

ADI Analog Dialogue

非常见问题第207期。 如何通过最小化 热回路PCB ESR和ESL 来优化开关电源布局

Jingjing Sun. 产品应用高级工程师 Ling Jiang, 产品应用经理 Henry Zhang,产品应用高级总监

问题.

能否优化开关电源的效率?

答案.

当然可以, 最小化热回路PCB ESR和ESL是优化效率的重要方法。

简介

对于功率转换器、寄生参数最小的热回路PCB布局能够改善能 效比,降低电压振铃,并减少电磁干扰(EMI)。本文讨论如何通 过最小化PCB的等效串联电阻(ESR)和等效串联电感(ESL)来优化热 回路布局设计。本文研究并比较了影响因素,包括解耦电容位 置、功率FET尺寸和位置以及过孔布置。通过实验验证了分析结 果,并总结了最小化PCB ESR和ESL的有效方法。

热回路和PCB布局寄生参数

开关模式功率转换器的热回路是指由高频(HF)电容和相邻功率 FET形成的临界高频交流电流回路。它是功率级PCB布局的最关 键部分, 因为它包含高dv/dt和di/dt噪声成分。设计不佳的热回路 布局会产生较大的PCB寄生参数、包括ESL、ESR和等效并联电容 (EPC), 这些参数对功率转换器的效率、开关性能和EMI性能有重 大影响。

图1显示了同步降压DC-DC转换器原理图。热回路由MOSFET M1和M2 以及解耦电容Cn形成。M1和M2的开关动作会产生高频di/dt和dv/dt 噪声。℃,提供了一个低阻抗路径来旁路高频噪声成分。然而. 器件封装内和热回路PCB走线上存在寄生阻抗 (ESR、ESL)。高 di/dt噪声通过ESL会引起高频振铃,进而导致EMI。ESL中存储的能 量在ESR上耗散,导致额外的功率损耗。因此,应尽量减小热回 路PCB的ESR和ESL,以减少高频振铃并提高效率。

准确提取热回路的ESR和ESL,有助于预测开关性能并改进热回路 设计。器件的封装和PCB走线均会影响回路的总寄生参数。本文 主要关注PCB布局设计。有一些工具可帮助用户提取PCB寄生参 数、例如Ansys Q3D、FastHenry/FastCap、StarRC等。Ansys Q3D之类的 商用工具可提供准确的仿真, 但通常价格昂贵。FastHenry/FastCap 是一款基于部分元件等效电路(PEEC)数值建模的免费工具1, 可以通过编程提供灵活的仿真来探索不同的版图设计,但需 要额外的编程。FastHenry/FastCap寄生参数提取的有效性和准确 性已经过验证,并与Ansys Q3D进行了比较,结果一致²³。在本文 中, FastHenry用作提取PCB ESR和ESL的经济高效的工具。

图1. 带热回路ESR和ESL的降压转换器

热回路PCB的ESR和ESL与解耦电容位置的关系

本部分基于ADI公司的LTM4638 µModule®稳压器演示板DC2665A-B来研 究Cn位置的影响。LTM4638是一款集成式20 Vn、15 A降压型转换器 模块, 采用小型6.25 mm × 6.25 mm × 5.02 mm BGA封装。它具有高功 率密度、快速瞬态响应和高效率特性。模块内部集成了一个小 的高频陶瓷5点,不过受限于模块封装尺寸,这还不够。图2至图 4展示了演示板上的三种不同热回路,这些热回路使用了额外 的外部C_N。第一种是垂直热回路1(图2),其中C_M放置在μModule 稳压器下方的底层。µModule V_N和GND BGA引脚通过过孔直接连接 到C_M。这些连接提供了演示板上的最短热回路路径。第二种 热回路是垂直热回路2 (图3), 其中Cw/仍放置在底层, 但移至 μModule稳压器的侧面区域。其结果是,与垂直热回路1相比,该 热回路添加了额外的PCB走线,预计ESL和ESR更大。第三种热回 路选项是水平热回路 (图4), 其中C™放置在靠近µModule稳压器 的顶层。µModule V_{IN}和GND引脚通过顶层铜连接到C_{IN3},而不经过过 孔。然而, 顶层的1、铜宽度受其他引脚排列的限制, 导致回路 阻抗高于垂直热回路1。表1比较了FastHenry提取的热回路 PCB ESR 和ESL。正如预期的那样,垂直热回路1的PCB ESR和ESL最低。

图2. 垂直热回路1. (a)俯视图和(b)侧视图

图3. 垂直热回路2: (a)俯视图和(b)侧视图

图4. 水平热回路. (a)俯视图和(b)侧视图

表1. 使用FastHenry提取的不同热回路的PCB ESR和ESL

热回路	ESR (ESR $_1$ + ESR $_2$) $_1$ 600 kHz (m Ω)	ESL (ESL₁ + ESL₂)、 200 MHz (nH)
垂直热回路1	0.7	0.54
垂直热回路2	2.5	1.17
水平热回路	3.3	0.84

