

ADI AnalogDialogue

轻松快速设计 开关模式电源 EMI滤波器

Henry Zhang,应用总监 Sam Young,应用经理

简介

凭借其高功率转换效率,开关模式电源在现代电子系统中被广 泛应用。但是,开关模式电源数量增加的一个副作用是会产生 开关噪声。这些噪声一般被称为电磁干扰(EMI)、EMI噪声,或者 单纯就是噪声。例如,典型的降压转换器输入侧的开关电流属 于脉动电流,富含谐波成分。快速开启和关闭功率晶体管会导 致电流突然中断,导致高频电压振荡和尖峰。

问题在于, 高频率噪声会与系统中的其他器件耦合, 降低敏感 的模拟或数字信号电路的性能。因此, 工业界产生了许多标 准, 来设定了可接受的EMI限值。为了满足开关模式电源的这些 限值, 我们首先必须量化其EMI性能, 如果必要, 还要添加合适 的输入EMI滤波, 以衰减EMI噪声。遗憾的是, EMI分析和滤波器设 计对工程师常常是一项困难任务, 需要反复进行设计、构建、 测试和重新设计, 非常耗费时间一这还是在拥有合适的测试设 备的前提下。为了加快EMI滤波器设计过程, 以满足EMI规格要 求, 本文介绍如何轻松快速地对EMI噪声分析和滤波器设计进行 估算, 并使用ADI的LTpowerCAD®程序进行预构建。

不同类型的EMI:辐射和传导噪声、共模和差模

EMI噪声主要分为两种类型:辐射型和传导型。在开关模式电源中,辐射型EMI一般由开关节点上的快速变化,高dv/dt噪声产 生。电磁辐射行业标准一般覆盖30 MHz至1 GHz频段。在这些频率 下,开关稳压器产生的辐射EMI主要来自开关电压振荡和尖峰。 这种噪声在很大程度上取决于PCB板的布局。因为这些噪声由电 路寄生参数决定,对一个工程师来说,除了保证良好PCB布局实 践之外,几乎不可能在"演算纸上"准确预测开关模式电源会 传输多少辐射EMI。要量化其辐射EMI噪声等级,我们必须在设计 完备的EMI实验室内测试电路板。

传导型EMI由开关稳压器传导输入电流的快速变化引起,包括共模(CM)和差模(DM)噪声。传导EMI噪声的行业标准限值覆盖的频率 范围一般比辐射噪声的范围小,为150 kHz至30 MHz。图1所示为 DC-DC电源(即EMI实验室中的待测设备DUT)的共模和差模噪声 的常见传导路径。

为了量化输入端传导EMI,我们需要测试时在稳压器的输入端设 置一个线路阻抗稳定网络(LISN),用以提供标准输入源阻抗。在 每条输入线路和接地之间测量共模传导噪声。共模噪声在高dv/ dt开关节点上生成,通过器件的寄生PCB电容C[®]接地,然后传输 至电源输入LISN。与辐射EMI一样,高频开关节点噪声和寄生电 容很难被准确地建模预估。

差模(DM)噪声是在两条输入线路之间进行差分测量。DM传导噪声从开关模式电源的高di/dt、脉冲输入电流中产生。幸运的是,不像其他EMI类型,输入电容和LISN电路中产生的脉冲输入 电流和由此导致的相对低频率EMI可以利用LTpowerCAD等软件预测,且精度较高。这也是本文讨论的重点。

图1. 对开关模式电源的差模和共模传导EMI实施基于LISN的测量的概念 概述。

图2所示为开关模式降压型电源(不带输入EMI滤波器)的典型 差模EMI噪声图。最显著的EMI尖峰在电源的开关频率下出现,额 外的尖峰则在谐波频率下出现。在图2所示的EMI图中,这些尖 峰的峰值超过了CISPR 22 EMI限值。要满足这些标准,需采用一个 EMI滤波器来衰减差模EMI。

