI), 18-34
TWI_FIFOSTAT (FIFO Status Register, TWI), 18-36
TWI_IMSK (Interrupt Mask Register, TWI), 18-33
TWI_ISTAT (Interrupt Status Register, TWI), 18-30
TWI_MSTRADDR (Master Mode Address Register,
TWI), 18-29
TWI_MSTRCTL (Master Mode Control Registers,
TWI), 18-24
TWI_MSTRSTAT (Master Mode Status Register,
TWI), 18-27
TWI_RXDATA16 (Rx Data Double-Byte Register,
TWI), 18-39
TWI_RXDATA8 (Rx Data Single-Byte Register,
TWI), 18-38
TWI_SLVADDR (Slave Mode Address Register,
TWI), 18-24
TWI_SLVCTL (Slave Mode Control Register, TWI),
18-22
TWI_SLVSTAT (Slave Mode Status Register, TWI),
18-23
TWI_TXDATA16 (Tx Data Double-Byte Register,
TWI), 18-38
TWI_TXDATA8 (Tx Data Single-Byte Register,
TWI), 18-37
Tx 1024- to Max-Byte Frames (Good/Bad) Register,
EMAC (EMAC_TX1024TOMAX_GB), 21-133
Tx 128- to 255-Byte Frames (Good/Bad) Register,
EMAC (EMAC_TX128TO255_GB), 21-131
Tx 256- to 511-Byte Frames (Good/Bad) Register,
EMAC (EMAC_TX256TO511_GB), 21-132
Tx 512- to 1023-Byte Frames (Good/Bad) Register,
EMAC (EMAC_TX512TO1023_GB), 21-132
Tx 64-Byte Frames (Good/Bad) Register, EMAC

(EMAC_TX64_GB), 21-130
Tx 65- to 127-Byte Frames (Good/Bad) Register,
EMAC (EMAC_TX65TO127_GB), 21-131
Tx Broadcast Frames (Good) Register, EMAC
(EMAC_TXBCASTFRM_G), 21-129
Tx Broadcast Frames (Good/Bad) Register, EMAC
(EMAC_TXBCASTFRM_GB), 21-135
Tx Carrier Error Register, EMAC (EMAC_TXCAR-
R_ERR), 21-139
Tx Data Double-Byte Register, TWI (TWI_TXDA-
TA16), 18-38
Tx Data Single-Byte Register, TWI (TWI_TXDA-
TA8), 18-37
Tx Deferred Register, EMAC (EMAC_TXDE-
FERRED), 21-137
TX Double Packet Buffer Disable for Endpoints 1 to 3,
USB (USB_TXDPKTBUFDIS), 20-146
Tx Excess Collision Register, EMAC (EMAC_TXEX-
CESSCOL), 21-138
Tx Excess Deferral Register, EMAC (EMAC_TXEX-
CESSDEF), 21-141
Tx Frame Count (Good) Register, EMAC
(EMAC_TXFRMCNT_G), 21-140
Tx Frame Count (Good/Bad) Register, EMAC
(EMAC_TXFRMCNT_GB), 21-128
Tx Late Collision Register, EMAC (EMAC_TX-
LATECOL), 21-138
Tx Multicast Frames (Good) Register, EMAC
(EMAC_TXMCASTFRM_G), 21-129
Tx Multicast Frames (Good/Bad) Register, EMAC
(EMAC_TXMCASTFRM_GB), 21-134
Tx Multiple Collision (Good) Register, EMAC
(EMAC_TXMULTCOL_G), 21-137
Tx OCT Count (Good/Bad) Register, EMAC
(EMAC_TXOCTCNT_GB), 21-128
Tx Octet Count (Good) Register, EMAC
(EMAC_TXOCTCNT_G), 21-140
Tx Pause Frame Register, EMAC (EMAC_TX-
PAUSEFRM), 21-141
Tx Single Collision (Good) Register, EMAC
(EMAC_TXSNGCOL_G), 21-136
Tx Underflow Error Register, EMAC (EMAC_TX-
UNDR_ERR), 21-135
Tx Unicast Frames (Good/Bad) Register, EMAC
(EMAC_TXUCASTFRM_GB), 21-134
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–31

INDEX
Tx VLAN Frames (Good) Register, EMAC
(EMAC_TXVLANFRM_G), 21-142
TxferSize (transfer size), 20-24, 20-26

U
UART0_RXDMA interrupt, 7-5, 8-3, 8-5, 17-3, 17-4
UART0_STAT interrupt, 7-5, 17-3
UART0_TXDMA interrupt, 7-5, 8-3, 8-5, 17-3, 17-4
UART1_RXDMA interrupt, 7-5, 8-4, 8-5, 17-3, 17-4
UART1_STAT interrupt, 7-5, 17-3
UART1_TXDMA interrupt, 7-5, 8-3, 8-5, 17-3, 17-4
UART2_RXDMA interrupt, 7-5, 8-4, 8-5, 17-4
UART2_STAT interrupt, 7-5, 17-3
UART2_TXDMA interrupt, 7-5, 8-4, 8-5, 17-4
UART_CLK (Clock Rate Register, UART), 17-37
UART_CTL (Control Register, UART), 17-27
UART_IMSK (Interrupt Mask Register, UART),
17-38
UART_IMSK_CLR (Interrupt Mask Clear Register,
UART), 17-43
UART_IMSK_SET (Interrupt Mask Set Register,
UART), 17-41
UART_RBR (Receive Buffer Register, UART), 17-44
UART_RSR (Receive Shift Register, UART), 17-47
UART_RXCNT (Receive Counter Register, UART),
17-48
UART_SCR (Scratch Register, UART), 17-36
UART_STAT (Status Register, UART), 17-32
UART_TAIP (Transmit Address/Insert Pulse Register,
UART), 17-46
UART_THR (Transmit Hold Register, UART), 17-45
UART_TSR (Transmit Shift Register, UART), 17-46
UART_TXCNT (Transmit Counter Register, UART),
17-48
Universal Counter Configuration Mode Register, CAN
(CAN_UCCNF), 19-77
Universal Counter Register, CAN (CAN_UCCNT),
19-76
Universal Counter Reload/Capture Register, CAN
(CAN_UCRC), 19-77
universal serial bus (USB), 3-7
Upper Address Register n, SWU (SWU_UAn), 30-18
USB0_DATA interrupt, 7-6, 8-4, 20-8
USB0_STAT interrupt, 7-6, 20-8
USB_DEV_CTL (Device Control Register, USB),

20-98
USB_DMA_IRQ (DMA Interrupt Register, USB),
20-139
USB_DMAn_ADDR (DMA Channel n Address Reg-
ister, USB), 20-143
USB_DMAn_CNT (DMA Channel n Count Register,
USB), 20-144
USB_DMAn_CTL (DMA Channel n Control Register,
USB), 20-141
USB_EP0_CFGDATAn (EP0 Configuration Informa-
tion Register, USB), 20-137
USB_EP0_CNTn (EP0 Number of Received Bytes
Register, USB), 20-128
USB_EP0_CSRn_H (EP0 Configuration and Status
(Host) Register, USB), 20-109
USB_EP0_CSRn_P (EP0 Configuration and Status
(Peripheral) Register, USB), 20-115
USB_EP0_NAKLIMITn (EP0 NAK Limit Register,
USB), 20-132
USB_EP0_TYPEn (EP0 Connection Type Register,
USB), 20-130
USB_EPINFO (Endpoint Information Register, USB),
20-99
USB_EPn_FIFOSZ (FIFO Size, USB), 20-138
USB_EPn_RXCNT (EPn Number of Bytes Received
Register, USB), 20-129
USB_EPn_RXCSR_H (EPn Receive Configuration
and Status (Host) Register, USB), 20-121
USB_EPn_RXCSR_P (EPn Receive Configuration
and Status (Peripheral) Register, USB), 20-125
USB_EPn_RXINTERVAL (EPn Receive Polling In-
terval Register, USB), 20-136
USB_EPn_RXMAXP (EPn Receive Maximum Packet
Length Register, USB), 20-120
USB_EPn_RXTYPE (EPn Receive Type Register,
USB), 20-134
USB_EPn_TXCSR_H (EPn Transmit Configuration
and Status (Host) Register, USB), 20-111
USB_EPn_TXCSR_P (EPn Transmit Configuration
and Status (Peripheral) Register, USB), 20-117
USB_EPn_TXINTERVAL (EPn Transmit Polling In-
terval Register, USB), 20-133
USB_EPn_TXMAXP (EPn Transmit Maximum Pack-
et Length Register, USB), 20-108
USB_EPn_TXTYPE (EPn Transmit Type Register,
I–32 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

INDEX
USB), 20-130
USB_FADDR (Function Address Register, USB),
20-83
USB_FIFOBn (FIFO Byte (8-Bit) Register, USB),
20-96
USB_FIFOHn (FIFO Half-Word (16-Bit) Register,
USB), 20-96
USB_FIFOn (FIFO Word (32-Bit) Register, USB),
20-97
USB_FRAME (Frame Number Register, USB), 20-93
USB_FS_EOF1 (Full-Speed EOF 1 Register, USB),
20-102
USB_IDCTL (ID Control, USB), 20-155
USB_IEN (Common Interrupts Enable Register,
USB), 20-92
USB_INDEX (Index Register, USB), 20-94
USB_INTRRX (Receive Interrupt Register, USB),
20-87
USB_INTRRXE (Receive Interrupt Enable Register,
USB), 20-89
USB_INTRTX (Transmit Interrupt Register, USB),
20-86
USB_INTRTXE (Transmit Interrupt Enable Register,
USB), 20-88
USB_IRQ (Common Interrupts Register, USB), 20-90
USB_LINKINFO (Link Information Register, USB),
20-101
USB_LPM_ATTR (LPM Attribute Register, USB),
20-147
USB_LPM_CTL (LPM Control Register, USB),
20-148
USB_LPM_FADDR (LPM Function Address Regis-
ter, USB), 20-153
USB_LPM_IEN (LPM Interrupt Enable Register,
USB), 20-150
USB_LPM_IRQ (LPM Interrupt Status Register,
USB), 20-151
USB_LS_EOF1 (Low-Speed EOF 1 Register, USB),
20-103
USB_MPn_RXFUNCADDR (MPn Receive Function
Address Register, USB), 20-106
USB_MPn_RXHUBADDR (MPn Receive Hub Ad-
dress Register, USB), 20-107
USB_MPn_RXHUBPORT (MPn Receive Hub Port
Register, USB), 20-107