为了通过实验验证不同热回路的ESR和ESL,我们测试了12 V转1 V CCM运行时演示板的效率和 V_m 交流纹波。理论上,ESR越低,则效率越高,而ESL越小,则 V_{sw} 振铃频率越高, V_m 纹波幅度越低。图5a显示了实测效率。垂直热回路1的效率最高,因为其ESR最低。水平热回路和垂直热回路1之间的损耗差异也是基于提取的ESR计算的,这与图5b所示的测试结果一致。图5c中的 V_m HF纹波波形是在 C_m 上测试的。水平热回路具有更高的 V_m 纹波幅度和更低的振铃频率,因此验证了其回路ESL高于垂直热回路1。另外,由于回路ESR更高,因此水平热回路的 V_m 纹波衰减速度快于垂直热回路1。此外,较低的 V_m 纹波降低了EMI,因而可以使用较小的EMI滤波器。

图5.演示板测试结果: (a)效率, (b)水平回路与垂直回路1之间的损耗差异, (c) 15.4输出时M1导通期间的V1.1纹波

表2. 对于不同器件形状和位置,使用FastHenry提取的热回路PCB ESR和ESL

	ESR ₁ (mΩ), 2 MHz	ESR₂ (mΩ), 2 MHz	ESR₃ (mΩ), 2 MHz	ESR _{τοταL} (mΩ), 2 MHz	相对于(a)的 ESR变化率	ESL₁(nH), 200 MHz	ESL₂ (nH), 200 MHz	ESL₃ (nH), 200 MHz	ESL _{TOTAL} (nH), 200 MHz	相对于(a)的 ESL变化率
(a)	0.59	2.65	0.45	3.69	N/A	0.42	2.80	0.23	3.45	N/A
(b)	0.59	0.3	0.38	1.27	-66%	0.42	0.09	0.17	0.67	-81%
(c)	0.24	0.27	0.83	1.35	-63%	0.07	0.07	0.52	0.66	-81%
(d)	0.44	0.3	0.28	1.01	-73%	0.25	0.09	0.08	0.42	-88%
(e)	0.44	0.27	0.26	0.97	-74%	0.21	0.08	0.07	0.36	-90%
(f)	0.31	0.27	0.13	0.7	-81%	0.12	0.07	0.02	0.21	-94%

热回路PCB ESR和ESL与MOSFET尺寸和位置的 关系

对于分立式设计,功率FET的布置和封装尺寸对热回路ESR和ESL也有重大影响。本部分对使用功率FET M1和M2以及解耦电容Cn的典型半桥热回路进行了建模和研究。图6比较了常见功率FET封装尺寸和放置位置。表2显示了每种情况下提取的ESR和ESL。

情况(a)至(c)展示了三种常见功率FET布置,其中采用5 mm×6 mm M0SFET。热回路的物理长度决定了寄生阻抗。与情况(a)相比,情况(b)中的90°形状布置和情况(c)中的180°形状布置的回路路径更短,导致ESR降低60%,ESL降低80%。由于90°形状布置显示出了优势,我们基于情况(b)研究了更多情况,以进一步降低回路ESR和ESL。情况(d)将一个5 mm×6 mm M0SFET替换为两个并联的3.3 mm×3.3 mm M0SFET。由于M0SFET尺寸更小,回路长度进一步缩短,导致回路阻抗降低7%。情况(e)将一个接地层放置在热回路层下方,与情况(d)相比,热回路ESR和ESL进一步降低2%。原因是接地层上产生了涡流,其感应出相反的磁场,相当于降低了回路

阻抗。情况(f)构建了另一个热回路层作为底层。如果将两个并联MOSFET对称布置在顶层和底层,并通过过孔连接,则由于并联阻抗,热回路PCB ESR和ESL的降低更加明显。因此,在顶层和底层上以对称90°形状或180°形状布置较小尺寸的器件,可以获得最低的PCB ESR和ESL。

为了通过实验验证MOSFET布置的影响,我们使用了ADI公司的高效率4开关同步降压-升压控制器演示板LT8390/DC2825A和LT8392/DC2626A⁴。如图7a和图7b所示,DC2825A采用直线MOSFET布置,DC2626A采用90°形状的MOSFET布置。为了进行公平比较,两个演示板配置了相同的MOSFET和解耦电容,并在36 V转12 V/10 A、300 kHz降压操作下进行了测试。图7c显示了MI导通时刻测得的 $V_{\rm IN}$ 交流纹波。采用90°形状的MOSFET布置时, $V_{\rm IN}$ 纹波的幅度更低,谐振频率更高,这就验证了热回路路径较短导致PCB ESL更小。相反,直线MOSFET布置的热回路更长,ESL更高,导致 $V_{\rm IN}$ 纹波幅度要高得多,并且谐振频率更低。根据Cho和Szokusha研究的EMI测试结果,较高的输入电压纹波还会导致EMI辐射更严重⁴。

