

优化信号链的电源系统 第2部分: 高速数据转换器

Patrick Errgy Pasaguian. 高级应用工程师 John Martin Dela Cruz. 应用工程师

简介

在"电源系统优化"系列文章的第1部分,我们介绍了如何量化 电源噪声灵敏度, 以及如何将这些量值与信号链中产生的实际 影响联系起来。有人问到: 高性能模拟信号处理器件要实现出 色性能, 真正的噪声限值是多少? 噪声只是设计配电网络(PDN)时 的一个可测量的参数。如第1部分所述,如果单纯只是最小化噪 声,可能需要以增大尺寸、提高成本或者降低效率为代价。优 化配电网络可以改善这些参数、同时将噪声降低到必要的水平。

本文在阐述高性能信号链中电源纹波的影响的基础上进一步分 析。我们将深入探讨如何优化高速数据转换器的配电网络。

我们将对标准PDN与经过优化的PDN进行比较、了解在哪些方面 可以实现空间、时间和成本优化。后续文章将探讨适合其他信 号链器件 (例如RF收发器) 的特定优化解决方案。

AD9175双通道12.6 GSPS高速数模转换器的电源 系统优化

AD9175是一款高性能、双通道、16位数模转换器(DAC), 支持高达 12.6 GSPS的DAC采样速率。该器件具有8通道、15.4 Gbps JESD204B数 据输入端口、高性能片内DAC时钟倍频器和数字信号处理功能, 适合单频段和多频段直接至射频(RF)无线应用。

图1. 集成在现成评估板上的AD9175高速DAC的标准PDN。

我们来看看如何为这个双通道高速DAC优化PDN。图1显示安装 在现成评估板上的AD9175高速DAC的标准配电网络。该PDN由一个 ADP5054分立式四通道开关和三个低压降(LD0)后置稳压器构成。 旨在验证是否可以改进和简化该PDN,同时确保其输出噪声不 会导致DAC性能大幅下降。

AD9175需要8个电源轨,可以分为4组,分别是.

- ▶ 1V模拟 (2个电源轨)
- 1V数字 (3个电源轨)
- 1.8 V模拟 (2个电源轨)
- 1.8 V数字 (1个电源轨)

分析. 噪声要求

在我们实施优化之前,必须先了解这些电源轨的电源灵敏度。 我们将重点讨论模拟电源轨, 因为相比数字电源轨, 它们对噪 声更加敏感。

模拟电源轨的电源调制比(PSMR)如图2所示。注意, 1V模拟电源 轨在1/f频率区域内较为敏感,而1.8 V模拟电源轨在开关转换器 的工作频率范围 (100 kHz至约1 MHz) 内更敏感。

图2.1V模拟电源轨和1.8V模拟电源轨上的AD9175高速DAC PSMR。

一种优化方法是使用带有LC滤波器的低噪声开关稳压器。图3 显示LT8650S Silent Switcher®稳压器 (带和不带LC滤波器) 在展频 (SSFM)模式关闭时的传导频谱输出。如第1部分所述, SSFM可以降 低开关频率噪声幅度, 但会因为三角调制频率在1/f区域产生噪 声峰值。由于1/f噪声已小幅偏离该阈值、增加的噪声可能超过 此电源轨的最大允许纹波阈值。因此,不建议在这种情况下使 用SSFM。最大允许电压纹波阈值代表电源纹波电平,当超过该 值时,DAC载波信号中的边带杂散将出现在DAC输出频谱的1 µV p-p 本底噪声上方。

从这些结果可以看出, 开关稳压器的1/f噪声没有超过1 V模拟电 源轨的最大允许纹波阈值。此外、LC滤波器足以将LT8650S的基 本开关纹波和谐波降至最大允许纹波阈值以下。