USB_MPn_TXFUNCADDR (MPn Transmit Function
Address Register, USB), 20-104
USB_MPn_TXHUBADDR (MPn Transmit Hub Ad-
dress Register, USB), 20-105
USB_MPn_TXHUBPORT (MPn Transmit Hub Port
Register, USB), 20-106
USB_PHY_CTL (FS PHY Control, USB), 20-155
USB_PHY_STAT (FS PHY Status, USB), 20-156
USB_POWER (Power and Device Control Register,
USB), 20-84
USB_RAMINFO (RAM Information Register, USB),
20-100
USB_RQPKTCNTn (EPn Request Packet Count Reg-
ister, USB), 20-144
USB_RXDPKTBUFDIS (RX Double Packet Buffer
Disable for Endpoints 1 to 3, USB), 20-145
USB_SOFT_RST (Software Reset Register, USB),
20-103
USB_TESTMODE (Testmode Register, USB), 20-95
USB_TXDPKTBUFDIS (TX Double Packet Buffer
Disable for Endpoints 1 to 3, USB), 20-146
USB_VBUS_CTL (VBUS Control Register, USB),
20-154
USB_VPLEN (VBUS Pulse Length Register, USB),
20-101
User Code Register, JTAG (JTAG_USERCODE),
31-2

V
V (Voltage) Sample Register, HAE (HAE_VSAM-
PLE), 26-26
V (Voltage) Waveform Register, HAE (HAE_V-
WAVEFORM), 26-27
VBUS Control Register, USB (USB_VBUS_CTL),
20-154
VBUS Pulse Length Register, USB (USB_VPLEN),
20-101
VLAN Tag Register, EMAC (EMAC_VLANTAG),
21-107
Voltage Level Register, HAE (HAE_VLEVEL), 26-31

W
Wakeup Enable Register, DPM (DPM_WAKE_EN),
6-16
ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE I–33

INDEX
Wakeup Polarity Register, DPM (DP-
M_WAKE_POL), 6-17
wake-up signals/sources, 6-5
Wakeup Status Register, DPM (DP-
M_WAKE_STAT), 6-18
Watchdog Timer Status Register, WDOG
(WDOG_STAT), 14-6
WDOG0_EXP interrupt, 7-3, 14-2
WDOG_CNT (Count Register, WDOG), 14-5
WDOG_CTL (Control Register, WDOG), 14-4
WDOG_STAT (Watchdog Timer Status Register,
WDOG), 14-6
Write Protect Register n, SPU (SPU_WPn), 5-9
I–34 ADSP-CM40X MIXED-SIGNAL CONTROL PROCESSOR WITH ARM CORTEX-M4 HARDWARE REFERENCE

	ADSP-CM40x Hardware Reference
	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What's New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	Analog Devices Web Site
	EngineerZone

	Notation Conventions
	Register Documentation Conventions

	Introduction
	ARM Cortex-M4 Core
	Cortex-M4 Core Block Diagram
	Cortex-M4 Core Components
	Cortex-M4 Core Nested Vectored Interrupt Controller (NVIC)
	Cortex-M4 Core System Control Block (SCB)
	Cortex-M4 Core System Timer (SysTick)
	Cortex-M4 Core Memory Protection Unit (MPU)
	Cortex-M4 Core Floating Point Unit (FPU)

	Processor Infrastructure
	System Crossbar (SCB)
	Clock Generation
	Crystal Oscillator (SYS_XTAL)
	Clock Out/External Clock

	System Protection Unit (SPU)
	Dynamic Power Management (DPM)

	System Event Controller (SEC)
	Pin Interrupts
	Memory Architecture
	Static Memory Controller (SMC)
	Cyclic Redundancy Check (CRC)
	Direct Memory Access (DMA)

	On Chip Peripherals
	General-Purpose I/O (GPIO)
	General-Purpose Timers
	Watchdog Timers
	General-Purpose Counters
	Pulsewidth Modulator (PWM)
	Universal Asynchronous Receiver/Transmitter (UART)
	2-Wire Interface (TWI)
	Controller Area Network (CAN)
	Universal Serial Bus (USB)
	Ethernet Media Access Controller (MAC)
	Serial Peripheral Interface (SPI)
	Serial Port (SPORT)
	ADC Controller (ADCC)
	DAC Controller (DACC)
	Harmonic Analysis Engine (HAE)
	Sinus Cardinalis Filter Unit (SINC)
	Reset Control Unit (RCU)

	Booting
	System Watchpoint Unit

	ARM Cortex-M4 Core Memory Sub-System
	Cortex-M4 Memory Features
	Cortex-M4 Memory Functional Description
	ADSP-CM40x M4P Register List
	ADSP-CM40x M4P Interrupt List
	Cortex-M4 Memory Internal Buses Block Diagram
	Cortex-M4 Memory Map
	Cortex-M4 Memory for the ADSP-CM40x
	Cortex-M4 Memory Map - Code and Data Regions
	Cortex-M4 Memory Accessibility - Cortex Core Perspective
	Cortex-M4 Memory Accessibility - User/Application Perspective (Read Access)
	Cortex-M4 Memory Accessibility - User/Application Perspective (Write Access)

	Cortex-M4 Memory - Bit Banding
	Cortex-M4 Memory - Translation Memory Blocks (MEMX and MEMY)
	Cortex-M4 Memory - Synchronization Sequence

	Cortex-M4 Cache
	Cache Controller Features
	Cache Structural Organization
	Clearing the Cache
	Bypassing the Cache
	Using the Cache Counters
	Using Cache Parity Control

	Cortex-M4 Code and Data SRAM
	SRAM Features
	SRAM Block Diagram
	SRAM Bank Organization on ADSP-CM40x
	SRAM Partitioning using ConfigBanks
	Main SRAM Memory Attributes
	SRAM Interface Coherence Specification
	Using Synchronization to Achieve SRAM Coherency
	SRAM Write Buffers
	SRAM Write Collisions and Write Priority
	SRAM Access Collisions, Priority, and Stalling
	SRAM Exclusive Accesses, Global Exclusive Monitor
	SRAM Parity Protection
	SRAM Posted System Writes (NormSysWrite versus PostSysWrite)

	ADSP-CM40x M4P Register Descriptions
	Code Cache Configuration and Status Register
	Code Cache Parity Error Address Register
	MEMX Space Configuration Register
	MEMY Space Configuration Register
	SRAM Configuration Register
	SRAM Parity Error Address (Core) Register
	SRAM Parity Error Address (DMA) Register
	Bus Fault Error Information Register
	SysTick Calibration Register
	Cache Counter Control Register
	Cache ICODE Reference Counter Register
	Cache DCODE Reference Counter Register
	Cache ICODE Miss Counter Register
	Cache DCODE Miss Counter Register
	Cache ICODE Line Fill Counter Register
	Cache DCODE Line Fill Counter Register

	System Crossbars (SCB)
	SCB Features
	SCB Functional Description
	ADSP-CM40x SCB Register List
	SCB Definitions
	SCB Block Diagram
	SCB Hierarchy Block Diagram
	ADSP-CM40x SCB Block Diagram

	ADSP-CM40x SCB Bus Master IDs
	ADSP-CM40x SCB Arbitration

	ADSP-CM40x SCB Programming Model
	FIFO Synchronization
	ADSP-CM40x SCB Programming Concepts

	ADSP-CM40x SCB Register Descriptions
	Master 0 IB Sync Mode
	Master 0 Read Quality of Service
	Master 0 Write Quality of Service
	Master 1 IB Sync Mode
	Master 1 Read Quality of Service
	Master 1 Write Quality of Service
	Master 2 Read Quality of Service
	Master 2 Write Quality of Service
	Master 3 Read Quality of Service
	Master 3 Write Quality of Service
	Master 4 Read Quality of Service
	Master 4 Write Quality of Service
	Master 5 Read Quality of Service
	Master 5 Write Quality of Service
	Master 6 Read Quality of Service
	Master 6 Write Quality of Service
	Master 7 Read Quality of Service
	Master 7 Write Quality of Service
	Master 8 Read Quality of Service
	Master 8 Write Quality of Service
	Master 9 Read Quality of Service
	Master 9 Write Quality of Service
	Master 10 Read Quality of Service
	Master 10 Write Quality of Service
	Master 11 Read Quality of Service
	Master 11 Write Quality of Service
	Master 12 Read Quality of Service
	Master 12 Write Quality of Service
	Master 13 Read Quality of Service
	Master 13 Write Quality of Service
	Master 14 Read Quality of Service
	Master 14 Write Quality of Service
	Master 15 Read Quality of Service
	Master 15 Write Quality of Service
	Master 16 Read Quality of Service
	Master 16 Write Quality of Service
	Master 17 Read Quality of Service
	Master 17 Write Quality of Service
	Master 18 Read Quality of Service
	Master 18 Write Quality of Service
	Master 19 Read Quality of Service
	Master 19 Write Quality of Service
	Master20 Read Quality of Service
	Master 20 Write Quality of Service
	Master 21 Read Quality of Service
	Master 21 Write Quality of Service
	Master 22 Read Quality of Service
	Master 22 Write Quality of Service
	Master 23 Read Quality of Service
	Master 23 Write Quality of Service
	Master 24 Read Quality of Service
	Master 24 Write Quality of Service
	Master 25 Read Quality of Service
	Master 25 Write Quality of Service
	Master 26 Read Quality of Service
	Master 26 Write Quality of Service

	Clock Generation Unit (CGU)
	CGU Features
	CGU Functional Description
	ADSP-CM40x CGU Register List
	ADSP-CM40x CGU Interrupt List
	ADSP-CM40x CGU Trigger List
	CGU Definitions
	CGU PLL Block Diagram

