

ADI AnalogDialogue

利用后PA混合波束成形技术 提高mMIMO系统成本效益

Dmitrii Prisiazhniuk,现场应用工程师 Sinan Alemdar,产品应用首席工程师

摘要

为了加速大规模部署无线电系统,运营商需要重点考虑降低 无线电系统的成本,以及提高无线电系统的能效比。混合波 束成形(HBF)是实现这两个设计目标的有效方法。本文介绍了 一种新型后功率放大器(后PA)HBF架构,可适用于大规模 多输入多输出(mMIMO)无线电系统。此外,本文提出了一种实 现后PA相移模块的有效解决方案,其中使用了两个ADIADRF5347 SP4T开关,能够降低系统总成本,同时满足mMIMO系统的要 求。虽然本文侧重于讨论mMIMO无线电,但后PAHBF方法通用 性很强,可应用于不同类型的无线电通信(小型蜂窝、宏、 毫米波、卫星)、雷达应用(工业、汽车、军事)或射频检 测/成像应用。

引言

过去的十年,全球化趋势导致数据交换和视频通话使用量显著增加。与此同时,数字化和自动化方兴未艾,物流、制造、运输、 物联网和医疗健康等众多领域的56通信新型应用层出不穷。最近 的数据显示,移动数据流量正以22%的惊人速度增长,而且这种 上升趋势预计还将持续下去。为了帮助运营商扩张,无线网络 开发和升级需重点考虑系统容量、每比特成本和每比特功率等 因素。

影响无线电系统容量的主要因素有三个:信号带宽(BW)、信噪比 (SNR)和空间复用(共享相同频率资源的并行流的有效数量M)。 SNR表现出对数相关性,通常会增加系统的总功耗。带宽和空间 复用对容量影响较大。

图1. mMIMO无线电系统

(1)

图2. mMIMO系统的典型架构

$$C = M \times BW \times Log_2 (1 + SNR)$$

过去,无线电开发主要侧重于优化时间和带宽资源的利用。mMIMO的出现有效发挥了空间维度的作用。在相同的时间和频率资源内,空间复用技术有利于同时与多个移动站接收器进行并发通信。利用空间维度能够显著提升容量,与5G标准中实现3至5倍容量提升的目标达成一致²。

图1为典型的六边形蜂窝小区, 三个mMIMO无线电单元(RU)安装在 同一座基站上, 每个RU覆盖120°。每个mMIMO RU都可以创建多个 波束来与多个用户设备(UE)进行通信; 或通过多个波束与同一UE 进行通信, 经由不同传播路径 (例如视距和从建筑物反射的非 视距) 有效地到达UE。另一方面, RU通常连接到分布式单元(DU)和 集中式单元(CU), 这些部分负责管理资源并连接到核心移动网络。

mMIMO系统虽然能够提供更高的容量,但工作距离通常较短,因 为需要更高频率才能使用更窄波束,而窄波束又会导致路径损 耗增加。使用更高增益的天线可以实现更聚焦、更窄的波束, 从而部分地减少损耗,但这种做法也会缩小无线电系统的整体 覆盖范围。因此,为了有效利用mMIMO系统,有必要部署多个 mMIMO无线电系统,进而形成密集化现象。密集化对于人口密集 环境(例如容量需求高且用户众多的城市)的应用尤其重要。 如果系统成本足够低,运营商很可能会在城市地区部署大量 mMIMO系统,因此成本效益是推动mMIMO技术发展的关键因素。

图2为典型RU架构,其中包含五个主要模块:数字前端单元(DFE)、 收发器单元(TRX)、RF前端(RFE)单元、模拟波束成形矩阵和天线 单元。

DFE包含负责管理DU接口、数字波束成形和低PHY处理的模块。

TRX将DFE生成的数字IQ样本转换至指定频率范围内的RF域。ADI收 发器不仅仅可以将IQ样本转换至RF域,其中还集成了数字引擎, 该数字引擎包含数字预失真(DPD)和削峰(CFR)算法,以及数字上变 频器/下变频器(DUC/DDC)。DPD增强了功率放大器(PA)的效率,使PA 能够在更高的功率水平下运行³。因此,无线电系统的能效比得 到整体提升。ADI公司还与主要PA供应商合作,从而评估其产品 性能并开发更出色的DPD解决方案。ADI公司最近发布了带DPD功 能的收发器ADRV9040,能将带宽高达400 MHz的信号线性化。