图2.不带输入EMI滤波器的开关模式降压型电源的典型差模EMI图。

差模传导EMI滤波器

图3所示为开关模式电源输入侧的典型差模传导EMI噪声滤波器。在本例中,我们在电源的本地输入电容Cm(EMI噪声源一侧)和输入源(LISN接收器一侧)之间添加了一个简单的一阶低通LCr网络。这与标准EMI实验室的测试设置匹配,其中LISN网络被连接到Lc滤波器的滤波电容Cr一侧。使用频谱分析仪测量LISN电阻R2上的差分信号,就可以量化DM传导EMI噪声。

图4所示为LC滤波器的衰减增益图。在极低频率下, 电感有低阻 抗, 本质上近似短路, 而电容的阻抗高, 本质上近似开路。对 应得出的LC滤波器增益为1(0 dB), 使得直流信号能够无衰减传 输。随着频率升高, 在LCI的谐振频率处出现增益尖峰。当频率 高于谐振频率时, 滤波器增益按-40 dB/10倍频程的速率衰减。在 相对较高的频率下, 滤波器增益基本由元件的寄生参数决定: 比如滤波器电容的ESR和ESL, 以及滤波器电感的并联电容。

由于此LC滤波器的衰减能力随频率升高而迅速增强,所以前几次的低频噪声谐波的幅度在很大程度上决定了EMI滤波器的大小,其中电源开关频率(fsw)处的基本噪音成分是最重要的目标。因此,我们可以将重点放在降低EMI滤波器的低频增益上,以满足行业标准。

图3.差模EMI噪声滤波器(从节点B至节点A)。

LTpowerCAD可以方便预测电源的滤波器性能

LTpowerCAD是一款电源设计辅助工具,可以在<u>analog.com/LTpowerCAD</u> 免费下载安装。该程序可以为工程师提供辅助设计,让他们只 需简单几步,在几分钟内就能设计和优化整个电源参数。

LTpowerCAD引导用户完成整个电源选择和设计过程。用户可以开 始输入电源规格,在此基础上,LTpowerCAD选择的合适的解决方 案,然后帮助用户选择功率级组件,优化电源效率、设计环路 补偿和负载瞬态响应。

在本文中,我们要介绍的是LTpowerCAD的输入EMI滤波器设计工 具,它使工程师能够快速估算差模传导EMI,并确定满足EMI标准 需要哪些滤波器组件。LTpowerCAD的滤波器工具可以帮助工程师 在实际制板和测试前,就预估滤波器的参数,从而显著缩短设 计时间和降低设计成本。

采用LTpowerCAD实施EMI滤波器设计

概述

现在让我们来看看DM EMI滤波器设计示例。图5所示为LTpowerCAD 原理图设计页面,显示了使用LTC3833降压转换控制器的电源组 件选择。在这个例子中,该转换器采用12 V输入和5 V/10 A输出。 开关频率(fsw)是1MHz。在设计EMI滤波器之前,我们应首先通过选 择开关频率、功率级电感、电容和FET来设计降压转换器。 在选择功率级组件后,如图6所示,我们可以点击EMI设计图标,来打开DM EMI滤波器工具窗口。这个EMI设计窗口显示了电源输入电容Cma/Cma和输入端LISN之间的输入滤波器网络LiCr。此外,还有备用的阻尼电路,例如LISN一侧的网络Cal/Rat、电源输入电容一侧的网络Cal/Rat,以及滤波器电阻Li中的备用阻尼电阻Rfp。 图6右侧是估算的传导EMI噪声图和所选的EMI标准限值。

图5. LTpowerCAD原理图设计页面和集成式EMI工具图标。

图6. LTpowerCAD传导DM EMI滤波器设计窗口(Li=0,无滤波器)。

选择一项EMI标准

在设计EMI滤波器时,您需要了解设计目标——即EMI标准本身。 LTpowerCAD内置CISPR 22(常用于电脑和通讯设备)、CISPR 25(常 用于汽车器件)和MIL-STD-461G标准的示意图。您可以直接从EMI 规格下拉菜单中选择您所需的标准。

在图6的例子中,滤波器电感的值设置为0,以显示在没有输入 滤波器的情况下的EMI结果。EMI尖峰在基波和谐波频率下出现, 都超过了所示的CISPR 25标准的限值,导致EMI与规格原理图显示 屏上出现红色警示。

