



# 汽车LED驱动器 功率转换拓扑指南

Joshua Caldwell. 设计总监

### 引言

在很多系统中(包括汽车动力输出系统中部署的众多调节器). 功率转换控制器的设计都是一项困难而复杂的工作。本文说明 了LED驱动器使用的不同开关拓扑的优势、权衡取舍和应用、旨 在简化选择过程。

LED不同于传统的带有灯丝或气体成分的电灯。利用特定的半导 体结,LED制造商可以生成整个可见光范围的特定颜色的光,以 及红外线和紫外线。在汽车应用中,LED可以提高白天和夜间驾 驶的安全性。效率的提高可以延长电动汽车的电池寿命,而在 单个系统中使用多个LED可以避免单一部件的故障问题。

由于其多功能性、LED能够以多种不同的方式驱动。由于LED的 输出有良好的照明控制,因此LED负载与电力系统的传统负载不 同。LED只靠通过半导体结的精确控制电流来发光,而端口到 系统接地(或汽车系统中的底盘)的相对电压则与此无关。因 此,LED系统可以利用开关技术提供的不同拓扑。

# 如何为汽车LED系统选择正确的开关拓扑

汽车系统中特定开关拓扑的选择关系到整个系统设计: 应考虑 最小输入电压、最大串电压、底盘回路能力、短路输出能力、 最大输入电流、输出/LED电流和PWM调光。

## 降压(Buck)转换器

降压LED驱动器通过高于LED串总电压的电压调节LED串中的电 流。降压LED驱动器可以安全地短接到系统地、确保其本质安 全。它们具有底盘回流的能力(一条线用于供电),并且可以 轻松适应矩阵或动画应用。图1和图2中的示例原理图显示了控 制器调节高压侧开关进行电流控制的基本系统图。

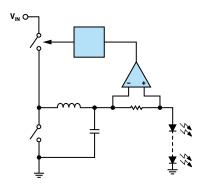



图1. 降压转换器

降压LED驱动器需要具备几个关键特性: 固定频率操作、通过出 色的开关控制和低电阻开关实现高效率、在整个模拟调光范围 内提供高精度,以及为获得出色的EMI,适当设计扩频调频。







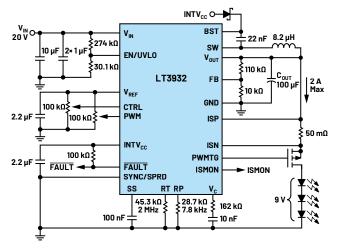



图2. 降压转换器示例: LT3932

#### 表1. 使用降压转换器作为LED驱动器的优势和权衡取舍

| 降压LED驱动器的优点                      | 降压LED驱动器<br>的权衡取舍   | 应用      |
|----------------------------------|---------------------|---------|
| 接地灯串-底盘回路                        | 输入电压必须高于<br>LED电压   | 远光灯/近光灯 |
| 矩阵开关可以并联<br>整个灯串                 | 大多数汽车系统需要<br>预升压调节器 | 转向灯/动画  |
| 更高的带宽<br>(>f <sub>sw</sub> 的1/5) |                     | 矩阵式前照灯  |
| 出色的EMI性能                         |                     | 短路安全系统  |
| 最小电感尺寸                           |                     |         |

# 升压(BOOST)转换器

升压LED驱动器通过低于LED串总电压的电压调节LED串中的电 流。这在很多汽车系统中很有用,其中很多LED都需要在单个串 中导通。典型的12 V汽车系统的工作电压范围为6 V至18 V, 这需 要将LED驱动器的电压降到6 V, 从而为LED提供较大的升压比, 以保持点亮。图3和图4中的示例原理图显示了控制器调节低压 侧开关进行电流控制的基本系统图。



图3. 升压转换器

#### 表2. 使用升压转换器作为LED驱动器的优势和权衡取舍

| 升压LED驱动器的优势         | 升压LED驱动器<br>的权衡取舍                                      | 应用      |
|---------------------|--------------------------------------------------------|---------|
| 接地-底盘回路             | 输入电压必须高于<br>LED电压                                      | 远光灯/近光灯 |
| 通常情况下总值最小<br>解决方案尺寸 | 更低的带宽<br>( <fsw的1 20)<="" td=""><td>平视显示器</td></fsw的1> | 平视显示器   |
| 良好的EMI性能            | 更高的额定电感电流                                              | 背光      |
| 电池直接向LED转换          | 无法将输出短接到地                                              |         |

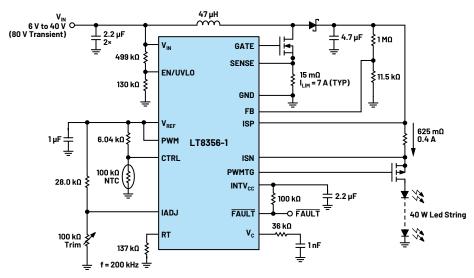



图4. 升压转换器示例: LT8356-1

## 使用升压转换器进行升压-降压

一些升压LED驱动器可配置为将LED阴极返回电源。这种配置称 为降压-升压。总输出电压为V<sub>N</sub>(V<sub>BATTERY</sub>),该电压加到LED串总电压 中。这种拓扑结构的优点是能够驱动一个高于、低于或等于电 源电压的LED串。这种拓扑结构的局限性是只受转换器的限制--低端受控制器IC的最小电源电压限制,高端受控制器IC的最大输 出电压限制。