RFE单元将RF信号放大至所需的电平,以便在发射器端进行传输,或由接收器端的收发器接收。表1列出了这种应用的解决 方案。

表1. mMIMO系统中使用的ADI RFE解决方案

TX VGA	ADL6337、 ADL6317
带集成开关的LNA	ADRF5519、 ADRF5515A、 ADRF5534、 ADRF5532
ORX开关	ADRF5250、HMC8038

天线单元通常由大量天线元件(AE)组成。现代mMIMO系统可以集成 多达128到384个AE,这些元件以水平和垂直结构分布,并采用两 种不同的极化方式。例如,具有128个元件的天线阵列可以设计 为8×8×2结构(垂直方向八个元件,水平方向八个元件,两种 极化方式);而具有192个元件的天线阵列可以设计为12×8×2结 构²⁴。由于相关成本高昂,构建许多有源元件(如收发器通道 和放大器)是不可行的。为了应对这一挑战,一种解决方案是 将所有AE(例如128到384个AE)映射到较少数量的放大单元,例 如16、32或64个RFE。这可以利用模拟波束成形矩阵来实现,该 矩阵包括分路器和可选的移相器。本文主要介绍了将数字和模 拟波束成形相结合的混合波束成形方法,以及这种办法如何利 用SP4T开关降低系统总成本。

mMIMO系统中的混合波束成形

mMIMO的基本原理是创建多个可以指向UE的窄波束。这些波束可 以通过在发射端使用共享信号源激活AE形成,也可以通过在接 收器端对其进行组合而形成。在远场区域,这些源产生的辐射 电场相互叠加,产生相长或相消干涉模式。通过调整各个源的 相位、间隔和振幅,可以控制组合源的波束形状。经简化后,

图3.(a)波束成形原理图:(b)紫色曲线和蓝色曲线分别表示10个和20个元件的阵列增益示例,绿色曲线表示每对天线之间应用60°相移后的情况。

组合阵列的天线增益可以表示为: $G_{com}(\theta, \varphi) = |AF(\theta, \varphi)|^2 G_{\epsilon\epsilon}(\theta, \varphi)$,其 中 $G_{\epsilon\epsilon}$ 表示单个天线元件的天线增益,AF(θ, φ)表示阵列因子(AF), θ 和 φ 分别对应垂直角和水平角。有关如何形成天线阵列方向图 的详细说明,请参阅"相控阵天线方向图——第1部分:线性阵列 波束特性和阵列因子"⁴。为简化起见,考虑一个一维阵列,其 中天线间距为d,每对天线之间应用相移 $\Delta \psi$,如图3a所示。在这 种情况下,AF可以使用下式来计算。

$$|\Delta F(\theta)|^{2} = \frac{1}{N} \left| \frac{\sin\left(N\left[\frac{\pi d}{\lambda}\sin\theta - \frac{\Delta\Psi}{2}\right]\right)}{\sin\left(\frac{\pi d}{\lambda}\sin\theta - \frac{\Delta\Psi}{2}\right)} \right|^{2}$$
(2)

图3b的紫色曲线和蓝色曲线分别为10个和20个天线元件的阵列增 益示例,天线之间的间隔为半波长。绿色曲线表示在每对天线 之间应用60°的相移ΔΨ后的波束,从而形成的波束角约为26.5°。

3 dB波束宽度可利用下式来近似计算: Δ_{φ3db} [rad] = 0.886×λ/Nd。 例如, 假设工作频率为3.5 GHz, 间距为半波长, 总共有八个元件 (通常代表水平波束成形), 则波束宽度约为12°。这一关系也 说明了mMIMO的实际应用主要在2.5 GHz至4 GHz中频范围内的原因。 频率较低时(例如1 GHz), 实现相同的波束宽度需要大大增加天 线尺寸, 这会使得此类系统的部署不切实际。为了仅需一人即 可轻松搬运和安装, 必须将mMIMO无线电的重量和尺寸控制在一 定范围内。