	CGU Operating Modes
	CGU Event Control
	CGU Events
	CGU Error
	CGU Generated Bus Errors
	Oscillator Watchdog

	CGU Programming Model
	Configuring CGU Modes
	Changing the PLL Clock Frequency
	Changing the CCLKn or SYSCLK Frequency Without Modifying the PLLCLK Frequency
	Changing the OUTCLK Frequency
	Aligning All Clocks

	ADSP-CM40x CGU Register Descriptions
	Control Register
	Status Register
	Clocks Divisor Register
	CLKOUT Select Register
	Oscillator Watchdog Register
	Timestamp Control Register
	Timestamp Counter Initial 32 l.s.b. Value Register
	Timestamp Counter Initial m.s.b. Value Register
	Timestamp Counter 32 l.s.b.
	Timestamp Counter 32 m.s.b. Register

	System Protection Unit (SPU)
	SPU Features
	SPU Functional Description
	ADSP-CM40x SPU Register List
	SPU Definitions
	SPU Block Diagram
	SPU Architectural Concepts

	SPU Event Control
	SPU Programming Model
	SPU Mode Configuration
	Locking Write-Protect Registers
	Protecting a Peripheral

	ADSP-CM40x SPU Register Descriptions
	Control Register
	Status Register
	Write Protect Register n

	ADSP-CM40x SPU_WPn Register Bits

	Dynamic Power Management (DPM)
	DPM Features
	DPM Functional Description
	ADSP-CM40x DPM Register List
	ADSP-CM40x DPM Interrupt List
	DPM Definitions

	DPM Operating Modes
	Reset State
	Full-on Mode
	Active Mode
	ACTIVE with PLL Disabled
	Deep Sleep Mode

	DPM Event Control
	DPM Events
	DPM Errors

	DPM Programming Model
	Configuring Deep Sleep Mode
	ADSP-CM40x Wake-Up Sources
	ADSP-CM40x Clock Buffer Disable Bit Assignments

	ADSP-CM40x DPM Register Descriptions
	Control Register
	Status Register
	Core Clock Buffer Disable Register
	Core Clock Buffer Enable Register
	Core Clock Buffer Status Register
	Core Clock Buffer Status Sticky Register
	System Clock Buffer Disable Register
	Wakeup Enable Register
	Wakeup Polarity Register
	Wakeup Status Register

	System Event Controller (SEC)
	SEC Features
	SEC Functional Description
	ADSP-CM40x SEC Register List
	ADSP-CM40x Interrupt List
	ADSP-CM40x SEC Trigger List
	SEC Definitions
	SEC Block Diagram
	SFI Block Diagram

	SEC Architectural Concepts
	System Interrupt Acknowledge
	Nested Vectored Interrupt Controller (NVIC)
	NVIC Registers with ADSP-CM40x Specifications
	System Fault Interface (SFI) and NVIC
	SEC Error

	SEC Programming Model
	Programming Concepts
	Programming Examples
	Configuring a System Interrupt with NVIC
	Configuring FMU as Fault Pin
	Managing Faults Inside a Triggered ISR
	Configuring and Managing Faults (that are also Interrupts)

	ADSP-CM40x SEC Register Descriptions
	Global Control Register
	Global Status Register
	Global Raise Register
	Fault Control Register
	Fault Status Register
	Fault Source ID Register
	Fault End Register
	Fault Delay Register
	Fault Delay Current Register
	Fault System Reset Delay Register
	Fault System Reset Delay Current Register
	Fault COP Period Register
	Fault COP Period Current Register
	Source Control Register n
	Source Status Register n

	Trigger Routing Unit (TRU)
	TRU Features
	TRU Functional Description
	ADSP-CM40x TRU Register List
	ADSP-CM40x TRU Interrupt List
	ADSP-CM40x Trigger List
	TRU Definitions
	TRU Block Diagram
	TRU Architectural Concepts

	TRU Programming Model
	Programming Concepts
	Programming Example

	TRU Event Control
	TRU Status and Error Signals

	ADSP-CM40x TRU Register Descriptions
	Slave Select Register
	Master Trigger Register
	Error Address Register
	Status Information Register
	Global Control Register

	Static Memory Controller (SMC)
	SMC Features
	SMC Functional Description
	ADSP-CM40x SMC Register List
	SMC Definitions
	SMC Architectural Concepts
	Avoiding Bus Contention
	ARDY Input Control

	SMC Operating Modes
	Asynchronous Flash Mode
	Asynchronous Page Mode

	SMC Event Control
	SMC Programmable Timing Characteristics
	Asynchronous SRAM Reads and Writes
	Asynchronous SRAM Reads with IDLE Transition Cycles Inserted
	High Speed Asynchronous SRAM Read Burst
	High Speed Asynchronous SRAM Writes
	Asynchronous SRAM Reads with ARDY
	Asynchronous Flash Reads
	Asynchronous Flash Writes
	Asynchronous Flash Page Mode Reads
	Asynchronous FIFO Reads and Writes

	SMC Programming Model
	ADSP-CM40x SMC Register Descriptions
	Bank 0 Control Register
	Bank 0 Timing Register
	Bank 0 Extended Timing Register
	Bank 1 Control Register
	Bank 1 Timing Register
	Bank 1 Extended Timing Register
	Bank 2 Control Register
	Bank 2 Timing Register
	Bank 2 Extended Timing Register
	Bank 3 Control Register
	Bank 3 Timing Register
	Bank 3 Extended Timing Register

	Cyclic Redundancy Check (CRC)
	CRC Features
	CRC Functional Description
	ADSP-CM40x CRC Register List
	ADSP-CM40x CRC Interrupt List
	CRC Definitions
	CRC Block Diagram
	Peripheral DMA Bus
	MMR Access Bus
	Mirror Block
	Data FIFO
	DMA Request Generator
	CRC Engine
	Compare Logic

	CRC Architectural Concepts
	Lookup Table
	Data Mirroring
	FIFO Status and Data Requests

	CRC Operating Modes
	Data Transfer Modes
	Memory Scan Compute and Compare
	Memory Scan Data Verify
	Memory Transfer Compute and Compare
	Memory Transfer Data Fill Mode

	CRC Event Control
	Interrupt Signals

	CRC Programming Model
	CRC Mode Configuration
	Look-Up Table Generation
	Core Driven Memory Scan Compute Compare Mode
	DMA Driven Memory Scan Compute Compare Mode
	Core Driven Memory Scan Data Verify Mode
	DMA Driven Memory Scan Data Verify Mode
	Core Driven Memory Transfer Compute Compare Mode
	DMA Driven Memory Transfer Compute Compare Mode
	DMA Driven Memory Transfer Data Fill Mode

	ADSP-CM40x CRC Peripheral and DMA Channel List
	ADSP-CM40x CRC Register Descriptions
	Control Register
	Data Word Count Register
	Data Word Count Reload Register
	Data Compare Register
	Fill Value Register
	Data FIFO Register
	Interrupt Enable Register
	Interrupt Enable Set Register
	Interrupt Enable Clear Register
	Polynomial Register
	Status Register
	Data Count Capture Register
	CRC Final Result Register
	CRC Current Result Register

	Direct Memory Access (DMA)
	DMA Channel Features
	DMA Channel Functional Description
	ADSP-CM40x DMA Register List
	DMA Definitions
	Block Diagram
	SCB Interface Signals
	DMA Channel Peripheral DMA Bus
	DMA Channel MMR Access Bus
	Event Signals

	Architectural Concepts
	DMA Channel SCB Interface
	SCB Interface Signals
	SCB Burst Transfers
	Data Address Alignment
	Descriptor Set Address Alignment

	DMA Channel Peripheral DMA Bus
	Peripheral Control Commands
	Idle Command
	Restart Command
	Finish Command
	Interrupt Command
	Request Data Command
	Request Data Urgent Command

	Peripheral Control Command Restrictions
	Transmit Restart or Finish
	Receive Restart or Finish
	Finish Only

	Memory DMA and Triggering
	DMA Channel MMR Access Bus
	DMA Channel Operation Flow
	Startup
	Minimum Enable Requirements
	Startup Operation

	Refresh
	Work Unit Transitions
	Transmit and MDMA Source Transitions
	Work Unit Receive and MDMA Destination Transitions

	Transfer Termination and Shutdown
	Stop Flow Mode
	Autobuffer Flow Mode

	DMA Channel Errors
	Status and Debug
	DMA Configuration Register Errors
	Illegal Register Write During Run
	Address Alignment Error
	Memory Access Error
	Trigger Overrun Error
	Bandwidth Monitor Error
	Control Interface Error

	DMA Operating Modes
	Register Based Flow Modes
	Stop Mode
	Autobuffer Mode

	Descriptor Based Flow Modes
	Descriptor Array Mode
	Descriptor List Mode
	Descriptor Sets
	Minimum Startup Requirements

	Descriptor On-Demand Modes

	Data Transfer Modes
	Two-Dimensional DMA

	DMA Channel Event Control
	Event Signals
	Work Unit State Events
	Peripheral Interrupt Request Events
	Peripheral Data Request Events
	DMA Channel Triggers
	Issuing Triggers
	Waiting For Triggers

	DMA Channel Programming Model
	Mode Configuration
	Register Based Linear Buffer Stop Flow Mode
	Register Based Autobuffer Flow Mode
	Descriptor Array Flow Mode
	Descriptor List Flow Mode
	Register Based Memory-to-Memory Transfer in Stop Flow Mode

	Programming Concepts
	Synchronization of Software and DMA
	Interrupt and Trigger Event Based Synchronization
	Register Polling Based Synchronization

	Descriptor Queues
	Queues Using Event Generation for Every Descriptor Set
	Queues Using Minimal Events

	ADSP-CM40x DMA Register Descriptions
	Pointer to Next Initial Descriptor
	Start Address of Current Buffer
	Configuration Register
	Inner Loop Count Start Value
	Inner Loop Address Increment
	Outer Loop Count Start Value (2D only)
	Outer Loop Address Increment (2D only)
	Current Descriptor Pointer
	Previous Initial Descriptor Pointer
	Current Address
	Status Register
	Current Count(1D) or intra-row XCNT (2D)
	Current Row Count (2D only)
	Bandwidth Limit Count
	Bandwidth Limit Count Current
	Bandwidth Monitor Count
	Bandwidth Monitor Count Current