图3. LT8650S传导频谱输出与1V模拟电源轨的最大允许纹波阈值之间的 关系。

图4显示LT8653S (带和不带LC滤波器) 的传导频谱输出。如图所 示, 1.8 V电源轨的最大允许电压纹波不会在AD9175输出频谱的1 µV p-p本底噪声内产生杂散。可以看出, LT8653S的1/f噪声没有超过 最大允许纹波阈值,LC滤波器足以将LT8653S的基本开关纹波和 谐波降至最大允许纹波阈值以下。

图4. LT8653S传导频谱输出与1.8 V模拟电源轨的最大允许纹波阈值之间的 关系。

图5显示AD9175的优化配电网络。旨在提高效率,降低空间要求 以及图1中PDN的功率损耗,同时实现AD9175出色的动态性能。噪 声目标是基于图3和图4所示的最大允许波纹阈值。

优化的配电网络由LT8650S和LT8653S Silent Switcher稳压器,以及模 拟电源轨上的LC滤波器构成。在这个PDN中, 1V模拟电源轨由 LT8650S的Vouri供电, LT8650S后接LC滤波器, 1V数字电源轨直接由 同一个LT8650S的Vout2供电,其后无需连接LC滤波器。对于AD9175, 其数字电源轨对电源噪声不太敏感,因此可以在不降低DAC动态 性能的情况下直接为这些电源轨供电。带有LC滤波器的LT8653S 直接为1.8 V模拟和1.8 V数字电源轨供电。

表1比较了优化PDN和标准PDN (如图1所示, 由一个四通道降压 开关和三个LDO稳压器构成)的性能。从组件大小来看,优化后 的解决方案比标准解决方案减小70.2%。此外,效率从69.2%提 高到83.4%, 整体节能1.0 W。

表1. AD9175优化PDN与标准PDN进行比较

	标准PDN (图1)	优化PDN (图5)	改善
组件大小	142.4 mm ²	42.4 mm²	70.2%
整体效率	69.2%	83.4%	14.2%
功率损耗	1.8 W	0.8 W	1.0 W

为了验证优化PDN的噪声性能是否足以满足高性能技术规格要 求,对AD9175进行相位噪声评估,并检测载波周围边带杂散的 DAC输出频谱。如表2所示,相位噪声检测结果在数据手册技术 规格规定的限值内。AD9175输出频谱的载波频率很干净,没有可 见的边带杂散,如图6所示。

图6. 使用优化PDN的AD9175输出频谱 (1.8 GHz、-7 dBFS载波)。

表2. 使用图5中的优化PDN时, AD9175在1.8 GHz载波下 的相位噪声

	相位噪声(dBc/Hz)				
频率偏移	数据手册中的 典型技术规格	DACO评估结果	DAC1评估结果		
1.0 kHz	-97	-115	-115		
10.0 kHz	-105	-121	-121		
100.0 kHz	-114	-130	-130		
600.0 kHz	-126	-135	-135		
1.2 MHz	-133	-143	-143		
1.8 MHz	-137	-148	-148		
6.0 MHz	-148	-150	-150		

图5. AD9175高速DAC的优化PDN。

AD9213 10.25 GSPS高速模数转换器的电源系统 优化

AD9213是一款单通道、12位、6 GSPS或10.25 GSPS、射频(RF)模数转换 器(ADC), 具有6.5 GHz输入带宽。AD9213支持高动态范围频率和需 要宽瞬时带宽和低转换误差率(CER)的时域应用。AD9213具有16通 道JESD204B接口,以支持最大带宽能力。

图7显示现成评估板上AD9213高速ADC的标准配电网络,由一个 LTM4644-1 µModule®四通道开关和两个线性稳压器构成。该解决方 案的大小和能效都较为高效, 但它还可以改进吗? 如本系列文 章所述, 优化的第一步是量化AD9213的灵敏度——即实际设置 PDN输出噪声的限值, 以免导致ADC性能大幅下降。在这里, 我 们将介绍使用两个uModule稳压器的另一种替代PDN解决方案,并 比较该方案与标准现成解决方案的性能。

AD9213 10 GSPS ADC需要15个不同的电源轨,这些电源轨可以分为4组.

