

ADI Analog Dialogue

用于地震学和能源勘探应用的 低噪声、低功耗DAQ解决方案

David Guo,产品应用工程师 Steven Xie, 产品应用工程师

精密数据采集(DAQ)系统在工业应用中深受欢迎。一些DAQ应用中 需要低功耗和超低噪声。一个例子是地震传感器相关应用,从 地震数据中可以提取大量信息,这些信息可用于广泛的应用, 例如结构健康监测、地球物理研究、石油勘探甚至工业和家庭 安全。

DAO信号链要求

地震检波器是将地振动信号转换成电信号的机电转换装置、适 用于高分辨率地震勘探。它们沿着阵列被植入地面、用于测量 地震波从非连续面(如层面)反射回来的时间,如图1所示。

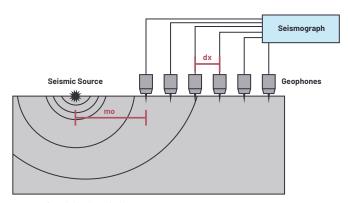


图1. 地震源和检波器阵列

要捕获地震检波器的小输出信号,必须构建高灵敏度DAQ信号链 以进行数据分析。总均方根噪声应为1.0 uV rms,有限的平坦低通 带宽范围为300 Hz至400 Hz左右,同时信号链应实现大约-120 dB的 THD。由于地震仪器由电池供电,因此功耗应控制在约30 mW。

本文介绍两种信号链解决方案, 其达成的目标要求如下:

- ▶ PGIA增益: 1、2、4、8、16
- ▶ 集成可编程宽带滤波器的ADC
- ▶ 增益 = 1时 (-3 dB带宽为300 Hz至约400 Hz) 的RTI噪声为1.0 µV rms
- ▶ THD: -120 dB (增益 = 1时)
- ▶ CMRR > 100 dB (增益 = 1时)
- ▶ 功耗 (PGIA加ADC) . 33 mW
- ▶ 第二通道用于自测

DAO信号链解决方案

ADI网站上没有一款精密ADC具备所有这些特性并能实现如此低 的噪声和THD,也没有一款PGIA能提供如此低的噪声和功耗。但 是, ADI公司提供了出色的精密放大器和精密ADC, 可使用这些器 件构建信号链以达成目标。

为了构建低噪声、低失真和低功耗PGIA、超低噪声ADA4084-2或零 漂移放大器ADA4522-2是不错的选择。

关于非常高精度的ADC、24位Σ-Δ型ADC AD7768-1或32位SAR型ADC LTC2500-32是上上之选。它们提供可配置的ODR, 并集成平坦低通 FIR滤波器、适合不同的DAO应用。

地震信号链解决方案: ADA4084-2 PGIA和AD7768-1 图2显示了整个信号链。ADA4084-2、ADG658和0.1%电阻可以构建低 噪声、低THD PGIA, 提供最多八个不同的增益选项。AD7768-1是单 通道、低功耗、-120 dB THD平台。它具有低纹波可编程FIR、DC至 110.8 kHz数字滤波器,使用LT6657作为基准电压源。

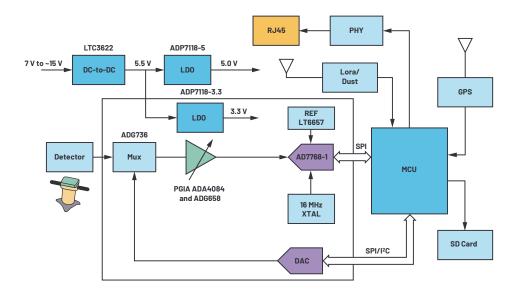


图2. ADA4084-2 PGIA和AD7768-1加MCU滤波信号链解决方案

AD7768-1以1 kSPS的0DR运行时,均方根噪声为1.76 µV rms: 在低功耗 模式下, 功耗为10 mW。为了实现最终1.0 µV rms噪声, 它可以更 高的ODR运行,例如中速模式下的16 kSPS。当AD7768-1以较高调制 器频率运行时, 它具有较低的本底噪声 (如图3所示) 和较高的 功耗。可以在MCU软件中实现平坦低通FIR滤波器算法,以消除 较高带宽噪声,并将最终ODR降至1 kSPS。最终均方根噪声将是 3.55µV的大约四分之一, 即0.9 µV。