	General-Purpose Ports (PORT)
	PORT Features
	PORT Functional Description
	ADSP-CM40x PORT Register List
	ADSP-CM40x PORT 120-PIN LQFP_EP GP I/O Multiplexing
	ADSP-CM40x PORT 176-PIN LQFP_EP GP I/O Multiplexing
	ADSP-CM40x PINT Register List
	ADSP-CM40x PINT Interrupt List
	ADSP-CM40x PINT Trigger List
	ADSP-CM40x PADS Register List
	PORT Definitions
	PORT Architectural Concepts
	Internal Interfaces
	External Interfaces
	GPIO Functionality
	Input Mode
	Output Mode
	Open-Drain Mode

	Port Multiplexing Control

	PORT Event Control
	PORT Interrupt Signals

	PORT Programming Model
	ADSP-CM40x PORT Register Descriptions
	Port x Function Enable Register
	Port x Function Enable Set Register
	Port x Function Enable Clear Register
	Port x GPIO Data Register
	Port x GPIO Data Set Register
	Port x GPIO Data Clear Register
	Port x GPIO Direction Register
	Port x GPIO Direction Set Register
	Port x GPIO Direction Clear Register
	Port x GPIO Input Enable Register
	Port x GPIO Input Enable Set Register
	Port x GPIO Input Enable Clear Register
	Port x Multiplexer Control Register
	Port x GPIO Input Enable Toggle Register
	Port x GPIO Polarity Invert Register
	Port x GPIO Polarity Invert Set Register
	Port x GPIO Polarity Invert Clear Register
	Port x GPIO Lock Register

	ADSP-CM40x PINT Register Descriptions
	Pint Mask Set Register
	Pint Mask Clear Register
	Pint Request Register
	Pint Assign Register
	Pint Edge Set Register
	Pint Edge Clear Register
	Pint Invert Set Register
	Pint Invert Clear Register
	Pint Pinstate Register
	Pint Latch Register

	ADSP-CM40x PADS Register Descriptions
	Peripheral Configuration0 Register

	General-Purpose Timer (TIMER)
	GP Timer Features
	ADSP-CM40x TIMER Register List
	ADSP-CM40x TIMER Interrupt List
	ADSP-CM40x TIMER Trigger List
	GP Timer Internal Interface
	GP Timer External Interface
	GP Timer General Operation
	Period, Width and Delay Register Interaction

	GP Timer Operating Modes
	Single-Pulse PWMOUT Mode
	Continuous PWMOUT Mode
	Width Capture (WIDCAP) Mode
	Width Capture Mode Overflow

	Windowed Watchdog (WATCHDOG) Modes
	Windowed Watchdog Width Mode
	Windowed Watchdog Period Mode

	Pin Interrupt (PININT) Mode
	External Clock (EXTCLK) Mode

	GP Timer Programming Concepts
	Setting Up Constantly Changing Timer Conditions
	Configuring, Enabling and Disabling One or More Timers
	Configuring Timer Data and Status Interrupts
	Using the Timer Broadcast Feature

	Timer Illegal States
	Continuous PWMOUT Mode
	Single Pulse PWMOUT Mode
	WID CAP Mode
	EXTCLK Mode
	WATCHDOG Events

	ADSP-CM40x TIMER Register Descriptions
	Run Register
	Run Set Register
	Run Clear Register
	Stop Configuration Register
	Stop Configuration Set Register
	Stop Configuration Clear Register
	Data Interrupt Mask Register
	Status Interrupt Mask Register
	Trigger Master Mask Register
	Trigger Slave Enable Register
	Data Interrupt Latch Register
	Status Interrupt Latch Register
	Error Type Status Register
	Broadcast Period Register
	Broadcast Width Register
	Broadcast Delay Register
	Timer n Configuration Register
	Timer n Counter Register
	Timer n Period Register
	Timer n Width Register
	Timer n Delay Register

	Watchdog Timer (WDOG)
	WDOG Features
	Watchdog Timer Functional Description
	ADSP-CM40x WDOG Register List
	ADSP-CM40x WDOG Interrupt List
	WDOG Block Diagram
	Internal Interface
	External Interface

	WDOG Configuration
	ADSP-CM40x WDOG Register Descriptions
	Control Register
	Count Register
	Watchdog Timer Status Register

	General-Purpose Counter (CNT)
	GP Counter Features
	GP Counter Functional Description
	ADSP-CM40x CNT Register List
	ADSP-CM40x CNT Interrupt List
	ADSP-CM40x CNT Trigger List

	GP Counter Operating Modes
	Quadrature Encoder Mode
	Binary Encoder Mode
	Up/Down Counter Mode
	Direction Counter Mode
	Timed Direction Mode
	M/N Scaling
	M/N Stop Detection
	M/N Error Condition
	M/N Restrictions

	GP Counter Event Control
	Illegal Gray/Binary Code Events
	Up/Down Count Events
	Zero-Count Events
	Overflow Events
	Boundary Match Events
	Zero Marker Events

	GP Counter Programming Model
	GP Counter General Programming Flow
	M/N Scaling Programming Guidelines
	GP Counter Mode Configuration
	Configuring GP Counter Push-Button Operation
	Configuring Zero-Marker-Zeros-Counter Mode
	Configuring Zero-Marker-Error Mode
	Configuring Zero-Once Mode
	Configuring Boundary Auto-Extend Mode
	Configuring Boundary Capture Mode
	Configuring Boundary Compare and Boundary Zero Modes
	Configuring GP Counter Push-Button Operation

	GP Counter Programming Concepts
	CNT Input Noise Filtering
	Capturing Counter Interval and CNT_CNTR Read Timing
	Capturing Time Interval Between Successive Counter Events

	ADSP-CM40x CNT Register Descriptions
	Configuration Register
	Interrupt Mask Register
	Status Register
	Command Register
	Debounce Register
	Counter Register
	Maximum Count Register
	Minimum Count Register
	M Value for Divider
	N Value for Divider

	Pulse-Width Modulator (PWM)
	PWM Features
	Functional Description
	ADSP-CM40x PWM Register List
	ADSP-CM40x PWM Interrupt List
	ADSP-CM40x PWM Trigger List
	Architectural Concepts
	Block Diagram

	Timer Units
	PWM Timer Period (PWM_TM) Registers
	Timer Unit Operation
	Phase Offset Control

	Channel Timing Control Unit
	Channel Control
	Pulse Positioning and Duty Cycle Registers
	Duty Cycle and Pulse Positioning Control
	Channel Low Side Output Dependent Operation Mode and Dead-Time
	Channel High Side and Low Side Outputs, Independent Operation Mode
	Switched Reluctance Motors Application
	Switching Dead Time (PWM_DT) Register
	Duty Cycle with Dead-Time Control: Calculations for PULSEMODE 00
	Special Consideration for PWM Operation in Over-Modulation

	Output Disable and Cross-Over Functions
	Brush-less DC Motor (Electronically Commutated Motor) Control

	Emulation Mode Operation
	Heightened-Precision Edge Placement
	Sample Waveforms for High- and Low-Side with Precision Placement
	Gate Drive Unit
	Output Control Feature Precedence
	Sync Operation
	Internal PWM SYNC Generation
	External PWM SYNC Generation

	Event Control
	Trip Control Unit

	Programming Model
	Programming Model for 3-Phase AC Motor Control
	System Parameters
	System State Sequencing
	PWM Initialization for Motor Control
	PWM Enable for Motor Control
	PWM Response to Sync Interrupt for Motor Control
	PWM Disable (and Stop the Motor) for Motor Control

	ADSP-CM40x PWM Register Descriptions
	Control Register
	Channel Config Register
	Trip Config Register
	Status Register
	Interrupt Mask Register
	Interrupt Latch Register
	Chop Configuration Register
	Dead Time Register
	Sync Pulse Width Register
	Timer 0 Period Register
	Timer 1 Period Register
	Timer 2 Period Register
	Timer 3 Period Register
	Timer 4 Period Register
	Channel A Delay Register
	Channel B Delay Register
	Channel C Delay Register
	Channel D Delay Register
	Channel A Control Register
	Channel A-High Duty-0 Register
	Channel A-High Duty-1 Register
	Channel A-High Heightened-Precision Duty-0 Register
	Channel A-High Heightened-Precision Duty-1 Register
	Channel A-Low Duty-0 Register
	Channel A-Low Duty-1 Register
	Channel A-Low Heightened-Precision Duty-0 Register
	Channel A-Low Heightened-Precision Duty-1 Register
	Channel B Control Register
	Channel B-High Duty-0 Register
	Channel B-High Duty-1 Register
	Channel B-High Heightened-Precision Duty-0 Register
	Channel B-High Heightened-Precision Duty-1 Register
	Channel B-Low Duty-0 Register
	Channel B-Low Duty-1 Register
	Channel B-Low Heightened-Precision Duty-0 Register
	Channel B-Low Heightened-Precision Duty-1 Register
	Channel C Control Register
	Channel C-High Pulse Duty Register 0
	Channel C-High Pulse Duty Register 1
	Channel C-High Pulse Heightened-Precision Duty Register 0
	Channel C-High Pulse Heightened-Precision Duty Register 1
	Channel C-Low Pulse Duty Register 0
	Channel C-Low Duty-1 Register
	Channel C-Low Pulse Duty Register 1
	Channel C-Low Heightened-Precision Duty-1 Register
	Channel D Control Register
	Channel D-High Duty-0 Register
	Channel D-High Pulse Duty Register 1
	Channel D-High Pulse Heightened-Precision Duty Register 0
	Channel D High Pulse Heightened-Precision Duty Register 1
	Channel D-Low Pulse Duty Register 0
	Channel D-Low Pulse Duty Register 1
	Channel D-Low Heightened-Precision Duty-0 Register
	Channel D-Low Heightened-Precision Duty-1 Register
	Channel A-High Full Duty0 Register
	Channel A-High Full Duty1 Register
	Channel A-Low Full Duty0 Register
	Channel A-Low Full Duty1 Register
	Channel B-High Full Duty0 Register
	Channel B-High Full Duty1 Register
	Channel B-Low Full Duty0 Register
	Channel B-Low Full Duty1 Register
	Channel C-High Full Duty0 Register
	Channel C-High Full Duty1 Register
	Channel C-Low Full Duty0 Register
	Channel C-Low Full Duty1 Register
	Channel D-High Full Duty0 Register
	Channel D-High Full Duty1 Register
	Channel D-Low Full Duty0 Register
	Channel D-Low Full Duty1 Register