天线的尺寸和AE的数量取决于波束宽度要求和工作频率。目前的mMIMO系统总共可以集成128到384个AE。值得注意的是,根据波 束宽度和最大/最小扫描角度的不同要求,天线在水平和垂直方 向的间距可以不同。例如,在垂直域,用户数量有限,因此可 以将垂直范围和垂直方向支持的波束数量限制在较小范围内。 对于mMIMO系统,必须确保所有共享相同发射/接收UE数据流的AE 仅在相位(以及增益)方面有所不同。有多种方法可以实现这 一点,如图4所示。

图4a展示了较简单的波束成形,即纯模拟波束成形。在这种配置中,仅少量数据流连接到收发器和功率放大器。放大后的RF 信号被分离并进行相位旋转,然后连接到不同的AE。在这种配 置中,TRX转换器和放大器的数量与所需数据流的数量一致(N_{TRX} = N_{PA} = N_{STR}),而移相器的数量是数据流数量和专用活动管道数量的 乘积(N_{PH} = N_{STR} × N_{PPE})。每个管道可连接到多个AE (AE₁,...AE_k)。虽然该 架构减少了TRX转换器和放大器的数量,但其同时支持的UE设备 数量有限。为了扩展系统以支持多位用户,需要大量的移相器 和复杂的分路/组合网络。此外,还需要进行波束扫描以覆盖更 广泛的区域。这种方法特别适用于毫米波(mmWave)无线电,因 为它只需要支持较少量用户。

数字波束成形 (图4b) 已成为流行架构,这在很大程度上是由 于模拟波束成形支持的UE设备数量有限。这种方法将数据流直 接在数字域中进行分割和相位旋转,然后通过收发器转换至 RF域。其主要优点在于灵活性,支持的用户规模可以扩展。然 而,DFE中支持每个管道所需的数字开销,以及支持每个管道所 需的转换器和放大器数量(N_{TRX} = N_{PA} = N_{PPE} > N_{STR}),导致系统成本和 功耗增加。

混合波束成形 (图4c)可以用于解决mMIMO系统成本问题。在 这种架构中,波束成形分为数字域和模拟域。一种可能的划分 方式是,在水平平面上仅以数字方式控制波束,而在垂直域以 模拟方式 (或数字和模拟的组合方式)执行波束成形。这种方 法比较合理,因为位于各个垂直角度的用户数量通常有限。通 过在数字域和模拟域中实施分路,可以在保持合理的波束数量

(c) Post-PA Hybrid Beamforming: $N_{TRX} = N_{PA} = N_{PIPES}/M > N_{STR}$; $N_{PH} = N_{PIPES}$

图4.(0)模拟、(b)数字、(c)后PA混合波束成形方案的比较

和灵活性时,减少RF链的数量 ($N_{TEX} = N_{PA} = N_{PPE}/M$,其中M为分路因 子),从而降低成本。与此同时,这种方法需要在管道前面添 加移相器($N_{PH} = N_{PPE}$),并会导致额外的成本和器件功率损耗。该架 构的另一个可能优势是,由于使用的链数量减少,DFE和收发器 的功耗会降低。

在图4c中,移相器位于功率放大器之后,这称为后PA HBF架构。 与分路和相移发生在PA之前的前PA HBF架构相比,这种方法具有 明显优势。表2比较了这两种架构。

表2. 后PA和前PA相移方法的比较

	后PA相移	前PA相移
尤点	 所需PA/LNA和循环器数 量较少 Q需使用相同TRX信号 通过DPD对单个PA进行线 性化 移相器可以集成在非常 靠近天线元件的位置 	 系统层面对移相器的插 入损耗不敏感 移相器需要处理的功率 相当低 链噪声系数较低
央点	 移相器需要处理高功率 并IP3性能非常高 移相器的插入损耗应非 常低,因为每dB的功率损 耗都会导致无线电效率 下降 RX链噪声系数较高 	1. 需要使用同一信号通过 DPD对多个PA进行线性化 2. 需要较大量的PA/LNA