ODR (kSPS)	Decimation Rate	-3 dB Bandwidth (kHz)	Shorted Input Dynamic Range (dB)	RMS Noise (µV	
Fast Mode					
256	32	110.8	108.43	10.98	
128	64	55.4	111.96	7.31	
64	128	27.7	115.15	5.06	
32	256	13.9	118.23	3.55	
16	512	6.9	121.20	2.52	
8	1024	3.5	124.16	1.79	
Median Mode					
128	32	55.4	108.45	10.94	
64	64	27.7	111.89	7.37	
32	128	13.9	115.22	5.02	
16	256	6.9	118.22	3.55	
8	512	3.5	121.23	2.51	
4	1024	1.7	124.17	1.79	
Low Power Mode					
32	32	13.9	108.54	10.84	
16	64	6.9	112.12	7.17	
8	128	3.5	115.30	4.97	
4	256	1.7	118.31	3.52	
2	512	0.87	121.22	2.52	
1	1024	0.43	124 33	1.76	

图3. 利用MCU后置滤波平衡AD7768-1的ODR以达到目标噪声性能。

作为一个例子, MCU软件FIR滤波器可以按图4所示构建, 以平衡 性能和群延迟。

地震信号链解决方案.

ADA4084-2 PGIA和LTC2500-32

LTC2500-32是一款集成可配置数字滤波器的低噪声、低功耗、高 性能32位SAR ADC。32位数字滤波的低噪声和低INL输出、使它特别 适合地震学和能源勘探应用。

高阻抗源应加以缓冲以使采集期间的建立时间最短,并优化开 关电容输入SAR ADC线性度。为获得最佳性能,应使用缓冲放大 器来驱动LTC2500-32的模拟输入。必须设计一个分立PGIA电路来 驱动LTC2500-32, 以实现低噪声和低THD (PGIA部分引入的)。

PGIA实现

PGIA电路的主要规格包括:

- ▶ 电源: 5 V (最小值)
- ▶ AD7768-1有19.7 mW的功耗,因此PGIA电路的功耗应小于13.3 mW, 才能满足33 mW的功耗目标
- ▶ 噪声: 增益 = 1时的噪声为0.178 μV rms, 约为AD7768-11.78 μV rms的 1/10

有三类PGIA拓扑结构:

- ▶ 集成PGIA
- ▶ 集成仪表放大器的分立PGIA
- ▶ 带运算放大器的分立PGIA

表1列出了ADI公司的数字PGIA。LTC6915的I。最低。噪声密度为50 nV/ √Hz, 430 Hz带宽内的积分噪声为1.036 μV rms, 超过0.178 μV rms的目 标值。因此,集成PGIA不是一个好的选择。

表2列出了几种仪表放大器,包括300µA I₀的AD8422。它在430 Hz带 宽内的积分噪声为1.645 µV rms, 因此也不是一个好的选择。

图4. MCU后置FIR滤波器级

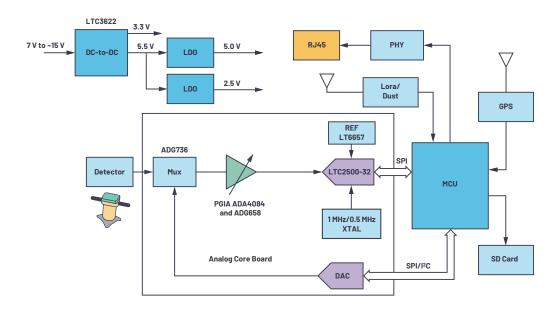


图5. ADA4084-2 PGIA和LTC2500-32信号链解决方案

Table 2. Digital Filter Parameters for Different Filter Types and Down-Sampling Factors