	Universal Asynchronous Receiver/Transmitter (UART)
	UART Features
	UART Functional Description
	ADSP-CM40x UART Register List
	ADSP-CM40x UART Interrupt List
	ADSP-CM40x UART Trigger List
	ADSP-CM40x UART DMA List
	UART Block Diagram
	UART Architectural Concepts
	Internal Interface
	External Interface
	Hardware Flow Control
	UART Bit Rate Generation
	ADSP-CM40x Processor Example

	Autobaud Detection
	UART Debug Features

	UART Operating Modes
	UART Mode
	IrDA SIR Mode
	Multi-Drop Bus Mode
	UART Data Transfer Modes
	UART Mode Transmit Operation (Core)
	UART Mode LIN Break Command
	UART Mode Receive Operation (Core)
	IrDA Transmit Operation
	IrDA Receive Operation
	MDB Transmit Operation
	MDB Receive Operation
	DMA Mode
	Mixing DMA and Core Modes
	Setting Up Hardware Flow Control

	UART Event Control
	Interrupt Masks
	Interrupt Servicing
	Transmit Interrupts
	Receive Interrupts
	Status Interrupts
	Multi-Drop Bus Events

	UART Programming Model
	Detecting Autobaud
	Using Common Initialization Steps
	Using Core Transfers
	Using DMA Transfers
	Using Interrupts
	Setting Up Hardware Flow Control

	ADSP-CM40x UART Register Descriptions
	Control Register
	Status Register
	Scratch Register
	Clock Rate Register
	Interrupt Mask Register
	Interrupt Mask Set Register
	Interrupt Mask Clear Register
	Receive Buffer Register
	Transmit Hold Register
	Transmit Address/Insert Pulse Register
	Transmit Shift Register
	Receive Shift Register
	Transmit Counter Register
	Receive Counter Register

	2-Wire Interface (TWI)
	TWI Features
	TWI Functional Description
	ADSP-CM40x TWI Register List
	ADSP-CM40x TWI Interrupt List
	TWI Block Diagram
	External Interface
	Serial Clock Signal (SCL)
	Serial Data Signal (SDA)

	Internal Interface
	TWI Architectural Concepts
	TWI Protocol
	Clock Generation and Synchronization
	Bus Arbitration
	Start and Stop Conditions
	General Call Support
	Fast Mode

	TWI Operating Modes
	Repeated Start
	Transmit Receive Repeated Start
	Receive Transmit Repeated Start
	Clock Stretching
	Clock Stretching During FIFO Underflow
	Clock Stretching During FIFO Overflow
	Clock Stretching During Repeated Start

	TWI Programming Model
	General Setup
	Slave Mode
	Master Mode Program Flow
	Master Mode Clock Setup
	Master Mode Transmit
	Master Mode Receive

	ADSP-CM40x TWI Register Descriptions
	SCL Clock Divider Register
	Control Register
	Slave Mode Control Register
	Slave Mode Status Register
	Slave Mode Address Register
	Master Mode Control Registers
	Master Mode Status Register
	Master Mode Address Register
	Interrupt Status Register
	Interrupt Mask Register
	FIFO Control Register
	FIFO Status Register
	Tx Data Single-Byte Register
	Tx Data Double-Byte Register
	Rx Data Single-Byte Register
	Rx Data Double-Byte Register

	Controller Area Network (CAN)
	CAN Features
	CAN Functional Description
	ADSP-CM40x CAN Register List
	ADSP-CM40x CAN Interrupt List
	External Interface
	Architectural Concepts
	Block Diagram
	Mailbox Control
	Protocol Fundamentals

	Data Transfer Modes
	Transmit Operations
	Retransmission
	Single-Shot Transmission
	Auto-Transmission

	Receive Operation
	Data Acceptance Filtering

	Watchdog Mode
	Time Stamps
	Remote Frame Handling
	Temporarily Disabling CAN Mailbox

	CAN Operating Modes
	Bit Timing
	CAN Low Power Features
	Built-In Suspend Mode
	Built-In Sleep Mode
	Soft Reset

	CAN Event Control
	CAN Interrupt Signals
	Mailbox Interrupts
	Global Interrupt

	Event Counter
	CAN Warnings and Errors
	Programmable Warning Limits
	Error Handling
	Error Frames
	Error Levels

	CAN Debug and Test Modes

	ADSP-CM40x CAN Register Descriptions
	Mailbox Configuration 1 Register
	Mailbox Direction 1 Register
	Transmission Request Set 1 Register
	Transmission Request Reset 1 Register
	Transmission Acknowledge 1 Register
	Abort Acknowledge 1 Register
	Receive Message Pending 1 Register
	Receive Message Lost 1 Register
	Mailbox Transmit Interrupt Flag 1 Register
	Mailbox Receive Interrupt Flag 1 Register
	Mailbox Interrupt Mask 1 Register
	Remote Frame Handling 1 Register
	Overwrite Protection/Single Shot Transmission 1 Register
	Mailbox Configuration 2 Register
	Mailbox Direction 2 Register
	Transmission Request Set 2 Register
	Transmission Request Reset 2 Register
	Transmission Acknowledge 2 Register
	Abort Acknowledge 2 Register
	Receive Message Pending 2 Register
	Receive Message Lost 2 Register
	Mailbox Transmit Interrupt Flag 2 Register
	Mailbox Receive Interrupt Flag 2 Register
	Mailbox Interrupt Mask 2 Register
	Remote Frame Handling 2 Register
	Overwrite Protection/Single Shot Transmission 2 Register
	Clock Register
	Timing Register
	Debug Register
	Status Register
	Error Counter Register
	Global CAN Interrupt Status Register
	Global CAN Interrupt Mask Register
	Global CAN Interrupt Flag Register
	CAN Master Control Register
	Interrupt Pending Register
	Temporary Mailbox Disable Register
	Error Counter Warning Level Register
	Error Status Register
	Universal Counter Register
	Universal Counter Reload/Capture Register
	Universal Counter Configuration Mode Register
	Acceptance Mask (L) Register
	Acceptance Mask (H) Register
	Mailbox Word 0 Register
	Mailbox Word 1 Register
	Mailbox Word 2 Register
	Mailbox Word 3 Register
	Mailbox Length Register
	Mailbox Timestamp Register
	Mailbox ID 0 Register
	Mailbox ID 1 Register

	Universal Serial Bus (USB)
	USB Features
	USB Functional Description
	USB Architectural Concepts
	Multi-Point Support
	On-Chip Bus Interfaces
	FIFO Configuration
	Clocking
	UTMI Interface

	ADSP-CM40x USB Register List
	ADSP-CM40x USB Interrupt List
	ADSP-CM40x USB Trigger List
	USB Block Diagram
	USB Definitions
	USB References

	USB Operating Modes
	Peripheral Mode
	Endpoint Setup
	IN Transactions as a Peripheral
	OUT Transactions as a Peripheral
	Peripheral Transfer Work Flows
	Control Transactions as a Peripheral
	Write Requests
	Read Requests
	Zero Data Requests
	ENDPOINT 0 States
	Endpoint 0 Service Routine as Peripheral
	Idle Mode
	TX Mode
	RX Mode

	Peripheral Mode, Bulk IN, Transfer Size Known
	Peripheral Mode, Bulk IN, Transfer Size Unknown
	Peripheral Mode, ISO IN, Small MaxPktSize
	Peripheral Mode, ISO IN, Large MaxPktSize
	Peripheral Mode, Bulk OUT, Transfer Size Known
	Peripheral Mode, Bulk OUT, Transfer Size Unknown
	Peripheral Mode, ISO OUT, Small MaxPktSize
	Peripheral Mode, ISO OUT, Large MaxPktSize

	Peripheral Mode Suspend
	Start-of-frame (SOF) Packets
	Soft Connect/Soft Disconnect
	Error Handling As a Peripheral
	Stalls Issued to Control Transfers
	Zero Length OUT Data Packets in Control Transfers

	Host Mode
	Transaction Scheduling
	Endpoint Setup and Data Transfer
	Control Transaction as a Host
	Setup Phase as a Host
	IN Data Phase as a Host
	OUT Data as a Host (Control)
	IN Status Phase as a Host (Following SETUP Phase or OUT Data Phase)
	OUT Status Phase as a Host (Following IN Data Phase)
	Host IN Transactions
	Host OUT Transactions
	Multi-Point Support
	Allocating Devices to Endpoints
	Multi-Point Operation
	Multi-Point Bandwidth Considerations

	Babble Interrupt
	VBUS Events
	Actions as an “A” Device
	Actions as a “B” Device

	Host Mode Reset
	Host Mode Suspend
	Suspending and Resuming the Controller
	Suspend/Resume by Inactivity on the USB Bus (L0 to L2 State) in Peripheral Mode
	Suspend/Resume By Inactivity On The USB Bus (L0 To L2 State) In Host Mode
	Suspend/Resume By an LPM Transaction (L0 To L1 State) In Peripheral Mode
	Suspend/Resume by an LPM Transaction (L0 to L1 State) in Host Mode

	USB Event Control
	Interrupt Signals
	Interrupt Handling
	Reset Signals
	Reset in Peripheral Mode
	USB Reset in Host Mode

	USB Programming Model
	Peripheral Mode Flow Charts
	Host Mode Flow Charts
	DMA Mode Flow Charts
	OTG Session Request
	Starting a Session
	Detecting Activity