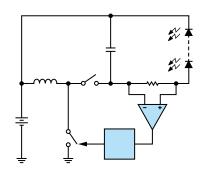



图5. 升压-降压转换器

#### 表3. 使用升压-降压转换器作为LED驱动器的优势和权衡取舍

| 升压-降压LED驱动器<br>的优势   | 升压-降压LED驱动器<br>的权衡取舍                                 | 应用             |
|----------------------|------------------------------------------------------|----------------|
| 电池直接向LED转换           | 效率较低                                                 | 远光灯/近光灯        |
| LED电压可能高于或<br>低于电源电压 | 更低的带宽<br>( <fsw的1 20)<="" td=""><td>转向灯</td></fsw的1> | 转向灯            |
| 良好的EMI性能             | 更高的额定电感电流                                            | 日间行车灯          |
| 可使用矩阵来短接<br>整个灯串     | 无法将输出短接到地                                            | 同一输出上有<br>多个灯串 |

## 使用升压转换器的降压模式

一些升压LED驱动器可配置为从电源降压 (而不是在标准降压模 式下以地为参考),从而构成降压模式配置。这种配置与降压 模式具有同样的局限性,即LED串的总电压必须低于输入电源电

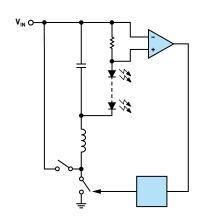



图7. 降压模式转换器

表4. 使用降压模式转换器作为LED驱动器的优势和权衡取舍

| 降压模式LED驱动器<br>的优势 | 降压模式LED驱动器<br>的权衡取舍   | 应用      |
|-------------------|-----------------------|---------|
| 良好的EMI性能          | 输入电压必须高于<br>LED电压     | 远光灯/近光灯 |
| 可使用矩阵来短接整<br>个灯串  | 大多数汽车系统需要<br>预升压调节器   | 转向灯     |
| 可将同一驱动器用于<br>多种应用 | 无法将输出<br>(LED阴极) 短接到地 | 日间行车灯   |

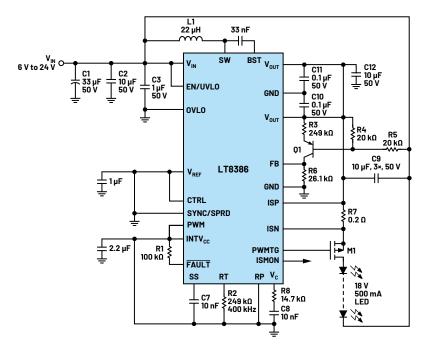



图6. 升压-降压转换器LT8386

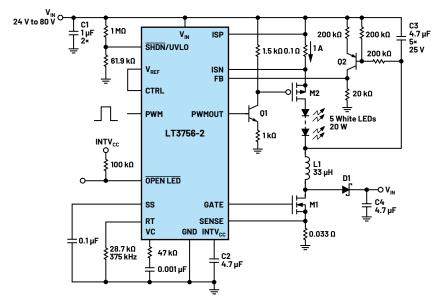



图8. 降压模式示例: LT3756-2

## 降压-升压转换器

降压-升压LED驱动器通过高于或低于LED串总电压的电源调节LED 电流。该转换器在降压模式下调节连接到输入电压的高压侧开 关, 在升压模式下调节输出侧的低压侧开关。这种拓扑结构最 复杂,但也是最灵活的。V<sub>IN</sub>和V<sub>OUT</sub>的范围仅受控制器IC的限制。 对于矩阵型应用, 这是一种不错的选择。

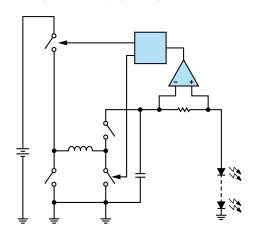



图9. 降压-升压转换器

#### 表5. 使用降压-升压转换器作为LED驱动器的优势和权衡取舍

| 降压-升压LED驱动器<br>的优势 | 降压-升压LED驱动器<br>的权衡取舍   | 应用      |
|--------------------|------------------------|---------|
| 最通用的拓扑             | 至少需要两个开关和<br>两个续流二极管   | 远光灯/近光灯 |
| 可使用矩阵来短接整<br>个灯串   | 通常情况下,转换<br>效率最低       | 转向灯     |
| 可将同一驱动器用于<br>多种应用  | 通常情况下, EMI性能<br>最低 (差) | 日间行车灯   |
|                    |                        | 短路安全系统  |

## 结论

汽车LED照明系统可通过多种不同的方式使用开关稳压器驱动。 根据应用的不同, 照明设计人员可通过选择开关拓扑和配置, 针对整个汽车的不同照明要求,设计完整的子系统。为系统选 择正确的功率转换开关拓扑和配置可优化复杂性、效率、EMI和 安全性等要求。

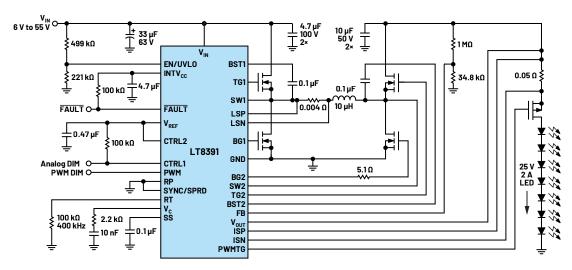



图10. 降压升压示例: LT8391



# 作者简介

Josh Caldwell曾在凌力尔特(现在为ADI公司的一部分)工作了10年,目前担任设计工程部门主管,负责单芯片降压、升压和控制器LED驱动器的定义、设计和开发工作。他拥有科罗拉多大学电气工程学士学位。业余时间,他喜欢骑自行车和绘画。