FILTER TYPE	DOWN- SAMPLING FACTOR	OUTPUT DATA RATE		−3dB E	BANDWIDTH	FILTER	GROUP DELAY	DYNAMIC RANGE	NOISE (uV
	(DF)	f _{SMPL} = 1Msps	f _{SMPL} = 1.024Msps	f _{SMPL} = 1Msps	f _{SMPL} = 1.024Msps	LENGTH	(f _{SMPL} = 1Msps)	COLUMN TO SERVICE STREET	RMS)
	4	250ksps	256ksps	85.74kHz	87.80kHz	140	70µs	110.7	10.69
	8	125ksps	128ksps	42.92kHz	43.95kHz	280	140µs	114	7.34
	16	62.5ksps	64ksps	21.47kHz	21.98kHz	560	280µs	116.8	5.33
	32	31.25ksps	32ksps	10.73kHz	10.99kHz	1120	560µs	120	3.68
	64	15.6ksps	16ksps	5.37kHz	5.50kHz	2240	1120µs	122.8	2.66
1200	128	7.8ksps	8ksps	2.68kHz	2.75kHz	4480	2240µs	126.1	1.83
Flat Passband	256	3.9ksps	4ksps	1.34kHz	1.37kHz	8960	4480µs	129	1.31
i doobaila	512	1.95ksps	2ksps	670.85Hz	686.95Hz	17920	8960µs	131.4	0.98
	1024	977sps	1ksps	335.42Hz	343.47Hz	35840	17920µs	134	0.73
	2048	488sps	500sps	167.71Hz	171.74Hz	71680	35840µs	136.8	0.53
	4096	244sps	250sps	83.85Hz	85.87Hz	143360	71680µs	138.1	0.45
	8192	122sps	125sps	41.93Hz	42.93Hz	286720	143360µs	139.8	0.37
	16384	61sps	62.5sps	20.96Hz	21.47Hz	573440	286720µs	140.6	0.34

图6. 不同降采样系数下的LTC2500-32平坦通带滤波器噪声

表1. 数字PGIA

产品型号	增益 (最小 值,单 位: V/V)	增益 (最大 值, 单 位: V/V)	l _v /放大器 (最大 值, 单 位: mA)	V _s 范围 (最小 值, 单 位: V)	V _s 范围 (最大 值, 单 位: V)	输入电压 噪声 (典型值, 单 位: nV/√Hz)
LTC6915	1	4096	1.6	2.7	11	50
AD8557	28	1300	1.8	2.7	5.5	32
AD8556	70	1280	2.7	5	5.5	32
AD8250	1	10	4.5	10	30	18
AD8251	1	8	4.5	10	34	18

表2. 仪表放大器

产品型号	增益 (最小 值, 单 位: V/V)	增益 (最大 值, 单 位: V/V)	l₀/放大器 (最大値)	V _s 范围 (最小 值, 单 位: V)	V _s 范围 (最大 值, 单 位: V)	输入电压 噪声 (典型值, 单 位: nV/√Hz)
AD8422	1	1000	300 µA	4.6	36	8
LT1168	1	10,000	530 µA	4.6	40	10
AD8220	1	1000	750 µA	4.5	36	14
AD8224	1	1000	800 μΑ	4.5	36	14
AD8221	1	1000	1 mA	4.6	36	8

表3. 低噪声、低功耗运算放大器

器件	V _{os} (最大值, 单位: μV)	I _{BIAS} (最大值)	GBP (典型值, 单位: MHz)	0.1 Hz至10 Hz V _{NOISE} (典型值, 单位: nV p-p)	V _{noisE} 密度 (典型值 <u>,</u> 单位:nV/√Hz)	电流噪声密度 (典型值, 单位: fA/√Hz)	l₀/放大器 (典型值, 单位: µA)	V _s 范围 (最小值, 单位: V)	V _s 范围 (最大值, 单位: V)
ADA4522-2	5	150 pA	2.7	117	5.8	800	830	4.5	55
ADA4084-2	100	250 nA	15.9	100	3.9	550	625	3	30