	Host Negotiation Protocol
	Data Transfer
	Loading/Unloading Packets from Endpoints
	DMA Master Channels
	DMA Bus Cycles
	Transferring Packets Using DMA
	Individual RX Endpoint Packet
	Individual TX Endpoint Packet
	Multiple RX Endpoint Packets
	Multiple TX Endpoint Packets

	ADSP-CM40x USB Register Descriptions
	Function Address Register
	Power and Device Control Register
	Transmit Interrupt Register
	Receive Interrupt Register
	Transmit Interrupt Enable Register
	Receive Interrupt Enable Register
	Common Interrupts Register
	Common Interrupts Enable Register
	Frame Number Register
	Index Register
	Testmode Register
	FIFO Byte (8-Bit) Register
	FIFO Half-Word (16-Bit) Register
	FIFO Word (32-Bit) Register
	Device Control Register
	Endpoint Information Register
	RAM Information Register
	Link Information Register
	VBUS Pulse Length Register
	Full-Speed EOF 1 Register
	Low-Speed EOF 1 Register
	Software Reset Register
	MPn Transmit Function Address Register
	MPn Transmit Hub Address Register
	MPn Transmit Hub Port Register
	MPn Receive Function Address Register
	MPn Receive Hub Address Register
	MPn Receive Hub Port Register
	EPn Transmit Maximum Packet Length Register
	EP0 Configuration and Status (Host) Register
	EPn Transmit Configuration and Status (Host) Register
	EP0 Configuration and Status (Peripheral) Register
	EPn Transmit Configuration and Status (Peripheral) Register
	EPn Receive Maximum Packet Length Register
	EPn Receive Configuration and Status (Host) Register
	EPn Receive Configuration and Status (Peripheral) Register
	EP0 Number of Received Bytes Register
	EPn Number of Bytes Received Register
	EP0 Connection Type Register
	EPn Transmit Type Register
	EP0 NAK Limit Register
	EPn Transmit Polling Interval Register
	EPn Receive Type Register
	EPn Receive Polling Interval Register
	EP0 Configuration Information Register
	FIFO Size
	DMA Interrupt Register
	DMA Channel n Control Register
	DMA Channel n Address Register
	DMA Channel n Count Register
	EPn Request Packet Count Register
	RX Double Packet Buffer Disable for Endpoints 1 to 3
	TX Double Packet Buffer Disable for Endpoints 1 to 3
	LPM Attribute Register
	LPM Control Register
	LPM Interrupt Enable Register
	LPM Interrupt Status Register
	LPM Function Address Register
	VBUS Control Register
	ID Control
	FS PHY Control
	FS PHY Status

	Ethernet Media Access Controller (EMAC)
	EMAC Features
	EMAC Functional Description
	ADSP-CM40x EMAC Register List
	ADSP-CM40x EMAC Interrupt List
	ADSP-CM40x EMAC Trigger List
	EMAC Definitions
	EMAC Block Diagram and Interfaces
	EMAC CORE Sub-Blocks
	EMAC PHY Interface
	Clock Sources

	EMAC Architectural Concepts
	EMAC System Crossbar Interface (EMAC SCB)
	Priority of SCB Requests
	SCB Interface Programming Options
	DMA Bursts Using the SCB Interface
	SCB Bus Transaction Status
	Fatal Bus Error

	DMA Controller (EMAC DMA)
	DMA Related Registers
	DMA Descriptors
	Transmit Descriptor
	DMA Transmit Process
	Default (Non-OSF) Mode
	OSF Mode Enabled
	Transmit Frame Processing
	Transmit Polling Suspended

	Receive Descriptor
	EMAC DMA Receive Process
	Receive Frame Processing
	Receive Descriptor Acquisition
	Receive Process Suspended

	OWN Bit (Ownership) Semaphore
	Application Data Buffer Alignment
	Buffer Size Calculations

	EMAC FIFO Layer (EMAC MFL)
	FIFO Size
	FIFO Layer Transmit Path
	Transmit FIFO and Half-Duplex Retransmissions
	Transmit FIFO Flush Operation

	FIFO Layer Receive Path
	Receive FIFO Multi-Frame Handling
	Receive FIFO Error Handling

	EMAC CORE
	EMAC CORE Transmission Engine
	Transmit Bus Interface Module (TBU)
	Transmit Frame Controller Module (TFC)
	Transmit Checksum Offload Engine (TCOE)
	IP Header Checksum
	TCP/UDP/ICMP Checksum
	Transmit Protocol Engine Module (TPE)
	Transmit Scheduler Module (STX)
	Transmit CRC Generator Module (CTX)
	Transmit Flow Control Module (FTX)

	EMAC CORE Reception Engine
	Receive Protocol Engine Module (RPE)
	Receive CRC Module (CRX)
	Receive Frame Controller Module (RFC)
	Receive Flow Control Module (FRX)
	Receive Checksum Offload Engine (RCOE)
	Receive Bus Interface Unit Module (RBU)
	Address Filtering Module (AFM)
	Destination Address Filtering

	EMAC Station Management Interface (SMI)
	MDC Clock Frequency
	SMI Write Operation
	SMI Read Operation

	EMAC Management Counters (MMC)
	MMC Receive Interrupt Register
	MMC Transmit Interrupt Register
	MMC Receive Checksum Offload Interrupt Register

	EMAC Precision Time Protocol (PTP) Engine
	IEEE1588 and the PTP Engine
	PTP Engine
	IEEE1588 Standard
	IEEE 1588-2002
	IEEE 1588-2008 Advanced Timestamps
	Peer-to-Peer (P2P) PTP Message Support

	Block Diagram
	PTP Module Clock
	Clock Source Selection
	Clock Frequency Range

	Timestamp Module
	Frame Detection and Timestamping
	Transmit Path Timestamping
	Receive Path Timestamping
	PTP Processing and Control
	PTP Frame Over IPv4
	PTP Frame Over IPv6
	PTP Frame Over Ethernet

	Auxiliary Timestamp Snapshot

	System Time
	System Time Adjustment
	System Time Initialization
	Coarse Correction Method
	Fine Correction Method
	Calculating Addend Value

	Target Time Trigger (Alarm)
	Pulse-Per-Second (PPS)
	Fixed Pulse-Per-Second Output
	Flexible Pulse-Per-Second Output
	PPS Start or Stop Time
	PPS Width and Interval
	PPS Command

	PTP Interrupts
	Auxiliary Snapshot Trigger
	Target Time Reached
	System Time Seconds Register Overflow

	EMAC Event Control
	EMAC Interrupt Signals
	PHYINT Interrupt Signal

	EMAC Programming Model
	EMAC Programming Steps
	DMA Initialization
	EMAC CORE Initialization
	Performing Normal Transmit and Receive Operations
	Stopping and Starting Transfers
	Interrupts and Interrupt Service Routines
	Enabling Checksum for Transmit and Receive
	Programming the System Time Module
	Programming The PTP for Frame Detection and Timestamping
	Programming for Auxiliary Timestamps
	Programming Fixed Pulse-Per-Second Output
	Programming Flexible Pulse-Per-Second Output

	EMAC Programming Concepts
	IEEE 802.3 Ethernet Packet Structure
	Frame Size Statistics for Application Software
	Software Visualization of Programmable Packet Size
	Ethernet Packet Structure in C
	DMA Descriptor Implementation in C
	PTP Header Structure in C

	ADSP-CM40x EMAC Register Descriptions
	MAC Configuration Register
	MAC Rx Frame Filter Register
	Hash Table High Register
	Hash Table Low Register
	SMI Address Register
	SMI Data Register
	FLow Control Register
	VLAN Tag Register
	Debug Register
	Interrupt Status Register
	Interrupt Mask Register
	MAC Address 0 High Register
	MAC Address 0 Low Register
	MMC Control Register
	MMC Rx Interrupt Register
	MMC Tx Interrupt Register
	MMC Rx Interrupt Mask Register
	MMC TX Interrupt Mask Register
	Tx OCT Count (Good/Bad) Register
	Tx Frame Count (Good/Bad) Register
	Tx Broadcast Frames (Good) Register
	Tx Multicast Frames (Good) Register
	Tx 64-Byte Frames (Good/Bad) Register
	Tx 65- to 127-Byte Frames (Good/Bad) Register
	Tx 128- to 255-Byte Frames (Good/Bad) Register
	Tx 256- to 511-Byte Frames (Good/Bad) Register
	Tx 512- to 1023-Byte Frames (Good/Bad) Register
	Tx 1024- to Max-Byte Frames (Good/Bad) Register
	Tx Unicast Frames (Good/Bad) Register
	Tx Multicast Frames (Good/Bad) Register
	Tx Broadcast Frames (Good/Bad) Register
	Tx Underflow Error Register
	Tx Single Collision (Good) Register
	Tx Multiple Collision (Good) Register
	Tx Deferred Register
	Tx Late Collision Register
	Tx Excess Collision Register
	Tx Carrier Error Register
	Tx Octet Count (Good) Register
	Tx Frame Count (Good) Register
	Tx Excess Deferral Register
	Tx Pause Frame Register
	Tx VLAN Frames (Good) Register
	Rx Frame Count (Good/Bad) Register
	Rx Octet Count (Good/Bad) Register
	Rx Octet Count (Good) Register
	Rx Broadcast Frames (Good) Register
	Rx Multicast Frames (Good) Register
	Rx CRC Error Register
	Rx alignment Error Register
	Rx Runt Error Register
	Rx Jab Error Register
	Rx Undersize (Good) Register
	Rx Oversize (Good) Register
	Rx 64-Byte Frames (Good/Bad) Register
	Rx 65- to 127-Byte Frames (Good/Bad) Register
	Rx 128- to 255-Byte Frames (Good/Bad) Register
	Rx 256- to 511-Byte Frames (Good/Bad) Register
	Rx 512- to 1023-Byte Frames (Good/Bad) Register
	Rx 1024- to Max-Byte Frames (Good/Bad) Register
	Rx Unicast Frames (Good) Register
	Rx Length Error Register
	Rx Out Of Range Type Register
	Rx Pause Frames Register
	Rx FIFO Overflow Register
	Rx VLAN Frames (Good/Bad) Register
	Rx Watch Dog Error Register
	MMC IPC Rx Interrupt Mask Register
	MMC IPC Rx Interrupt Register
	Rx IPv4 Datagrams (Good) Register
	Rx IPv4 Datagrams Header Errors Register
	Rx IPv4 Datagrams No Payload Frame Register
	Rx IPv4 Datagrams Fragmented Frames Register
	Rx IPv4 UDP Disabled Frames Register
	Rx IPv6 Datagrams Good Frames Register
	Rx IPv6 Datagrams Header Error Frames Register
	Rx IPv6 Datagrams No Payload Frames Register
	Rx UDP Good Frames Register
	Rx UDP Error Frames Register
	Rx TCP Good Frames Register
	Rx TCP Error Frames Register
	Rx ICMP Good Frames Register
	Rx ICMP Error Frames Register
	Rx IPv4 Datagrams Good Octets Register
	Rx IPv4 Datagrams Header Errors Register
	Rx IPv4 Datagrams No Payload Octets Register
	Rx IPv4 Datagrams Fragmented Octets Register
	Rx IPv4 UDP Disabled Octets Register
	Rx IPv6 Good Octets Register
	Rx IPv6 Header Errors Register
	Rx IPv6 No Payload Octets Register
	Rx UDP Good Octets Register
	Rx UDP Error Octets Register
	Rx TCP Good Octets Register
	Rx TCP Error Octets Register
	Rx ICMP Good Octets Register
	Rx ICMP Error Octets Register
	Time Stamp Control Register
	Time Stamp Sub Second Increment Register
	Time Stamp Low Seconds Register
	Time Stamp Nanoseconds Register
	Time Stamp Seconds Update Register
	Time Stamp Nanoseconds Update Register
	Time Stamp Addend Register
	Time Stamp Target Time Seconds Register
	Time Stamp Target Time Nanoseconds Register
	Time Stamp High Second Register
	Time Stamp Status Register
	PPS Control Register
	Time Stamp Auxiliary TS Nano Seconds Register
	Time Stamp Auxiliary TM Seconds Register
	Time Stamp PPS Interval Register
	PPS Width Register
	DMA Bus Mode Register
	DMA Tx Poll Demand Register
	DMA Rx Poll Demand register
	DMA Rx Descriptor List Address Register
	DMA Tx Descriptor List Address Register
	DMA Status Register
	DMA Operation Mode Register
	DMA Interrupt Enable Register
	DMA Missed Frame Register
	DMA Rx Interrupt Watch Dog Register
	DMA SCB Bus Mode Register
	DMA SCB Status Register
	DMA Tx Descriptor Current Register
	DMA Rx Descriptor Current Register
	DMA Tx Buffer Current Register
	DMA Rx Buffer Current Register

