

in 分享至LinkedIn 区 电子邮件

学子专区—2019年6月ADALM2000: 多种仪器,合而为一

作者: Antoniu Miclaus和Doug Mercer

随着电子专业学生和爱好者们升级自己的硬件系统,他们逐渐 开始接触信号发生器、示波器、逻辑分析仪等仪器设备。这些 独立的仪器可能要花费很多钱(通常数百美元,甚至数千美 元),并需要很大的空间来使用和摆放。

这时, ADALM2000就有了用武之地。它是一款通过USB供电的信 号激励测量单元, 经济实惠, 扩展了ADALM1000主动学习模块 的功能(有关ADALM1000的更多信息和应用, 可查看我们之前 的学子专区文章)。

图1. ADALM2000概览

ADALM2000主动学习模块的设计考虑到了各种水平、不同背景的 学生和电子爱好者们,易于上手的设计保证了使用者既可以在教 师的辅导下学习,也可以自学。小巧的模块可以助你探索数十兆 赫兹范围的信号与系统的世界,也为攻读科学、技术或工程学位 打下基础,而无需花费巨资购买庞大的传统实验装备。

图2. ADALM2000模块

该模块包含了采样率为100 MSPS的12位ADC和150 MSPS的12位 DAC,能让小巧的口袋仪器发挥出高性能。想要掌握它的功 能,用户不仅需要了解内部的器件,还需要了解每个器件的基 本功能。

Scope Ch 1+	Scope Ch 2+	GND	Positive Supply	AWG Ch 1	GND	Trigger In 1	DIO 0	DIO 1	DIO 2	DIO 3	DIO 4	DIO 5	DIO 6	DIO 7
Scope Ch 1-	Scope Ch 2-	GND	Negative Supply	AWG Ch 2	GND	Trigger In 0	DIO 8	DIO 9	DIO 10	DIO 11	DIO 12	DIO 13	DIO 14	DIO 15

1+	2+	G	V+	W1	G	T1	0	1	2	3	4	5	6	7
1-	2-	G	V-	W2	G	т0	8	9	10	11	12	13	14	15

图3. ADALM2000引脚排列

该硬件模块包含以下特性:

- USB 2.0设备和0TG (支持LAN和Wi-Fi)
- 两个通用模拟输入:
 - 差分、±25 V、1 MΩII30 pF、12位、100 MSPS ADC, 25 MHz 带宽
- ▶ 两个通用模拟输出:
 - 单端、±5 V、50Ω、12位、150 MSPS DAC, 30 MHz带宽
- 两个可变电源
 - 0 V至5 V, -5 V至0 V, 50 mA
- 16个数字输入输出引脚
 - 3.3 V, 1.8 V, 100 MSPS, 兼容5 V
- 两个数字触发器
 - 3.3 V或1.8 V, 100 MSPS, 兼容5 V

通过图3所示器件的输出引脚可以连接内部的硬件单元。该模 块配有2x15根彩色电缆作为连接线,通过颜色可以直观地分辨 出连接线连接到了哪个功能模块。

Scopy软件功能

与PC配合使用时,ADALM2000可以充当便携实验室,可增强课 堂学习效果。ADI公司的Scopy软件包支持ADALM2000,它提供直 观的用户图形界面(GUI),让学生可以更快速地掌握知识,更巧 妙地开展工作并探索更多知识。Scopy基于开源技术,任何人都 能测试其源代码并添加新特性。

图4. Scopy GUI

Scopy利用ADALM2000的特性设计了如下功能:

- 电压表
- 数字示波器
- ▶ 频谱分析仪
- ▶ 电源
- ▶ 函数发生器
- 任意波形发生器
- ▶ 2端口网络分析仪
- 带总线分析仪的数字逻辑分析仪
- 数字模式发生器
- ▶ 数字静态输入/输出

有关如何使用每种仪器的详细信息,请参见Scopy wiki页面。

使用ADALM2000可以做什么?