因此,后PA HBF架构虽然器件数量较少,但也提高了对线性度、 所需功率水平和移相器插入损耗的要求。

移相器的要求

f

为了实现后PA混合波束成形应用,必须满足56标准的波束管理 要求和mMIMO系统的约束条件。

开关时间

56利用正交频分多址(0FDMA)技术作为数据传输的核心手段。0FDMA 能够在总带宽内分配多个独立的调制副载波,从而高效扩展资 源,灵活适应不同用户量及其相应的数据需求。

56标准规定以帧(每帧持续10 ms)来传输数据,一帧由10个子帧 (每子帧持续1 ms)组成。它引入了"灵活数字命理学"的概念, 支持在单个子帧内使用可变数量的时隙。时隙的长度和数量与 副载波间距成比例,如表3所示。这些时隙定义了"资源网格" 的基本传输单元,每个资源网格由12个副载波和14个0FDMA符码 组成。

每个0FDMA符码由主数据块和附加循环前缀块组成。循环前缀可 减轻信号通过各种路径(多径)传播时产生的符码间干扰,它 本质上是相同信号的循环重复,处理过程通常会将其删除,以 防止不同符码重叠。循环前缀时间间隔是进行波束切换的理想 时间段,因为在此期间不传输任何数据。对于FR1标准(sub-6 GHz 应用),最小循环前缀持续时间设置为1.17 μs,该持续时间从根 本上定义了移相器应支持的切换时间(见表3)。

表3.5G循环前缀时间取决于所选的"数字命理"

标准	副载波 间隔	时隙长度	符码时间	循环前缀 时间
FR1	15 kHz	1 ms	66.7 µs	4.69 µs
FR1	30 kHz	0.5 ms	33.3 µs	2.34 µs
FR1/FR2	60 kHz	0.25 ms	16.7 µs	1.17 µs
FR2	120 kHz	0.125 ms	8.33 µs	0.59 µs
FR2	240 kHz	0.0625 ms	4.17 µs	0.29 µs

图5.5G数据帧结构

功率水平处理

在典型mMIM0系统中,平均总发射功率输出约为55 dBm (320 W)。 假设将该功率分配到32个活跃传输管道上,则每个放大器分配 的平均功率约为40 dBm。通过移相器的功率根据所采用的不同功 率分路数量而有所不同,如表4所示。

表4. 移相器功率处理要求

	移相器中的平均功率	峰值功率, 假设峰均比为8 dB		
1分2	37 dBm	45 dBm		
1分4	34 dBm	42 dBm		

线性度

由于非线性三阶交调机制,通过移相器的信号不应受到干扰。 在功率放大器和带通滤波器之后,交调产物不应超过一定的限 度。移相器的输入截取点(IIP3)参数可定义器件的三阶交调失真 (IM3)。当入射功率为37 dBm时,要使交调产物低于-60 dBm,则IIP3 至少应为81 dBm。

$$IIP3 = \frac{3 \times (Ptotal - 3) - IM3}{2} \tag{3}$$

插入损耗

移相器位于PA-LNA前端和天线之间,因此其插入损耗直接影响 传输期间的发射功率和接收操作期间的系统整体噪声系数。例 如,假设移相器的插入损耗为3 dB,这将带来50%的功率损耗, 导致系统效率极低。HBF的优势包括降低DFE和TRX功耗,但同时 也会带来额外功率损耗,权衡时应综合优缺点仔细考虑。改善 移相器插入损耗将会提升无线电的效率,从而降低mMIM0无线电 的运营成本,而这是运营商重点考虑的因素。

图6. 使用背靠背SP4T开关的开关线移相器实现

Control		sv	/#1	sv	V#2	Phase
V1	V2	LS	Ch	LS	Ch	
0	0	0	RF1	1	RF4	Delay Line #3 (-60°)
1	0	0	RF2	1	RF3	Delay Line #1(Ref)
0	1	0	RF3	1	RF2	Delay Line #2 (-30°)
1	1	0	RF4	1	RF1	Delay Line #4 (-90°)