	Serial Peripheral Interface (SPI)
	SPI Features
	SPI Functional Description
	ADSP-CM40x SPI Register List
	ADSP-CM40x SPI Interrupt List
	ADSP-CM40x SPI Trigger List
	SPI Block Diagram
	Transfer Protocol
	Clock Considerations
	Controlling Delay Between Frames
	Flow Control
	Slave Select Operation
	Beginning and Ending a Non-DMA SPI Transfer
	Transmit Operation in Non-DMA Mode
	Receive Operation in Non-DMA Mode
	Dual I/O Mode
	Quad I/O Mode
	Fast Mode
	SPI Memory-Mapped Mode
	Memory-Mapped Description of Operation
	Memory-Mapped Architectural Concepts
	Memory-Mapped Read Accesses
	Memory-Mapped High-Performance Features
	Merged Read Accesses
	Wrap Around Accesses
	Execute-In-Place (XIP)

	Memory-Mapped Mode Error Status Bits
	Memory-Mapped Programming Guidelines
	Programming Example for Configuring SPI Memory Mapped Mode

	SPI Interrupt Signals
	Data Interrupts
	Status Interrupts
	Error Conditions

	SPI Programming Concepts
	Programming Guidelines
	Master Operation in Non-DMA Modes
	Slave Operation in Non-DMA Modes
	Configuring DMA Master Mode
	Configuring DMA Slave Mode Operation

	ADSP-CM40x SPI Register Descriptions
	Control Register
	Receive Control Register
	Transmit Control Register
	Clock Rate Register
	Delay Register
	Slave Select Register
	Received Word Count Register
	Received Word Count Reload Register
	Transmitted Word Count Register
	Transmitted Word Count Reload Register
	Interrupt Mask Register
	Interrupt Mask Clear Register
	Interrupt Mask Set Register
	Status Register
	Masked Interrupt Condition Register
	Masked Interrupt Clear Register
	Receive FIFO Data Register
	Transmit FIFO Data Register
	Memory Mapped Read Header
	SPI Memory Top Address

	Serial Port (SPORT)
	Features
	Signal Descriptions
	Serial Clock
	Frame Sync
	Data Signals
	Transmit Data Valid Signal

	Functional Description
	ADSP-CM40x SPORT Register List
	ADSP-CM40x SPORT Interrupt List
	ADSP-CM40x SPORT Trigger List
	ADSP-CM40x SPORT DMA List
	Block Diagram
	Architectural Concepts
	Multiplexer Logic

	Data Types and Companding
	Companding as a Function

	Transmit Path
	Receive Path
	Sampling Edge
	Premature Frame Sync Error Detection
	Support for Edge-Detected and Level-Sensitive Frame Syncs
	Serial Word Length

	Operating Modes
	Mode Selection
	Standard Serial Mode
	Timing Control Bits
	Clocking Options
	Frame Sync Options
	Data-Dependent Versus Data-Independent Frame Sync
	Early Versus Late Frame Syncs
	Framed Versus Unframed Frame Syncs
	Logic Level

	Stereo Modes
	Channel Order First
	I2S Mode
	Protocol Configuration Options
	Serial Clock and Frame Sync Rates

	Left-Justified Mode
	Protocol Configuration Options
	Serial Clock and Frame Sync Rates

	Right-Justified Mode
	Timing Control Bits
	Serial Clock and Frame Sync Rates

	Multichannel Mode
	Protocol Configuration Options
	Clocking Options
	Frame Sync Options
	Transmit Data Valid (TDV)
	Active Channel Selection Registers (SPORT_CS0_A)
	Multichannel Frame Delay (MFD)
	Number of Multichannel Slots (WSIZE)
	Window Offset (WOFFSET)
	Companding Selection
	Multichannel DMA Data Packing (MCPDE)
	Multichannel Frame

	Packed I2S Mode
	Protocol Configuration Options
	Clocking Options
	Frame Sync Options

	Gated Clock Mode
	Data Transfers
	Data Buffers
	Transmit Data Buffers (SPORT_TXPRI_A and SPORT_TXSEC_A)
	Receive Data Buffers (SPORT_RXPRI_A and SPORT_RXSEC_A)
	Data Buffer Status
	Data Buffer Packing

	Single Word (Core) Transfers
	DMA Transfers
	Error Detection
	Interrupts
	Internal Transfer Completion
	Transfer Finish Interrupt (TFI)

	ADSP-CM40x SPORT Register Descriptions
	Half SPORT 'A' Control Register
	Half SPORT 'A' Divisor Register
	Half SPORT 'A' Multi-channel Control Register
	Half SPORT 'A' Multi-channel 0-31 Select Register
	Half SPORT 'A' Multi-channel 32-63 Select Register
	Half SPORT 'A' Multi-channel 64-95 Select Register
	Half SPORT 'A' Multi-channel 96-127 Select Register
	Half SPORT 'A' Error Register
	Half SPORT 'A' Multi-channel Status Register
	Half SPORT 'A' Control 2 Register
	Half SPORT 'A' Tx Buffer (Primary) Register
	Half SPORT 'A' Rx Buffer (Primary) Register
	Half SPORT 'A' Tx Buffer (Secondary) Register
	Half SPORT 'A' Rx Buffer (Secondary) Register
	Half SPORT 'B' Control Register
	Half SPORT 'B' Divisor Register
	Half SPORT 'B' Multi-channel Control Register
	Half SPORT 'B' Multi-channel 0-31 Select Register
	Half SPORT 'B' Multi-channel 32-63 Select Register
	Half SPORT 'B' Multichannel 64-95 Select Register
	Half SPORT 'B' Multichannel 96-127 Select Register
	Half SPORT 'B' Error Register
	Half SPORT 'B' Multi-channel Status Register
	Half SPORT 'B' Control 2 Register
	Half SPORT 'B' Tx Buffer (Primary) Register
	Half SPORT 'B' Rx Buffer (Primary) Register
	Half SPORT 'B' Tx Buffer (Secondary) Register
	Half SPORT 'B' Rx Buffer (Secondary) Register

	Analog-to-Digital Converter Controller (ADCC)
	ADCC Features
	ADCC Functional Description
	ADSP-CM40x ADCC Register List
	ADSP-CM40x ADCC Interrupt List
	ADSP-CM40x ADCC Trigger List
	ADCC Signal Descriptions
	ADCC Block Diagram
	ADCC Architectural Concepts
	Core and DMA Interfaces
	Trigger Inputs
	Timers
	Event Register Banks
	Event Comparators
	Pending Event FIFO
	Timing and Control Unit

	ADCC Operating Modes
	Data Transfer Modes
	Core-Driven Data Read Mode
	DMA-Driven Data Read Mode
	DMA Bandwidth Monitoring

	Dual-Bit (Two Signal Line) Interface Mode
	Dual-Bit Interface Data Swap Mode
	Clock Modes
	Chip Select Modes
	Simultaneous Sampling Mode

	ADCC Event Control (SEC/TRU Related)
	Interrupt Status
	Error Status
	Pending, Frame, and Delay Status
	Event Handling Latency

	ADCC Programming Model
	ADCC Programming Concepts
	ADCC Programming Guidelines (ADSP-CM40x Specific)