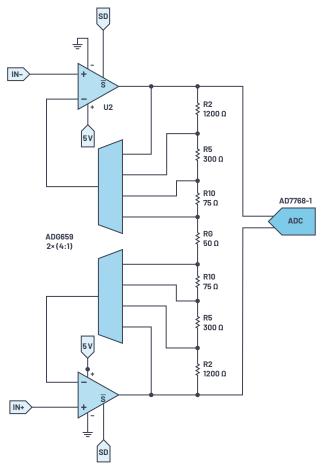


图7. 分立PGIA框图

使用运算放大器构建分立PGIA

"可编程增益仪表放大器,找到最适合您的放大器"一文讨论 了各种集成PGIA,并为构建满足特定要求的分立PGIA提供了很好 的指导建议2。图7显示了分立PGIA电路的框图。

可以选择低电容和5 V电源的ADG659/ADG658。

对于运算放大器, I₀ (每通道<1 mA) 和噪声 (电压噪声密度<6 nW√Hz) 是关键规格。精密运算放大器ADA4522-2和ADA4084-2是很好的选择, 其特性列于表3中。

对于增益电阻,选择1.2 kg/300 g/75 g/25 g电阻以实现1/4/16/64增益。 电阻越大,噪声可能会增加,而电阻越小,需要的功耗越多。 如果需要其他增益配置,必须仔细选择电阻以确保增益精度。

差分输入ADC起到减法器的作用。ADC的CMRR大于100 dB,可满足系统要求。

噪声仿真

可以使用LTspice®来仿真分立PGIA的噪声性能。积分噪声带宽为 430 Hz。表4显示了两个不同PGIA和AD7768-1的噪声仿真结果。ADA4084 解决方案具有更好的噪声性能,尤其是在高增益时。

表4. 噪声仿真结果

	ADA4084 PGIA 和AD7768-1	ADA4522 PGIA 和AD7768-1
增益 = 1时430 Hz带宽内的RTI积分噪声 (µV rms)	1.765	1.774
增益 = 4时430 Hz带宽内的RTI积分噪声 (μV rms)	0.744	0.767
增益 = 16时430 Hz带宽内的RTI积分噪声 (µV rms)	0.259	0.311
增益 = 64时430 Hz带宽内的RTI积分噪声 (µV rms)	0.148	0.225

在环补偿电路驱动LTC2500-32

AD7768-1集成了预充电放大器,可减轻驱动要求。对于SAR ADC,例如LTC2500-32,一般建议使用高速放大器作为驱动器。在此DAQ应用中,带宽要求很低。为了驱动LTC2500-32,建议使用一个由精密放大器(ADA4084-2)构成的在环补偿电路。图8显示了用于驱动LTC2500-32的在环补偿PGIA。该PGIA具有如下特性.

- ▶ R22/C14/R30/C5和R27/C6/R31/C3关键元件,用以提高在环补偿电 路的稳定性。
- 使用ADG659, A1/A0 = 00, 增益 = 1, 上方放大器的反馈路径为放大器输出→R22→R30→S1A→DA→R6→AMP IN。
- ▶ 使用ADG659, A1/A0=11, 增益=64, 上方放大器的反馈路径为放大器输出→R22→R8→R10→R12→S4A→DA→R6→AMP-IN。

PGIA连接到LTC2500-32EVB以验证性能。试验不同的无源元件 (R22/C14/R30/C5和R27/C6/R31/C3) 值,以在不同增益(1/4/16/64)下实现更好的THD和噪声性能。最终元件值为:R22/R27 = $100~\Omega$,C14/C6 = 1~nF,R30/R31 = $1.2~k\Omega$,C3/C5 = $0.22~\mu$ F。PGIA以下的增益为1时的实测3 dB带宽约为16 kHz。