图7.使用SP4T开关的背靠背移相器参考设计

成本

HBF架构中的另一个组件是移相器。为使该架构在经济上更具吸引力,附加移相器(Cost_{es})和PCB分路网络(Cost_{st})的成本应该低于收 发器通道和功率放大器数量减少所节省的成本(Cost_{TRX} + Cost_{PA}),如 公式4所示。

$$(Cost_{PS} + Cost_{SN}) < (Cost_{TRX} + Cost_{PA}) \times \left(1 - \frac{1}{M}\right)$$
(4)

其中, M为分路因子。对于1分2配置, 移相器和分路网络的总成本应该小于PA和TRX成本的一半。下一代系统的工作频率预计在7 GHz左右, 与现有的约3.5 GHz mMIMO系统相比, 收发器单元的数量可能会增加四倍。因此, 后PA移相器所节省的成本预计将成为支持下一代部署的关键因素。

使用两个SP4T开关的高性价比移相器

如表2和要求部分所强调的,后PA移相器方法的有效性取决于能 否实现更低插入损耗和出色的线性度(交调性能),从而以更 小的失真实现最大化辐射功率。对于传统片内移相器来说,同 时实现低插入损耗和高线性度是一个挑战。与在低损耗PCB衬底 上实现延迟线相比,造成损耗问题的主要原因是片内金属存在 固有电阻和有损电介质材料。虽然可以优化片内损耗元件,但 实现高线性度是一个难题,因为这两个参数在当前的片内移相 器技术中呈负相关。

在低损耗衬底上创建一个四步移相器需要配置两个背靠背排列的SP4T开关。SP4T开关的每个RF臂通过不同物理长度的RF走线 互连,从而产生不同的时间延迟,并因此在所需频率处产生相

图8.相位步长和端到端0IP3

移。为了防止整体结构的相位误差, SP4T开关应在所需频带内 提供良好的隔离(即>20 dB)。在这四条延迟线中,一条被指定 为参考延迟线,而其余三条引入额外相移的线路则根据参考延 迟线进行标准化处理,如图6所示。这些延迟线印制在PCB上, 因此元件变化对相位步长的影响更小。

通过比较其中一条延迟线与参考线的物理长度差异,可以确定 相对相移,如下式所示:

$$\Delta \Psi = 2\pi \left(\frac{\Delta L}{\lambda}\right) \tag{5}$$

在该等式中, ΔL表示两条延迟线的物理长度差, λ表示PCB上的 波长。该等式表明, 相移与频率呈线性关系, 因此可以轻松地 将此方法扩展到各种频率或宽带宽上。

这种方法提出了特定要求,包括同时实现低插入损耗、高RF功 率处理能力和高IP3性能,以及在此背景下采用的SP4T开关应能 高速切换。同时实现这些特性是一项艰巨的任务,然而,ADI公 司的高线性度SP4T ADRF5347 满足这些要求。它在3.6 GHz时的插入 损耗为0.4 dB,同时输入IP3额定值超过84 dBm。此外,器件具备 平均值37 dBm、峰值47 dBm的RF功率处理能力,适合处理以高峰 均比著称的复杂通信信号。值得注意的是,其切换操作可在约 700 ns内完成,这一特性由其专利设计实现,符合56无线电标准 的严格要求。

背靠背SP4T移相器是一种空间利用率很高的实现方案,如图7所 示。该参考设计在3.6 GHz时实现了30°相位增量。SP4T元件尺寸为 4 mm × 4 mm,两个元件之间间隔4 mm,电源和控制电容可以密 集安装。无需对每个SP4T开关进行单独控制,而是可以使用反 相逻辑进行编程,从而使用同一组控制线来控制两个开关。例 如,当第一个开关选择RF1臂时,第二个开关同时选择RF4臂,所 有这些都通过同一控制逻辑来实现。这种节省空间的移相器模 块可以在所有天线元件上进行复制。