	ADSP-CM40x ADCC Register Descriptions
	Control Register
	Error Status Register
	Error Mask Register
	Error Mask Set Register
	Error Mask Clear Register
	Event Interrupt Status Register
	Event Interrupt Mask Register
	Event Interrupt Mask Set Register
	Event Interrupt Mask Clear Register
	Frame Interrupt Status Register
	Frame Interrupt Mask Register
	Frame Interrupt Mask Set Register
	Frame Interrupt Mask Clear Register
	Event Enable Register
	Event Enable Set Register
	Event Enable Clear Register
	Event Collision Status Register
	Event Miss Status Register
	Base Pointer 0 Register
	Frame Increment 0 Register
	Circular Buffer Size 0 Register
	Timing Control A (ADC0) Register
	Timing Control B (ADC0) Register
	Bandwidth Monitor 0 Register
	ADC Configuration Register
	DMA Base Pointer 1 Register
	Frame Increment 1 Register
	Circular Buffer Size 1 Register
	Timing Control A (ADC1) Register
	Timing Control B (ADC1) Register
	Bandwidth Monitor 1 Register
	Event n Time Register
	Event n Control Register
	Pending Events Status Register
	Timer 0 Status Register
	Timer 0 Current Count Register
	Timer 1 Status Register
	Timer 1 Current Count Register
	Event n Data Register
	Event n Status Register

	Digital-to-Analog Converter Controller (DACC)
	DACC Features
	DACC Functional Description
	ADSP-CM40x DACC Register List
	ADSP-CM40x DACC Interrupt List
	DACC Block Diagram
	DACC Signal Descriptions
	DACC Architectural Concepts
	Core and DMA Interfaces
	Pending Data FIFO

	DACC Operating Modes
	Data Transfer Modes
	Core-Driven Data Write Mode
	DMA-Driven Data Write Mode

	Data Length and Update Options
	Clock Modes
	Frame Sync Modes
	Broadcast Control Option

	DACC Event Control
	Interrupt Status
	Error Status
	Pending Status

	DACC Programming Model
	Core Mode Operation Flow
	DMA Mode Operation Flow
	DACC Programming Concepts
	DACC Programming Guidelines (ADSP-CM40x Specific)

	ADSP-CM40x DACC Register Descriptions
	Control 0 Register
	Control 1 Register
	Error Status Register
	Error Mask Register
	Error Mask Set Register
	Error Mask Clear Register
	Interrupt Status Register
	Interrupt Mask Register
	Interrupt Mask Set Register
	Interrupt Mask Clear Register
	Timing Control 0 Register
	Base Pointer 0 Register
	Modify 0 Register
	Count 0 Register
	Data FIFO 0 Register
	Timing Control 1 Register
	Base Pointer 1 Register
	Modify 1 Register
	Count 1 Register
	Data FIFO 1 Register
	Broadcast (Write) Control Register
	Current Count 0 Register
	Current Count 1 Register
	Status Register

	Harmonic Analysis Engine (HAE)
	HAE Features
	HAE Functional Description
	ADSP-CM40z HAE Register List
	ADSP-CM40z HAE Interrupt List
	ADSP-CM40z HAE Trigger List
	HAE Block Diagram
	HAE Architectural Concepts
	Harmonic Engine
	Harmonic Analyzer
	Data Transfer Module
	Results Memory
	HAE Results Upper Byte ID
	HAE Result Ranges and Formats

	HAE Operating Modes
	HAE Data Transfer Modes

	HAE Event Control
	HAE Interrupt Signals
	HAE Status and Error Signals

	HAE Programming Model
	HAE Programming Concepts
	Theory of Operation
	Initialization
	Harmonic Calculations
	Configuring Harmonic Calculations Update Rate

	ADSP-CM40z HAE Register Descriptions
	Run Register
	Coefficient RAM Register
	Configuration 0 Register
	Configuration 1 Register
	Configuration 2 Register
	Configuration 3 Register
	Status Register
	I (Current) Sample Register
	V (Voltage) Sample Register
	I (Current) Waveform Register
	V (Voltage) Waveform Register
	Results RAM Register
	Data (Configuration) RAM Register
	Configuration 4 Register
	DIDT Gain Register
	DIDT Coefficient Register
	Voltage Level Register
	Harmonic n Index Register

	SINC Filter
	SINC Filter Features
	SINC Functional Description
	ADSP-CM40x SINC Register List
	ADSP-CM40x SINC Interrupt List
	ADSP-CM40x SINC Trigger List
	SINC Definitions
	SINC Block Diagram
	SINC Architectural Concepts
	Digital Filter
	DC Gain and Data Resolution
	Frequency Response
	Output Scaling

	SINC Operating Modes
	SINC Data Transfer Modes
	SINC Signal Modes

	SINC Event Control
	SINC Interrupt Signals
	SINC Status and Error Signals

	SINC Programming Model
	SINC Programming Concepts
	Channel Configuration
	Trigger Masking
	Interrupt Masking
	Modulator Clock
	Filter Configuration
	Primary Filter Parameters
	Primary DMA Configuration and Data Interrupts
	Secondary Filter Parameters
	Overload Detection

	ADSP-CM40x SINC Register Descriptions
	Control Register
	Status Register
	Clock Control Register
	Rate Control for Group 0 Register
	Rate Control for Group 1 Register
	Level Control for Group 0 Register
	Level Control for Group 1 Register
	(Amplitude) Limits for Secondary Filter 0 Register
	(Amplitude) Limits for Secondary Filter 1 Register
	(Amplitude) Limits for Secondary Filter 2 Register
	(Amplitude) Limits for Secondary Filter 3 Register
	Bias for Group 0 Register
	Bias for Group 1 Register
	Primary (Filters) Pointer for Group 0 Register
	Primary (Filters) Pointer for Group 1 Register
	Primary (Filters) Head for Group 0 Register
	Primary (Filters) Head for Group 1 Register
	Primary (Filters) Tail for Group 0 Register
	Primary (Filters) Tail for Group 1 Register
	History Status Register
	Pair 0 Secondary (Filter) History n Register
	Pair 1 Secondary (Filter) History n Register
	Pair 2 Secondary (Filter) History n Register
	Pair 3 Secondary (Filter) History n Register

	Reset Control Unit (RCU)
	RCU Features
	RCU Functional Description
	ADSP-CM40x RCU Register List
	ADSP-CM40x RCU Trigger List
	RCU Definitions
	RCU Architectural Concepts

	RCU Status and Error Signals
	ADSP-CM40x Specific Information
	ADSP-CM40x RCU Register Descriptions
	Control Register
	Status Register
	SVECT Lock Register
	Boot Code Register
	Software Vector Register 0
	Message Register
	Message Set Bits Register
	Message Clear Bits Register

	Boot ROM and Booting the Processor
	Boot Loader Stream
	Block Structure
	Block Code
	TARGET_ADDRESS
	BYTE_COUNT
	ARGUMENT
	Block Types
	Normal Block
	First Block
	Final Block
	Indirect Block
	Ignore Block
	Init Block
	Callback Block
	Callback Block Used in Conjunction with Indirect Block
	Quick Boot Block
	Save Block
	Conditional Processing of Boot Stream Blocks

	Single-Block Boot Streams
	Direct Code Execution
	Boot Termination and Application Execution
	Multi-Application Boot Streams

	Boot Modes
	No-Boot Mode
	SPI Master Boot Mode
	SPI Device Detection Routine
	Run-time API

	SPI Master Boot with MEMMAP Support
	SPI Slave Boot Mode
	Run-Time API

	UART Slave Boot Mode
	Autobaud Detection
	Run-time API

	Boot Programming Model
	Page Mode
	Changing Settings at Run Time

	CRC32 Protection
	Error Handler
	Fault Management

	Callable API Overview
	Boot Kernel
	Boot Routine
	dFlags Description
	Example

	CRC 32 Polynomial
	CRC Initcode
	ECC Protection
	Get Address
	Functional Description

	Mem Compare
	Memory Copy
	Memory CRC
	Memory Fill

	Booting Data Structures
	STRUCT_ROM_BOOT_BUFFER
	STRUCT_ROM_BOOT_CONFIG
	STRUCT_ROM_BOOT_HEADER
	STRUCT_ROM_BOOT_SPI

	System Reset and Power Up
	Boot ROM Vector Table
	Base Address
	Number of Entries
	Table Layout

	Boot ROM Jump Table
	Base Address
	Number of Entries

	Memory Initialization
	Main Routine
	Privileged Mode Configuration
	Code and Data Memory Configuration
	Memory Initialization
	Cache Initialization
	Interrupt and Fault Configuration
	Reset Vector
	NMI Vector
	Hard Fault Vector
	MemManage Vector
	BusFault Vector
	UsageFault Vector
	DebugMonitor Vector
	SVCall Vector
	PendSV Vector
	SysTick Vector
	Code Cache Parity Error Vector
	SRAM Parity Error Vector
	SRAM DMA Parity Error Vector

	Pre-Boot
	Wakeup From Deep Sleep
	RESOUT Handling
	Boot Mode Entry

	Boot ROM Revision Control
	Boot ROM Revision Control

	System Watchpoint Unit (SWU)
	SWU Features
	SWU Functional Description
	ADSP-CM40x SWU Register List
	ADSP-CM40x SWU Interrupt List
	ADSP-CM40x SWU Trigger List
	SWU Definitions
	SWU Architectural Concepts
	SWU Flow Diagram
	SCB Interface

	SWU Block Diagram
	System Crossbar Block
	MMR Block

	SWU Operating Modes
	Bandwidth Mode
	Watchpoint Mode
	Match Block

	SWU Event Control
	SWU Interrupts
	SWU Status and Errors
	Triggers

	SWU Programming Model
	SWU Mode Configuration
	Configuring the SWU for Bandwidth Mode
	Configuring the SWU for Watchpoint Mode

	ADSP-CM40x SWU Register Descriptions
	Global Control Register
	Global Status Register
	Control Register n
	Lower Address Register n
	Upper Address Register n
	ID Register n
	Count Register n
	Target Register n
	Bandwidth History Register n
	Current Register n

	JTAG debug and Serial Wire Debug Port (SWJ- DP)
	Embedded Trace Macrocell (ETM) and Instrumentation Trace Macrocell (ITM)
	ADSP-CM40x JTAG Register Descriptions
	IDCODE Register
	User Code Register

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