ADI公司提供了一系列基于ADALM2000的实验室应用实例可供电 子和相关知识领域的学生学习,包括通信电路、电源管理电 路等等。所有资源和示例均可在ADI公司的ADALM2000实验材料 页面上找到。您还可以前往EngineerZone[®]教育部分,查看有关 ADALM2000/ADALM1000/ADALM-PLUTO的最新博客文章。

现在我们开始进行一个数字模拟转换器的基础实验,探索 ADALM2000模块提供的数字和模拟功能。R-2R梯形电阻网络是 最常见的数模转换器模块结构之一,它只使用的两种不同组值 的电阻,阻值比为2:1。N位DAC需要2N个电阻。

在电压模式下,R-2R梯形电阻网络的支路(如图5所示)被数字 编码D0-7驱动,其中数字0代表驱动电平为VREF-,数字1代表驱动 电平为VREF+。根据输入的数字编码,VLADDER(如图5所示)将在两 个基准电平之间变化。两个基准电压的负基准电压(VREF-)通常为 地(0 V),正基准电压(VREF-)我们将其设置为电源电压(3.3 V)。

图5. R-2R梯形电阻网络电路

图6. R-2R梯形电阻网络电路面包板连接

材料:

- ▶ ADALM2000主动学习模块
- ▶ 面包板
- ▶ 跳线
- 9个20 kΩ电阻
- 9个10 kΩ电阻
- ▶ 一个0P27放大器

在面包板上构建图6所示的8级梯形电阻电路。将八个数字输 出、示波器通道和AWG输出连接到梯形电阻电路中,如图所 示。注意将电源连接到运算放大器电源引脚。

当安装R1和R2时,设置AWG1的直流电压与DAC的VREF+相等, 即等于CMOS数字输出的+3.3 V电源电压。此时输出电压为双极 性,其摆幅为-3.3 V至+3.3 V。断开AWG1并移除电阻R1,输出电 压为单极性,摆幅为0 V至+3.3 V。启动Scopy软件。打开**模式发 生器**界面。选择DIO 0至DIO 7,并将其组成一个分组。设置参 数,将数字模式设置为**二进制计数器**,输出设置为推挽输出 (PP),频率设置为256 kHz。此时能看到类似图7所示的内容。最 后,点击**运行**按钮。

图7.模式发生器界面

打开示波器界面,开启通道2,并将时基设置为200µs/div,点击 绿色"运行"按钮开始运行。有时可能还需要调整通道的垂直 范围,初始条件下,1V/div是比较合适,通过示波器界面能看到 (图4)电压从0V上升到3.3V,斜坡信号的周期应为1ms。

图8.示波器界面

改变数字模式。例如,您可以尝试随机模式,或者加载自定义 模式。其中加载自定义模式的方法是生成一个有一列介于0到 255(对于8位宽总线)之间的数字的纯文本*.csv文件。以下是 一些预先制作好的波形文件,您可以加载并作为自定义模式文 件使用:正弦波、三角波、高斯信号等

问题:

- 使用欧姆定理和并联电阻公式计算,当D7和D6输入端施加不同的基准电压时(0V和3.3V),R-2RDAC的输出电压是多少?请将结果呈现为表格。
- ▶ 当输入D6连接到3.3 V且D7接地时,流过该电阻网络的电流将 是多少?

Doug Mercer [doug.mercer@analog.com]于1977年毕业于伦斯勒理工学院 (RPI),获电气工程学士学位。自1977年加入ADI公司以来,他直接或间接贡献 了30多款数据转换器产品,并拥有13项专利。他于1995年被任命为ADI研究 员。2009年,他从全职工作转型,并继续以名誉研究员身份担任ADI顾问, 为"主动学习计划"撰稿。2016年,他被任命为RPI ECSE系的驻校工程师。

Antoniu Miclaus [antoniu.miclaus@analog.com]是ADI公司的系统应用工程师, 从事ADI学术项目、Circuits from the Lab[®]嵌入式软件和QA过程管理工作。他 于2017年2月在罗马尼亚Cluj-Napoca加盟ADI公司。他目前是贝碧思鲍耶大学 软件工程硕士项目的理学硕士生,拥有克卢日-纳波卡科技大学电子与电信工 程学士学位。

Antoniu Miclaus

学子专区—2019年5月

Doug Mercer

该作者的其他文章:

基本运算放大器配置

ADALM1000 SMU

培训, 主题17:

该作者的其他文章 : ADALM1000 SMU 培训,主题17 : 基本运算放大器配置

学子专区—2019年5月