设置EMI滤波器参数

在选择所需的EMI标准后,你可以输入所需的EMI裕量,即所选标准限值与基波频率峰值之间的距离。一般可以选择3 dB至6 dB裕量。在这些选项中,LTpowerCAD程序利用给定的滤波器电容Cr和电源工作条件计算出建议的滤波器电感值L-sug.,显示在LTpowerCAD黄色单元格中。你可以在L单元格中输入一个略大于建议值的电感值,以满足EMI限值和所需的裕量。

在本例中,图7显示设计工具建议采用0.669 µH滤波器电感,用户 实际输入0.72 µH电感,以满足其要求。关于滤波器带来的好处, 可以通过比较带滤波器时的结果和不带滤波器时的结果得出。 打开**显示不带输入滤波器的EMI**选项,你可以查看叠加在不带滤 波器的灰色示意图上方的滤波结果。

在选择滤波器电容Cr时,有一个重要细节需要注意。X5R、X7R等 类型的介电材料的多层陶瓷电容(MLCC),其电容值会随着直流 偏置电压的增大而显著下降。因此,除了LTpowerCAD的标称电容 C(nom)之外,用户还应该在施加直流偏置电压(Vma或Vma)的情 况下输入实际电容值。 关于降额曲线,请参考电容供应商提供的数据手册。如果所选的MLCC电容来自LTpowerCAD库,程序会自动估算该电容与直流偏 置电压相关的降额。

另外,我们也需要考虑输入滤波器电感值的变化。电感随直流 电流饱和时,会产生非线性电感。随着负载电流增加,电感值 可能明显下降,特别是对于铁氧体磁珠类型电感而言。用户应 输入实际电感,以生成准确的EMI预测。

检查滤波器衰减增益

在图7所示的带输入滤波器的EMI图中,LC输入滤波器在245 kHz处 谐振(频率低于电源开关频率),产生了一个噪声尖峰。图8所 示为滤波器衰减增益图,该图代替了LTpowerCAD EMI窗口(点击**滤 波器衰减**选项卡)中的EMI结果,用于显示滤波器在245 kHz时的 谐振衰减增益。

在某些情况下,LC谐振峰值可能导致噪声超过EMI标准。为了衰减这个谐振峰值,可以添加一对额外的阻尼组件CaA和Raa,与滤波器电容Cr并联。除了显示衰减图之外,LTpowerCAD还简化了选择这些组件的过程。一般情况下,选择值为真实滤波器Cr值的2到4倍的阻尼电容Caa。LTpowerCAD会提供建议的阻尼电阻Raa值,以降低谐振峰值。

检查滤波器阻抗和电源输入阻抗

在开关模式电源前添加一个输入EMI滤波器时,滤波器的输出阻抗Zir会与电源的输入阻抗Zim相互作用,可能会造成电路振荡。 为了避免这种不稳定的情况,EMI滤波器的输出阻抗幅度Zir应该 远低于电源输入的阻抗幅度Zin,并留有足够的裕量。图9显示Zir 和Zin的概念以及它们之间的稳定裕量。

图7.选择滤波器电感值以满足EMI标准限值。

为了简化分析过程,可以将具备高反馈环路带宽的理想电源用 作恒定功率负载,也就是说,输入电压VIN乘以输入电流的值是 恒定的。随着输入电压增大,输入电流减小。因此,理想电源 具有负输入阻抗Z_{IN} = -(V_{IN}²)/P_N。

为了便于设计输入滤波器,LTpowerCAD在图10所示的阻抗图中显 示滤波器输出阻抗Zu和电源输入阻抗ZIN。注意,电源输入阻抗 是输入电压和输入功率的函数。最坏的情况(即最低的阻抗电 平)在VIN最小、PIN最大时发生。 如图10所示, EMI滤波器输出阻抗在滤波器电感Li和电源输入电容 Cw引起的谐振频率上出现峰值点。在一个好的设计中,这个峰 值的幅度应该低于最坏情况下Zw的幅度,且具备足够的裕量。 如果需要降低这个阻抗峰值,可以采用另一对可选的阻尼组 件,即电容Cda和电阻Rda,与电源输入电容Cw并联。这种Cw侧阻 尼网络可以有效降低滤波器Zour峰值。LTpowerCAD EMI工具提供了 建议的Cda和Rda参数。