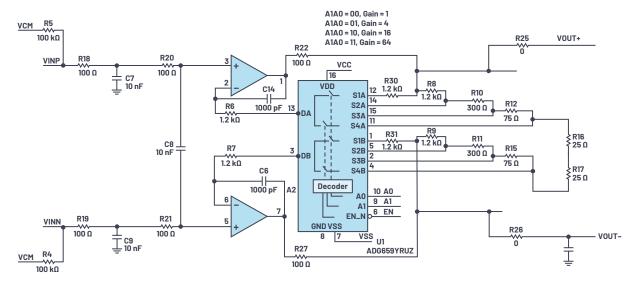


图8. PGIA驱动LTC2500-32

试验台评估设置

为了测试噪声、THD和CMRR性能,将分立ADA4084-2 PGIA和AD7768-1板 做成完整解决方案。该解决方案与EVAL-AD7768-1评估板兼容,因 而可以与控制板SDP-H1接口。因此,可以使用EVAL-AD7768FMCZ软件 GUI来收集和分析数据。

ADA4084-2 PGIA和LTC2500-32板设计为备选的完整解决方案。电路板 与SDP-HI控制板接口,并由LTC2500-32FMCZ软件GUI控制。

两个板的PGIA增益均被设计为1/2/4/8/16, 这与图8所示不同。表5 显示了这两个板的评估结果。

图9. ADA4084-2 PGIA和AD7768-1评估板解决方案

表5. 信号链解决方案测试结果

秋·旧与城州火力	大八八八八		
	ADA4084-2、 AD7768-1 (中速模式, FMOD = 4 MHz, ODR = 16 kSPS) +	ADA4084-2、 AD7768-1 (中速模式, FMOD = 4 MHz, ODR = 16 kSPS) + MCU FIR和DEC至 ODR = 16 k/16=1 kSPS	ADA4084-2 \ LTC2500-32 ADC MCLK = 1 MHz
增益 = 1时的RTI噪声 (μV rms)	3.718	0.868	0.82
增益 = 2时的RTI噪声 (μV rms)	1.996	0.464	0.42
增益 = 4时的RTI噪声 (μV rms)	1.217	0.286	0.3
增益 = 8时的RTI噪声 (μV rms)	0.909	0.208	0.24
增益 = 16时的RTI噪声 (μV rms)	0.808	0.186	0.19
增益 = 1时的THD (dB)	-125	-125	-122
增益 = 2时的THD (dB)	-125	-125	-119
增益 = 4时的THD (dB)	-124	-124	-118
增益 = 8时的THD(dB)	-120	-120	-117
增益 = 16时的THD (dB)	—115	—115	—115
增益 = 1时的CMRR(dB)	131	131	114
增益 = 4时的CMRR(dB)	117	117	121
增益 = 16时的CMRR (dB)	120	120	126
Pd典型值(mW)	31.3	31.3	33.2

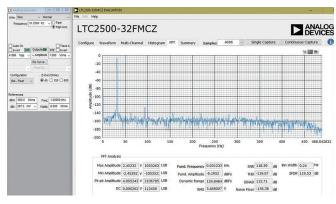


图10. 增益为1时的ADA4084-2 PGIA和LTC2500-32板FFT

结论

针对地震学和能源勘探应用, 为了设计一个非常低噪声和低功 耗的DAQ解决方案,可以使用低噪声、低THD的精密放大器设计 分立PGIA, 以驱动高分辨率精密ADC。这种解决方案可以根据功 耗要求灵活地平衡噪声、THD和ODR。

- ▶ LTC2500-32的低噪声性能加上ADA4084-2和LTC2500-32的优点,使 得解决方案表现出最佳噪声性能,无需MCU进一步滤波处理。
- ▶ 在PGIA增益 = 1时, ADA4522-2和ADA4084-2都有良好的噪声性能。 噪声性能约为0.8 µV rms。

- ▶ ADA4084-2在高增益时具有更好的噪声性能。在增益 = 16时, ADA4084-2和LTC2500-32的噪声为0.19 μV rms, 比ADA4522-2的0.25 μV rms要好。
- ▶ 对于AD7768-1, 借助MCU滤波, ADA4084-2和AD7768-1解决方案表现 出与ADA4084-2和LTC2500-32解决方案相似的噪声性能。

本文给出的数据采集解决方案要求低噪声和低功耗,而带宽有 限。其他DAO应用会有不同的性能要求。如果低功耗不是必需 的,可以使用如下运算放大器来构建PGIA:

- ▶ 最低噪声: 可以考虑LT1124和LT1128以获得最佳噪声性能。
- ▶ 最低漂移:新型零漂移放大器ADA4523具有比ADA4522-2和 LTC2500-32更好的噪声特性。
- ▶ 最低偏置电流。如果传感器的输出电阻较高,建议使用 ADA4625-1.
- ▶ 较高带宽: 当构建高带宽DAQ应用中的高带宽、低噪声PGIA 时, ADA4807、LTC6226和LTC6228是很好的解决方案。

ADA4254和LTC6373也是很好的选择。ADA4254是一款零漂移、高电 压、1/16至~176增益的鲁棒PGIA,而LTC6373是一款25 pA IBIAS、36 V、 0.25至~16增益、低THD PGIA。

表6. 精密运算放大器选型表

产品型号	V _{os} (最大值, 单位: μV)	I _{BIAS} (最大值)	GBP (典型值, 单位:MHz)	0.1 Hz至10 Hz V _{NOISE} (典型值, 单位: nV p-p)	V _{NOISE} 密度 典型值	电流噪声 密度 典型值	l₀/放大器 典型值	V _s 范围 (最小值, 单位: V)	V₅范围 (最大值, 単位: V)
ADA4522-2	5	150 pA	2.7	117	5.8 nV/√Hz	800 fA/√Hz	830 μΑ	4.5	55
ADA4084-2	100	250 nA	15.9	100	3.9 nV/√Hz	550 fA/√Hz	625 μΑ	3	30
ADA4625-1	80	75 pA	18	150	3.3 nV/√Hz	4.5 fA/√Hz	4 mA	5	36
LT1124	70	20 nA	12.5	70	2.7 nV/√Hz	300 fA/√Hz	2.3 mA	8	44
LT6233	500	3 μΑ	60	220	1.9 nV/√Hz	430 fA/√Hz	1.15 mA	3	12.6
ADA4084-1	100	250 nA	15.9	100	3.9 nV/√Hz	550 fA/√Hz	565 μΑ	3	30
ADA4807-1	125	1.6 μΑ	200	160	3.3 nV/√Hz	700 fA/√Hz	1 mA	2.7	11
ADA4523-1	5	300 pA	5	88	4.2 nV/√Hz	1 pA/√Hz	4.5 mA	4.5	36
LT1128	40	90 nA	20	35	850 pV/√Hz	1 pA/√Hz	7.4 mA	8	44
LTC6228	95	25 μΑ	890	940	880 pV/√Hz	3 pA/√Hz	16 mA	2.8	11.75
LTC6226	95	20 μΑ	420	770	1 nV/√Hz	2.4 pA/√Hz	5.5 mA	2.8	11.75

参考资料

- ¹地震检波器。ScienceDirect。
- ² Jesse Santos、Angelo Nikko Catapang和Erbe D. Reyta。"了解地震信号 检测网络的基础知识"。模拟对话,第53卷第4期,2019年12月。
- ³Kristina Fortunado。"可编程增益仪表放大器,找到最适合您的放大器"。模拟对话,第52卷第4期,2018年12月。

作者简介

David Guo是ADI公司线性产品部门的产品应用工程师。他于2007年加入ADI公司中国应用中心,担任应用工程师,后于2011年6月转任精密放大器部门担任应用工程师。自2013年1月起,David担任ADI公司线性产品部门的应用工程师。他负责精密放大器、仪表放大器、高速放大器、电流检测放大器、乘法器、基准电压源和RMS-DC等产品的技术支持工作。David拥有北京理工大学机电工程学士学位和硕士学位。联系方式:david.guo@analog.com。

作者简介

Steven Xie于2011年3月加入ADI北京分公司,担任ADI中国设计中心的产品应用工程师。他负责中国市场SAR型ADC产品的技术支持工作。在此之前,他曾在无线通信基站领域做过四年的硬件设计人员。2007年,Steven毕业于北京航空航天大学,并获得通信与信息系统硕士学位。联系方式:steven.xie@analog.com。