图6. 热回路PCB模型: (a)5 mm × 6 mm MOSFET, 直线布置; (b)5 mm × 6 mm MOSFET, 以90°形状布置; (c)5 mm × 6 mm MOSFET, 以180°形状布置; (d)两个并联的3.3 mm × 3.3 mm MOSFET, 以90°形状布置, 带有接地层; (f)对称的3.3 mm × 3.3 mm MOSFET, 位于顶层和底层. 以90°形状布置

图7. (a) LT8390/DC2825A热回路,MOSFET以直线布置; (b) LT8392/DC2626A热回路,MOSFET以90°形状布置; (c) MT导通时的V_{III}纹波波形

图8. 热回路PCB模型,(a) 5个GND过孔靠近 C_m 和M2布置;(b) 14个GND过孔布置在 C_m 和M2之间;(c) 基于(b),GND上再布置6个过孔;(d) 基于(c),GND区域上再布置9个过孔

热回路PCB的ESR和ESL与过孔布置的关系

热回路中的过孔布局对回路ESR和ESL也有重要影响。图8对使用 两层PCB结构和直线布置功率FET的热回路进行了建模。FET放置 在顶层,第二层是接地层。C_m GND焊盘和M2源极焊盘之间的寄生 阻抗Z2是热回路的一部分,作为示例进行研究。Z2是从FastHenry 提取的。表3总结并比较了不同过孔布置的仿真ESR₂和ESL₂。

通常,添加更多过孔会降低PCB寄生阻抗。然而, ESR,和ESL,的 降低程度与过孔数量并不是线性比例关系。靠近引脚焊盘的过 孔, 所导致的PCB ESR和ESL的降低最明显。因此, 对于热回路布 局设计,必须将几个关键过孔布置在靠近Cm和MOSFET焊盘的位 置, 以使高频回路阻抗最小。

表3. 使用不同过孔布置时提取的热回路PCB ESR2和ESL2

情况	ESR₂ (mΩ), 2 MHz	相对于 初始情况的 ESR变化率	ESL₂ (nH), 200 MHz	相对于 初始情况的 ESL变化率
无过孔的 初始情况	2.67	N/A	1.19	N/A
(a)	1.73	-35.2%	0.84	-29.8%
(b)	1.68	-37.1%	0.82	-30.8%
(c)	1.67	-37.5%	0.82	-31%
(d)	1.65	-38.2%	0.82	-31.4%

结论

减小热回路的寄生参数有助于提高电源效率,降低电压振铃, 并减少EMI。为了尽量减小PCB寄生参数,我们研究并比较了使 用不同解耦电容位置、MOSFET尺寸和位置以及过孔布置的热回 路布局设计。更短的热回路路径、更小尺寸的MOSFET、对称的 90°形状和180°形状MOSFET布置、靠近关键元器件的过孔,均有助 于实现最低的热回路PCB ESR和ESL。

参考资料

'Mattan Kamon、 Michael Tsuk和Jacob White。 "FASTHENRY: A Multipole-Accelerated 3-D Inductance Extraction Program." IEEE Transactions on Microwave Theory and Techniques, 第42卷, 1994年。

²Andreas Musing、Jonas Ekman和Johann W. Kolar。 "Efficient Calculation of Non-Orthogonal Partial Elements for the PEEC Method." IEEE Transactions on Magnetics, 第45卷, 2009年。

³Ren Ren、Zhou Dong禾¤Fei Fred Wang。 "Bridging Gaps in Paper Design Considering Impacts of Switching Speed and Power-Loop Layout." IEEE, 2020年。

"Yonghwan Cho和Keith Szolusha。 "低辐射的4开关降压-升压型控制器布 局——单热回路与双热回路"。模拟对话,第55卷,2021年7月。

⁵Henry J. Zhang。"非隔离开关电源的PCB布局考量"。ADI公 司, 2012年。

⁶Christian Kueck。"电源布局和EMI"。ADI公司,2012年。

作者简介

Jingjing Sun于2022年毕业于田纳西大学诺克斯维尔分校,获电气工程博士学位。毕业后,她加入了ADI公 司电源产品部,工作地点位于美国加利福尼亚湾区。她目前是一名高级应用工程师,负责支持针对多 市场应用的µModule®产品。

作者简介

Ling Jiang于2018年毕业于田纳西大学诺克斯维尔分校,获电气工程博士学位。毕业后,她加入了ADI公司 电源产品部,工作地点位于美国加利福尼亚湾区。她目前是一名应用经理,负责支持针对多市场应用 的µModule®产品。

作者简介

Dr. Henry Zhang (张劲东博士) 是ADI的Power by Linear™应用总监。他于1994年获得中国浙江大学颁发的电子 工程学士学位,分别于1998年和2001年获得弗吉尼亚理工学院暨州立大学 (黑堡)颁发的电子工程硕士 学位和博士学位。他于2001年加入凌力尔特(现在已成为ADI的一部分)。

©2022 Analog Devices, Inc. 保留所有权利。