图8.EMI滤波器衰减增益(在LISN端有和没有阻尼)。

图9.检查EMI滤波器输出阻抗和电源输入阻抗是否稳定。

图10. LTpowerCAD EMI滤波器阻抗图(有阻尼和无阻尼)。

LTpowerCAD EMI滤波器工具的精度

为了验证LTpowerCAD EMI滤波器工具的精度,我们进行了基于真实的电路板在EMI实验室的实际测试比较。图11所示为使用经过修改的LTC3851降压型电源演示板(采用750 kHz、12 V输入电压、1.5 V输出电压和10 A负载电流)实施真实测试得出的结果和LTpowerCAD预测EMI噪声之间的比较。如图11所示,测试得出的EMI数据和使用LTpowerCAD模拟得出的EMI数据的低频段噪声峰值是大致匹配的。实际测试的峰值比模拟得出的EMI峰值略低几个dB。

在更高频率段,不匹配的幅度更大,但是如前所述,由于DM传 导EMI滤波器的大小主要由低频率噪声峰值决定,所以这些高频 段的误差并不太重要。很多高频段误差是由电感和电容寄生模 型的精度导致,包括PCB布局寄生值;就目前而言,基于PC的设 计工具还达不到这种精度。

图11. 真实的板实验测量得出的EMI和LTpowerCAD估算的EMI (12 Vm至1.5 Vour/10 A 降压示例)。

值得强调的是,LTpowerCAD过滤器工具是一款估算工具,可用于 提供EMI滤波器初始设计。要获得真正准确的EMI数据,用户还需 要构建电源电路板原型,并进行真实的实验测试。

总结

许多行业使用的系统都需要越加严格地抑制电磁噪声干扰。因此,工业界针对EMI噪声发布了许多明确的标准。与此同时,开 关模式电源的数量不断增加,且安装位置更加靠近敏感电路。 开关模式电源是系统中EMI的主要来源,因此在很多情况下都需 要量化其噪声输出并降低。问题是,EMI滤波器的设计和测试往 往是一个反复尝试的过程,非常耗费时间和设计成本。

为了解决这个问题,LTpowerCAD工具可以让设计人员能够在实施 真实的设计和测试前,使用基于计算机的预测模拟,从而极大 地节省时间和成本。易于使用的EMI滤波器工具可以预估差模传 导EMI滤波器参数,包括可选的阻尼网络,以最大程度降低EMI, 同时保持稳定的电源。实验测试结果验证了使用LTpowerCAD预测 结果的准确性。

作者简介

Dr. Henry Zhang (张劲东博士) 是ADI的Power by Linear™应用总监。他于1994年获得中国浙江大学颁发的电子工 程学士学位,分别于1998年和2001年获得弗吉尼亚理工学院暨州立大学(黑堡)颁发的电子工程硕士学位 和博士学位。他于2001年加入凌力尔特(现在已成为ADI的一部分)。联系方式: <u>henry.zhang@analog.com</u>。

作者简介 Sam Young是A

Sam Young是ADI公司的应用经理,提供µModule[®]稳压器产品和LTpowerCAD产品支持。他拥有10多年助力为广 泛的应用和产品开发稳压器设计的经验。联系方式: samuel.young@analog.com。

如需了解区域总部、销售和分销商,或联系客户服务和 技术支持,请访问<u>analog.com/cn/contact</u>。

向我们的ADI技术专家提出棘手问题、浏览常见问题解 答,或参与EngineerZone在线支持社区讨论。 请访问<u>ez.analog.com/Cn</u>。 ©2020 Analog Devices, Inc. 保留所有权利。 商标和注册商标属各自所有人所有。

"超越一切可能"是ADI公司的商标。

请访问analog.com/cn