该设计在Aerowave AW-300上实现,其中固有的低无源交调产物和低 RF损耗特性非常适合这种应用。RF衬底的选择不仅对减小损耗 具有重要意义,而且还可能影响整体端到端IP3,在其无源交调 特性不太高时影响更大。对于单个SP4T ADRF5347,输入IP3典型值 超过84 dBm。以级联配置连接两个这样的SP4T开关时,无论选择 什么相位线,端到端IP3性能均可达到81 dBm以上,如图8所示。

在不同延迟线之间切换是实现所需相移的简单方法。然而也许 注意确保这四条线在插入损耗和回波损耗方面的差异,因为这 种差异会带来不利影响。对于每种相位选择,SP4T开关都能表 现出优异的插入损耗和回波损耗性能,并实现稳健的级联性 能。如图9所示,在3.6 GHz时插入损耗保持在±0.025 dB范围内,并 且所有相位选择的回波损耗都优于24 dB。这种优异的表现得益 于SP4T开关(ADRF5347)的所有RF通道都能够同时实现低插入损耗和 低回波损耗。

结论

总之,基于SP4T开关的移相器利用HBF方法大大降低了mMIMO系统的成本。ADI公司的ADRF5347有效解决了后PA移相器的挑战,实现 了更低插入损耗、高线性度和稳健的功率处理。插入损耗低的 开关有助于直接提升无线电的能效比,从而降低运营商的电力 相关运营成本。

ADRF5347工作频率范围为1.8至3.8 GHz,可满足此频谱内各种mMIMO 应用的需求。预计mMIMO系统未来将扩展到7.125 GHz,本文提出的 原理为可扩展性打下了坚实基础。重要的是,ADRF5347不仅适用 于mMIMO系统,还可以用于小型蜂窝、宏基站、毫米波和卫星通 信等各种无线电系统,提升移相器的波束成形效能。

此外,这种创新方法并不局限于传统的通信系统,而是还能用 于雷达应用和RF检测/成像领域,证明了HBF广泛适用于解决各类 棘手技术挑战的潜力。本质上,这款器件为无线通信乃至更广 阔的领域开辟了经济高效、支持扩展且影响深远的解决方案。

参考文献

1 《爱立信移动报告》,爱立信,2024年。

² "利用超大规模MIMO提升5G-Advanced和66宏蜂窝容量",诺基 亚贝尔实验室,2021年10月。

³ Claire Masterson, "RF通信的数字预失真:从等式到实现方案", 《模拟对话》,第56卷,2022年4月。

作者简介

Dmitrii Prisiazhniuk是ADI公司现场应用工程师,常驻在德国慕尼黑,负责客户支持以及光学、无线电和云基础设施通信应用的开发工作。他在射频、光学和电源领域拥有约15年的经验。2021年加入ADI公司之前,他曾担任系统工程相关职位,负责开发汽车毫米波雷达。Dmitrii拥有德国慕尼黑工业大学的博士学位和美国昆藤商业与技术学院的MBA学位。

0

Delay Line 1

作者简介

Sinan Alemdar目前担任ADI公司微波通信部的首席应用工程师,在伊斯坦布尔设计中心工作。他负责为一系列RF产品提供应用支持,包括开关、衰减器和前端,曾在航空航天和防务行业工作了4年,随后于2016年加入ADI公司。Sinan拥有英国比尔肯特大学电气工程学士、硕士和博士学位。

如需了解区域总部、销售和分销商,或联系客户服务和 技术支持,请访问<u>analog.com/cn/contact</u>。

向我们的ADI技术专家提出棘手问题、浏览常见问题解 答,或参与EngineerZone在线支持社区讨论。 请访问ez.analog.com/cn。 ©2024 Analog Devices, Inc. 保留所有权利。 商标和注册商标属各自所有人所有。 "超越一切可能"是ADI公司的商标。

请访问analog.com/cn

 Image: Second state sta

⁴ Peter Delos、Bob Broughton和Jon Kraft, "相控阵天线方向图— 第1部分:线性阵列波束特性和阵列因子",《模拟对话》, 第54卷, 2020年5月。

《56用先进天线系统》, 56 Americas, 2019年8月。