- ▶ 1V模拟 (3个电源轨)
- 1V数字 (6个电源轨)
- 2V模拟 (2个电源轨)
- 2V数字 (4个电源轨)

分析. 噪声要求

我们探讨的优化解决方案使用两个μModule稳压器 (LTM8024和 LTM8074) 和一个LDO后置稳压器取代LTM4644-1 µModule四通道开关 和两个线性稳压器。

图8. 在2.6 GHz载波频率下, AD9273高速ADC的1 V模拟电源轨和2 V模拟电源轨 的PSMR。

图8显示在2.6 GHz载波频率下, AD9213的1 V模拟电源轨和2 V模拟 电源轨的PSMR结果。1V模拟电源轨的PSMR比2V模拟电源轨更低, 所以它更加敏感。

图7. 集成在现成评估板上的AD9213高速DAC的标准PDN。

图9显示LTM8024 (带和不带LDO稳压器) 在强制连续模式(FCM)下 的频谱输出。图中还显示最大允许电压纹波阈值的叠加不会在 AD9213输出频谱的-98 dBFS本底噪声中产生杂散。直接为1 V模拟电 源轨供电时,LTM8024输出中未经滤波的1/f噪声和基波开关杂散 超过了最大允许纹波阈值。

为LTM8024添加ADP1764 LD0后置稳压器可将1/f噪声、基本开关纹波 及其谐波降低至最大允许纹波阈值以下,如图9所示。需要在 线性稳压器输入端提供一些裕量电压。在本例中, 从LTM8024输 出1.3 V至后置稳压器的输入。这个300 mV符合LDO稳压器的推荐裕 量电压规格,同时能够最大限度降低其功率损耗,比标准解决 方案使用的500 mV更为合适。

图9. LTM8024频谱输出与1 V模拟电源轨的最大允许纹波阈值之间的关系。

对于2 V电源轨。图10显示LTM8074 μModule稳压器 (带和不带LC滤 波器) 在强制连续模式下的频谱输出。图中也显示了最大允许 电压纹波阈值。此阈值代表电源纹波电平,当超过该值时,DAC

载波信号中的边带杂散将出现在AD9213输出频谱的-98 dBFS本底 噪声上方。这里、与1V模拟电源轨类似、直接为2V模拟电源轨 供电时, 稳压器开关杂散会超过最大允许纹波阈值。但是, 不 需要LDO稳压器,而是由LTM8074输出端的LC滤波器将开关杂散降 低至最大允许纹波阈值以下。

图10. LTM8074频谱输出与2 V模拟电源轨的最大允许纹波阈值之间的关系。

结果. 优化PDN

图11显示根据电源灵敏度评估结果得到的优化配电网络。与 标准解决方案一样,它使用三个功率IC: 在本例中,分别是 LTM8024、LTM8074和ADP1764。在该解决方案中, LTM8024 µModule稳 压器Voun由ADP1764进行后置调节,以便为相对敏感的1V模拟电源 轨供电。1V数字电源轨直接由LTM8024的Voure供电。与AD9175 DAC类 似, AD9213的数字电源轨对电源噪声不太敏感, 因此可以直接为 这些电源轨供电、并且不会降低DAC动态性能。带有LC滤波器的 LTM8074为2 V模拟和2 V数字电源轨供电。

图11. AD9213高速ADC的优化PDN。

表3比较了优化PDN与现成标准PDN的性能。如图7所示、标准 PDN使用一个四通道降压开关和两个LDO稳压器。组件大小减小 15.4%, 效率从63.1%提高到73.5%, 整体节能1.0 W。

表3. AD9213高速ADC的优化PDN与标准PDN比较

	当前的PDN 如图7所示	优化的PDN 如图11所示	相比当前PDN,优 化PDN实现的改善
组件大小	153.0 mm ²	129.5 mm²	15.4%
整体效率	63.1%	73.5%	10.4%
功率损耗	2.5 W	1.5 W	1.0 W

为了验证优化PDN的性能,从SFDR和SNR两个方面对AD9213进行评 估、并检查载波周围边带杂散的FFT输出频谱。结果显示、SNR 和SFDR的性能在数据手册给出的技术规格限值范围内,如表4所 示。图12显示AD9213的FFT输出频谱, 其载波频率很干净, 没有可 见的边带杂散。

表4. 使用图11中的优化PDN时, AD9213在2.6 Ghz载波下 的动态性能

ADC参数	评估结果	数据手册中的技术规格		
		最小值	典型值	最大值
SNR (dBFS)	52.6	50.1	52.3	_
SFDR (dBFS)	72.0	60.0	76.0	_

图12. 使用图11中的优化PDN时, AD9213的FFT频谱 (2.6 GHz、-1 dBFS载波)。

结论

高性能数据转换器的现成评估板中包含配电网络,旨在满足这 些信号处理IC的噪声要求。即使这些评估板在设计时经过了仔 细考量,配电网络仍有改进的空间。本文研究了两种PDN:一 种适用于高速DAC,一种适用于高速ADC。与标准PDN相比,我们 的优化方案在空间要求、效率、尤其是重要的热性能方面都有 所改进。通过使用替代设计,或当前不可用的器件,可以进一 步改善某些参数。请继续关注"电源系统优化"系列文章,包 括RF收发器的PDN优化。

参考文献

¹ Patrick Errgy Pasaguian和Pablo Perez, Jr。"优化信号链的电源系统— 第1部分: 多少电源噪声可以接受?"模拟对话,第55卷第1期, 2021年3月。

Delos, Peter, "电源调制比揭秘: PSMR与PSRR有何不同?" ADI公 司, 2018年12月。

Delos、Peter和Jarrett Liner。"改进的DAC相位噪声测量支持超低相 位噪声DDS应用。"模拟对话,第51卷第3期,2017年8月。

"数据转换基本指南。" ADI公司

Umesh Jayamohan。"为GSPS或RF采样ADC供电,开关与LDO", ADI 公司, 2015年11月。

Limjoco、Aldrick、Patrick Errgy Pasaquian和Jefferson Eco。 "Silent Switcher µModule稳压器为GSPS采样ADC提供低噪声供电,并节省一 半空间。"ADI公司, 2018年10月。

Eco, Jefferson和Aldrick Limjoco。"铁氧体磁珠揭秘。"模拟对话, 第50卷第1期, 2016年2月。

Umesh Jayamohan。"高速ADC电源域非常见问题解答。"模拟对话, 第52卷第2期, 2018年5月。

作者简介

Patrick Errgy Pasaquian已在ADI公司工作七年。他于2014年加入ADI,目前担任航空航天和防务(ADEF)电源系统应用工程师。他曾担任过应用开发、设计评估、ADEF信号链连接电源和EngineerZone及Who's Who的客户支持等工程职务。他撰写过多篇论文并在ADI综合技术大会(GTC)、亚洲技术研讨会(ATS)和ADI菲律宾技术研讨会(ADTS)上展示了多个项目。他毕业于菲律宾伊洛里奥市菲律宾中部大学,获电子工程学士学位。联系方式:patrick.pasaquian@analog.com。

作者简介

John Martin Dela Cruz于2020年10月加入ADI公司,担任电源应用工程师。他主要负责航空航天和防务(ADEF)电源系统。他毕业于菲律宾大学(位于菲律宾奎松市迪里曼),获电子工程学士学位。联系方式:johnmartin.delacruz@analog.com。

技术支持,请访问analog.com/cn/contact。

如需了解区域总部、销售和分销商,或联系客户服务和